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Abstract 
Urban Transit Scheduling Problem (UTSP) is concerned with determining 
reliable transit schedules for buses and drivers by considering the preferences 
of both passengers and operators based on the demand and the set of transit 
routes. This paper considered a UTSP which consisted of frequency setting, 
timetabling, and simultaneous bus and driver scheduling. A mixed integer 
multiobjective model was constructed to optimize the frequency of the routes 
by minimizing the number of buses, passenger’s waiting times and over-
crowding. The model was further extended by incorporating timeslots in de-
termining the frequencies during peak and off-peak hours throughout the 
time period. The timetabling problem studied two different scenarios which 
reflected the preferences of passengers and operators to assign the bus depar-
ture times at the first and last stop of a route. A set covering model was then 
adopted to minimize the number of buses and drivers simultaneously. A pa-
rallel tabu search algorithm was proposed to solve the problem by modifying 
the initialization process and incorporating intensification and diversification 
approaches to guide the search effectively from the different feasible domain 
in finding optimal solutions with lesser computational effort. Computational 
experiments were conducted on the well-known Mandl’s and Mumford’s 
benchmark networks to assess the effectiveness of the proposed algorithm. 
Competitive results are reported based on the performance metrics, as com-
pared to other algorithms from the literature.  
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1. Introduction 

Urban public transportation is an alternative mode for travelers in major cities 
to commute between destinations. It is undeniable that the evolution of the pub-
lic transportation system is based on its demand and current technologies. It is 
also an efficient approach to enhance the ridership and combat the threat posed 
by motor vehicles, mainly traffic congestion and air pollution. The development 
of public transportation service must be consistent with the requirement of both 
passengers and operators in order to create a sustainable system. Some of the 
major disadvantages of public transportation are the unavailability of the service 
at desirable times, inconvenience while traveling, and inaccurate transit sche-
dules. 

The study on constructing effective schedules for urban public transportation 
can be formulated as an optimization problem which is known as the Urban 
Transit Scheduling Problem (UTSP). UTSP can be divided into a few sub-problems 
that consist of frequency setting, timetabling, vehicle scheduling and crew sche-
duling since it is usually difficult to solve them simultaneously due to its nu-
merous objectives and decision variables [1]. The determination of headways or 
frequency serves as tactical planning to satisfy the irregular demand that changes 
according to time, days and seasons. This process is important to maintain the 
quality of transit service, because the unexpected arrival and departure times can 
affect the service reliability and also cause congestion in the transit. Besides, 
providing higher frequency is redundant at some time periods which reduce the 
efficiency of the transit service. Usually, the timetables are constructed based on 
the frequency predetermined while considering the synchronization at transfer 
nodes. Meanwhile, the vehicles and crews are assigned according to the industry 
regulation and resources available. 

Due to the complexity of the problem, metaheuristic approaches have been 
widely applied to find near-optimal solutions in a reasonable time. However, the 
parallel algorithm is seldom being implemented in urban transportation prob-
lem which may due to the complication involved in how and where to do paral-
lelism. The parallelization of an algorithm can be done in several ways depend-
ing on the problem structure and computer hardware. It is important to consid-
er the type of parallelism to reduce cost and avoid unnecessary communication 
during data transfer which might increase the execution time for some cases.  

Apart from the genetic algorithm (GA), tabu search (TS) and simulated an-
nealing (SA), multiple tabu search (MTS) is an emerging approach in solving the 
combinatorial optimization problem [2]. However, to the best of our knowledge, 
MTS has not been applied in solving multiobjective UTSP to date. In this paper, 
a parallel MTS (PMTS) with systematic neighborhood selection approach is de-
veloped by modifying the initialization process and incorporating intensification 
and diversification procedures to produce optimal solutions. The proposed algo-
rithm is verified and validated using well-known Mandl’s and Mumford’s 
benchmark datasets. This paper extends the previous sequential methodology in 
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[3] to study multiobjective UTSP using parallel implementation. The main con-
tribution of this paper is the development of parallel MTS algorithm in reducing 
the computational time of solving the UTSP. 

This paper is organized as follows. In Section 2, the review of the related work 
in this study is presented. The model formulations for frequency optimization as 
well as bus and driver scheduling are described in Section 3. In Section 4, the 
development of PMTS algorithm for UTSP is proposed. The computational ex-
periments and results for benchmark datasets are reported in Section 5. Section 
6 gives the conclusions and recommendations for future research. 

2. Literature Review 

Over the years, the evolution of operational research and the development of 
computing infrastructure have created high interest in tackling UTSP. Various 
optimization algorithms are proposed to search for the optimal solution effec-
tively. Nevertheless, the ability of the algorithm to obtain optimal or near-optimal 
solutions in polynomial time for hard optimization problem such as UTSP is still 
very challenging. Review of the existing approaches in UTSP reveals the shortage 
of advanced optimization algorithm in handling the large and complex problems 
[4] [5] [6] [7]. Moreover, the deficiency of multiobjective approaches to solving 
UTSP is also reflected in the analysis. Due to the scope of this paper, only the 
study of multiobjective UTSP and the applications of parallel algorithms in pub-
lic transportation design are discussed. 

A multiobjective metaheuristic approach based on TS and GA is developed by 
[8] to solve bus driver scheduling problem and produce Pareto optimal solu-
tions. Multi-objective set covering model is used to define the problem by in-
cluding some measures of service quality needed by different companies in the 
objective function. GRASP has been used as a subroutine for the metaheuristic. 
A TS with three types of neighborhood selection and intensification strategies 
for a certain number of iterations are applied to find the best solution. On the 
other hand, [9] studied the transit route network design using a parallel genetic 
algorithm (PGA). It includes the determination of a set of transit routes and the 
associated frequencies that minimize the sum of the operating cost and the ge-
neralized travel cost. Two PGA models are proposed which based on the global 
parallel virtual machine and global message passing interface.  

Bus transit network is optimized by developing a model with parallel ant co-
lony optimization [10] [11]. The objectives are to achieve minimum transfers 
and maximum passenger flow per unit length with line length and non-linear 
rate as constraints. A heuristic pheromone distribution rule is applied, by which 
ants’ path searching activities are altered based on the objective value. A parallel 
auction algorithm is proposed by [12] for bus rescheduling problem (BRP) that 
occur when a trip is disrupted. A single-depot BRP model is built to minimize 
the operating and delay cost. The sequential and parallel auction algorithms are 
developed to solve the BRP. The combined forward and backward auction itera-
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tions are used with the implementation of ϵ-scaling to improve the performance 
of the auction algorithm.  

Reference [13] presented a model for optimizing bus route headways that 
maximize the service quality and minimize the operational cost. The relative 
weights between the passenger cost and operator cost are determined by an in-
tegrated approach. A PGA based on coarse-grain strategy and a local search 
based on TS are incorporated to improve the performance of the GA. While [14] 
investigated the transit network design of large urban area (City of Rome) with 
the objectives to minimize the sum of operator cost, user cost and penalty mea-
suring the level of unsatisfied demand. The contributions of the paper are the 
introduction of flow concentration procedure in a wider route generation 
process and the application of transit network design methodology to a large 
real-life urban area.  

A methodology is proposed by [15] to create Pareto solutions for minimizing 
the number of vehicles and drivers to satisfy a given schedule. Multiple block 
subsets are chosen from a set of candidate vehicle blocks by improved multiob-
jective GA with departure-time adjustment procedure. While [16] investigated a 
multi-objective re-synchronizing of bus timetable problem that characterized by 
headway-sensitive passenger demand, uneven headways, service regularity, flex-
ible synchronization and involvement of existing bus timetable. A mul-
ti-objective optimization model is derived to make a trade-off between the total 
number of passengers benefited by smooth transfers and the maximal deviation 
from the departure times of the existing timetable.  

The problem of vehicle scheduling in urban public transport systems taking 
into account the vehicle-type with different capacity is studied by [17]. A heuris-
tic-based on the multi-objective cellular evolutionary algorithm is proposed to 
solve the problem considering restrictions of government agencies. The objec-
tives of minimizing the total operating cost, waiting time and congestion in the 
bus and maximizing the quality of service are considered to produce a set of 
non-dominated solutions that represent different assignments of vehicles to 
cover the trips of a specific route. While [18] presented an optimization-based 
approach to simultaneously solve the network design and the frequency setting 
phases on the context of railway rapid transit networks. A Lexicographic goal 
programming model is introduced, together with a solving strategy.  

Most recently, [19] proposed a single framework that simultaneously consid-
ers the restrictions and objectives of the users and operator of a bus rapid transit 
system. Routes and frequencies were searched for this system by minimizing 
waste bus capacities (operation costs) and minimizing users’ travel time (max-
imizing satisfaction). A Multiobjective Global-Best Harmony Search heuristic 
algorithm is implemented.  

There are many studies that investigate UTSP by the different methodological 
approaches but the time complexity is usually overlooked with the effectiveness 
of the algorithm. Although several metaheuristic algorithms are derived to solve 
UTSP, the implementation of parallel techniques to enhance the difficulties of 
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solution procedure while reducing the computational time are seldom consi-
dered which is the research gap to be satisfied in this paper. 

3. Problem Formulation 

UTSP is formulated as a minimization problem taking into consideration of the 
preferences of passengers and operators. Generally, passengers would prefer to 
wait with a shorter time while maintaining their comfort and convenience while 
travelling. On the contrary, operators would be preferred to provide fewer buses 
and drivers to reduce the operating cost. These objectives are important to im-
prove the overall performance of the public transportation system.  

Many researchers combine these objectives into a single function under the 
resources constraints such as fleet size [20] [21] [22], bus loading [23] [24] and 
frequency boundary [25]. While, the multiobjective optimization model is em-
ployed by [15] [26] [27] to produce Pareto optimal solutions. Similarly, this 
study also optimizes all the conflicting objectives simultaneously to yield various 
solutions with different tradeoff levels.  

In this study, UTSP is tackled consequently starting from frequency setting 
where the frequencies of each route are optimized based on the passengers’ de-
mand and total travel time between origin and destination. Then, a timetable is 
constructed by setting expected departure times for each route using their 
headways. The timetabling procedure does not involve separate model formula-
tion since its objectives such as demand satisfaction and fleet size are already in-
cluded in frequency optimization. Besides, the transfer synchronization in con-
structing timetables is excluded due to the lack of data on passengers’ demand at 
every bus stop. Finally, the buses and drivers are optimized and assigned cor-
respondingly to all departure times of the routes. 

3.1. Frequency Optimization 

The frequency optimization procedure can be best represented as a bi-level 
process. The first level explains the passenger assignment procedure and the 
second level describes the frequency optimization procedure by PMTS. Passen-
gers’ demand obtained from the first level is used to find the frequency of the 
route in the second level. The frequency set obtained is used to update the initial 
frequency and to restart the process. This process is reiterated until the conver-
gence pattern of the frequency set is observed. 

Two cases are considered to determine the optimal frequency for each route. 
The first case assumed that the demand and the frequency of a route are similar 
throughout the time period studied whereas, for the second case, the problem is 
extended to change the demand and frequencies of the routes according to the 
peak and off-peak hours. The total demand is divided into 18 timeslots (1-hour 
periods) that have been categorized based on the assumed passengers’ traffic. 
The first case is to test the effectiveness of the proposed algorithm in comparison 
to other methods in the literature using a similar model. The second case is to 
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evaluate the proposed algorithm using additional criteria such as time-dependent 
demands that represent a more realistic situation. Since there is no benchmark 
data available on time-dependent demand for transportation network studied, 
the demand during peak hours is assumed to be double of the off-peak hours. 
Let assume the passenger demands for a route is 300 passengers. It is divided in 
the ratio of 1:2 that represent the demand on off-peak hours to peak hours. Note 
that, the second case is tested on Mandl’s network only and its results are used to 
study the bus and driver scheduling problem in the latter section.  

To begin with, all routes are initialized with similar frequency before the pas-
senger demands are assigned based on their route choice. Two passenger as-
signment methods are adopted from [28] [29] as they use a realistic representa-
tion of passenger’s behavior and the methods are applied in the comparative 
studies mentioned in Section 5.2.1. These methods allocate the passengers’ de-
mand based on the frequency share rule and multinomial logit model respec-
tively. 

Generally, the passengers are set to travel in a path with at most two transfers 
and the demand is considered unsatisfied if more than two transfers are needed. 
Based on [28], when more than one path exists for the same number of transfers, 
the demands are allocated to the routes within prespecified travel times such that 
each route carries a proportion of the flow equals to the ratio of its frequency to 
the sum of frequencies of all acceptable routes. Based on [29], the demands are 
distributed according to the travel time utility of each path if parallel paths exist 
with one or two transfers. 

After the passenger assignment process, the maximum load of each route is 
obtained from its list of link flows and used as the input for the frequency opti-
mization procedure. In order to optimize the frequency, a mixed integer pro-
gramming model is built with the objectives of minimizing the total number of 
buses, passengers waiting times and overcrowding in the bus. This model is 
adapted from the literature by considering the overcrowding as one of the objec-
tives rather than constraints with the same formulation. 

Minimize 

1
2 k k
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where, 

ijd : number of passengers travelling between nodes i and j, 

kf : frequency of route k, 
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minf : minimum frequency for a time period, 

maxf : maximum frequency for a time period, 

kQ : maximum load (passengers) of route k, 

 kt : vehicle travel time of route k, 
CAP: seating capacity of a bus, 
LF: load factor of a bus, 
R: set of bus routes, 

ijR : set of potential routes between node i and j, 
T: time horizon, 
N : set of nodes in transit network. 
Equation (1) calculates the number of buses needed for each route k R∈  

that obtained by dividing the total round trip times with the time horizon 
(mins). Equation (2) measures the total waiting times for all the passengers. The 
waiting time is assumed to be half of the headway. Equation (3) determines the 
total number of passengers that exceed the maximum capacity of the bus. Equa-
tion (4) ensures that the frequency of each route is within the minimum and the 
maximum frequency for a time period. This model is further extended by in-
cluding timeslot to find the frequencies of the routes at specific timeslot based 
on the variable demand. The representation of the new adapted model is as fol-
lows. 

Minimize 
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subject to 

min maxkf f f≤ ≤  for all k R∈                      (8) 

where, 

,ij sd : number of passengers travelling between nodes i and j in timeslot s, 

,k sf : frequency of route k in timeslot s, 

kl : layover time of route k, 

,k sQ : maximum load (passengers) of route k in timeslot s, 
DWP: dwell time for a passenger, 
S: set of timeslots. 
Equation (5) determines the maximum number of buses needed for each 

route. Note that, the total round trip times includes dwell times and layover 
times. Dwell time (DWP) states the approximate time taken for boarding or de-
boarding passengers at every scheduled bus stop whereas layover time ( kl ) refer 
to the time spent by a bus at the terminals (first and last stop) of a route without 
moving. Equation (6) measures the total waiting times for all the passengers in 
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every timeslot s S∈  while equation (7) calculates the total number of passen-
gers that exceed the maximum capacity of the bus in all timeslots. Equation (8) 
represents the constraint on the frequency of each route.  

Based on the two models, the decision variable is the frequency of the route 
which is represented as kf  and ,k sf  correspondingly and the travel time of a 
bus between two nodes is shown as kt . The parameters such as bus capacity 
(CAP) and load factor (LF) denote the maximum number of seats available and 
maximum number of passengers that can be occupied in a bus, respectively. 
Meanwhile, kQ  and ,k sQ  represent the passengers demand at each route that 
obtained from the passenger assignment procedure respectively. For further ex-
planation on the models, refer to [3]. 

3.2. Bus and Driver Scheduling 

The proposed technique for solving this problem is inspired by [15] who studied 
the vehicle scheduling problem. The solution approach is revised by incorporat-
ing the elements for bus driver scheduling. Following are the definition of terms 
related to this sub problem. A trip is a one-way route that begins at a specific 
time from the starting terminal (bus stop) to ending terminal of a route. A ve-
hicle block is the schedule of a bus that consists of consecutive trips allocated to 
it. There are two types of vehicle blocks used in this study which are represented 
as long and short blocks. The elapsed time of a short block is the total work du-
ration whereas, for a long block, the time is doubled to be fulfilled by two driv-
ers. The main idea of this assumption is to simplify the representation of the bus 
and driver scheduling problem. 

At first, a set of vehicle blocks are generated to cover all the departure times 
according to the total work duration, driver’s break duration and maximum 
working duration without break, which are set approximately as 9 hours, 1 hour 
and 4 hours, respectively. Then, a subset of candidate blocks with minimum ob-
jective functions values is selected using the proposed algorithm. All selected 
candidate blocks are reconstructed to minimize further the values of the objec-
tive function. The detailed explanation of this procedure is given in Section 4.2. 

A set covering model is adapted from [15] to represent the problem and cal-
culate the objective values in order to produce the optimal blocks. The set cov-
ering model generates a set of buses that cover all the trips with minimum cost. 
Moreover, it allows some of the trips to be included in more than one buses 
which consequently provides various combinations of trips for each bus. The set 
covering model for simultaneous bus and driver scheduling is formulated as fol-
lows: 

Minimize 

1 1 yy
qF z
=

= ∑                             (9) 

2 1 y yy
qF C z
=

= ∑                           (10) 

subject to 
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 1  1xy yy
q v z
=

≥∑                          (11) 

{ }0,1yz = , { }1,2yC = , { }0,1xyv = , { }1, ,y q=  , 
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Equations (9) and (10) minimize the number of buses and drivers respectively 
and Equation (11) ensures that every departure time is covered by at least one 
trip. The xyv  is a binary matrix that records the availability of departure times 
in a block whereas the binary decision variable yz  shows the presence of cer-
tain blocks in the chosen solution. The parameter yC  defines the number of 
drivers for each block and yb  is the yth block in a set of vehicle blocks such 
that q is the total. 

The proposed solution approach covers all the departure times by producing 
extra vehicle blocks at the beginning rather than altering the existing departure 
times in the optimal blocks to include more departure times. This is due to the 
adjustment of departure times may affect the headways and layover time deter-
mined earlier which consequently have an impact on the robustness of the 
schedule. 

It is important to note that the formulation to calculate the number of buses 
in this sub problem is different from the frequency optimization problem al-
though both problems are closely related. In the frequency setting, the total bus-
es are computed based on the round trip time of a bus and passengers demand 
without considering drivers work preferences. In this sub problem, several work 
rules such as driver’s break duration have been included which can increase the 
round-trip times of buses. This consequently will increase the number of buses 
required to maintain the headways found in previous frequency setting problem. 

4. Parallel Multiple Tabu Search 

The idea of MTS is first proposed by [2] in designing the optimal fuzzy logic 
proportional-integral controller. The basic TS algorithm might require longer 
computational time to search for the expected solution if the initial solution is 
further away from the promising region. Thus, the adapted MTS algorithm is 
developed to guide the search to the optimal region in less computation time. 
The basic structure of MTS consists of initialization, adaptive searches, multiple 
searches, replacing and restarting procedure. MTS algorithm begins by generat-
ing several initial solutions to increase the possibility of reaching the optimal re-
gion quickly. Then, adaptive search mechanism is applied to alter the step size of 
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the neighborhood during the search and multiple TS algorithms are performed 
sequentially based on its initial solution.  

In this study, the MTS algorithm is adapted such that each of the initial solu-
tions is selected from different feasible domain to examine the search space tho-
roughly in finding better solutions that minimize all the objective values. The 
domains are obtained by partitioning the search space into a fixed range of val-
ues. This technique can increase the chance of evaluating every possible solution 
in a reasonable computational time. Besides, intensification and diversification 
processes are incorporated to exploit and explore the search space when there is 
no promising solution available. Moreover, two-dimensional tabu list is created 
to record the availability of elements in an organized memory structure [3].  

The proposed PMTS is derived to make use of modern technology with mul-
tiple processors for exploring the search space more effectively in less computa-
tional time. It works differently for continuous optimization (frequency setting) 
and discrete optimization (bus and driver scheduling) problems. However, the 
basic idea of PMTS that finds feasible solutions in a systematic way by dividing 
the search space into several domains and handling them at the same time is ap-
plied in both problems. This research focuses on exploiting the data parallelism 
in order to partition the data optimally to numerous processors. Each processor 
performs the same task at the same time but using different data sets. Specifical-
ly, the input of the problem is partitioned into a fixed number of processors such 
that each processor has a distinct range of domain.  

The PMTS algorithm is altered according to a master-slave strategy with mul-
tiple initial points and single strategy configuration. The parallel search is con-
trolled by a single processor called master which distributes the data equally into 
several processors called slaves to execute the search in parallel. The slaves will 
start their search in different search space with different initial points from the 
data range given and perform similar functions independently. There is some 
communication between the master and slaves at the beginning to allocate the 
tasks and data and also at the end of executions when the optimal solutions are 
gathered at the master processor. Note that the slaves do not communicate di-
rectly to each other as there is no data transfer involved between them. The se-
lection of this approach is motivated by the natural design of the MTS algorithm 
which guides the search separately with specific domain.  

The PMTS begins with several initial solutions such that each of them is se-
lected from various domains. All the starting solutions run simultaneously in 
different processors to search for the best solution in every domain. Explicitly, 
the search space is divided into a number of domains and each of the domains is 
allocated with different range/set of values. After the initialization process in 
continuous optimization, the adaptive search mechanism is applied to find vari-
able step sizes for locating the neighborhood of the current solution to move 
them to another feasible solution. By referring to Figure 1, the neighborhood is 
formed by adding and subtracting the step size from each variable in the initial 
solution. Let n∆  be the step size values such that n represent the domain. 
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Figure 1. Neighborhood formation for continuous optimization. 

 
Meanwhile, for discrete optimization, three classifications of the neighbor-

hoods are formed based on add, drop coarse-grain and swap moves from where 
the best solution is chosen at every iteration. Based on Figure 2, the solutions in 
first 4 rows are formed by dropping a block from the initial solution; the follow-
ing solutions are created by swapping and the last solution is formed by adding a 
new solution. Based on Figure 1 and Figure 2, nmx  represent decision variables 
such that m is the elements. For example, 11x  is the decision variable of ele-
ment 1 in first domain. 

The use of single or multiple tabu lists depends on the types of move involved 
during the search that directly influenced by the type of the problem. There are 
several moves being added or dropped at the same time to create the neighbor-
hood of the current solution. This study applied two-dimensional tabu lists with 
the same tabu tenure to record the moves with their positions in the list. This 
approach inhibits repeated moves and enables the search to explore a variety of 
solutions using organized memory structure. An array, tabulist (a) (b) stores re-
cently chosen solution to mark it as tabu for certain iterations such that a, the 
row represents the tabu tenure and b, the column represents the maximum 
number of moves that can be added or dropped. For all moves in the tabu list, 
the value of a is reduced by 1 at every iteration. The number of columns occu-
pied depends on the number of moves involved in an iteration and it is different 
for every row. 

Intensification is conducted if there is no promising solution available and di-
versification occurs when the intensification is not possible to be applied. This is 
because the normal search procedure in the proposed PMTS is good enough to 
analyze a portion of the whole neighborhood since it is divided earlier. Further-
more, it is unnecessary to spend extra time to examine the regions which are al-
ready been visited previously. Intensification is performed based on intermediate 
memory that functions by recording and updating some best trial solutions 
produced during the search based on the objective function values of the solu-
tions. Diversification is performed based on long-term memory that counts and 
stores the number of times that a solution is involved in the current solution. 
The aspiration criteria allow the tabu move if the neighbor solution yields better 
result compared to the best-known solution. Termination criteria stop the search 
if there is no improvement in the objective values after a fixed number of itera-
tions. 
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Figure 2. Neighborhood formation for discrete optimization. 

4.1. Parallel Multiple Tabu Search for Frequency Optimization 

The main idea of frequency optimization is to find the optimal frequency set for 
each route in a transit network based on the passengers’ demand during a time 
period. Different frequency sets give different tradeoff between the objectives 
since this is a multiobjective problem. The specific steps of the PMTS algorithm 
are described as follows. The pseudo-code of the algorithm for solving the fre-
quency optimization problem is given in Algorithm 1. 
STEP 1: Allocate the demand, travel times and routes between the nodes based 

on the bus network studied. Assign the minimum and maximum fre-
quencies for all routes. Initialize the parallel environment for commu-
nication between the master processor and slaves using MPI.  

STEP 2: Divide the range of frequency for each route into m number of domains 
equally such that every domain (processor) has the same interval except 
the last domain which might be lower if m is not a factor of the fre-
quency range. Choose a random frequency for all the routes to begin 
the passenger assignment procedure. 

STEP 3: Allocate the demand to the routes based on the frequency obtained and 
their route choice behavior. Send the demand to all the slaves (proces-
sors).  

STEP 4: Begin the MTS initialization for each slave processor. Assign the ran-
dom frequencies within the domain boundaries to the routes and set it 
as the current solution. Represent the initial solutions as a vector of  

{ }0 0 0 0
1 2, , ,n n n mwX f f f= 

, such that w is the number of routes. Set the 
tabu list and intermediate-term memory as empty.  

STEP 5: Increase or decrease the frequencies based on the step sizes to find the 
neighborhood of the current solutions. Check the feasibility, tabu re-
striction and dominance for each solution in the neighborhood. 

STEP 6: If the solution satisfies the constraint, non tabu and dominates the pre-
vious current solution, save it in a set of non-dominated solutions, else 
if the solution is in tabu list, check aspiration criteria before saving the 
solution in the non-dominated set. Update the set by removing the 
worst solution each time after a solution is added. Choose a new solu-
tion randomly from the set to be assigned as the next current solution. 
Update the tabu list and intermediate-term memory. 
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Algorithm 1. PMTS for frequency optimization. 

 
STEP 7: When no dominated solutions are available in the neighborhood, con-

duct the intensification process by choosing a solution from interme-
diate-term memory. Alternatively, if the intermediate-term memory is 
empty, select the least bad solution. Otherwise, initiate the diversifica-
tion process. If there is no feasible solution in the neighborhood, restart 
the search from the feasible region. 

STEP 8: Repeat STEP 5 - 7 until there is no improvement in the best-known 
solution for a predefined consecutive iteration. Every slave processor 
produces a different set of frequency and sent to the master processor. 

STEP 9: Check the convergence of the frequencies and if the pattern is not ob-
served, repeat STEP 3 - 8 until the frequency set converged. Else, stop 
the optimization procedure and record the best solution among the 
processors.  

Following the output obtained from the frequency optimization problem, the 
timetabling process is initiated by considering two different scenarios such that 
the first scenario assigns equal departure times to both terminals of the routes to 
favor the passengers. Meanwhile, the second scenario considers operator’s pre-
ference by allocating the times at the starting node only. 

Based on the frequency set obtained from PMTS, the headway at each timeslot 
s of a route k is computed by dividing the total time period with the route’s fre-
quency per timeslot. The departure times for each route are calculated using the 
headways. Besides that, the one-way travel time at a timeslot is found by the 
summation of dwell time, vehicle travel time and layover time (assumed to be 10 
percent of the travel time). The procedure to determine the departure times for 
each route are as follows: 
STEP 1: Let k = 1. 
STEP 2: Set s = 1. Set the first departure time to 300 minutes (5 a.m.) for route k. 
STEP 3: Compute the headway of the route k and add the value to the first de-

parture time in route k. 
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STEP 4: Continue adding the headway consecutively to its previous departure 
time and store the time in a set after every addition until the number of 
departure times at timeslot 𝑠𝑠 equal to the frequency of route k. 

STEP 5: Repeat STEP 3 and 4 for all s S∈ , where S is the set of timeslots. Let 
1k k= + . 

STEP 6: Repeat STEP 2 - 5 for all k R∈ , where R is the set of routes. 

4.2. Parallel Multiple Tabu Search for Bus and Driver Scheduling 

In this procedure, both buses and drivers are assigned simultaneously to the de-
parture times by assuming that the drivers are assigned to the same bus 
throughout the working time. Besides, the vehicle blocks formed consist of long 
and short blocks such that the long blocks need two drivers and short blocks re-
quire only one driver which is deduced based on the duration of the blocks. Note 
that, the lengths of long blocks are equal to the time horizon studied in this re-
search while the short blocks are reduced by half. The bus and driver scheduling 
are conducted consecutively for all the routes involved. The complete steps in 
this optimization process are discussed as follows. The pseudo-code of PMTS for 
bus and driver scheduling is given in Algorithm 2. 
STEP 1: Initialize the parallel environment for communication between the 

master and slaves’ processors using MPI. Assign the departure time and 
layover time at each timeslot for all the routes. 

STEP 2: Determine the set of vehicle blocks that covers all the departure time 
and the number of drivers for each block. Divide the set of departure 
time into m number of domains equally such that every domain (pro-
cessor) has the same number of departure time. 

STEP 3: Begin MTS initialization for each slave processor. Select randomly the 
vehicle blocks that cover each departure time within the domain and 
set it as the current solution and best solution. Represent the initial so-
lutions as a vector of { }0 0 0 0

1 2, , ,n n n ncX b b b= 
, such that each vehicle  

 

 
Algorithm 2. PMTS for bus and driver scheduling. 
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block covers a subset of departure time, { }0 0 0 0
1 2, , , eb h h h= 

 where c is 
the number of blocks included and e indicates the total departure time 
covered by each block. 

STEP 4: Create two tabu lists to store the add, drop and swap moves. Set it as 
empty together with intermediate-term memory. Create a neighbor-
hood of the current solution by adding, dropping and swapping cor-
responding blocks. Check each solution in the neighborhood for its 
feasibility, tabu restriction, and dominance. 

STEP 5: If the solution satisfies the constraint, non-tabu, and dominates the 
previous current solution, record it in a set of non-dominated solu-
tions, else if, the solution is in tabu list, conduct aspiration criteria be-
fore moving the solution to the non-dominated set. Update the set by 
removing the worst solution each time a solution is added. Then, ran-
domly choose a new solution from the set to be assigned as the next 
current solution. Update the tabu lists and intermediate-term memory. 

STEP 6: When no dominated solution is available in the neighborhood, conduct 
the intensification process by choosing a solution from interme-
diate-term memory. Alternatively, if the intermediate-term memory is 
empty, select the least bad solution. Otherwise, initiate the diversifica-
tion process. When there is no feasible solution in the neighborhood, 
perform the constraint handling procedure to modify the neighbor-
hood by adding the blocks that contain the uncovered departure times 
with another new block which is not included in the current solution 
and this trial solution. 

STEP 7: Repeat STEP 5 - 6 until there is no improvement in the best-known 
solution for a predefined iteration. Every slave processor produces a set 
of vehicle blocks and sends them to the master processor. 

STEP 8: Combine all the blocks from each processor and remove the similar 
blocks. As the departure time can be covered by more than one block, 
eliminate its replicates from the blocks selected randomly. Reconstruct 
all the blocks to minimize further the number of buses and drivers and 
record the final solutions. 

STEP 9: Repeat STEP 2 - 8 for all the routes in the network.  

5. Results and Discussion 
5.1. Benchmark Data and Experimental Design 

The effectiveness of the proposed PMTS algorithm is assessed on benchmark 
Mandl’s Swiss network (Figure 3) and Mumford’s large network (Figure 4) 
based on the parameters given in Table 1 using the following performance me-
trics as suggested by [30]: total number of buses, total waiting times, average 
route headways, and maximum route headways.  

Computational experiments are conducted for several route sets and com-
pared to various algorithms: heuristic by [28], [31], and [32]; GA with ant-system  
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Figure 3. Mandl’s Swiss network. 

 

 
Figure 4. Mumford’s network. 
 
Table 1. Parameters for benchmark instances. 

Instances Nodes Links Routes Min-Max nodes Demand 

Mandl 15 21 4 - 12 2 - 8 15,570 

Mumford 0 30 90 12 2 - 15 342,160 

Mumford 1 70 210 15 10 - 30 1,926,170 

Mumford 2 110 385 56 10 - 22 4,487,900 

Mumford 3 127 425 60 12 - 25 6,394,950 
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(GA-AS) by [33]; bee colony optimization (BCO) by [34]; GA by [30]; memetic 
algorithm (MA) by [35], differential evolution (DE) by [36] and sequential mul-
tiple tabu search (SMTS) by [3]. Some researchers also contributed their own 
route sets for this study together with other authors such as [37] [38] [39]. 

The proposed algorithm is verified with the respective passenger assignment 
methods and transfer penalties used by the previous authors. The PMTS algo-
rithm is coded in ANSI-C language and executed on a Linux operating system 
using a High Performance Computer (HPC) system. It has an IBM System 
X3650 M4 Cluster operating on PUTRAGRID cluster distribution. The algo-
rithm is executed for 10 runs to assess the robustness of the algorithm and each 
run is able to produce the results for all domains. The parameters for UTSP and 
PMTS used in this study are given in Table 2. 

5.2. Experimental Results of PMTS 
5.2.1. Frequency Optimization 
Based on Tables 3-8, the first column indicates the source of the route sets of the 
Mandl’s Swiss network benchmark data. The second column indicates the algo-
rithms used to obtain the optimal results. The next five columns specified the 
performance metrics values mentioned earlier with the addition of overcrowd-
ing. Additionally, CPU execution time are shown to indicate the speed of the al-
gorithm. The solution with lower number of buses, lesser total waiting times, 
lesser average and maximum headways without overcrowding is considered as 
the best solution.  

The importance of the performance metrics is ranked from the number of 
buses followed by the total waiting times, average route headways and maximum 
route headways, consecutively. The solution with the lowest number of buses is 
given the highest priority to be chosen as the best among the 10 solutions pro-
duced. Note that, the average values for the number of buses and the total wait-
ing time are rounded up to the nearest integer. 
 
Table 2. Parameter configuration for UTSP and PMTS. 

Description Value 

Transfer penalty for one transfer 5 minutes 

Maximum number of transfers allowed 2 transfer/passenger 

Bus capacity 50 passenger (40 seating capacity) 

Load factor 1.25 

Time horizon 1080 minutes (18 hours) 

Minimum allowable frequency of buses on any route 18 (1 per hour) 

Maximum allowable frequency of buses on any route 360 (20 per hour) 

Consecutive iteration with non-improving solution 100 

Tabu list size 2 × number of routes 

Number of domains 10 

Number of processors 10 
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Table 3. Comparison results for 4 routes (Mandl’s Swiss network). 

Source of 
route set 

Algorithm 
Number 
of buses 

Total 
waiting 
Time 
(min) 

Overcrowding 

Maximum 
route 

headways 
(min) 

Average 
route 

headways 
(min) 

CPU 
time 
(sec) 

[31] 

[<1>] 103a n/a n/a 6.67a 3.48a n/a 
[<2>] 99b 18,194b n/a n/a n/a n/a 
[<3>] 99b n/a n/a n/a n/a n/a 

[<9>] 
54a 
54b 

27,563a 
24,746b 

0a 
0b 

3.14a 
3.14b 

3.00a 
3.07b 

59.445a 
84.627b 

[<10>] 
54a 
54b 

27,398a 
27,595b 

0a 
0b 

3.15a 
3.14b 

3.07a 
3.07b 

1.919a 
2.037b 

[<11>] 
53a 

54b 
28,591a 

27,564b 
0a 
0b 

3.19a 

3.15b 
3.12a 

3.07b 
1.318a 

1.945b 

[37] 

[<1>] 105a n/a n/a 9.00a 4.06a n/a 
[<9>] 80a 19,247a 0a 3.36a 3.30a 40.982a 

[<10>] 80a 19,610a 0a 3.46a 3.35a 1.709a 

[<11>] 79a 19,476a 0a 3.46a 3.35a 2.010a 

[38] 

[<1>] 86a n/a n/a 9.33a 4.43a n/a 
[<9>] 79a 22,110a 0a 3.93a 3.78a 61.675a 

[<10>] 80a 22,183a 0a 3.96a 3.80a 2.545a 

[<11>] 77a 22,839a 0a 4.04a 3.91a 1.834a 

[39] 

[<1>] 87a n/a n/a 5.11a 3.64a n/a 
[<9>] 86a 19,440a 0a 3.61a 3.50a 64.409a 

[<10>] 89a 19,050a 0a 3.49a 3.39a 2.232a 

[<11>] 86a 19,519a 0a 3.61a 3.50a 1.178a 

[40] 

[<1>] 94a n/a n/a 4.32a 3.41a n/a 
[<9>] 86a 18,767a 0a 3.59a 3.42a 62.297a 

[<10>] 87a 18,914a 0a 3.48a 3.38a 2.936a 

[<11>] 87a 18,721a 0a 3.42a 3.37a 2.547a 

[30] 

[<1>] 79a n/a n/a 8.60a 4.60a n/a 
[<9>] 76a 20,780a 0a 3.93a 3.77a 52.430a 

[<10>] 76a 20,807a 0a 3.92a 3.78a 1.434a 

[<11>] 74a 21,501a 0a 4.03a 3.90a 1.929a 

[34]-(passenger) 

[<4>] 94b 21,147b n/a n/a n/a n/a 
[<9>] 88b 19,489b 0b 3.47b 3.35b 43.805b 
[<10>] 88b 19,744b 0b 3.51b 3.40b 2.918b 
[<11>] 85b 20,132b 0b 3.62b 3.48b 2.777b 

[34]-(operator) 

[<1>] 67b 26,057b n/a n/a n/a n/a 
[<3>] 67b n/a n/a n/a n/a n/a 
[<9>] 54b 24,711b 0b 4.50b 4.24b 48.886b 
[<10>] 53b 25,362b 0b 4.57b 4.35b 2.977b 
[<11>] 52b 25,644b 0b 4.66b 4.43b 1.369b 

[36] 

[<5>] 95b 24,098b n/a n/a n/a n/a 
[<9>] 86b 21,095b 0b 3.61b 3.41b 48.790b 
[<10>] 87b 21,149b 0b 3.55b 3.39b 2.091b 
[<11>] 86b 21,099b 0b 3.61b 3.38b 1.299b 

Note: [<1>] = GA by [30]; [<2>] = Heuristic1 by [31]; [<3>] = MA by [15]; [<4>] = BCO by [34]; [<5>] = 
DE by [36]; [<6>] = Heuristic2 by [28]; [<7>] = Heuristic3 by [32]; [<8>] = GA-AS by [33]; [<9>] = SMTS 
by [3]; [<10>] = proposed PMTS (average); [<11>] = proposed PMTS (best). a = Passenger assignment based 
on multinomial logit model; b = Passenger assignment based on frequency share rule; n/a = not available. 
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Table 4. Comparison results for 5 and 6 routes (Mandl’s Swiss network). 

Source of 
route set 

Algorithm 
Number 
of buses 

Total 
waiting 

time 
(min) 

Overcrowding 

Maximum 
route 

headways 
(min) 

Average 
route 

headways 
(min) 

CPU 
time 
(sec) 

5 routes 

[30] 

[<1>] 75a n/a n/a 9.56a 5.39a n/a 

[<9>] 64a 26,262a 0a 5.48a 5.26a 54.776a 

[<10>] 67a 25,446a 0a 5.32a 5.11a 3.789a 

[<11>] 64a 26,989a 0a 5.54a 5.36a 3.812a 

6 routes 

[28] 

[<6>] 89b 20,920b n/a n/a n/a n/a 

[<1>] 87a n/a n/a 11.33a 4.11a n/a 

[<3>] 89b n/a n/a n/a n/a n/a 

[<9>] 
76a 

76b 
20,782a 
19,558b 

0a 

0b 
3.44a 
3.44b 

3.35a 

3.35b 
309.517a 

345.220b 

[<10>] 
77a 

76b 
20,798a 
19,810b 

0a 

0b 
3.42a 
3.51b 

3.34a 
3.38b 

3.415a 
4.379b 

[<11>] 
76a 

75b 
20,756 

19,677b 
0a 

0b 
3.44a 

3.45b 
3.34a 

3.36b 
3.235a 
3.082b 

[32] 

[<7>] 84b 20,058b n/a n/a n/a n/a 

[<3>] 84b n/a n/a n/a n/a n/a 

[<9>] 82b 19,869b 0b 3.04b 3.09b 161.875b 

[<10>] 81b 19,153b 0b 3.11b 3.05b 3.991b 

[<11>] 80b 19,070b 0b 3.11b 3.05b 3.701b 

[38] 

[<1>] 98a n/a n/a 8.00a 5.06a n/a 

[<9>] 88a 18,433a 0a 5.24a 5.08a 188.846a 

[<10>] 89a 18,696a 0a 5.27a 5.03a 3.900a 

[<11>] 88a 18,310a 0a 5.12a 5.04a 3.207a 

[39] 

[<1>] 110a n/a n/a 8.00a 4.86a n/a 

[<9>] 101a 17,457a 0a 4.74a 4.56a 272.325a 

[<10>] 104a 16,994a 0a 4.56a 4.36a 3.526a 

[<11>] 102a 16,812a 0a 4.62a 4.40a 5.375a 

[40] 

[<1>] 102a n/a n/a 10.29a 5.25a n/a 

[<9>] 100a 18,147a 0a 4.70a 4.52a 145.578a 

[<10>] 104a 19,267a 0a 5.08a 4.78a 3.933a 

[<11>] 101a 17,846a 0a 4.70a 4.46a 3.712a 

[34]-(passenger) 

[<4>] 99b 21,766b n/a n/a n/a n/a 

[<9>] 98b 19,697b 0b 3.87b 3.76b 242.867b 

[<10>] 98b 19,909b 0b 3.98b 3.80b 3.448b 

[<11>] 98b 19,713b 0b 3.93b 3.78b 3.413b 
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Continued 

[34]-(operator) 

[<4>] 66b 31,500b n/a n/a n/a n/a 

[<3>] 66b n/a n/a n/a n/a n/a 

[<9>] 61b 25,946b 0b 4.43b 4.27b 192.858b 

[<10>] 61b 26,305b 0b 4.55b 4.33b 4.283b 

[<11>] 60b 26,126b 0b 4.50b 4.30b 4.249b 

[30] 

[<1>] 77a n/a n/a 9.56a 6.42a n/a 

[<9>] 63a 26,728a 0a 6.71a 6.31a 108.120a 

[<10>] 65a 26,678a 0a 6.69a 6.21a 4.976a 

[<11>] 64a 26,478a 0a 6.59a 6.22a 4.360a 

[36] 

[<5>] 92b 24,705b n/a n/a n/a n/a 

[<9>] 85b 23,091b 0b 5.57b 5.04b 74.578b 

[<10>] 86b 23,027b 0b 5.41b 5.06b 4.586b 

[<11>] 85b 22,915b 0b 5.29b 5.06b 3.523b 

 
Table 5. Comparison results for 7 routes (Mandl’s Swiss network). 

Source of 
route set 

Algorithm 
Number 
of buses 

Total 
waiting 

time 
(min) 

Overcrowding 

Maximum 
route 

headways 
(min) 

Average 
route 

headways 
(min) 

CPU 
time 
(sec) 

[38] 

[<1>] 102a n/a n/a 6.80a 5.32a n/a 

[<9>] 101a 16,446a 0a 5.51a 5.25a 128.616a 

[<10>] 106a 16,200a 0a 5.46a 5.07a 4.789a 

[<11>] 102a 16,584a 0a 5.60a 5.27a 4.016a 

[39] 

[<1>] 110a n/a n/a 8.00a 4.86a n/a 

[<9>] 108a 17,077a 0a 4.74a 4.50a 331.880a 

[<10>] 112a 16,460a 0a 4.55a 4.34a 3.999a 

[<11>] 111a 16,358a 0a 4.74a 4.33a 4.560a 

[40] 

[<1>] 98a n/a n/a 17.5a 7.00a n/a 

[<9>] 82a 21,458a 0a 6.63a 6.13a 337.381a 

[<10>] 83a 21,623a 0a 6.52a 6.05a 3.482a 

[<11>] 81a 21,732a 0a 6.67a 6.13a 3.105a 

[30] 

[<1>] 77a n/a n/a 12.8a 7.58a n/a 

[<9>] 76a 21,955a 0a 6.84a 6.12a 140.000a 

[<10>] 77a 22,044a 0a 6.70a 6.08a 5.930a 

[<11>] 75a 22,472a 0a 6.63a 6.19a 4.902a 

[28] 

[<6>] 82b 22,804b n/a n/a n/a n/a 

[<3>] 82b n/a n/a n/a n/a n/a 

[<9>] 71b 23,901b 0b 3.20b 3.04b 245.449b 

[<10>] 71b 23,927b 0b 3.13b 3.04b 1.911b 

[<11>] 70b 24,142b 0b 3.20b 3.07b 1.733b 
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Continued 

[34]-(passenger) 

[<4>] 99b 23,157b n/a n/a n/a n/a 

[<9>] 96b 20,169b 0b 4.70b 4.44b 470.926b 

[<10>] 100b 19,455b 0b 4.58b 4.34b 6.556b 

[<11>] 97b 20,115b 0b 4.70b 4.49b 4.793b 

[34]-(operator) 

[<4>] 63b 35,481b n/a n/a n/a n/a 

[<3>] 63b n/a n/a n/a n/a n/a 

[<9>] 63b 33,700b 0b 6.75b 6.38b 302.340b 

[<10>] 68b 31,363b 0b 6.50b 6.00b 5.280b 

[<11>] 66b 32,444b 0b 6.63b 6.11b 5.207b 

[36] 

[<5>] 90b 25,587b n/a n/a n/a n/a 

[<9>] 90b 25,584b 0b 6.67b 6.01b 132.450b 

[<10>] 88b 26,440b 0b 6.68b 6.19b 7.332b 

[<11>] 88b 26,141b 0b 6.63b 6.14b 7.433b 

 
Table 6. Comparison results for 8 routes (Mandl’s Swiss network). 

Source of 
route set 

Algorithm 
Number 
of buses 

Total 
waiting 

time 
(min) 

Overcrowding 

Maximum 
route 

headways 
(min) 

Average 
route 

headways 
(min) 

CPU 
time 
(sec) 

[28] 

[<6>] 77b 27,064b n/a n/a n/a n/a 

[<1>] 78b n/a n/a 10.67b 4.65b n/a 

[<3>] 77b n/a n/a n/a n/a n/a 

[<9>] 
73a 
72b 

23,596a 
22,200b 

0a 
0b 

4.52a 
4.60b 

4.23a 
4.31b 

403.832a 
371.028b 

[<10>] 
71a 
73b 

24,415a 
21,968b 

0a 
0b 

4.70a 
4.57b 

4.44a 
4.28b 

6.287a 
5.311b 

[<11>] 
71a 
73b 

24,415a 
21,827b 

0a 
0b 

4.68a 
4.52b 

4.44a 
4.23b 

6.588a 
4.871b 

[32] 

[<7>] 68b 26,455b n/a n/a n/a n/a 

[<3>] 68b n/a n/a n/a n/a n/a 

[<9>] 62b 23,227b 0b 5.14b 4.98b 313.981b 

[<10>] 62b 23,231b 0b 5.16b 4.98b 6.790b 

[<11>] 62b 23,141b 0b 5.14b 4.96b 7.132b 

[38] 

[<1>] 101a n/a n/a 15.00a 6.91a n/a 

[<9>] 96a 18,510a 0a 6.59a 6.09a 231.979a 

[<10>] 98a 18,708a 0a 6.58a 6.04a 7.286a 

[<11>] 96a 18,641a 0a 6.59a 6.11a 7.912a 

[39] 

[<1>] 88a n/a n/a 31.00a 9.67a n/a 

[<9>] 86a 23,843a 0a 6.51a 6.02a 262.43a 

[<10>] 87a 24,206a 0a 6.55a 6.04a 4.910a 

[<11>] 86a 24,163a 0a 6.55a 6.04a 4.373a 
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Continued 

[40] 

[<1>] 104a n/a n/a 29.00a 9.66a n/a 

[<9>] 95a 19,880a 0a 6.79a 6.15a 327.811a 

[<10>] 96a 20,224a 0a 6.64a 6.06a 6.821a 

[<11>] 96a 19,323a 0a 6.59a 5.99a 6.972a 

[34]-(passenger) 

[<4>] 99b 24,726b n/a n/a n/a n/a 

[<9>] 95b 20,804b 0b 6.35b 5.96b 397.550b 

[<10>] 94b 21,301b 0b 6.58b 6.09b 19.743b 

[<11>] 94b 21,133b 0b 6.47b 6.07b 12.890b 

[34]-(operator) 

[<4>] 63b 34,931b n/a n/a n/a n/a 

[<3>] 63b n/a n/a n/a n/a n/a 

[<9>] 65b 25,479b 0b 6.51b 5.87b 519.204b 

[<10>] 65b 25,975b 0b 6.56b 5.94b 7.112b 

[<11>] 65b 25,708b 0b 6.43b 5.81b 6.780b 

[30] 

[<1>] 69a n/a n/a 10.33a 7.02a n/a 

[<9>] 71a 23,803a 0a 6.84a 6.11a 156.901a 

[<10>] 73a 23,660a 0a 6.51a 6.07a 9.203a 

[<11>] 72a 23,602a 0a 6.47a 6.06a 8.329a 

[36] 

[<5>] 94b 25,487b n/a n/a n/a n/a 

[<9>] 93b 25,083b 0b 6.79b 6.11b 103.613b 

[<10>] 94b 25,405b 0b 6.62b 6.12b 4.992b 

[<11>] 94b 25,078b 0b 6.63b 6.01b 4.263b 

 
Table 7. Comparison results for 9, 10 and 11 Routes (Mandl’s Swiss network). 

Source of 
route set 

Algorithm 
Number 
of buses 

Total 
waiting 

time 
(min) 

Overcrowding 

Maximum 
route 

headways 
(min) 

Average 
route 

headways 
(min) 

CPU 
time 
(sec) 

[30] 

9 routes 

[<1>] 66a n/a n/a 20.00a 9.14a n/a 

[<9>] 58a 34,381a 0a 8.06a 7.34a 158.800a 

[<10>] 59a 34,527a 0a 8.22a 7.35a 10.180a 

[<11>] 58a 34,463a 0a 8.06a 7.31a 9.535a 

10 routes 

[<1>] 72a n/a n/a 20.00a 9.44a n/a 

[<9>] 81a 23,903a 0a 7.88a 7.36a 280.615a 

[<10>] 81a 24,184a 0a 8.51a 7.52a 10.108a 

[<11>] 80a 24,137a 0a 8.37a 7.51a 9.978a 

11 routes 

[<1>] 68a n/a n/a 14.4a 8.76a n/a 

[<9>] 67a 26,863a 0a 8.12a 7.56a 241.700a 

[<10>] 71a 26,040a 0a 8.07a 7.40a 14.492a 

[<11>] 68a 26,612a 0a 8.06a 7.51a 13.002a 
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Table 8. Comparison results for 12 routes (Mandl’s Swiss network). 

Source of 
route set 

Algorithm 
Number 
of buses 

Total 
waiting 

time 
(min) 

Overcrowding 

Maximum 
route 

headways 
(min) 

Average 
route 

headways 
(min) 

CPU 
time 
(sec) 

[33] 

[<1>] 78a n/a n/a 11.33a 7.23a n/a 

[<8>] 87b 24,951b n/a n/a n/a n/a 

[<9>] 
73a 
70b 

22,520a 

20,576b 
0a 
0b 

7.83a 

8.71b 
7.24a 
7.63b 

1282.227a 

584.546b 

[<10>] 
73a 
73b 

23,032a 
19,855b 

0a 

0b 
8.16a 
8.11b 

7.41a 
7.44b 

13.636a 
8.233b 

[<11>] 
72a 
72b 

22,933a 
19,720b 

0a 
0b 

8.06a 
8.31b 

7.39a 
7.36b 

12.974a 
8.109b 

[30] 

[<1>] 73a n/a n/a 15.33a 10.58a n/a 

[<9>] 62a 31,162a 0a 12.13a 10.01a 215.700a 

[<10>] 63a 31,307a 0a 11.34a 9.97a 13.400a 

[<11>] 61a 32,091a 0a 12.27a 10.32a 14.492a 

[34]-(passenger) 

[<4>] 98b 23,867b n/a n/a n/a n/a 

[<9>] 95b 24,675b 0b 6.71b 6.09b 846.067b 

[<10>] 97b 24,798b 0b 6.67b 6.10b 13.224b 

[<11>] 96b 24,588b 0b 6.84b 6.14b 12.092b 

[34]-(operator) 

[<4>] 65b 36,051b n/a n/a n/a n/a 

[<9>] 52b 33,828b 0b 11.61b 10.01b 1124.808b 

[<10>] 54b 34,102b 0b 11.92b 10.00b 17.096b 

[<11>] 52b 33,922b 0b 11.87b 10.19b 16.740b 

[36] 

[<5>] 88b 25,670b n/a n/a n/a n/a 

[<9>] 72b 42,468b 0b 12.13b 10.31b 321.287b 

[<10>] 74b 43,431b 0b 11.76b 10.00b 8.695b 

[<11>] 73b 42,304b 0b 12.27b 10.06b 7.822b 

 
In the case of 4 routes (refer Table 3), the proposed PMTS algorithm able to 

minimize the number of buses, total waiting times, average route headways and 
maximum route headways produced by other authors for all the route sets ex-
cept [31]. The total waiting times is higher as compared to [31], although the 
number of buses is reduced by almost half. The increase in waiting times may 
due to the lower upper bound value fixed for the frequency parameter in this 
study. A similar pattern can be observed for SMTS algorithm [3] but the CPU 
time is much higher as compared to the PMTS algorithm. Besides, the average 
values of total waiting times from all the route sets except [36] [37] [40] are low-
er than the best solution because there is a possibility to reduce the waiting times 
by increasing the number of buses scheduled. Note that, the solutions from the 
two passenger assignment models are also comparable to each other. For [37], 
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only route set of 4 is included for comparison because there are no previously 
published results are available considering the aforementioned performance cri-
teria for 5 - 12 routes. 

For 5 and 6 routes (see Table 4), PMTS algorithm improved all the perfor-
mance metrics values mentioned earlier for all the previously published results. 
The CPU time for PMTS is reduced to more than 90 percent of the SMTS by [3] 
which shows the effectiveness of PMTS algorithm to compute faster. For the 
routes in [28], two passenger assignment methods using a multinomial logit 
model and frequency share rule are applied to compare with the respective solu-
tions from the literature. Note that, all the best values of the number of buses 
and total waiting times are better than average solution even though there is 
some contradiction for average and maximum route headways.  

In the case of 7 routes, Table 5 shows that the proposed PMTS algorithm 
outperformed the solutions from [30] for their own route sets and the routes 
from [40]. The PMTS algorithm improved the solution of [30] based on the per-
formance criteria for [34]-(passenger) and [38] but not in a Pareto sense. Simi-
larly, the results from PMTS algorithm is similar to the values from [28] and [36] 
with the increase in total waiting times and also [34]-(operator) with more bus-
es. Overall, the solutions of the PMTS algorithm for all the route sets are com-
parable to [3] but with much shorter CPU time. Moreover, all the best values of 
PMTS algorithm require lesser number of buses as compared to the average val-
ues except for [36]. 

In the case of 8 routes (see Table 6), the solutions from the proposed PMTS 
algorithm are better than the previous solutions for the routes from all the pre-
vious studies except [34]-(operator) and [30]. The number of buses produced by 
the proposed PMTS algorithms is higher but the total waiting time, the average 
and maximum route headways are lower for these studies. Alternatively, the 
proposed PMTS algorithm performed better than [3] for [32] only while pro-
ducing equivalent results for the others. The values of all performance metrics 
for the best result are lower compared to average results for most of the route 
sets.  

Furthermore, the proposed PMTS algorithm generates best results as com-
pared to [30] for 9 and 11 routes (see Table 7). For route set of size 10, the re-
sults are improved in term of average and maximum route headways although 
the number of buses increased. The performance of PMTS algorithm is similar 
to the SMTS algorithm for 9 and 10 routes with slightly longer total waiting 
times and for 11 routes with a higher number of buses. By considering all the 
performance metric, the best results of PMTS are superior to its average results 
for 9 and 10 routes. The total waiting times of best solution are higher for 11 
routes since the number of buses is reduced.  

Based on Table 8, for 12 routes, our results are preferable as compared to 
[33], [34]-(operator), and [30] for their respective route sets. Alternatively, the 
results in this study are comparable with [30] for the routes from [33] and with 
[34]-(passenger) and [36] for their own route sets. The PMTS algorithm can 
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produce good solutions as SMTS algorithm for all route sets with short CPU 
time.  

The proposed algorithm is further validated using an extended model consi-
dering different demands and travel times throughout the time period from 5.00 
am to 11.00 pm. The route sets from [36] are experimented by implementing a 
multinomial logit model for passenger assignment procedure. The average solu-
tions of every domain for the route sets of size 4, 6, 7, 8 and 12 are presented in 
Tables 9-13. 
 
Table 9. Results obtained from the extended model for 4 routes. 

Domain 
Number of buses Total waiting time (min) Overcrowding 

SMTS PMTS SMTS PMTS SMTS PMTS 

1 17 17 260,559 257,354 6034 6266 

2 31 29 139,851 148,586 731 1150 

3 44 43 99,934 101,785 0 0 

4 58 56 76,488 79,624 0 0 

5 70 70 62,809 62,720 0 0 

6 83 83 52,725 52,908 0 0 

7 97 97 45,625 45,779 0 0 

8 109 110 40,419 40,554 0 0 

9 122 123 36,097 35,782 0 0 

10 136 135 29,406 32,695 0 0 

CPU time (seconds)—390.992 sec (8.207 sec) * (PMTS) 

 
Table 10. Results obtained from the extended model for 6 routes. 

Domain Number of buses Total waiting time (min) Overcrowding 

1 25 222,435 6264 

2 45 119,891 491 

3 62 85,340 0 

4 83 65,256 0 

5 100 54,322 0 

6 120 44,568 0 

7 142 38,335 0 

8 159 34,109 0 

9 180 29,993 0 

10 196 27,719 0 

CPU time (seconds)—7.314 sec 
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Table 11. Results obtained from the extended model for 7 routes. 

Domain Number of buses Total waiting time (min) Overcrowding 

1 29 216,488 5092 

2 53 117,394 272 

3 77 82,073 0 

4 101 64,051 0 

5 123 52,205 0 

6 148 43,226 0 

7 173 37,473 0 

8 194 33,684 0 

9 219 29,475 0 

10 240 27,118 0 

CPU time (seconds)—8.764 sec 

 
Table 12. Results obtained from the extended model for 8 routes. 

Domain Number of buses Total waiting time (min) Overcrowding 

1 32 200,618 2682 

2 57 95,470 38 

3 81 74,298 0 

4 107 57,785 0 

5 133 46,744 0 

6 158 38,892 0 

7 184 33,760 0 

8 209 26,226 0 

9 236 26,226 0 

10 258 24,199 0 

CPU time (seconds)—9.750 sec 

 
Table 13. Results obtained from the extended model for 12 routes. 

Domain Number of buses Total waiting time (min) Overcrowding 

1 39 191,747 2886 

2 73 101,086 166 

3 103 72,525 0 

4 135 56,855 0 

5 170 44,889 0 

6 198 38,456 0 

7 232 32,881 0 

8 263 29,179 0 

9 297 25,794 0 

10 325 23,678 0 

CPU time (seconds)—10.690 sec 
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Generally, the round trip time of a bus affects the number of buses required. 
Thus, the total buses needed are high as compared to the previous model (with-
out timeslot) since the layover time and dwell time increase the round trip time 
for a trip. Moreover, as the frequency for peak and off-peak hours is different, 
the total waiting time also increases. Based on Tables 9-13, there is no over-
crowding in the solutions from domain 3 to 10 and domain 3 has the least num-
ber of buses among them. Thus, it is more preferable to be chosen for studying 
bus and driver scheduling problem in the next subsection. 

Referring to Table 9, the PMTS algorithm is compared with SMTS of [3] and 
it shows similar results but with much lesser CPU time. Since the previous study 
does not include the solutions from other route sets (6, 7, 8 and 12), the com-
parison between SMTS and PMTS results for the route sets are not available. 

Table 10 presents the values for each objective functions with respect to the 
domains. The first domain which carries lower frequency needs lesser buses 
butlonger waiting time with high overcrowding as compared to the last domain. 
The number of passengers exceeds the maximum load factor at some time pe-
riod due to inadequate frequency. 

Based on Table 11, the frequency and number of buses required increases 
while the total waiting time and overcrowding decreases which reflects the con-
flicting nature of the objectives. The total buses are up to 240 with 27,118 mi-
nutes of waiting time for the headways around 3 minutes from domain 10. 

According to Table 12, around 32 buses are needed to satisfy the frequency 
from domain 1 with respective waiting time and overcrowding. Meanwhile, do-
main 10 carries the highest number of buses (258) with the least passengers 
waiting time without overcrowding. 

Table 13 displays the 10 non-dominated solutions from all the domains re-
spectively. The highest number of buses is 325 with 23,678 minutes of waiting 
time. Alternatively, the lowest number of buses required for 12 routes is 39 with 
191,747 minutes of total waiting time and 2886 passengers who exceed the fixed 
load factor of the bus. 

On the other hand, the proposed algorithm is also tested for Mumford’s net-
work using the route sets from [41]. Mumford 0, Mumford 1, Mumford 2 and 
Mumford 3 are different in term of the number of nodes and links, route size 
and total demands. These parameter values are increasing according to the in-
stances from 0 to 3 such that Mumford 3 has a more complex network and 
highest number of routes. The average results of 10 runs for each domain are 
presented in Table 14. Since there is no previous solution for Mumford’s net-
work considering the number of buses, total waiting time, overcrowding, aver-
age route headways, and maximum route headways; the comparison of the re-
sults is not possible. Therefore, the values from all the 10 domains are presented. 

The computational time for Mumford’s network is quite long which is around 
4 days for each run. This is due to the passenger assignment procedure that has 
to be conducted at every iteration to calculate the total waiting times. Moreover, 
as the number of routes increases, the CPU time also increases. 
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Table 14. Average solutions of 10 domains for mumford’s network. 

Instance Domain 
Number 
of buses 

Total 
waiting 

time 
(min) 

Overcrowding 

Average 
route 

headways 
(min) 

Maximum 
route 

headways 
(min) 

Mumford 0 

1 46 3,823,981 177,092 33.35 50.22 

2 89 1,869,231 155,882 15.35 19.00 

3 130 1,298,821 135,873 11.85 9.37 

4 171 992,384 106,623 7.74 8.53 

5 210 799,953 99,223 6.27 6.81 

6 261 656,328 80,128 5.07 5.25 

7 291 575,334 69,678 4.54 4.93 

8 337 499,331 54,761 3.91 4.07 

9 378 443,829 45,167 3.45 3.52 

10 412 408,721 36,884 3.13 3.22 

Mumford 1 

1 152 27,272,231 889,400 32.11 51.92 

2 251 1,038,267 865,813 16.81 20.32 

3 380 6,619,500 838,356 11.68 12.52 

4 505 5,451,290 894,010 8.71 9.55 

5 635 4,351,790 783,128 5.25 5.84 

6 754 3,648,891 789,003 6.18 6.45 

7 890 3,120,588 731,700 3.87 4.15 

8 1010 2,728,672 776,742 3.68 3.97 

9 1257 2,440,521 679,423 3.16 3.37 

10 1255 2,204,810 654,888 3.09 3.13 

Mumford 2 

1 363 70,175,671 2,383,652 34.51 59.08 

2 703 32,236,820 2,283,577 15.71 20.12 

3 1041 21,477,720 2,186,647 10.40 12.23 

4 1387 15,942,405 2,086,622 6.96 7.85 

5 1729 12,788,639 1,989,147 6.18 6.77 

6 2070 10,675,905 1,889,902 5.14 5.56 

7 2413 9,159,933 1,792,892 4.41 4.73 

8 2748 8,008,142 1,696,337 3.48 3.69 

9 3093 7,126,956 1,598,492 3.43 3.60 

10 3395 6,489,612 1,514,318 3.43 3.56 

Mumford 3 

1 428 74,000,032 3,235,742 36.04 60.00 

2 867 33,544,319 3,123,442 15.79 20.38 

3 1299 22,491,812 3,017,792 10.35 12.27 

4 1724 16,909,705 2,910,592 7.70 8.64 

5 2143 13,579,161 2,808,442 6.19 6.79 

6 2557 11,322,699 2,703,492 5.15 5.48 

7 2987 9,693,081 2,597,763 4.40 4.68 

8 3413 8,477,324 2,493,563 3.85 4.11 

9 3816 7,627,143 2,401,554 3.46 3.61 

10 4210 6,904,463 2,308,445 3.13 3.22 
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5.2.2. Bus and Driver Scheduling 
As mentioned earlier in Section 3.2, two different scenarios favoring passengers 
(Scenario 1, S1) and operators (Scenario 2, S2) are studied regarding the alloca-
tion of the departure times at the origin and destination of a route. Each scenario 
is performed for 10 runs and the average and best solution (marked with “*”) are 
recorded. The solution with a lower number of buses compared to the average 
value is marked as best although the number of drivers is higher. This is because 
fewer buses indicate more long blocks are produced which consequently need 
more drivers. The performance of the proposed PMTS algorithm is compared 
with SMTS by [3]. The input data such as frequency and one-away travel time of 
the routes are obtained using the solutions of domain 3 in Tables 9-13. 

Based on Table 15 and Table 16, the total buses and drivers are greater for S1 
as compared to S2 since the departure times to be covered are higher for the 
former. Both scenarios are equivalent to each other by considering different 
perspectives of passengers and operators respectively. It provides more choices 
for the decision makers to implement in a real system. The solution from S1 is 
presented as an example to show the ability of reconstruction procedure to allo-
cate more departure times for buses and drivers. On the other hand, there is no 
significant difference between the effectiveness of SMTS and PMTS algorithms 
except the CPU times is reduced to more than 50 percent by the parallel imple-
mentation. 

The bus and driver schedule of S1 for 4 routes from [36] are presented in Ap-
pendix A (Tables A1-A4). It shows the bus number and drivers that cover the  
 
Table 15. Results for S1. 

Source of route set Routes Algorithm Total buses Total drivers CPU time (sec) 

[36] 

4 

SMTS 106 153 9.000 

PMTS 112 147 2.334 

PMTS* 106 154 2.541 

6 

SMTS 148 203 14.000 

PMTS 147 202 3.567 

PMTS* 146 200 3.450 

7 

SMTS 191 254 20.000 

PMTS 190 251 4.871 

PMTS* 188 258 5.124 

8 

SMTS 202 268 19.000 

PMTS 205 272 5.881 

PMTS* 203 265 5.723 

12 

SMTS 256 349 27.000 

PMTS 267 345 7.812 

PMTS* 262 348 7.923 
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Table 16. Results for S2. 

Source of route set Routes Algorithm Total buses Total drivers CPU time (sec) 

[36] 

4 

SMTS 98 134 4.000 

PMTS 99 133 1.228 

PMTS* 98 130 1.932 

6 

SMTS 134 179 4.000 

PMTS 135 183 2.078 

PMTS* 131 179 2.138 

7 

SMTS 165 226 5.000 

PMTS 177 225 2.356 

PMTS* 176 217 2.348 

8 

SMTS 179 239 6.000 

PMTS 193 238 3.223 

PMTS* 181 227 3.412 

12 

SMTS 234 310 8.000 

PMTS 231 314 2.453 

PMTS* 228 314 2.378 

 
respective departure times in the time period at the first stop (origin) and last 
stop (destination) of a route. Based on Table A1, the total number of buses and 
drivers needed for the first route are 23 and 34 respectively. Each departure time 
is assigned to a specific bus and driver according to the travel time and working 
period.  

Table A2 shows that route 2 require 38 buses and 57 drivers to cover all the 
departure time. The buses and drivers are allocated according to the type of 
blocks. Table A3 indicates the buses and drivers that work at every departure 
time to ensure effective distribution of the resources. The schedule consists of 22 
buses and 29 drivers. Similarly, Table A4 presents the sequence of departure 
times from the perspective of passengers for a time period of 18 hours. A total of 
23 buses and 34 drivers are allocated to the times. 

6. Conclusions 

In this paper, a procedure for solving UTSP which consists of frequency optimi-
zation, timetabling, and bus and driver scheduling is proposed. A mixed integer 
multiobjective model is constructed to optimize the frequency of the routes by 
minimizing the number of buses, passenger’s waiting times and overcrowding by 
considering the preferences of passengers and operators to find the optimal so-
lution. The model is further extended by including timeslots to find the frequen-
cies during peak and off-peak hours throughout the time period. 

The main contribution of this paper is the development of PMTS algorithm by 
modifying the initialization process and incorporating intensification and diver-
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sification approaches to guide the search effectively in order to obtain better so-
lutions. The efficiency of the proposed PMTS algorithm is tested on Mandl’s 
benchmark datasets using the route sets published from the literature. The re-
sults indicate that the frequency set obtained, improved the number of buses and 
total waiting times in most cases from the literature. Moreover, the extended 
model which includes timeslot produced a higher number of buses and longer 
waiting times since it includes dwelling time, layover times and generates dif-
ferent frequency according to the demands and travel times during the time pe-
riod. 
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Appendix A 

Table A1. Schedule for route #1 of 4 routes. 

Origin to Destination Destination to Origin Origin to Destination Destination to Origin 

Time 
Bus 
No. 

Driver 
No. 

Time 
Bus 
No. 

Driver 
No 

Time 
Bus 
No. 

Driver 
No 

Time 
Bus 
No. 

Driver 
No. 

5:00 16 22 5:00 20 28 13:51 2 2 13:51 3 4 

5:15 17 24 5:15 3 4 14:00 20 28 14:00 11 14 

5:30 1 1 5:30 21 30 14:15 8 11 14:15 22 32 

5:45 2 2 5:45 14 19 14:30 18 26 14:30 1 1 

6:00 20 28 6:00 16 22 14:45 3 5 14:45 2 2 

6:15 6 8 6:15 17 24 15:00 11 14 15:00 12 16 

6:30 21 30 6:30 22 32 15:15 22 32 15:15 8 11 

6:45 14 19 6:45 2 2 15:30 23 34 15:30 18 26 

7:00 16 22 7:00 20 28 15:45 15 21 15:45 3 5 

7:08 17 24 7:08 6 8 16:00 12 16 16:00 11 14 

7:17 22 32 7:17 21 30 16:08 8 11 16:08 22 33 

7:25 4 6 7:25 18 26 16:17 18 26 16:17 23 34 

7:34 2 2 7:34 14 19 16:25 10 13 16:25 5 7 

7:42 12 16 7:42 19 27 16:34 3 5 16:34 15 21 

7:51 20 28 7:51 16 22 16:42 16 23 16:42 9 12 

8:00 6 8 8:00 17 24 16:51 11 14 16:51 12 17 

8:08 21 30 8:08 22 32 17:00 22 33 17:00 7 9 

8:17 18 26 8:17 4 6 17:08 23 34 17:08 20 29 

8:25 14 19 8:25 2 2 17:17 5 7 17:17 10 13 

8:34 5 7 8:34 12 16 17:25 15 21 17:25 14 20 

8:42 16 22 8:42 20 28 17:34 9 12 17:34 16 23 

8:51 17 24 8:51 6 8 17:42 12 17 17:42 11 14 

9:00 22 32 9:00 21 30 17:51 7 9 17:51 22 33 

9:09 4 6 9:09 18 26 18:00 13 18 18:00 8 11 

9:17 2 2 9:17 14 19 18:08 10 13 18:08 3 5 

9:25 12 16 9:25 5 7 18:17 14 20 18:17 15 21 

9:34 3 4 9:34 1 1 18:25 16 23 18:25 9 12 

9:42 6 8 9:42 11 14 18:34 11 14 18:34 12 17 

9:51 7 9 9:51 22 32 18:42 22 33 18:42 7 9 

10:00 18 26 10:00 4 6 18:51 8 11 18:51 13 18 

10:15 5 7 10:15 12 16 19:00 3 5 19:00 10 13 

10:30 20 28 10:30 16 22 19:08 15 21 19:08 21 31 

10:45 19 27 10:45 17 24 19:17 9 12 19:17 16 23 

11:00 21 30 11:00 18 26 19:25 12 17 19:25 11 15 

11:15 12 16 11:15 2 2 19:34 7 10 19:34 22 33 

11:30 11 14 11:30 20 28 19:42 13 18 19:42 8 11 
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Continued 

11:45 22 32 11:45 7 9 19:51 10 13 19:51 3 5 

12:00 1 1 12:00 21 30 20:00 17 25 20:00 23 34 

12:08 2 2 12:08 14 19 20:15 2 3 20:15 12 17 

12:17 20 28 12:17 11 14 20:30 8 11 20:30 13 18 

12:25 8 11 12:25 6 8 20:45 3 5 20:45 9 12 

12:34 7 9 12:34 22 32 21:00 21 31 21:00 15 21 

12:42 17 24 12:42 13 18 21:15 14 20 21:15 2 3 

12:51 18 26 12:51 1 1 21:30 22 33 21:30 7 10 

13:00 14 19 13:00 2 2 21:45 9 12 21:45 10 13 

13:08 11 14 13:08 20 28 22:00 15 21 22:00 21 31 

13:17 6 8 13:17 8 11 22:15 12 17 22:15 14 20 

13:25 22 32 13:25 7 9 22:30 7 10 22:30 22 33 

13:34 21 30 13:34 17 24 22:45 10 13 22:45 17 25 

13:42 1 1 13:42 18 26       

 
Table A2. Schedule for route #2 of 4 routes. 

Origin to Destination Destination to Origin Origin to Destination Destination to Origin 

Time 
Bus 
No. 

Driver 
No. 

Time 
Bus 
No. 

Driver 
No. 

Time 
Bus 
No. 

Driver 
No. 

Time 
Bus 
No. 

Driver 
No. 

5:00 4 5 5:00 22 30 13:46 21 28 13:46 36 53 

5:12 16 20 5:12 3 4 13:53 35 51 13:53 18 24 

5:24 17 22 5:24 27 37 14:00 26 36 14:00 33 48 

5:36 30 42 5:36 21 28 14:12 17 22 14:12 8 10 

5:48 9 11 5:48 31 44 14:24 27 37 14:24 6 8 

6:00 10 13 6:00 29 40 14:36 23 32 14:36 15 19 

6:12 22 30 6:12 37 55 14:48 29 40 14:48 22 31 

6:24 3 4 6:24 16 20 15:00 36 53 15:00 35 51 

6:36 27 37 6:36 8 10 15:12 33 48 15:12 21 29 

6:48 21 28 6:48 30 42 15:24 8 10 15:24 17 23 

7:00 31 44 7:00 9 11 15:36 6 8 15:36 27 38 

7:06 29 40 7:06 10 13 15:48 19 26 15:48 23 32 

7:13 36 53 7:13 1 1 16:00 31 45 16:00 29 41 

7:20 37 55 7:20 22 30 16:06 35 51 16:06 36 53 

7:26 33 48 7:26 34 49 16:13 12 16 16:13 7 9 

7:33 16 20 7:33 3 4 16:20 21 29 16:20 33 48 

7:40 8 10 7:40 27 37 16:26 13 17 16:26 26 36 

7:46 5 7 7:46 32 46 16:33 17 23 16:33 16 21 

7:53 30 42 7:53 21 28 16:40 27 38 16:40 5 7 

8:00 6 8 8:00 23 32 16:46 28 39 16:46 38 57 

8:06 9 11 8:06 31 44 16:53 23 32 16:53 19 26 

8:13 10 13 8:13 29 40 17:00 14 18 17:00 30 43 
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Continued 

8:20 35 51 8:20 36 53 17:06 29 41 17:06 31 45 

8:26 22 30 8:26 37 55 17:13 37 56 17:13 35 51 

8:33 18 24 8:33 33 48 17:20 7 9 17:20 12 16 

8:40 3 4 8:40 16 20 17:26 1 2 17:26 21 29 

8:46 27 37 8:46 8 10 17:33 26 36 17:33 13 17 

8:53 32 46 8:53 5 7 17:40 16 21 17:40 17 23 

9:00 21 28 9:00 30 42 17:46 2 3 17:46 27 38 

9:06 23 32 9:06 6 8 17:53 18 25 17:53 28 39 

9:13 31 44 9:13 9 11 18:00 19 26 18:00 23 33 

9:20 29 40 9:20 10 13 18:06 30 43 18:06 14 18 

9:26 36 53 9:26 35 51 18:13 31 45 18:13 29 41 

9:33 37 55 9:33 2 3 18:20 35 52 18:20 37 56 

9:40 33 48 9:40 18 24 18:26 12 16 18:26 7 9 

9:46 7 9 9:46 20 27 18:33 21 29 18:33 24 34 

9:53 8 10 9:53 17 22 18:40 13 17 18:40 26 36 

10:00 5 7 10:00 32 46 18:46 17 23 18:46 20 28 

10:12 6 8 10:12 23 32 18:53 32 47 18:53 25 35 

10:24 9 11 10:24 31 44 19:00 28 39 19:00 18 25 

10:36 35 51 10:36 36 53 19:06 23 33 19:06 19 26 

10:48 16 20 10:48 3 4 19:13 14 18 19:13 30 43 

11:00 20 27 11:00 27 37 19:20 22 31 19:20 11 15 

11:12 30 42 11:12 5 7 19:26 15 19 19:26 35 52 

11:24 23 32 11:24 29 40 19:33 10 14 19:33 1 2 

11:36 2 3 11:36 37 55 19:40 24 34 19:40 34 50 

11:48 26 36 11:48 35 51 19:46 26 36 19:46 16 21 

12:00 17 22 12:00 8 10 19:53 27 38 19:53 12 16 

12:06 27 37 12:06 20 27 20:00 25 35 20:00 32 47 

12:13 3 4 12:13 6 8 20:12 18 25 20:12 23 33 

12:20 28 39 12:20 30 42 20:24 29 41 20:24 31 45 

12:26 11 15 12:26 15 19 20:36 35 52 20:36 21 29 

12:33 29 40 12:33 22 30 20:48 30 43 20:48 13 17 

12:40 36 53 12:40 21 28 21:00 12 16 21:00 27 38 

12:46 18 24 12:46 9 11 21:12 19 26 21:12 4 6 

12:53 33 48 12:53 26 36 21:24 36 54 21:24 18 25 

13:00 5 7 13:00 2 3 21:36 31 45 21:36 29 41 

13:06 8 10 13:06 17 22 21:48 21 29 21:48 1 2 

13:13 20 27 13:13 27 37 22:00 13 17 22:00 30 43 

13:20 6 8 13:20 32 46 22:12 27 38 22:12 12 16 

13:26 30 42 13:26 28 39 22:24 23 33 22:24 19 26 

13:33 15 19 13:33 23 32 22:36 18 25 22:36 36 54 

13:40 22 30 13:40 29 40 22:48 9 12 22:48 35 52 
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Table A3. Schedule for route #3 of 4 routes. 

Origin to Destination Destination to Origin Origin to Destination Destination to Origin 

Time 
Bus 
No. 

Driver 
No 

Time 
Bus 
No. 

Driver 
No. 

Time 
Bus 
No. 

Driver 
No. 

Time 
Bus 
No. 

Driver 
No. 

5:00 16 19 5:00 19 24 13:46 19 24 13:46 11 13 

5:12 18 22 5:12 14 17 13:53 14 17 13:53 4 5 

5:24 10 12 5:24 15 18 14:00 6 8 14:00 18 22 

5:36 19 24 5:36 16 19 14:12 15 18 14:12 1 1 

5:48 14 17 5:48 12 15 14:24 11 13 14:24 2 3 

6:00 15 18 6:00 10 12 14:36 4 5 14:36 12 15 

6:12 16 19 6:12 19 24 14:48 1 1 14:48 3 4 

6:24 12 15 6:24 14 17 15:00 2 3 15:00 11 13 

6:36 4 5 6:36 15 18 15:12 13 16 15:12 21 28 

6:48 19 24 6:48 3 4 15:24 3 4 15:24 1 1 

7:00 14 17 7:00 12 15 15:36 11 13 15:36 2 3 

7:06 20 26 7:06 18 22 15:48 21 28 15:48 13 16 

7:13 15 18 7:13 4 5 16:00 1 1 16:00 7 9 

7:20 3 4 7:20 19 24 16:06 5 7 16:06 22 29 

7:26 17 20 7:26 16 19 16:13 2 3 16:13 17 20 

7:33 12 15 7:33 14 17 16:20 9 11 16:20 6 8 

7:40 18 22 7:40 20 26 16:26 13 16 16:26 21 28 

7:46 4 5 7:46 15 18 16:33 7 9 16:33 1 1 

7:53 19 24 7:53 3 4 16:40 22 29 16:40 8 10 

8:00 16 19 8:00 17 20 16:46 17 21 16:46 19 25 

8:06 14 17 8:06 12 15 16:53 6 8 16:53 9 11 

8:13 20 26 8:13 18 22 17:00 21 28 17:00 13 16 

8:20 15 18 8:20 4 5 17:06 1 1 17:06 7 9 

8:26 3 4 8:26 19 24 17:13 8 10 17:13 11 13 

8:33 17 20 8:33 16 19 17:20 19 25 17:20 17 21 

8:40 12 15 8:40 14 17 17:26 9 11 17:26 6 8 

8:46 18 22 8:46 20 26 17:33 13 16 17:33 21 28 

8:53 4 5 8:53 15 18 17:40 7 9 17:40 1 1 

9:00 19 24 9:00 3 4 17:46 11 13 17:46 8 10 

9:06 16 19 9:06 17 20 17:53 17 21 17:53 19 25 

9:13 10 12 9:13 12 15 18:00 6 8 18:00 9 11 

9:20 20 26 9:20 18 22 18:06 21 28 18:06 13 16 

9:26 2 3 9:26 4 5 18:13 1 1 18:13 7 9 

9:33 3 4 9:33 5 7 18:20 8 10 18:20 11 13 

9:40 17 20 9:40 16 19 18:26 19 25 18:26 17 21 
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Continued 

9:46 12 15 9:46 10 12 18:33 9 11 18:33 6 8 

9:53 18 22 9:53 20 26 18:40 13 16 18:40 21 28 

10:00 4 5 10:00 2 3 18:46 7 9 18:46 22 29 

10:12 5 7 10:12 3 4 18:53 11 13 18:53 8 10 

10:24 14 17 10:24 17 20 19:00 17 21 19:00 19 25 

10:36 15 18 10:36 4 5 19:06 6 8 19:06 9 11 

10:48 3 4 10:48 5 7 19:13 4 6 19:13 20 27 

11:00 17 20 11:00 14 17 19:20 22 29 19:20 7 9 

11:12 1 1 11:12 15 18 19:26 8 10 19:26 11 13 

11:24 10 12 11:24 12 15 19:33 18 23 19:33 17 21 

11:36 14 17 11:36 18 22 19:40 9 11 19:40 6 8 

11:48 15 18 11:48 1 1 19:46 20 27 19:46 1 1 

12:00 12 15 12:00 10 12 19:53 19 25 19:53 22 29 

12:06 11 13 12:06 19 24 20:00 11 13 20:00 8 10 

12:13 4 5 12:13 14 17 20:12 21 28 20:12 13 16 

12:20 18 22 12:20 6 8 20:24 1 2 20:24 9 11 

12:26 1 1 12:26 15 18 20:36 8 10 20:36 11 13 

12:33 2 3 12:33 17 20 20:48 13 16 20:48 21 28 

12:40 19 24 12:40 11 13 21:00 9 11 21:00 1 2 

12:46 14 17 12:46 4 5 21:12 11 14 21:12 19 25 

12:53 6 8 12:53 18 22 21:24 21 28 21:24 13 16 

13:00 15 18 13:00 1 1 21:36 1 2 21:36 8 10 

13:06 17 20 13:06 2 3 21:48 22 29 21:48 11 14 

13:13 11 13 13:13 19 24 22:00 13 16 22:00 21 28 

13:20 4 5 13:20 14 17 22:12 8 10 22:12 1 2 

13:26 18 22 13:26 6 8 22:24 11 14 22:24 22 29 

13:33 1 1 13:33 15 18 22:36 21 28 22:36 13 16 

13:40 2 3 13:40 17 20 22:48 7 9 22:48 9 11 

 
Table A4. Schedule for route #4 of 4 routes. 

Origin to Destination Destination to Origin Origin to Destination Destination to Origin 

Time 
Bus 
No. 

Driver 
No 

Time 
Bus 
No. 

Driver 
No 

Time 
Bus 
No. 

Driver 
No 

Time 
Bus 
No. 

Driver 
No 

5:00 18 28 5:00 16 25 13:46 2 2 13:46 8 13 

5:12 2 2 5:12 17 26 13:53 13 19 13:53 4 5 

5:24 1 1 5:24 5 7 14:00 1 1 14:00 9 14 

5:36 16 25 5:36 18 28 14:12 5 7 14:12 6 9 

5:48 19 29 5:48 12 17 14:24 12 17 14:24 15 23 
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Continued 

6:00 17 26 6:00 14 21 14:36 4 5 14:36 13 19 

6:12 18 28 6:12 16 25 14:48 6 9 14:48 5 8 

6:24 12 17 6:24 22 32 15:00 15 23 15:00 12 18 

6:36 14 21 6:36 17 26 15:12 13 19 15:12 4 5 

6:48 6 9 6:48 18 28 15:24 5 8 15:24 6 9 

7:00 22 32 7:00 12 17 15:36 12 18 15:36 15 23 

7:06 13 19 7:06 19 29 15:48 4 5 15:48 13 19 

7:13 17 26 7:13 14 21 16:00 6 10 16:00 5 8 

7:20 18 28 7:20 6 9 16:06 10 15 16:06 20 30 

7:26 3 4 7:26 15 23 16:13 15 23 16:13 12 18 

7:33 12 17 7:33 22 32 16:20 11 16 16:20 17 27 

7:40 4 5 7:40 13 19 16:26 13 20 16:26 4 5 

7:46 14 21 7:46 17 26 16:33 5 8 16:33 6 10 

7:53 6 9 7:53 18 28 16:40 20 30 16:40 10 15 

8:00 15 23 8:00 3 4 16:46 12 18 16:46 15 24 

8:06 22 32 8:06 12 17 16:53 17 27 16:53 23 34 

8:13 13 19 8:13 4 5 17:00 4 6 17:00 13 20 

8:20 17 26 8:20 14 21 17:06 6 10 17:06 5 8 

8:26 18 28 8:26 6 9 17:13 8 13 17:13 20 30 

8:33 3 4 8:33 15 23 17:20 15 24 17:20 12 18 

8:40 12 17 8:40 22 32 17:26 23 34 17:26 17 27 

8:46 4 5 8:46 13 19 17:33 13 20 17:33 4 6 

8:53 14 21 8:53 17 26 17:40 5 8 17:40 6 10 

9:00 6 9 9:00 18 28 17:46 20 30 17:46 8 13 

9:06 15 23 9:06 3 4 17:53 12 18 17:53 15 24 

9:13 22 32 9:13 12 17 18:00 9 14 18:00 23 34 

9:20 13 19 9:20 4 5 18:06 4 6 18:06 13 20 

9:26 17 26 9:26 14 21 18:13 6 10 18:13 11 16 

9:33 7 11 9:33 6 9 18:20 8 13 18:20 20 30 

9:40 3 4 9:40 15 23 18:26 15 24 18:26 12 18 

9:46 12 17 9:46 22 32 18:33 23 34 18:33 9 14 

9:53 4 5 9:53 13 19 18:40 13 20 18:40 4 6 

10:00 14 21 10:00 17 26 18:46 7 12 18:46 6 10 

10:12 6 9 10:12 7 11 18:53 20 30 18:53 8 13 

10:24 15 23 10:24 3 4 19:00 11 16 19:00 15 24 

10:36 18 28 10:36 4 5 19:06 9 14 19:06 23 34 

10:48 7 11 10:48 6 9 19:13 4 6 19:13 5 8 

11:00 3 4 11:00 15 23 19:20 6 10 19:20 7 12 
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11:12 4 5 11:12 18 28 19:26 8 13 19:26 20 30 

11:24 20 30 11:24 12 17 19:33 15 24 19:33 11 16 

11:36 17 26 11:36 14 21 19:40 23 34 19:40 9 14 

11:48 18 28 11:48 16 25 19:46 5 8 19:46 4 6 

12:00 12 17 12:00 22 32 19:53 17 27 19:53 21 31 

12:06 8 13 12:06 2 2 20:00 12 18 20:00 2 3 

12:13 19 29 12:13 13 19 20:12 11 16 20:12 15 24 

12:20 9 14 12:20 1 1 20:24 4 6 20:24 5 8 

12:26 6 9 12:26 18 28 20:36 22 33 20:36 12 18 

12:33 15 23 12:33 12 17 20:48 21 31 20:48 9 14 

12:40 2 2 12:40 8 13 21:00 5 8 21:00 6 10 

12:46 13 19 12:46 4 5 21:12 12 18 21:12 22 33 

12:53 1 1 12:53 9 14 21:24 14 22 21:24 13 20 

13:00 18 28 13:00 6 9 21:36 6 10 21:36 5 8 

13:06 12 17 13:06 15 23 21:48 15 24 21:48 12 18 

13:13 8 13 13:13 2 2 22:00 13 20 22:00 4 6 

13:20 4 5 13:20 13 19 22:12 5 8 22:12 6 10 

13:26 9 14 13:26 1 1 22:24 12 18 22:24 15 24 

13:33 6 9 13:33 18 28 22:36 4 6 22:36 13 20 

13:40 15 23 13:40 12 17 22:48 10 15 22:48 17 27 
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