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Abstract 
Periods are algebraic integrals, extending the class of algebraic numbers, and 
playing a central, dual role in modern Mathematical-Physics: scattering am-
plitudes and coefficients of de Rham isomorphism. The Theory of Periods in 
Mathematics, with their appearance as scattering amplitudes in Physics, is 
discussed in connection with the Theory of Motives, which in turn is related 
to Conformal Field Theory (CFT) and Topological Quantum Field Theory 
(TQFT), on the physics side. There are three main contributions. First, building 
a bridge between the Theory of Algebraic Numbers and Theory of Periods, 
will help guide the developments of the later. This suggests a relation between 
the Betti-de Rham theory of periods and Grothendieck’s Anabelian Geome-
try, towards perhaps an algebraic analog of Hurwitz Theorem, relating the 
algebraic de Rham cohomology and algebraic fundamental group, both pio-
neered by A. Grothendieck. Second, a homotopy-homology refinement of the 
Theory of Periods will help explain the connections with quantum ampli-
tudes. The novel approach of Yves Andre to Motives via representations of 
categories of diagrams, relates from a physical point of view to generalized 
TQFTs. Finally, the known “universality” of Galois Theory, as how symme-
tries “grow”, controlling the structure of the objects of study, is discussed, in 
relation to the above several areas of research, together with ensuing further 
insight into the Mathematical-Physics symbiosis. To better understand and 
investigate Kontsevich-Zagier conjecture on abstract periods, the article 
ponders on the case of algebraic Riemann Surfaces representable by Belyi 
maps. Reformulation of cohomology of cyclic groups as a discrete analog of 
de Rham cohomology and the Arithmetic Galois Theory will provide a purely 
algebraic toy-model of the said algebraic homology/homotopy group theory 
of Grothendieck as part of Anabelian Geometry. The corresponding Platonic 
Trinity 5,7,11/TOI/E678 leads to connections with ADE-correspondence, and 
beyond, e.g. Theory of Everything (TOE) and ADEX-Theory. In perspective of 
the “Ultimate Physics Theory”, quantizing “everything”, i.e. cyclotomic quan-
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tum phase and finite Platonic-Hurwitz geometry of qubit frames as baryons, 
could perhaps be “The Eightfold (Petrie polygon) Way” to finally understand 
what quark flavors and fermion generations really are. 
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1. Introduction 

Periods are a new class of numbers represented by algebraic integrals, extending 
the class of algebraic numbers and pervasive in applications, notably appearing 
as scattering quantum amplitudes. Their study was stimulated by the relatively 
recent work of Kontsevich and Zagier [1], following the programmatic paper re-
lating them with Motives and Deformation Quantization in [2]. 

Author’s preliminary efforts to understand the “core” of this network of ideas, 
including [3] [4], with focus on the relation between Periods, as coefficients of 
the period isomorphism, and scattering amplitudes [5]-[10] lead to the present 
viewpoint, regarding the relation to Motives, as suggested by the following dia-
gram: 

 

 

1.1. The Main Ideas: An Overview 

There are three key ideas and directions of development, as principal contributions 
within this article. 

First, the study of the relation between the Theory of Algebraic Numbers and 
Theory of Periods provides a foundational bridge, which will help guide the 
developments of the later. A starting point is to conduct a study of Riemann 
surfaces over Q  that admit a Belyi map, and to understand the relations between 
abstract periods and motives via Dessins D’Enfants §2.2.2. 

Second, the article emphasises the need for a homotopy-homology refinement 
of the Theory of Periods, which helps explain the connections with quantum 
amplitudes. Recall that Feynman Integrals representing these, are related to 
Chen Iterated Integrals, which were historically playing the role of a homotopical 
de Rham Theory, and which in a similar way to the prototypical Hurwitz 
Theorem, should be tentatively related to the algebraic de Rham cohomology, 
hence to the Theory of Periods. The homotopical aspects are clearly present in 
Grothendieck’s developments of the algebraic de Rham cohomology theory 
establishing the theory of an algebraic fundamental group, towards a “general 
Galois Theory” as part of the so called Anabelian Geometry [11]. 
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This later connection will allow to understand, for example, the novel approach 
of Yves Andre to Motives [12], via representations of categories of diagrams, 
from a physical point of view of a generalized Topological Quantum Field 
Theory, in the sense of Atiyah [13], and generalized by the present author [14]. As a 
hint for now, Chow motives can be envisioned as “embedded cobordisms”, and 
associated integrals, the periods as de Rham isomorphism coefficients, as numerical 
“shadow” of TQFT amplitude. This analogy will be pursuit and documented 
elsewhere. 

Finally, the known “universality” of Galois Theory, as how symmetries “grow”, 
controlling the structure of the objects of study, is discussed, in relation to the 
above several areas of research, together with ensuing further insight into the 
Mathematical-Physics symbiosis. A simple and elementary example of this 
universality is Arithmetic Galois Theory, in the context of finite abelian groups, 
and formulated in the language of Category Theory [15] [16]. Its relation with a 
discrete version of algebraic de Rham cohomology, as suggested in [17] from the 
cohomological side, deserves, and will be the subject of a separate article. 

The ideas and specific problems to be studied to make this correspondence 
more precise, are presented below. 

Further speculations and questions, regarding important related problems in 
Physics, notably the corresponding Platonic Trinity 5,7,11/TOI/E678 leads to 
connections with ADE-correspondence, and beyond, e.g. TOEs and ADEX-Theory 
[18], are included for future reference. The appearance of Platonic groups of 
symmetries, should not be surprising at this stage; in interests of physicists in 
finite groups of symmetry as vertical gauge groups dates since the 1950s. In 
perspective of the “Ultimate Physics Theory”, quantizing “everything”, i.e. cyclotomic 
quantum phase and finite Platonic-Hurwitz geometry of qubits/baryons, could 
perhaps be “The Eightfold (Petrie polygon) Way” to finally understand what 
quark flavors and fermion generations really are. 

1.2. Nomenclature 

To help the reader skim through the paper, a list of the main mathematical 
objects involved, and associated notation used, is briefly explained below. 
• The abstract periods of an algebraic variety X are denoted by ( )Per X ; γ  

is a singular chain and D γ= ∂  a divisor. The corresponding pair is denoted 
( ),X D , or the full abstract period, denoted as ( ), , ,X D ω γ , where ω  is the 
algebraic form whose integral 

γ
ω∫  yields the corresponding numeric 

period; 
• Γ  refers to a finite subgroup of for example the modular group ( )2SL Z ; 
• A meromorphic map 2:f X S→ , from a Riemann surface to the Riemann 

sphere (also denoted as 1CP , the complex projective space), is viewed as a 
ramified cover; if satisfying the conditions of Belyi Theorem, the corresponding 
Belyi map is rather viewed as a pair ( ),X f  (the alternative notation Belyi in 
the place of f is meant to suggest this). 

Various other variables, parameters etc. are rather secondary, and maybe 
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skipped when skimming through the article. Consultation of the references cited 
will provide the additional details, if the reader is interested in pursuing the 
idea. 

2. On Kontsevich Conjecture Regarding Abstract Periods 

The Kontsevich conjecture on abstract periods is related to Grothendieck’s 
Conjecture [19], and by considering the special case of Riemann Surfaces 
representable by Belyi maps [20], which started Grothendieck on his long march 
on Galois Theory [21] [22], it is expected to obtain additional insight and 
perhaps a proof in a special case. 

It is remarkable its deep relation to Galois Theory [23], hence with algebraic 
numbers, as “classical periods”, as well as a plethora of other “essential ingredients”: 
Dessins d’Enfants, cartographic maps, matrix integrals, moduli spaces, Kontsevich 
model, chord diagrams etc., conform Lando and Zvonkin book [24]. 

2.1. Trends and State-of-the-Art of Research on Periods 

An update of the research on periods was in order, highlighting some points to 
be investigated. 

2.1.1. Period Identities, Hilbert’s 3rd Problem and Dehn Invariants 
In the concrete direction for studying periods, the work of Juan Viu-Sos for 
example [25], reduces periods 

D
ω∫  to geometric volumes 

Semi Alg
Vol

−∫  of semi- 
algebraic sets (see also [26], in an analysis in the sense of measure theory, to 
better understand the limit process from finite-additive to σ -additive. In some 
sense this is going “back-in-time” to Lebesgue and Borel, but notably under the 
guidance of Hilbert (3rd Problem). 

It is notable, and worth investigate how Dehn surgery and invariants enter the 
picture. The reason is, that Dehn surgery provide (perhaps) an alternative 
description of how to build/glue a manifold, capturing Betti homology in a 
homotopical way. Does this refine the homological period isomorphism? 

Additional references to be investigated are listed in [26], notably those presenting 
work by Waldshmidt and Yushinava. 

The difficulty of this line of investigation lies on the “forgetting structure” 
when going from a categorical point of view to a  
“Cauchy/numerical-methods/algorithmic” approach for the real numbers: / QR  
is a difficult to understand object, conform with Grothendieck’s Conjecture ([19], 
p. 2):  

( ) ( )Transcendental Degree Motivic Galois group .Per X Q Dim=    

2.1.2. … And Grothendieck’s Conjecture 
In the conceptual direction, Grothendieck’s initial work on periods, he first 
introduced the algebraic de Rham cohomology to “organise” periods into an 
algebraic structure, and then the work evolved into Anabelian Geometry, around 
the algebraic fundamental group, and a general “Galois Theory”:  
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Motivic Galois Groups ↔ Algebraic Fundamental Groups? 

With Chen Iterated Integrals as a homotopic version of de Rham Theory, and 
hence the well-known connections with MZVs, Feynman Integrals etc. the 
relation between the two topics, algebraic cohomology/fundamental group, 
requires further investigations in this direction. 

2.1.3. Why Belyi Ramified Covers 
It is natural to look at Belyi ramified covers of the Riemann sphere with a 
Mobius homological mark-up ( ( )2SL C /“conformal group base point”): this 
(Belyi’s Theorem) was Grothendieck “turning moment” (letter to Faltings). 

Ajub’s geometric conjecture (loc. cit. §5, Th. 40, p. 7) seems to compare the 
algebraic fundamental group of a field extension and the relative motivic group. 
The take from this, is the relevance of the homologic/homotopic algebraic de 
Rham/Chen framework, probably subject to a version of “Hurwitz Theorem” 
[4]. 

2.2. Is There a Ramification Theory of Periods? 

In view of the tight connections between algebraic numbers and periods, it is 
worth strengthening the analogy: “Is there a Ramification Theory for Periods?”. 

2.2.1. Periods: “Numbers” or “Functions”? 
Note that “numbers”, like the algebraic i, have geometric interpretations (a la  

Klein geometry [27]), e.g. rotation by 1 2
4
⋅ π , the fundamental period 2π ; i.e.  

the representation point of view is more lucrative, hence so is Galois Theory, 
complementing Archimedes’ Cauchy-like approximation of π . 

On this dichotomy (numbers vs. functions), see also [28]. 

2.2.2. The Category of Ramified Belyi Covers 
Consider Belyi maps for Riemann surfaces defined over the rationals, in analogy 
to covering maps and their deck transformations, or field extensions and Galois 
groups. 

Then a morphism of Belyi maps can be viewed as a morphism of Riemann 
surfaces compatible with the corresponding ramified covers defined by the Belyi 
maps iB : 

 

 
 
Here { }0,1D =  is the standard divisor on the Riemann sphere 2 1S CP= , 

with standard chain, the cut [ ]0,1γ = . Associated to these, on the Riemann 
sphere side, we have the standard period 2π  and logarithm ( )log z . 
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On the “other side” of the ramified cover X, we have the corresponding Dessin 
D’Enfant ( )1 , 1,2i iB iγ γ−= = , with their boundaries, the divisors , 1,2i iD iγ= ∂ =  
[24]. A study of how the Dessin D’Enfant determines (relates to) the periods of 
Riemann surfaces, would be a starting point for a better understanding of periods, 
in the above sense. The morphisms (via Hurwitz Theorem) are an analog of 
covering maps/field extensions, and could lead to a Galois Theory for Belyi 
Ramified Covers, Jacobian varieties, period isomorphisms for iX :  

Dessins D’Enfant & Jacobian Periods?  

Remark 2.1. More generally, one can consider a category of epi’s/mono’s, the 
torsor of its associated subgroupoid, and a pair of adjoint functors, playing the 
role of a Galois Connection, in order to derive the “absolute theory” at Categorical 
Theory level, as a “tool-box”. It may lead to connections between motives and 
the theory of generalized cohomology theories (P. Hilton [29]), via triples and 
spectra.  

2.2.3. The Relation with KZ-Moves 
Linearity and Stokes Theorem are captured by considering the period isomorphism. 
The “change of variables” (diffeo/biholomorphic) is built in the formalism of 
differential forms. 

Hence, it seems that the essential part of the KZ-moves, modulo the torsor 
structure due to equivalence via isomorphisms, is the way the period isomorphism 
behaves under a ramified cover. 

For covering maps this would correspond to the lattice structure of the 
fundamental group of the base space, via its universal covering map: 

 

 
 
On the other hand a differential form, e.g. a 1-form in our case, defines a 

monodromy, and therefore a ramified cover via path integral lifting. How all 
these relate to periods remains to be seen… 

2.2.4. Prime Decomposition and Ramification of Dessins D’Enfant? 
The ramification process (and theory) should go parallel to the ramification of 
primes under field extensions:  

( ) ( ) ( )1 2 2. . . : , , : , ,f pp
Alg N T e f g I D Gal F F Mor X Belyi X Belyi→ → ↔ →  

Remark 2.2. The theory is about Spec of Z-Mod and Spec(Z) (primes)…  
The decomposition of primes is controlled by the structure of the Galois group 

(e.g. abelian case/cyclotomic ( )nK Q ζ= : Gal Z n×≅  and orbit decomposition 
of the “space” Z/n; ramification: multiplier by p dividing n, i.e. quotients/reso- 
nance/substructure). 

Note that restricting to 3-ramified points (Belyi maps), restricts the degrees of 
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freedom of the lifting process. 

2.2.5. Rigidity vs. Continuous Parameters 
Specifically, consider the periods represented by quadruples ( ), , ,X D ω γ  defined 
on Riemann surfaces having an algebraic numbers model over Q , with a Belyi 
map [24], p. 79:  

( )1Belyi Map : : 3-points ramified covers .f X CP→  

This case exhibits a rigidity (lack of a continuous parameter) [24], p. 76), 
which hints towards a connection with braids representations, KZ-equations, 
MZVs etc. [30], essential concepts from the “Number Theory Side” of Feynman 
Integrals as amplitudes. 

The case of higher number of ramification points probably corresponds to 
families of periods indexed by parameters. 

2.2.6. Homological vs. Homotopical 
An investigation of the Conjecture will start from understanding the relation 
between these periods and the “discrete DATA” (Dessins D’Enfants), as a 
homotopical analog of the Hodge structure characterizing the Betti-de Rham 
homological period isomorphism. 

The pertaining goal is to identify a more tangible combinatorial structure that 
corresponds to periods, invariant under a different kind of “moves” (e.g. 
Pachner moves, Rademeister moves, chord diagrams relations etc.) and allow for 
a correspondence with the 3-moves of Kontsevich’s Conjecture. 

Byproduct of the study would be a better understanding of the relation 
between “homological” and “homotopical” periods, as intuitively corresponding 
to the “abelian vs. anabelian” case. 

Indeed, Galois groups controlling algebraic numbers, as a special case of 
algebraic fundamental groups, are special cases of periods, controlled by the 
algebraic de Rham cohomology. But these two algebraic theories should be 
related by an analog of Hurwitz Theorem, as intuitively “hoped” by the present 
author in the IHES talk [4]. 

2.2.7. A Study of Periods of Elliptic Curves 
Conform Polya’s advise “If you can’t solve a problem, there is an easier one you 
can’t solve; find it!” [31], this could be the specific study which could yield a 
better understanding of the basic concepts, and of the relations between them. 

In this case, the periods are related by the Legendre relation [32] [33] [34] 
[35]:  

, 1,2
2 .

i
j

i j
det i

γ
ω

=

  = π  ∫  

2.2.8. … And Beyond: Hurwitz Surfaces 
The case of Hurwitz Surface 2X S→ , maximizing the automorphism group is 
even more interesting to study, as it corresponds to Belyi maps with 3-ramification 
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points of orders 2, 3 and 7 [36], and has applications to Finite String Theory: 
modeling baryons as finite Hopf fibrations (finite qubits), with Platonic tessellations 
(to be explained later on). 

The “higher genus Platonic solids”:  

( )
( )

Genus Platonic Riemann Surfaces : ; ,

2, , -triangle group,

g M g n

k l
+= Γ

Γ


 

some of which attain their Hurwitz bound ( ) ( ) 484 1 2g M Sξ− = ⋅ , are good 
candidates for symmetry of fundamental stringy states, provide a mathematical 
framework where “Finite String Theory meets the Standard Model on the 
Quantum Computing ground”. 

More specifically, the notable cases of automorphism groups  
( )2 , 5,7,11pPSL F p =  (Dodecahedron 0g = , Klein quintic 3g =  etc.) is 

important in view of crepant resolutions of orbifolds 2C Γ , for finite subgroups 
of rotations Γ  (Mckay/ADE correspondence). 

2.2.9. Periods of the Klein Quartic and Belyi, Galois, Gauss Etc 
Klein’s quartic is a very good example to see how the geometry, with group 
theory aspects, relates to algebra (Galois action) and the analytic (the Jacobian) 
[37]. 

The maps from Klein’s quartic to tori: 
 

 
 

are related to Belyi maps presentations (loc. cit. §4.2) in terms of edges of 
tessellations or cuts with their associated divisors, providing a better understanding 
of the geometric aspects, coming from the Platonic tessellations, and the analytic 
aspects (1-forms, Betti bases and periods)1. 

Other good examples, include two genus two RS with Platonic tessellations 
(cyclotomic over ( )5Q ζ ). For example, the basis for the lattice of periods 
computed loc. cit. p. 44:  

2 3 4 3 4 51 , 1 ,ζ ζ ζ ζ ζ ζ+ − − − + + −  

should be related to Gauss/Kummer periods (see Klein’s map). 
The case of Fermat surfaces k k kx y z+ + , also Platonic, invite to a study the 

connections with Weyl Conjectures, zeros and the corresponding Riemann 
Hypothesis (now a Theorem). 

The pair of pants decomposition of Riemann surfaces [37] §5, could be related 
to the “Ramification Theory”, alluded to earlier, when related to Belyi maps. It is 
reminiscent of coproducts, as for instance in Frobenius algebras characterizing 

 

 

1This particular article of Karcher and Weber [37] seems to be a perfect source of info relevant for 
the present research goals. 
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2D-TQFTs, and of CFTs.  

2.3. Klein Quartic, String Theory and Elementary Particles 

These Riemann-Platonic surfaces, with tessellations reminiscent of lattices 
playing a crucial role in Algebraic Number Theory (lattice models of finite 
fields), and Algebraic Geometry (Hodge theory: Betti vs. de Rham structures), 
not clear how related to Belyi (hyper)maps, have symmetry groups which are 
related to the finite Hopf sub-bundles, derived from ( )1 1S U=  circle or 

( )3 2S SU=  monopole bundles. 

Applications to the Standard Model 
Taking the Klein quartic as an example of a Platonic-Riemann Surface that is 
Hurwitz, defined by the fundamental invariant polynomial  

3 3 3 0xy yz zxΦ = + + =  (usually denoted by 4Φ  [38]): 
 

 
 

opens the “right” way to understand elementary Particles and their mass:  

The Eightfold (Petrie) Way! 

with ( )3SU  playing the role of a Galois group, and quiver representations 
refining Gell-Man’s 8-fold way via Gabriel’s Theorem [39] [40]. 

3. From Periods to Anabelian Geometry 

This suggests a relation between the theory of homological periods and Grothen- 
dieck’s Anabelian Geometry, towards perhaps of an algebraic analog of 
Hurwitz Theorem, relating the the algebraic de Rham cohomology and algebraic 
fundamental group, both pioneered by A. Grothendieck in Esquisse d’un 
Programme [11]. 

Indeed, as early as during the previous visit, the author suggested a “Hurwitz 
Theorem” larger framework surrounding the theory of abstract periods, motives 
and Galois Theory, as presented in [4]: 

 

 
 
One would view γ  as a cobordism, ω  as a propagator and 

γ
ω∫  as an 

amplitude (work/circulation); ( )1 Xπ  as a groupoid makes sense and a 
“physical form” of Hurwitz Theorem seams to “refine” the period isomorphism. 

According to the philosophy of Anabelian Geometry, “What is being represented 
here as space with this algebraic fundamental group?” (Compare with 1-forms 
defining connections whose monodromy define a representation of the fundamental 
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group). Then a natural question arises: “What is the underlying Representation 
Theorem, with the classical models of Pontryagin and Tannaka-Krein duality in 
mind, in the general framework of Yoneda Representation Theorem. 

3.1. A Physics Interpretation of Period, and  
Montonen-Olive/T-Duality 

Periods 
γ
ω∫  can be interpreted along the following lines, as follows; we will be 

specific: 1D-case of Riemann surfaces. 

3.1.1. Closed vs. Open Periods; Electric vs. Magnetic 
The flow of the 1-form, which mathematically measures the geometric object γ  
with boundary D γ= ∂ , can be viewed as the work/flux of a “probe” in the 
dynamics defined by the 1-form. 

Its poles and zeros have charges: electric charges are the residues 
( )1S p
ω∫  

(Gauss Law; circle around point p), while the periods are magnetic charges 

γ
ω∫ , in a homological basis iγ . 
There are relations between charges, and Riemann-Roch Theorem restricts 

the possible dynamics. 

3.1.2. Helmholtz/Hodge and “Maxwell’s Equations” 
The Hodge duality corresponds to Helmholtz Decomposition. It hints to the fact 
that it reflects the structure of the group of symmetries of the space X (“Gauge 
group”):  

translations/grad, rotations/curl, similarities/divergence.  

The local group is conformal, with its polar decomposition; the “global aspects” 
are captured by the fundamental group ( )1 Xπ  (“Galois Group”). 

Correspondingly there is an underlying “gauge theory” with connection 
1-form ω , and hence a Motonen-Olive Duality between “electric” and “magnetic”, 
which in String Theory corresponds to T-Duality. 

The point is that the physical interpretation complements a “purely Gro- 
thendieck” approach for understanding periods, paving the road towards 
understanding Feynman Integrals, and more importantly, intrinsic scattering 
amplitudes (to be made precise in view of the new methods for computing MHV 
amplitudes [41]). 

3.2. … And Quantum Physics Amplitudes (beyond Veneziano) 

There seems to be good prospects of better understanding the role of absolute 
Galois group in the physics context of scattering amplitudes and Multiple Zeta 
Values, with their incarnation as Chen integrals on moduli spaces, as studied by 
Francis Brown, since the latter are a homotopical analog of de Rham Theory:  

Quantum Amplitudes↔Integrals on Moduli Spaces.  

The fact that maximally helicity violating (MHV) 3-point amplitudes reassemble 
the cross-ratios on the Riemann sphere (essentially the unique Lorentz invariant), 
with logarithm a hyperbolic metric, and that these “structure constants” determine 
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in a recursive manner the n-point amplitudes, reassembling the antipode relation 
from Connes-Kreimer Hopf algebra approach to renormalization, is an indication 
that the quantum amplitudes are periods belonging to this framework: periods 
and motives2. 

3.3. Arithmetic Galois Theory and Anabelian Geometry 

Specifically, the author’s reformulation of cohomology of cyclic groups as a 
discrete analog of de Rham cohomology [17] and the associated analog period 
isomorphism, will be related with the arithmetic Galois Theory [16], again as a 
discrete, purely algebraic toy-model of the said algebraic homology/homotopy 
group theory of Grothendieck. It will allow an elementary investigation of the 
main concepts defining periods and algebraic fundamental group, together with 
their conceptual relation to algebraic numbers and Galois groups. 

4. Research Ramifications to TOEs and ADEX-Theory 

The research will be placed in the larger context of the ADE-correspondence, 
since, for example, orbifolds of finite groups of rotations have crepant resolutions 
relevant in String Theory, while via Cartan-Killing Theory and exceptional Lie 
algebras, they relate to TOEs and VOAs. 

The applications to ADE-correspondence, and beyond, e.g. toe ADEX-Theory 
[18], is an exciting R&D opportunity to perhaps finally understand what quark 
flavors and generations really are. 

4.1. The Platonic Trinity 

Arnold’s trinities [42] refer to Platonic symmetry groups , ,T O I , related to 
exceptional Lie algebras 6, 7, 8E E E  via the double of the first as Weyl groups. 
It also includes their invariant polynomials, and the Hopf bundles, but without 
reference to Klein quartic and the Galois groups ( )2 , 5,7,11pPSL F p = . 

What is remarkable (on top of other things), is that these “exceptional” 
PSL s′  are cyclotomic fibrations over the Platonic groups of symmetry (TOI) of 
the Platonic tessellations of the Riemann sphere, as if they are finite qubit/Hopf 
bundles (see Galois’ last letter [43]): 

 

 
 
Remark 4.1. These seem to be related to the genus 2 (Fermat surface), 3 (Klein 

quartic), as described in [37] (What about 11p = ?).  
Remark 4.2. The comments from §2.3.1 extend to this “coincidence”: is a 

locally finite model of the Universe, based on finite qubits, “The Way” to “quantize 
everything!?” …justifying even the fundamental “postulates”, e.g. quantization 
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of angular momentum!  
On the other hand, how do they relate to the higher genus Platonic tessellations 

via Belyi ramified covers, e.g. Klein’s quartic as a Hurwitz surface?3. 

4.2. Role of the Exceptional Lie Algebra 

Note that the role played by the exceptional Lie algebra, in this Finite Qubit 
Model (or Finite String Theory model) is not that of containing the SM gauge 
groups ( ) ( ) ( )1 2 3LU SU SU× × , since that would not be a true unification of 
interactions, and would not lead to a deeper understanding of masses of 
elementary particles etc., but rather as a kind of “loop groups” of paths due to 
multiple reflections in the virtual Weyl mirrors, as if the baryons (modeled by 
these rank 3 root systems) are some kind of kaleidoscopic beam splitters [44]! 

5. Conclusions 

The main result of the author’s research on the presented topics is rather a 
network of conceptual connections relating the Theory of Periods, Anabelian 
Geometry and scattering amplitudes on the physics side, and leading to a more 
focused plan of study. 

More specifically, the main thread in this line of reasoning is to study 
algebraic de Rham cohomology and algebraic fundamental groups together, in 
order to understand why Feynman integrals (or scattering amplitudes in general, 
independent on a particular method of computation), are related to “homological 
periods” (algebraic de Rham isomorphism) on one hand, but are related to Chen 
iterated integrals in the Number Theory side, which is a homotopical de Rham 
Theory, hence to be studied in the algebraic context of Anabelian geometry. 

One useful strategy is to investigate the relation between the theory of 
algebraic numbers and that of periods, with a starting point Riemann surfaces 
having a Belyi map. 

This leads to the rich area of graphs embedded on surfaces, i.e. Dessins 
D’Enfant, as a sort of generalization of a lattice embedded in a vector space, 
and Hodge structures controlling how Betti homology “sits” inside de Rham 
cohomology. 

A study of the category of morphisms of Belyi maps, which capture both the 
ramification data, but also divisor data and homotopy groups (Anabelian Galois 
groups), could in principle help clarify the role of the “change of variables” 
Kontsevich-Zagier relation, beyond the torsor due to isomorphism equivalence. 

The analogy with the theory of decomposition of primes, corresponding to the 
structure of the Galois group (inertia, decomposition and degree), supports the 
belief that such a study could yield new results and a better understanding of the 
structure of the “absolute” ring of periods. 

At the “elementary” level of Algebraic Number Theory, the representation 
point of view used to study the arithmetic Galois Theory (short exact sequences 
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of Abelian groups and their ( )AbAut  symmetries), functorially corresponding 
to (algebraic) Galois Theory, can be thought of as an analog of covering spaces 
and deck transformations. 

This provides another example of “Anabelian Geometry”, “a la Grothendieck”, 
together with, and corresponding to, the “main example” of algebraic fundamental 
groups, namely the Galois groups. 

This homotopical theory aspects of Galois Theory in the non-commutative 
case will be studied elsewhere, together with the homological aspects, via the 
relation between the discrete de Rham cohomology [17] and algebraic de Rham 
cohomology of Grothendieck [3]. 

Specific problems, refining the general research suggested by the above 
considerations, will be addressed elsewhere: 

1) The discrete analog of de Rham cohomology, and its connection with the 
Theory of Periods, via the algebraic de Rham cohomology. 

2) Arithmetic Galois Theory and its functorial connection with classical 
Galois Theory of field extensions. 

In the light of (1) above, (2) is expected to provide additional insight into the 
theory of periods and the period isomorphism, as homological analogues of 
algebraic numbers and associated Galois groups. 

3) The connection with the Theory of Motives just claimed above, can be 
addressed by viewing Chow cycles as embedded cobordisms, allowing to establish 
an analogy at least, with TQFTs and providing support to the recent approach to 
motives by Y. Andre, via categories of representations of diagrams (analog to 
quiver representations, yet not necessarily finite). This direction is clearly consistent 
with the Physics side of the picture, starting to Feynman path integrals and 
Feynman diagrams, to quark line diagrams of the Standard Model, with its 
mathematical counterpart, Turaev ribbon calculus in modular categories. 

At a more concrete level, applications to physics are proposed via the special 
case of Riemann Surfaces with Platonic tessellations, and the study of the role of 
the Hurwitz surfaces, i.e. those with maximal symmetry. For example, Klein 
quartic is instrumental in String Theory. It is explained how a detailed study 
could be a bridge between the Standard Model and String Theory, via a qubit 
model (Hopf bundle) interpretation. 

There are of course rich connections with ADE-correspondence, Klein singu- 
larities and orbifolds, RS as crepant resolutions etc. [45], and also with TOEs 
(e.g. Lisi’s [46]) and ADEX Theory [18], emphasizing the roles of the exceptional 
Lie groups in fundamental physics, and perhaps more generally, the conceptual 
unity in Mathematical-Physics. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this paper. 

References 
[1] Kontsevich, M. and Zagier, D. (2001) Periods. In: Engquist, B. and Schmid, W., 

https://doi.org/10.4236/apm.2020.105014


L. M. Ionescu 
 

 

DOI: 10.4236/apm.2020.105014 242 Advances in Pure Mathematics 
 

Eds., Mathematics Unlimited—2001 and Beyond, Springer, Berlin, Heidelberg, 
771-808. https://doi.org/10.1007/978-3-642-56478-9_39  

[2] Kontsevich, M. (1999) Operades and Motives in Deformation Quantization. Letters 
in Mathematical Physics, 48, 35-72. https://arxiv.org/abs/math/9904055  

[3] Ionescu, L.M. (2018) On Periods: From Global to Local.  
https://arxiv.org/abs/1806.08726  

[4] Ionescu, L.M. (2018) Periods: Variation sur un theme de Kontsevich.  
http://my.ilstu.edu/~lmiones   

[5] Kreimer, D. (2004) The Residues of Quantum Field Theory—Numbers We Should 
Know. In: Consani, C. and Marcolli, M., Eds., Noncommutative Geometry and 
Number Theory, Vieweg Verlag, Wiesbaden, 187-204.  
https://arxiv.org/abs/hep-th/0404090  

[6] Hartnett, K. (2016) Strange Numbers Found in Particle Collisions. Quanta Magazine.  
https://www.quantamagazine.org/strange-numbers-found-in-particle-collisions-201
61115  

[7] Bogner, C. and Brown, F. (2014) Feynman Integrals and Iterated Integrals on Mod-
uli Spaces of Curves of Genus Zero. https://arxiv.org/abs/1408.1862  

[8] Schnetz, O. (2008) Quantum Periods: A Census of Φ^4-Transcendentals.  
https://arxiv.org/abs/0801.2856  

[9] Panzer, E. (2015) Feynman Integrals and Hyperlogarithms. PhD Thesis. 
https://arxiv.org/pdf/1506.07243.pdf  

[10] Ionescu, L.M. (2018) Periods, Feynman Integrals and Jacobi Sums. Ver. 1 (after ISU 
Talk 2017). http://my.ilstu.edu/~lmiones   

[11] Wikipedia, Anabelian Geometry.  
https://en.wikipedia.org/wiki/Anabelian_geometry  

[12] Andre, Y. (2004) Une Introduction aux Motifs (Motifs Purs, Motifs Mixtes, Péri-
odes). Panoramas et Synthesys, 17. 

[13] Atyiah, M. (1988) Topological Field Theory. Publication Mathematiques de l’IHES, 
Tome 68, 175-186. http://www.numdam.org/article/PMIHES_1988__68__175_0.pdf  
https://doi.org/10.1007/BF02698547 

[14] Ionescu, L.M. (2000) Generalized Cobordism Categories, NSF GP.  
http://my.ilstu.edu/~lmiones/ISUP/TQFT_ProjDesc.pdf   

[15] Ionescu, L.M. (2020) On Galois Theory with an Invitation to Category Theory. 

[16] Akman, F. and Ionescu, L.M. (2019) Applications of a Galois Connection of a 
Group Action to Abelian Class Field Theory. 

[17] Ionescu, L.M. (2017) A Discrete Analog of de Rham Cohomology on Finite Abelian 
Groups as Manifolds. JP Journal of Algebra, Number Theory and Applications, 39, 
891-906. https://doi.org/10.17654/NT039060891 

[18] Sirag, S.-P. (2016) ADEX Theory: How the Ade Coxeter Graphs Unify Mathematics 
and Physics (Knots and Everything). World Scientific, Singapore.  
https://doi.org/10.1142/9502 

[19] Ajoub, J. (2014) Periods and the Conjectures of Grothendieck and Kontsevich-Zagier. 
Newsletter of the European Mathematical Society, March 2014, Issue 91. 
http://user.math.uzh.ch/ayoub/PDF-Files/periods-GKZ.pdf  

[20] Belyi, G.V. (1980) On Galois Extensions of a Maximal Cyclotomic Field. Mathe-
matics of the USSR-Izvestiya, 14, 247-256.  
https://doi.org/10.1070/IM1980v014n02ABEH001096 

https://doi.org/10.4236/apm.2020.105014
https://doi.org/10.1007/978-3-642-56478-9_39
https://arxiv.org/abs/math/9904055
https://arxiv.org/abs/1806.08726
http://my.ilstu.edu/%7Elmiones
https://arxiv.org/abs/hep-th/0404090
https://www.quantamagazine.org/strange-numbers-found-in-particle-collisions-20161115
https://www.quantamagazine.org/strange-numbers-found-in-particle-collisions-20161115
https://arxiv.org/abs/1408.1862
https://arxiv.org/abs/0801.2856
https://arxiv.org/pdf/1506.07243.pdf
http://my.ilstu.edu/%7Elmiones
https://en.wikipedia.org/wiki/Anabelian_geometry
http://www.numdam.org/article/PMIHES_1988__68__175_0.pdf
https://doi.org/10.1007/BF02698547
http://my.ilstu.edu/%7Elmiones/ISUP/TQFT_ProjDesc.pdf
https://doi.org/10.17654/NT039060891
https://doi.org/10.1142/9502
http://user.math.uzh.ch/ayoub/PDF-Files/periods-GKZ.pdf
https://doi.org/10.1070/IM1980v014n02ABEH001096


L. M. Ionescu 
 

 

DOI: 10.4236/apm.2020.105014 243 Advances in Pure Mathematics 
 

[21] Grothendieck, A. (1984) Sketch of a Programme.  
http://www.landsburg.com/grothendieck/EsquisseEng.pdf  

[22] Schneps, L. (year) Grothendieck’s Long March through Galois Theory.  
https://webusers.imj-prg.fr/~leila.schneps/SchnepsLM.pdf   

[23] Jones, G. and Singerman, D. (1996) Belyi Functions, Hypermaps and Galois 
Groups. Bulletin of the London Mathematical Society, 28, 561-590.  
http://www.researchgate.net/publication/250730420_Belyi_Functions_Hypermaps_
and_Galois_Groups  
https://doi.org/10.1112/blms/28.6.561 

[24] Lando, S.K. and Zvonkin, A.K. (2004) Graphs on Surfaces and Their Applications 
(Appendix by Don B. Zagier). Springer, Berlin. 

[25] Viu-Sos, J. (2015) Periods and Line Arrangements: Contributions to the Kontse-
vich-Zagier Periods Conjecture and to the Terao Conjecture. PhD Thesis.  
https://www.theses.fr/2015PAUU3022.pdf  

[26] Viu-Sos, J. (2016) Semi-Canonical Reduction for Periods of Kontsevich-Zagier. 

[27] Klein, F. (1983) A Comparative Review of Recent Researchers in Geometry. Bulletin 
of the New York Mathematical Society, 2, 215-219.  

[28] Manin, Y.I. (2013) Numbers as Functions. P-Adic Numbers, Ultrametric Analysis 
and Applications, 5, 313-325. https://arxiv.org/abs/1312.5160  

[29] Hilton, P.J. (2013) General Cohomology Theory and K-Theory (London Mathe-
matical Society Lecture Note Series). Cambridge University Press, Cambridge. 

[30] Zhao, J. (2016) Multiple Zeta Functions, Multiple Polylogarithms and Their Special 
Values. Series on Number Theory and Its Applications Vol. 12, World Scientific, 
Singapore. https://doi.org/10.1142/9634 

[31] Polya, G. (2014) How to Solve It! Princeton University Press, Princeton.  
https://doi.org/10.2307/j.ctvc773pk 

[32] Eynard, B. (2018) Lectures on Compact Riemann Surfaces, IPhT-T18/007. 

[33] Friedrich, B. (1979) Periods and Algebraic de Rham Cohomology. Thesis. 

[34] Luo, M. (2018) Algebraic de Rham Theory for Completions of Fundamental Groups 
of Moduli Spaces of Elliptic Curves. Ph.D. Thesis.  
http://dukespace.lib.duke.edu/dspace/bitstream/handle/10161/16809/Luo_duke_00
66D_14412.pdf?sequence=1  

[35] Movasati, H. (2012) Quasi-Modular Forms Attached to Elliptic Curves, I. Annales 
Mathematicques Blaise Pascal, 19, 307-377. https://doi.org/10.5802/ambp.316 

[36] Wikipedia. Hurwitz’s Automorphism Theorem.  
https://en.wikipedia.org/wiki/Hurwitz%27s_automorphisms_theorem  

[37] Karcher, H. and Weber, M. (1998) The Geometry of Klein’s Riemann Surface. In: 
Levy, S., Ed., The Eightfold Way: The Beauty of Klein’s Quartic Curve, MSRI Publi-
cations Vol. 35, Cambridge University Press, Cambridge, 9-49.  

[38] Levy, S. (1999) The Eightfold Way: The Beauty of Klein’s Quartic Curve. MSRI 
Publications, Cambridge University Press, Cambridge. 

[39] Wikipedia, Petrie Polygon. https://en.wikipedia.org/wiki/Petrie_polygon  

[40] Savage, A. (2005) Finite Dimensional Algebras and Quivers.  
https://arxiv.org/pdf/math/0505082.pdf  

[41] Britto, R., Cachazo, F. and Feng, B. (2005) New Recursion Relations for Tree Am-
plitudes of Gluons. Nuclear Physics B, 715, 499.  
https://doi.org/10.1016/j.nuclphysb.2005.02.030 

https://doi.org/10.4236/apm.2020.105014
http://www.landsburg.com/grothendieck/EsquisseEng.pdf
https://webusers.imj-prg.fr/%7Eleila.schneps/SchnepsLM.pdf
http://www.researchgate.net/publication/250730420_Belyi_Functions_Hypermaps_and_Galois_Groups
http://www.researchgate.net/publication/250730420_Belyi_Functions_Hypermaps_and_Galois_Groups
https://doi.org/10.1112/blms/28.6.561
https://www.theses.fr/2015PAUU3022.pdf
https://arxiv.org/abs/1312.5160
https://doi.org/10.1142/9634
https://doi.org/10.2307/j.ctvc773pk
http://dukespace.lib.duke.edu/dspace/bitstream/handle/10161/16809/Luo_duke_0066D_14412.pdf?sequence=1
http://dukespace.lib.duke.edu/dspace/bitstream/handle/10161/16809/Luo_duke_0066D_14412.pdf?sequence=1
https://doi.org/10.5802/ambp.316
https://en.wikipedia.org/wiki/Hurwitz%27s_automorphisms_theorem
https://en.wikipedia.org/wiki/Petrie_polygon
https://arxiv.org/pdf/math/0505082.pdf
https://doi.org/10.1016/j.nuclphysb.2005.02.030


L. M. Ionescu 
 

 

DOI: 10.4236/apm.2020.105014 244 Advances in Pure Mathematics 
 

[42] Arnold, V.I. (2005) Mysterious Mathematical Trinities. In: Prasolov, V. and Ilya-
shenko, Y., Eds., Surveys in Modern Mathematics (London Mathematical Society 
Lecture Note Series Book 321), Cambridge University Press, Cambridge, 1-12.  
https://doi.org/10.1017/CBO9780511614156.002 

[43] Le Bruyn, L. (2008) Galois’ Last Letter.  
http://www.neverendingbooks.org/galois-last-letter  

[44] Goodman, R. (2004) Alice through Looking Glass after Looking Glass: The Mathe-
matics of Mirrors and Kaleidoscopes. The American Mathematical Monthly, 111, 
281. https://doi.org/10.2307/4145238 

[45] He, Y.-H. and Song, J.S. (1999) Of McKay Correspondence, Non-Linear Sigma-Model 
and Conformal Field Theory. https://arxiv.org/pdf/hep-th/9903056.pdf  

[46] Lisi, A.G. (2007) An Exceptionally Simple Theory of Everything.  
https://arxiv.org/abs/0711.0770 

 
 

https://doi.org/10.4236/apm.2020.105014
https://doi.org/10.1017/CBO9780511614156.002
http://www.neverendingbooks.org/galois-last-letter
https://doi.org/10.2307/4145238
https://arxiv.org/pdf/hep-th/9903056.pdf
https://arxiv.org/abs/0711.0770

	From Periods to Anabelian Geometry and Quantum Amplitudes
	Abstract
	Keywords
	1. Introduction
	1.1. The Main Ideas: An Overview
	1.2. Nomenclature

	2. On Kontsevich Conjecture Regarding Abstract Periods
	2.1. Trends and State-of-the-Art of Research on Periods
	2.1.1. Period Identities, Hilbert’s 3rd Problem and Dehn Invariants
	2.1.2. … And Grothendieck’s Conjecture
	2.1.3. Why Belyi Ramified Covers

	2.2. Is There a Ramification Theory of Periods?
	2.2.1. Periods: “Numbers” or “Functions”?
	2.2.2. The Category of Ramified Belyi Covers
	2.2.3. The Relation with KZ-Moves
	2.2.4. Prime Decomposition and Ramification of Dessins D’Enfant?
	2.2.5. Rigidity vs. Continuous Parameters
	2.2.6. Homological vs. Homotopical
	2.2.7. A Study of Periods of Elliptic Curves
	2.2.8. … And Beyond: Hurwitz Surfaces
	2.2.9. Periods of the Klein Quartic and Belyi, Galois, Gauss Etc

	2.3. Klein Quartic, String Theory and Elementary Particles
	Applications to the Standard Model


	3. From Periods to Anabelian Geometry
	3.1. A Physics Interpretation of Period, and Montonen-Olive/T-Duality
	3.1.1. Closed vs. Open Periods; Electric vs. Magnetic
	3.1.2. Helmholtz/Hodge and “Maxwell’s Equations”

	3.2. … And Quantum Physics Amplitudes (beyond Veneziano)
	3.3. Arithmetic Galois Theory and Anabelian Geometry

	4. Research Ramifications to TOEs and ADEX-Theory
	4.1. The Platonic Trinity
	4.2. Role of the Exceptional Lie Algebra

	5. Conclusions
	Conflicts of Interest
	References

