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Abstract 

The paper examines the Dirac-Pauli differences concerning the order of the 
primary differential equation of an elementary massive quantum particle. The 
analysis relies on several self-evident constraints that an acceptable quantum 
theory must satisfy, like conservation laws, compatibility with Maxwellian 
electrodynamics and the correspondence principle. The dimension of the 
quantum function that is used in the Lagrangian density of a given quantum 
theory together with the corresponding differential equations play an impor-
tant role in the reasoning procedure. The paper proves that Dirac was right 
and that second-order quantum theories like the Klein-Gordon equation and 
the electroweak theory of the W± bosons do not satisfy fundamental con-
straints. This outcome is inconsistent with the Standard Model of Particle 
Physics. 
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1. Introduction 

The history of science points out disagreements between leading figures of a 
given period. The present work is dedicated to a fundamental disagreement be-
tween Dirac and Pauli about the coherence of the order of the fundamental dif-
ferential equations of a massive quantum particle. It is shown below that Dirac 
has supported the idea that the fundamental differential equations of an ele-
mentary massive quantum particle should be of the first order. By contrast, Pauli 
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has argued that also second-order differential equations are acceptable. 
The few quotations that are shown herein illustrate the problem. Very late in 

his life, Dirac has repeated his lifelong opinion and stated that “only equations 
linear in t∂ ∂  give probabilities that are positive definite” (see [1], p. 3). 

Pauli disagreed to Dirac’s opinion and sent a letter to Heisenberg in 1934 
where he states that “Dirac’s assertion that a second-order time derivative in a 
wave equation contradicted the quantum mechanical transformation theory ‘is 
pure rubbish and is refuted by application of our field quantization’” (see [2], p. 
70). 

These differences were not free of personal emotions. For example, Pauli 
stated that his interpretation of the second-order Klein-Gordon (KG) equation 
“has made me happy that I can again cast aspersion on my old enemy—the Di-
rac theory of the spinning electron” (see [2], p. 70). Below, these contradictory 
opinions are called the Dirac-Pauli differences. (It is explained later how a term 
of a Lagrangian density that contains a product of derivatives of the quantum 
function yields a second-order differential equation.) 

An observation of the present literature indicates that Pauli has apparently 
won these differences. For example, contemporary textbooks on quantum field 
theory (QFT) devote specific sections to the second-order KG equation (see e.g. 
[3], chapter 2; [4], chapters 1-4). Furthermore, the Standard Model (SM) is the 
presently accepted theory of elementary particles and their interactions. The SM 
comprises several sectors, and its electroweak sector regards the three ,W Z±  
massive bosons as elementary particles that satisfy a second order differential 
equation (see e.g. [4], p. 518; [5], pp. 305-318). 

However, this state of affairs should not be regarded as the final word about 
the Dirac-Pauli differences. Indeed, physics is a mature science that takes a ma-
thematical structure. Hence, an examination of mathematical aspects of the Di-
rac-Pauli differences may yield decisive arguments about this issue. This work 
relies on well established mathematical principles of theoretical physics and con-
straints that are derived from them. Later, these constraints are applied to the 
Dirac-Pauli differences and the outcome proves that it is Dirac who was right. 

Units where 1c= =  are used. Greek indices run from 0 to 3. Most formulas 
take the standard form of relativistic covariant expressions. The metric is di-
agonal and its entries are (1, −1, −1, −1). An upper dot denotes the time-derivative. 
Section 2 presents constraints that an acceptable quantum theory must abide with. 
The third section examines the coherence of quantum theories whose primary 
differential equations are of the first order or the second order, respectively. 
Further aspects of this topic are discussed in the fourth section. The last section 
summarized this work. 

2. Constraints on Quantum Theories 

Constraints play an important role in the construction of a new physical theory. 
They are used for a rejection of physical ideas that cannot be correct. In so doing 
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they save a lot of time and effort that are doomed to be useless. This section 
presents well-known constraints that are organized in different groups. These 
constraints are found relevant to the Dirac-Pauli differences. 

2.1. Constraints Related to Space-Time 

Conservation of energy, momentum and angular momentum are well-known 
properties of a closed physical system. These issues are related to space-time 
homogeneity and spatial isotropy. Relativistic covariance is another require-
ment. 

It is explained here how these requirements are satisfied by a QFT. Thus, the 
presently accepted approach to the construction of a QFT applies the variational 
principle to an action that takes the form  

( ) ( )4
,d , ,I x µψ ψ ψ= ∫                     (1) 

where ( ),, µψ ψ  is a Lagrangian density and ψ  is the quantum function. The 
action ( )I ψ  is a mathematically real Lorentz scalar. A well-known textbook 
supports this approach and states: “all field theories used in current theories of 
elementary particles have Lagrangians of this form” (see [6], p. 300). This ap-
proach is adopted in the present work. 

The Noether theorem provides a good reason for using this form of the varia-
tional principle as a basis for a QFT. This theorem connects the invariance of a 
given Lagrangian density with respect to a specific transformation to a conserva-
tion law that the associated theory satisfies. In other words, the quantum equa-
tions of motion are the Euler-Lagrange equations of the Lagrangian density of (1) 
(see [6], p. 300)  

( )
0,

x xµ µψ ψ
∂ ∂ ∂

− =
∂ ∂ ∂ ∂ ∂
                    (2) 

and these equations satisfy the conservation laws. In particular, the Noether 
theorem says that if the Lagrangian density of a mathematically coherent physi-
cal theory does not depend explicitly on the space-time coordinates then this 
theory satisfies the conservation of energy, momentum, and angular momentum 
(see [7], pp. 17-19). Evidently, the Lagrangian density of a quantum theory that 
takes the form of (1) does not depend explicitly on the space-time coordinates. 
Hence, the associated theory satisfies these important conservation laws. It is 
further proved that the action (1) yields a relativistic covariant theory (see [7], 
pp. 17-19). This outcome justifies the usage of (1) as the basis for any given 
quantum theory. 

The action principle (1) yields three important properties that are used below.  
• The Euler-Lagrange Equations (2) that are derived from the Lagrangian den-

sity are the differential equation of the quantum particle. The compatibility 
of these equations and of their solutions is analyzed. 

• Using fundamental laws of differential calculus, one finds that the Lagran-
gian density   and the second term of the Euler-Lagrange Equations (2) 
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determine the order of the differential equation of a given theory. If a term of 
the Lagrangian density   contains a product of derivatives of the quantum 
function , ,µ νψ ψ  then the differential equation is of the second order. On the 
other hand, if the Lagrangian density   is a linear function of the deriva-
tives ,µψ  then a first order differential equation is obtained. 

• In the units used herein, the action (1) is a dimensionless Lorentz scalar. 
Therefore, the Lagrangian density ( ),, µψ ψ  is a Lorentz scalar whose di-
mension is [L−4]. It follows that the quantum function ψ  of every kind of a 
Lagrangian density has a well-defined dimension. 

2.2. Constraints Related to Electrodynamics 

Some elementary massive quantum particles carry an electric charge. As such, 
these particles interact with electromagnetic fields. For this reason, these par-
ticles should abide by fundamental laws of Maxwellian electrodynamics. The 
following laws are used later in this work. 

EM.1 Charge conservation is a crucial element of Maxwellian electrodynamics. 
The continuity equation of the 4-current  

, 0jµµ =                             (3) 

(see [8], pp. 73-78; [9], p. 169) is the theoretical manifestation of this law. Fur-
thermore, this conservation law has a very solid experimental basis [10]. 

It turns out that the Noether theorem provides a prescription for constructing 
a conserved 4-current for a quantum theory of the form (1). The invariance of a 
quantum field Lagrangian density under a global phase transformation  

( )exp iψ α ψ→                         (4) 

yields  

( ) ( )
0 i iµ µ

µ µ

α ψ α ψ
ψ ψ ψ

    ∂ ∂ ∂    = − ∂ + ∂
   ∂ ∂ ∂ ∂ ∂     

              (5) 

(see [11], p. 314). The Euler-Lagrange Equation (2) proves that the quantity en-
closed inside the square brackets vanishes. Hence, the expression that is written 
inside the last bracket of (5) is a conserved 4-current (3), where  

( )
.jµ

µ

ψ
ψ

∂
=
∂ ∂
                         (6) 

Here 0j  is the density of the quantum particle. The action (1) is a mathematically 
real quantity. Therefore, the invariance of the Lagrangian density ( ),, µψ ψ  of 
(1) under a global phase transformation is obtained if its terms take the form 

†Ôψ ψ , where Ô  is a Hermitian operator. 
The mathematical structure of the Noether theorem for the 4-current (6) 

enables the division of terms of a given Lagrangian density into three categories: 
C.1 A term that depends on derivative-free quantum functions makes no con-

tribution to the Noether expression for the conserved 4-current. 
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C.2 A term that contains just one factor µψ∂  makes a contribution to the 
Noether expression for the conserved 4-current and this 4-current is deriva-
tive-free. 

C.3. A term that contains more than one factor µψ∂  makes a contribution to 
the Noether expression for the conserved 4-current and this 4-current is not de-
rivative-free. 

This classification is very useful for the analysis that is carried out below. 
EM.2 Another property of Maxwellian electrodynamics is that the interaction 

strength of the electromagnetic fields with a charged particle is proportional to 
its electric charge e. 

EM.3 A third property of Maxwell equations is that they are independent of 
the 4-potentials. This property is called gauge invariance. The Maxwell equa-
tions are the Euler-Lagrange equations that are derived from a Lagrangian den-
sity (see [8], pp. 78-80). Hence, the electromagnetic Lagrangian density should 
not contain terms where the power of the 4-potential is greater than unity. 

2.3. Other Constraints 

1) Physics is a science that aims to provide a good description of the state and 
the time-evolution of appropriate systems. The success of this objective is dem-
onstrated by a comparison of solutions of differential equations with experi-
mental data. The primary role of the variational principle (1) means that the re-
quired differential equations are the Euler-Lagrange equations of the theory’s 
Lagrangian density. It means that a given QFT must satisfy these requirements: 

A. The differential equations of the theory must take an explicit form. 
B. Solutions of these equations are obtainable. 
C. These solutions adequately describe the experimental properties of an ac-

tual physical system that belongs to the theory’s domain of validity. 
2) The Bohr correspondence principle relates the classical limit of quantum 

mechanics to classical physics. Here are few references that justify this important 
principle. The success of classical mechanics means that “classical mechanics 
must therefore be a limiting case of quantum mechanics.” ([12], p. 84; see also 
[13], pp. 25-27, 137, 138). Furthermore, QFT corresponds to quantum mechan-
ics. For example, a well-known textbook states clearly: “First, some good news: 
quantum field theory is based on the same quantum mechanics that was in-
vented by Schroedinger, Heisenberg, Pauli, Born, and others in 1925-26, and has 
been used ever since in atomic, molecular, nuclear and condensed matter phys-
ics” (see [6], p. 49). This statement means that there are certain relationships 
between QFT and quantum mechanics. Below, these relationships are called the 
Weinberg correspondence principle. The combined meaning of these quotations 
is that QFT corresponds to classical physics. A general discussion of the corres-
pondence between physical theories is presented on pp. 3-6 of [14]. 

These constraints are used below as criteria for the acceptability of quantum 
theories. 

https://doi.org/10.4236/oalib.1106335


E. Comay 
 

 

DOI: 10.4236/oalib.1106335 6 Open Access Library Journal 

 

3. First-Order and Second-Order Quantum Theories 

Mathematical textbooks discuss many aspects that pertain to the order of diffe-
rential equations. It turns out that the order of the primary differential equation 
is an important physical issue because it determines the dimension of the quan-
tum function ψ . Here a derivative µ∂  is taken with respect to the space-time 
coordinates. Hence, the dimension of a first order derivative is [L−1], whereas the 
dimension of a second order derivative is [L−2]. This issue plays a key role in the 
analysis that is presented below. 

Let us turn to the Dirac-Pauli differences and analyze the compatibility be-
tween the general physical laws that yield the above-mentioned constraints and 
the order of the differential equations of a quantum theory. The Dirac first-order 
theory of a massive spin-1/2 particle and second-order theories are examined 
separately. The first item of section 2 explains why the Lagrangian density of 
these theories is the cornerstone of the analysis. This analysis begins with the 
simplest case of a free particle. 

The Lagrangian density of a free Dirac particle is  

( ) .D i mµ
µψ γ ψ= ∂ −                      (7) 

(see [3], p. 78; [7], p. 54). As shown in section 2, the Lagrangian density   
must be a Lorentz scalar whose dimension is [L−4]. In the case of the Dirac 
theory (7), the dimension of the derivative µ∂  and the mass m is [L−1]. There-
fore, the dimension of the Dirac function ψ  is [L−3/2], and that of the product 
ψψ  is [L−3]. It follows that this product takes the dimension of density. In par-
ticular, the Noether theorem (6) yields the Dirac 4-current  

,jµ µψγ ψ=                          (8) 

and this 4-current satisfies the continuity Equation (3) (see [15], pp. 9, 23, 24). 
It is interesting to note that the entries of the Dirac µγ  matrices are pure 

numbers and that these four matrices transform like a 4-vector. It is shown be-
low that this is an important attribute of the Dirac theory of a spin-1/2 particle. 

Let us turn to the simplest case of a second-order quantum equation, namely, 
the Pauli-Weisskopf theory of the KG equation [2]. This equation aims to de-
scribe the state and the time-evolution of a spin-0 quantum particle. The La-
grangian density of a free KG charged particle is  

2
, ,KG g mµν
µ νφ φ φ φ= − † †                     (9) 

(see [2], p. 191; [6], p. 21). As shown above, the dimension of a Lagrangian den-
sity is [L−4]. Hence, the product of the derivatives as well as the term containing 

2m  proves that the dimension of the KG quantum function φ  is [L−1]. There-
fore, the dimension of the product †φ φ  is [L−2]. Furthermore, the dimension of 
the 4-current is [L−3]. Therefore, the 4-current of the KG quantum function must 
contain a derivative of the quantum function φ . And indeed, the Noether theo-
rem yields the required 4-current of the KG function (9) (see [2], p. 193; [7], p. 
40)  
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( )† †
, , .j iµ µ µφ φ φ φ= −                      (10) 

The different dimension of Dirac quantum function and that of any 
second-order quantum theory proves that these theories are inherently different. 
In particular, the 4-current is an important element of Maxwellian electrody-
namics. Here, the classification of Section 2 shows that the first-order Dirac eq-
uation belongs to the C.2 category, whereas second-order theories belong to the 
C.3 category of Section 2. This issue affects the coherence of the electromagnetic 
interactions of a charged particle. 

At this point one already identifies a problem with a second-order quantum 
theory. The normalization of the Schroedinger function * 3d 1xψ ψ =∫  (see e.g. 
[16], pp. 53-57; [17], p. 117) means that the dimension of the Schroedinger func-
tion ψ  is [L−3/2]. On the other hand, the dimension of a quantum function that 
satisfies a second-order differential equation is [L−1]. Hence, the dimension dis-
crepancy of these wave functions means that a second-order quantum theory vi-
olates the Weinberg correspondence principle of Section 2. 

It is shown below that the dependence of the 4-current of a second-order 
quantum theory on a derivative is the root of inherent contradictions of its elec-
tromagnetic interactions. Here is a quotation from the literature that mentions 
associated troubles, and thereby supports this claim: “Indeed, they appear with a 
vengeance, since the coupling prescription (15.1) introduces interaction terms 
containing derivatives” (see [7], p. 87). 

Let us examine the electromagnetic interactions of a quantum particle. In the 
case of the first-order Dirac equation of a charged spin-1/2 particle, one has the 
Lagrangian density of Quantum Electrodynamics (QED)  

( ) 1
16QED i m e A F Fµ µ µν

µ µ µνψ γ ψ ψγ ψ= ∂ − − −
π

           (11) 

(see [3], p. 78; [7], p. 84). Here the second term, which represents the interaction 
of a charge with electromagnetic fields, is free of derivatives. Hence, the Noether 
expression for the 4-current (6) proves that the interaction term of the first order 
quantum theory does not alter the particle’s 4-current (8). 

The dependence of the 4-current of a second-order equation on derivatives is 
an insurmountable obstacle for finding a coherent expression for electromag-
netic interaction of the corresponding charged particle. The reason for this 
statement relies on the form j Aµ

µ  of the electromagnetic interaction term. 
Thus, as stated above, the dimension of a quantum function that satisfies a prima-
ry second order quantum equation is [L−1]. The [L−3] dimension of a 4-current 
means that the 4-current of such a quantum particle must contain a derivative. 
Therefore, in the case of a second-order equation, an application of the Noether 
theorem to the 4-current factor of the interaction term alters the 4-current that 
is used in the interaction term. It means that the 4-current of these equations 
takes an incoherent form. Here are two examples that illustrate this inherent 
contradiction. 
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1) The electromagnetic interaction terms of the Pauli-Weisskopf KG Lagran-
gian density is (see Equation (37) in [2], p. 198)   

( )( ) ( )( )
3

* * * * 2 *
,0 ,0 , ,

1
,k k k k

k
ieV ieV ieA ieA mφ φ φ φ φ φ φ φ φ φ

=

= − + − + − −∑   (12) 

where the 4-potential is ( ),A Vµ = A . Here one finds terms that contain a 
product of entries of the electromagnetic 4-potential and also a second power of 
the electric charge e. On the other hand, one should note that a coherent La-
grangian density of an electric charge and electromagnetic fields should also 
yield the Maxwell equations of the electromagnetic fields. The first and the 
second terms on the right hand side of (11) compose the interaction terms of the 
Lagrangian density of Maxwellian fields (see also the classical form in [8], p. 75). 
The constraints of Section 2 show that the second power of the 4-potential as 
well as that of the electric charge of the KG Lagrangian density (12) is inconsis-
tent with Maxwellian electrodynamics. 

Conclusion: The KG Lagrangian density (12) has been published more than 
80 years ago, and the above-mentioned contradictions have not been settled yet. 
Therefore, one concludes that it is extremely unlikely that a consistent term that 
represents the interaction of a charged KG particle with electromagnetic fields 
can be constructed. 

2) The SM electroweak theory treats the two W± charged bosons as elementary 
particles that mediate weak interactions. Its Lagrangian density takes a form that 
is analogous to the KG equation  

2
, , ,g m OTµν
µ νφ φ φ φ= − + † †                    (13) 

where OT denotes other terms. This expression comprises a term which contains 
a factor that is a product of two derivatives of the quantum function φ , and a 
term that contains the factor 2m  (see e.g. [4], p. 518). 

This general structure shows that the electroweak theory of the W± bosons 
suffers from the same problems as those of the KG theory. In particular, this 
theory cannot provide an electromagnetic interaction term where the 4-current 
of the W± satisfies charge conservation. And indeed, in spite of the fact that the 
electroweak theory is about fifty years old, major research centers, like Fermilab 
and CERN, use an effective expression for the W± electromagnetic interactions 
[18] [19]. This effective expression violates the Maxwellian charge conservation 
requirement because it belongs to the C.3 category of Section 2. 

Conclusion: These arguments indicate that the above mentioned KG negative 
conclusion also applies to the W± particles: It is extremely unlikely that a consis-
tent term for the interaction of the charged W± particles with electromagnetic 
fields can be constructed. 

4. Discussion 

It is shown in this section that the first-order Dirac theory has other favorable 
properties that are not shared by second-order quantum theories. 
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• The Dirac Lagrangian density (7) proves that the dimension of the product 
ψψ  of the Dirac functions is [L−3]. This is the dimension of density. Hence, 
the operators that are enclosed within ψψ  take their original dimension. 
This is consistent with the notion of operators and their eigenvalues that are 
used by the Schroedinger theory (see e.g. [13], p. 47)  

* 3ˆ d ,O O xψ ψ= ∫                     (14) 

where O  denotes the expectation value of the variable that is represented by 
the operator Ô . Hence, considering this aspect, one finds that the Dirac theory 
abides by the Weinberg correspondence principle. Second-order quantum equa-
tions do not share this property because the product of their functions †φ φ  has 
the dimension [L−2]. 
• The Dirac analysis proves that a first-order theory of a massive quantum par-

ticle should use a 4-component spinor ψ  (see e.g. [15], Chapters 1, 2). The 
required Lagrangian density takes the form of (11). This expression uses the 
Dirac µγ  matrices. Entries of these matrices are pure numbers, and the µγ  
transform like a 4-vector. It means that the µγ  of the first-order Dirac 
theory can be regarded as a mathematical tool: a dimensionless deriva-
tive-free 4-vector that can be used for a construction of the required Lorentz 
scalar terms of the Lagrangian density. The derivative-free Dirac 4-current (8) 
is an important result of this mathematical tool. In the units used herein, also 
the classical 4-velocity is a dimensionless 4-vector (see [8], p. 23). Hence, the 
Dirac µγ  corresponds to the classical 4-velocity. However, unlike the clas-
sical velocity, the µγ  are independent of derivatives. 

• In 1941 Pauli examined a tentative interaction term of the electron (see [6], p. 
14; [20], p. 223)  

,d F µν
µνψσ ψ′ =                     (15) 

where F µν  is the electromagnetic field tensor, and the coefficient d has the di-
mension of length. This term is called tensor interaction, due to its dependence 
on  

,
2
i

µν µ νσ γ γ =                        (16) 

(see [15], p. 21). The interaction term (15) alters the electron’s magnetic mo-
ment. However, the ordinary Dirac Lagrangian density (11) provides a very good 
prediction for the electron’s magnetic moment. Therefore, it is concluded that 
“the additional term is unnecessary” (see [20], p. 223). 

A further examination of the interaction term (15) proves that it “is consistent 
with all accepted invariance principles, including Lorentz invariance and gauge 
invariance, and so there is no reason why such a term should not be included in 
the field equations” (see [6], p. 14). And indeed, the usefulness of a term of the 
form (15) has recently been proved to be suitable for a description of weak inte-
ractions, where the associated Hamiltonian is compatible with their V-A 
attribute [21] [22] [23]. 
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One conclusion that stems from this outcome is that the first-order Dirac eq-
uation is flexible enough for the construction of a consistent interaction term of 
the electron with an external electromagnetic-like second-rank antisymmetric 
field tensor, that takes the form of the fields tensor F µν . 

The case of the second-order quantum equation is different. For example, 
people working on the electroweak theory have introduced an analogous term 
for the W± bosons (see Equation (3) of [19])  

† .T iW W F µν
µ ν=                      (17) 

(The quantity V µν  of [19] denotes the ordinary electromagnetic field tensor 
F µν .) A self-evident argument explains why the electroweak expression (17) is 
inconsistent with the fundamental concept of dimension that is used in Maxwel-
lian electrodynamics. Indeed, the electromagnetic field tensor F µν  does not 
carry an electric charge. Furthermore, the dimension of each component Wν  is 
[L−1]. Hence, the dimension of the product †W Wµ ν  of (17) is [L−2]. This is in-
consistent with the notion of charge density whose dimension is [L−3]. 

Dimension coherence is an extremely crucial requirement that every physical 
expression should satisfy. It turns out that the adherence to the unjustifiable 
second-order quantum equations of the electroweak theory is the reason that 
explains why major research centers, like Fermilab and CERN, use an expression 
like (17) that violates the fundamental concept of dimensional coherence. 
• The QFT differential equations are the last but not the least subject that is con-

sidered here. The differential equation of the Dirac theory is a well-known 
expression that is explicitly presented in textbooks (see e.g. [15], chapters 
1-4). Solutions of this equation appropriately describe experimental data. 
Hence, the first-order Dirac equation satisfies the requirements A-C of sub-
section 2.3. 

By contrast, no textbook that discusses the electroweak theory shows the ex-
plicit form of the differential equation of the W± elementary particles of this 
theory. A fortiori, no solution to this equation is compared with experimental 
data. 

The case of the KG equation is different. Here a differential equation for the 
quantum particle exists. Unfortunately, there is no experimental confirmation of 
an elementary KG particle. For example, a pion is qq  bound state and its func-
tion takes the form ( )1 2, ,tΦ r r . On the other hand, a KG function takes the 
form ( )xφ , where x denotes the four space-time coordinates. The different 
number of degrees of freedom proves that a pion is not a KG particle. It means 
that there is no experimental support for the KG theory. 

These arguments mean that theories of second-order differential equations 
fail to satisfy the requirements A-C of subsection 2.3. 

5. Conclusions 

The Dirac-Pauli differences about the order of the fundamental differential equ-
ations of an elementary massive quantum particle are examined. The concept of 
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dimension and the structure of the differential equations are important elements 
of this examination. The indisputable results that are obtained point out a quite 
strange situation: the present mainstream textbooks and the prevalent SM theory 
of elementary particles support Pauli’s opinion, where second-order differential 
equations are quite acceptable. By contrast, the solid mathematical analysis of 
this work primarily relies on fundamental physical concepts, namely the dimen-
sion of the quantum functions and the compatibility of their differential equa-
tions. The discussion shows several convincing examples that prove that Dirac 
was right in this issue. Namely, second-order quantum theories of an elementary 
massive particle, like the W± bosons, are unacceptable simply because due to the 
dimension of their quantum function, one cannot define consistent expressions 
for crucial quantities. This result means that the SM theory and its literature re-
quire fundamental corrections. 

This work relies on constraints that stem from fundamental physical prin-
ciples, and are imposed on quantum theories. The main result of this work says 
that a QFT of a massive particle should rely on a first-order differential equation, 
namely on a Dirac-like equation. It means that the six spin-1/2 leptons—electron, 
muon, tau, and their associated neutrinos—together with the six spin-1/2 
quarks—up, down, strange, charm, bottom and top—are (together with their 
antiparticles) the building blocks of massive matter. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Dirac, P.A.M. (1978) Mathematical Foundations of Quantum Theory. Academic 

Press, New York. https://doi.org/10.1016/B978-0-12-473250-6.50005-4 

[2] Pauli, W. and Weisskopf, V. (1934) The Quantization of the Scalar Relativistic 
Wave Equation. Helvetica Acta Physica, 7, 709-731.  
https://doi.org/10.1017/CBO9780511608223.017 

[3] Peskin, M.E. and Schroeder, D.V. (1995) An Introduction to Quantum Field 
Theory. Addison-Wesley, Reading. 

[4] Sterman, G. (1993) An Introduction to Quantum Field Theory. Cambridge Univer-
sity Press, Cambridge. https://doi.org/10.1017/CBO9780511622618 

[5] Weinberg, S. (1995) The Quantum Theory of Fields. Vol. II. Cambridge University 
Press, Cambridge. 

[6] Weinberg, S. (1995) The Quantum Theory of Fields. Vol. I. Cambridge University 
Press, Cambridge. https://doi.org/10.1017/CBO9781139644167 

[7] Bjorken, J.D. and Drell, S.D. (1965) Relativistic Quantum Fields. McGraw-Hill, New 
York. https://doi.org/10.1063/1.3047288 

[8] Landau, L.D. and Lifshitz, E.M. (2005) The Classical Theory of Fields. Elsevier, 
Amsterdam. 

[9] Jackson, J.D. (1975) Classical Electrodynamics. John Wiley, New York. 

[10] See the Particle Data Group Item.  

https://doi.org/10.4236/oalib.1106335
https://doi.org/10.1016/B978-0-12-473250-6.50005-4
https://doi.org/10.1017/CBO9780511608223.017
https://doi.org/10.1017/CBO9780511622618
https://doi.org/10.1017/CBO9781139644167
https://doi.org/10.1063/1.3047288


E. Comay 
 

 

DOI: 10.4236/oalib.1106335 12 Open Access Library Journal 

 

http://pdg.lbl.gov/2019/reviews/rpp2019-rev-conservation-laws.pdf  

[11] Halzen, F. and Martin, A.D. (1984) Quarks and Leptons, an Introductory Course in 
Modern Particle Physics. John Wiley, New York. 

[12] Dirac, P.A.M. (1958) The Principles of Quantum Mechanics. Oxford University 
Press, London. https://doi.org/10.1063/1.3062610 

[13] Schiff, L.I. (1955) Quantum Mechanics. McGraw-Hill, New York. 

[14] Rohrlich, F. (2007) Classical Charged Particle. Third Edition, World Scientific, Sin-
gapore. https://doi.org/10.1142/6220 

[15] Bjorken, J.D. and Drell, S.D. (1964) Relativistic Quantum Mechanics. McGraw-Hill, 
New York. 

[16] Landau, L.D. and Lifshitz, E.M. (1959) Quantum Mechanics. Pergamon, London. 

[17] Messiah, A. (1965) Quantum Mechanics, V. 2. North Holland, Amsterdam. 

[18] Abazov, V.M., et al. (2012) Limits on Anomalous Trilinear Gauge Boson Couplings 
from WW, WZ and Wγ Production in pp Collisions at √S = 1.96 TeV. Physics 
Letters B, 718, 451-459. 

[19] Aad, G., et al. (2012) Measurement of the WW Cross Section in √S = 7 TeV pp 
Collisions with the ATLAS Detector and Limits on Anomalous Gauge Couplings. 
Physics Letters B, 712, 289-308. 

[20] Pauli, W. (1941) Relativistic Field Theories of Elementary Particles. Reviews of 
Modern Physics, 13, 203-232. https://doi.org/10.1103/RevModPhys.13.203 

[21] Comay, E. (2016) A Theory of Weak Interaction Dynamics. Open Access Library 
Journal, 3, 1-10. https://doi.org/10.4236/oalib.1103264 
https://www.scirp.org/journal/PaperInformation.aspx?paperID=72788  

[22] Comay, E. (2017) Further Aspects of Weak Interaction Dynamics. Open Access Li-
brary Journal, 4, 1-11. https://doi.org/10.4236/oalib.1103397 
https://www.scirp.org/journal/PaperInformation.aspx?PaperID=74373  

[23] Comay, E. (2019) Differences between Two Weak Interaction Theories. Physical 
Science International Journal, 21, 1-9. https://doi.org/10.9734/psij/2019/v21i130091 
http://www.journalpsij.com/index.php/PSIJ/article/view/30091/56456 

https://doi.org/10.4236/oalib.1106335
http://pdg.lbl.gov/2019/reviews/rpp2019-rev-conservation-laws.pdf
https://doi.org/10.1063/1.3062610
https://doi.org/10.1142/6220
https://doi.org/10.1103/RevModPhys.13.203
https://doi.org/10.4236/oalib.1103264
https://www.scirp.org/journal/PaperInformation.aspx?paperID=72788
https://doi.org/10.4236/oalib.1103397
https://www.scirp.org/journal/PaperInformation.aspx?PaperID=74373
https://doi.org/10.9734/psij/2019/v21i130091
http://www.journalpsij.com/index.php/PSIJ/article/view/30091/56456

	Remarks on the Order of Quantum Equations of Motion
	Abstract
	Subject Areas
	Keywords
	1. Introduction
	2. Constraints on Quantum Theories
	2.1. Constraints Related to Space-Time
	2.2. Constraints Related to Electrodynamics
	2.3. Other Constraints

	3. First-Order and Second-Order Quantum Theories
	4. Discussion
	5. Conclusions
	Conflicts of Interest
	References

