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Abstract 
In the Jefimenko’s generalized theory of gravitation, it is proposed the existence of 
certain potentials to help us to calculate the gravitational and cogravitational fields, 
such potentials are also presumed non-invariant under certain gauge transforma-
tions. In return, we propose that there is a way to perform the calculation of certain 
potentials that can be derived without using some kind of gauge transformation, and 
to achieve this we apply the Helmholtz’s theorem. This procedure leads to the con-
clusion that both gravitational and cogravitational fields propagate simultaneously in 
a delayed and in an instant manner. On the other hand, it is also concluded that 
these potentials thus obtained can be real physical quantities, unlike potentials ob-
tained by Jefimenko, which are only used as a mathematical tool for calculating gra-
vitational and cogravitational fields. 
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1. Introduction 

Jefimenko’s generalization of Newton’s gravitational theory [1] [2] is based to a large 
extent on the assumption that there exists a second gravitational field (which he has 
named the cogravitational, or Heaviside’s, field). Note that there are several publica-
tions in which it is suggested that a second field can be involved in gravitational inte-
ractions (see [3] and, e.g., [4] and references there). The first such publication was by 
Oliver Heaviside [3], unfortunately his article appears to have been generally ignored 
(see, e.g. [4] pp. 103-104). The overriding reason why Heaviside’s work did not attract 
the attention was that his single article on gravitation was eventually completely eclipsed 
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by Einstein’s brilliant and spectacularly successful general relativity theory. It is note-
worthy, however, that Newton’s gravitational theory generalized to time-dependent 
systems yields several results which heretofore are believed the exclusive consequence 
of the general relativity theory. Jefimenko discusses this very important circumstance in 
[1] [2]. It is interesting to note that Einstein, four years before he published his general 
relativity theory, published an article on the possibility of a gravitational analogue of 
electromagnetic induction. Also this article was practically unknown, possibly because 
it was published in a rather inappropriate journal whose title (translated from the Ger-
man) was: “Quarterly Journal for Forensic Medicine and Public Sanitation;” (see [5]). 

Newton’s theory does not include inductive phenomena, but a relativistic theory of 
gravitation should include them. Indeed, under the relativistic mass-energy equivalence, 
not only the mass is a source of gravitational field but any kind of energy also is. 
Therefore, a body creates gravitational field not only by mass but also by their kinetic 
energy, i.e. by their movement. And this, ultimately, is what it means induction: the 
production of forces by moving bodies [6]. 

In the general relativity theory, Einstein predicted the existence of gravitational in-
duction phenomena, such phenomena are appointed by Einstein as gravitomagnetism. 
It can be showed that Jefimenko equations are also derived from linearized Einstein 
equations (see, for example, pp 47 and 48 in [6]). 

Since in 2004, NASA has orbited the “Gravity Probe B”, whose purpose was to prove 
the existence of gravitomagnetism, (see [7] [8]). 

In order to describe the time-dependent gravitational systems, the Jefimenko’s gene-
ralized theory of gravitation is based on postulating of retarded expressions for the ac-
customed gravitational field g and the Heaviside’s or cogravitational field K (Heaviside 
[3] was the first who supposed the existence of this field making an analogy between 
gravitational and electromagnetic fields), where the field g acts to and arises from mo-
tionless as well as moving masses, and the field K acts to and arises from exclusively 
moving masses. Let us from this point call this theory “gravitodynamics”, and the com-
plex of the fields g and K call the “gravitodynamical field”. Jefimenko taking into ac-
count mentioned retarded expressions for g and K, obtains the system of equations for 
which these expressions are solutions. These equations are analogous to Maxwell’s equ-
ations. In principle, this method was proposed to eliminate the possibility of instanta-
neous solutions from the discussion. There against in this work we are going to post-
ulate the system of differential equations rather than solutions for the gravitational dy-
namics, and we will obtain both retarded and instantaneous solutions for the fields g 
and K. The gravitational field g behaves analogously to the electric field in the Max-
well’s electromagnetic theory, and cogravitational field K analogously to the magnetic 
field. 

First of all, we write the equations describing time-dependent gravitational systems 
[1] (see p. 120) and [2] 

4πG∇ ⋅ = −g                              (1) 

0,∇ ⋅ =K                                (2) 
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,
t

∂
∇× = −

∂
Kg                               (3) 

2 2
1 4π ,G

tc c
∂

∇× = −
∂
gK J                       (4) 

where c is the velocity of propagation of the fields, which is supposed equal to the ve-
locity of light for the retarded component, G is the constant of gravitation,   is the 
density of mass and =J v  is the density of mass current. 

There are some differences between Maxwell’s equations of electrodynamics and the 
Jefimenko’s equations of gravitation, i.e. the analogy is not perfect. For example, we 
have two kinds of electric charges, positives and negatives, which repel each other if the 
charges are equal and attract each other if they are different, whereas while we have on-
ly one type of mass, and if we have a system of two masses in repose, they always attract 
each other. While the electric field is directed from positive charges generating this field 
and is directed to the negative charges, the gravitational field is always directed to the 
masses by which is created. Another difference is that the magnetic field is always right- 
handed relative to the electric current by which is created, while the cogravitational 
field is always left-handed relative to the mass current by which is created. 

In the analogy between electrodynamics and the so-called gravitodynamics, follow-
ing the Jefimenko’s book [1] we can resume the correspondence between electromag-
netic and gravitodynamic symbols and constants in the following Table 1. 

2. The Gravitodynamical Potentials 

Here, we introduce as is made in electrodynamics, the gravitodynamical potentials. If 
 
Table 1. Corresponding electromagnetic and gravitodynamic symbols and constants. 

Electromagnetic Gravitational 

q  (charge) m  (mass) 

  (volume charge density)   (volume mass density) 

σ  (surface charge density) σ  (surface mass density) 

eλ  (line charge density) mλ  (line mass density) 

ϕ  (electric’s scalar potential) τ  (mass’s scalar potenctial) 

A  (magnetic vector potential) Γ  (cogravitational vector potential) 

eJ  (convection current density) J  (mass-current density) 

eI  (electric current) I  (mass current) 

m  (magnetic dipole moment) d  (cogravitational moment) 

E (electric field) g (gravitational field) 

B (magnetic field) K (cogravitational field) 

0ε  (permittivity of space) 1 4πG−  

oµ  (permeability of space) 24πG c−  
2

01 4π 4πocε µ− = −  G (gravitational constant) 
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the cogravitational field K satisfies Equation (2), we can always write it as the curl of 
some other vector quantity Γ , 

,= ∇×Κ Γ                             (5) 

where Γ  is the gravitodynamical vector potential. Substituting Equation (5) in (3), we 
obtain 

0.
t

∂ ∇× + = ∂ 
g Γ                          (6) 

The quantity within the parentheses can be written as the gradient of a gravitody- 
namical scalar potential τ : 

,
t

τ∂
+ = −∇
∂

g Γ                           (7) 

therefore, 

.
t

τ ∂
= −∇ −

∂
g Γ                           (8) 

Substituting the expressions (5) and (8) for the fields g  and K , in the inhomoge-
neous Equations (1) and (4), we obtain 

( )2 4π ,G
t

τ ∂
∇ + ∇ ⋅ =

∂
Γ                      (9) 

and 
2

2
2 2 2 2

1 1 4π .G
tc t c c
τ∂ ∂ ∇ − −∇ ∇ ⋅ + = ∂∂  

JΓ
Γ Γ             (10) 

Equations (9) and (10) can be decoupled choosing the appropriate form of the po-
tentials Γ  and τ . Moreover, if we simultaneously make the transformations 

Λ,′→ = +∇Γ Γ Γ                       (11) 

and 

Λ .
t

τ τ τ ∂′→ = −
∂

                       (12) 

in (5) and (8), we get the same original fields g  and K . Here, ( )Λ Λ , , ,x y z t=  is 
an arbitrary scalar function. We can choose this function in order to impose an addi-
tional condition over Γ  and τ , in a similar way like the Lorentz or Coulomb gauge in 
the electromagnetic field, namely, 

2
10 or ,

tc
τ∂

∇ ⋅ = ∇ ⋅ = −
∂

Γ Γ                  (13) 

which allows us to separate Equations (9) and (10) for the potentials τ  and Γ . These 
potentials depend on the gauge condition we chose. 

3. Jefimenko’s Equations for the Solenoidal and Irrotational 
Components 

Following the ideas of the work of Chubykalo et al. [9]-[11] and using the analogy be-
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tween the Maxwell’s equations and the Jefimenko’s ones [1] [2], we will apply the 
Helmholtz’s theorem to define potentials that are independent of gauge transforma-
tions. 

The Helmholtz’s theorem claims that under certain conditions all vector fields can be 
represented as the sum of an irrotational and a solenoidal components. We will use this 
theorem to separate the fields g  and K . 

Therefore, here we state the Helmholtz’s theorem as [12]: 
If the divergence ( )D r  and a curl ( )C r  of a vector function ( )F r  are specified, 

and if they both go to zero faster than 21 r  as r →∞ , and if ( )F r  itself tends to 
zero as r →∞ , then ( )F r  is uniquely given by 

,U= −∇ +∇×F W                         (14) 

where 

( ) ( ) 3

All space

1 d
4π

D
U

′
′=

′−∫∫∫
r

r r
r r

                    (15) 

and 

( ) ( ) 3

All space

1 d .
4π

′=
′−∫∫∫

C r
W r r

r r
                    (16) 

We are going to suppose that all conditions of this theorem are satisfied by the fields 
g  and K  defined by Equations (1) to (4)1, and then, we apply Helmholtz’s theorem 
to these quantities, including J . Thus, we obtain 

,i s= +g g g                           (17) 

,i s= +K K K                          (18) 

,i s= +J J J                           (19) 

where the indices “i” and “s” mean irrotational and solenoidal components of the vec-
tors, respectively. 

For example: 

3

All space

1 d ,
4πi

′∇ ⋅ ′= − ∇
′−∫∫∫

JJ r
r r

                   (20) 

3

All space

1 d ,
4πs

′∇ × ′= ∇×
′−∫∫∫J r

r r
J                   (21) 

We are going to substitute ,g K  and J  given by the Equations (17)-(19) into the 
Jefimenko’s Equations (1)-(4) and then, we obtain for the irrotational part: 

4π ,i G∇ ⋅ = −g                          (22) 

4π ,i
iG

t
∂

=
∂
g J                           (23) 

0,i∇ ⋅ =K                             (24) 

0,i

t
∂

=
∂
K                              (25) 

 

 

1For systems localized in a finite region of space, it is evident that the fields g y K depend on r as 1/r2. 
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and the next equations for the solenoidal part: 

,s
s t

∂
∇× = −

∂
Kg                               (26) 

2 2
1 4π .s

s s
G

tc c
∂

∇× − = −
∂
gK J                     (27) 

4. The Gravitodynamical Potentials from Helmholtz’s Theorem 

By definition, for the irrotational component of the gravitational field ig  we can de-
fine the scalar potential Τ  as 

i∇Τ = −g                             (28) 

and if we substitute this relation into Equation (22), we obtain the Poisson’s equa-
tion 

2 4π .G∇ Τ =                            (29) 

Apparently, we need to take into account that Τ  is not completely defined only by 
the Poisson’s Equation (29), because we have another differential equation for Τ , 
which can be obtained by substituting (28) into Equation (23) 

Τ 4π .iG
t
∂
∇ = −

∂
J                         (30) 

We show now that Equation (30) is equivalent to the law of conservation of mass. 
Indeed, let us take the divergence of the Equation (23), then we obtain as the result 

( ) 4π .i iG
t
∂

∇ ⋅ = ∇ ⋅
∂

g J                      (31) 

But from Equation (22) and because ( )i i s∇ ⋅ = ∇ ⋅ + = ∇ ⋅J J J J , Equation (31) be-
comes the conservation mass law or the continuity equation 

0.
t

∂
∇ ⋅ + =

∂
J                           (32) 

Now, we will demonstrate that the solution of Equation (30), indeed, is the same so-
lution of the Poisson’s Equation (29). To do this, we note that the irrotational compo-
nent of J  can be written as 

,i Jφ= −∇J                           (33) 

where the potential Jφ  is defined as 

( ) 3

All space

1, , , d
4π

i
J x y z tφ

′∇ ⋅ ′=
′−∫∫∫

J r
r r

                 (34) 

or 

( )
( )

3

All space

,1, , , d ,
4πJ

t
tx y z tφ

∂ ′
∂ ′= −

′−∫∫∫
r

r
r r


              (35) 

and where, if we relate Equations (32), (23), (28) y (33) and the fact that i∇ ⋅ = ∇ ⋅J J , 
we have 
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( ) ( )Τ Τ4π 4π .J JG G
t t

φ φ
∂ −∇ ∂

= −∇ ⇒ =
∂ ∂

              (36) 

And from (36) and (34), we obtain 

( )
3

All space

,Τ d
t

tG
t

∂ ′∂ ∂ ′= −
′∂ −∫∫∫

r
r

r r


                  (37) 

or 

( ) 3

All space

,
Τ d ,

t
G

′
′= −

′−∫∫∫
r

r
r r


                   (38) 

which is the solution of the Poisson’s Equation (29). So we have found that the Pois-
son’s equation given by Equation (29), completely defines the potential Τ , together 
with its boundary conditions. 

Since by definition s=K K , then Equations (24) and (25) have the trivial solution 
0i =K . 

Let us now apply the Helmholtz’s theorem to the vector potential Γ . The Helmholtz 
theorem it is also known as the fundamental theorem of vector calculus (see Section III), 
and allows us to decompose every vectorial field in two components, an irrotational 
and a solenoidal one. Intuitively, it says that every vector function can be written as the 
sum of a divergence-free function (like sΓ ) and a curl-free function (like iΓ ), so that 
there exist scalar and vector potentials. So that i s= +Γ Γ Γ , because this is the form in 
which we can easily solve the system formed by Equations (26) and (27). Supposing 
that 

s s= ∇×Κ Γ                         (39) 

and taking into account (26) we obtain 

s
s t

∂
= −

∂
g Γ                         (40) 

One can substitute Equations (39) and (40) into (27), and we obtain 
2

2
2 2 2

1 4π ,s
s s

G
c t c

∂
∇ − =

∂
JΓ

Γ                   (41) 

where we used the vector identity ( ) ( ) 2 ,∇× ∇× = ∇ ∇ ⋅ −∇V V V  for any arbitrary 
vector V. 

We have found that system of Equations (1)-(4) reduces to Equations (29) and (41), 
applying the Helmholtz’s theorem. Therefore, we obtain separated equations for vector 
and scalar potentials, namely, 

2Τ 4πG∇ =                         (42) 

and 
2

2
2 2 2

1 4π .s
s s

G
c t c

∂
∇ − =

∂
JΓ

Γ                   (43) 
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5. Invariance of the Potentials Γs and Τ under Gauge 
Transformations 

Now, we will show that the potentials sΓ  and Τ  (which are gravitodynamical coun-
tertypes of the electromagnetic potentials sA  and Φ  from [9]) are invariant under 
gauge transformations (11) and (12), in common with the fields g and K. This will be 
the most prominent property of these potentials. 

If we apply the Helmholtz theorem to the gravitational and cogravitational fields in 
terms of the ordinary potentials given by (5) and (8) without taking into account any 
gauge condition, we have 

,i
i t

τ ∂
= −∇ −

∂
g Γ                           (44) 

,s
s t

∂
= −

∂
g Γ                              (45) 

0,i =K                                  (46) 

,s s= ∇×K Γ                             (47) 

then, by definition, iΓ  is given by 

Γ ,i φ= −∇Γ                              (48) 

where φΓ  is an scalar function. If we substitute (48) into (44) then 

( ) Γ Γ
Γ ,i t t t

φ φτ φ τ τ∂ ∂∂  = −∇ − −∇ = −∇ +∇ = −∇ − ∂ ∂ ∂ 
g           (49) 

and from Equations (49) and (22) we have the relation between Τ  and τ . 

.
t
φτ Γ∂

Τ = −
∂

                            (50) 

Now, we apply the Helmholtz theorem and the gauge transformations (11) and (12) 
and from 

Λ,i s i s′ ′ ′= + = + +∇Γ Γ Γ Γ Γ                      (51) 

comparing the solenoidal parts we obtain 

.s s′ =Γ Γ                               (52) 

If we seek the transformation law for Γφ , then we can obtain the other transforma-
tion law for Τ . 

From Equation (51), we have the irrotational part of ′Γ  

Λ,i i′ = + ∇Γ Γ                            (53) 

and including Equation (48) in (53) we get 

( )φ φ φΓ Γ Γ′−∇ = −∇ +∇Λ = −∇ − Λ                   (54) 

or 

.φ φΓ Γ′ = − Λ                            (55) 

At last, we can use Equation (50) for Τ and, if we consider Equations (11), (12) and 
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(55), we obtain 

( ) .
t t t t
φ φτ τ φ τΓ Γ

Γ

′∂ ∂∂Λ ∂ ′ ′Τ = − = − − − Λ = − = Τ ∂ ∂ ∂ ∂ 
          (56) 

Hence, we have checked that sΓ  and Τ  are invariants under gauge transformation 
and we can see that any gauge transformation is irrelevant if we use the Helmholtz’s 
theorem. 

It is convenient to remark that the fields g and K are generated only by sΓ  and Τ  
given by (28), (39) and (40), so we can consider sΓ  and Τ  as the potentials generat-
ing the gravitodynamical field g and K. 

6. Conclusions 

And so, we have shown that it is possible to define vector as well as scalar gravitody- 
namical potentials, which are invariant under gauge transformation. These potentials 
are defined uniquely from their differential Equations (42) and (43). For this reason, we 
have arguments for supposing the physical reality of these potentials, similarly to the 
fields g and K and unlike the gravitational potentials introduced by Jefimenko in [1], 
which are only used as a mathematical tool for calculating gravitational and cogravita-
tional fields. 

Our scalar potential T is a generator of the so-called instantaneous action at a dis-
tance in gravitation, and the vector potential sΓ  can propagate with the velocity of 
light and it is responsible for the retarded action of the gravitodynamical field. So, one 
can conclude that retarded interaction in gravitodynamics takes place not instead but 
together with instantaneous action at a distance. 
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[7] Vetö, B. (2010) European Journal of Physics, 31, 5. 
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Abstract 
The quantum metric tensor was introduced for defining the distance in the parame-
ter space of a system. However, it is also useful for other purposes, like predicting 
quantum phase transitions. Due to the physical information this tensor provides, its 
gauge independence sounds reasonable. Moreover, its original construction was 
made by looking for this gauge independence. The aim of this paper, however, is to 
prove that the quantum metric tensor does depend on the gauge. In addition, a real 
gauge invariant quantum metric tensor is introduced. A related concept is the quan-
tum fidelity, which is also shown to depend on the gauge in this paper. The gauge 
dependences are explicitly shown by computing the quantum metric tensor and the 
quantum fidelity of the Landau problem in different gauges. Then, a real gauge in-
dependent metric tensor is proposed and computed for the same Landau problem. 
Since the gauge dependences have not been observed before, the results of this paper 
might lead to a new study of topics that are believed to be completely understood. 
 

Keywords 
Landau problem, Quantum Metric Tensor, Gauge Dependence, Quantum Fidelity 

 

1. Introduction 

The main purpose for constructing the quantum metric tensor (QMT) was to define a 
distance in the system’s parameter space [1] and recently it has been shown that this 
metric tensor can be obtained using the renormalization flow equations [2]. That is why 
it is not surprising that the QMT is related to the quantum fidelity (QF), which is also 
used for measuring the distance between states [3], even though some studies have 
shown that the QMT can also be used to predict quantum phase transitions [4] [5]. In 
[6], the critical exponents for systems that present continuous second order phase tran-
sitions are defined. Moreover, the geodesics induced by the QMT have been useful for 
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analyzing the phase transitions [7]. In general, the Riemannian structure introduced by 
the QMT has been studied in some particular systems, seen for example [7]. The au-
thors of [8] make an analysis of the Gaussian curvature induced by the QMT and de-
scribe the critical phenomena in relation with this curvature. 

In general, there has been much interest in the geometrical properties of quantum 
systems. In [9] it is shown that the mass can be seen as a geometric effect in the Hilbert 
space. Reference [10] proposes a formalism of quantum space geometry for generalized 
coherent states and analyzes it with known results of the symmetry AdS/CFT. On the 
other hand, in Ref. [11] a numerical analysis of the fractional quantum Hall effect re-
lated with geometric stability is performed. Continuing with the numerical computa-
tion, in [12], it is presented a method to compute the fidelity susceptibility (a particular 
case of the QMT) with the Monte Carlo method. 

The QMT was constructed by looking for a gauge independence [1] and, in fact, it 
was partially done. However, when we consider some kinds of gauge transformations, 
the QMT is not invariant. Nevertheless, in current works the gauge dependence is 
overtly assumed. Since this gauge dependence has not been observed before, we explain 
its origin and propose a real gauge invariant quantum metric tensor. On the other hand, 
the QF is a similar concept that is also useful to measure a distance in the parameter’s 
space of a system, and as well as the QMT, it sounds reasonable that it does not depend 
on the gauge. However, it is proved that it is not always the case. 

In this paper, we use the Landau problem to show the gauge dependence of the QMT 
and the QF. For this reason, in Section 2 we describe the Landau problem in the sym-
metric gauge. Section 3 shows the QMT for one of the ground states in different gauges. 
While Section 4 introduces a gauge independent definition of the QMT, Section 5 
shows the calculation of this new definition for the Landau problem. On the other hand, 
Section 6 shows the gauge dependence of the QF and explains its origin. Finally, a dis-
cussion and our conclusions are written in Section 6. 

2. The Landau Problem 

The Landau problem [13] consists on a charged particle interacting with a constant and 
homogeneous magnetic field, B . If we consider a particle of unitary mass and charge 

0e <  the Hamiltonian of the system is given by 
21 ,

2
eH
c

 = − 
 

P A                         (1) 

where Α  is the vector potential, such that = ∇×Β Α . If we assume that the magnetic 
field points in the z direction i.e. ˆ,Bz=Β  then the movement in z will be constant, 
and we can ignore it. For the quantum case, the energy spectrum of the Landau prob-
lem is given by [13] 

1 , 0,1, 2, , ,
2n

eB
E n n

c
ω ω = + = = 
 

                 (2) 

these nE  are the well-known Landau levels. However, for the Landau problem each 
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level is infinitely degenerated. Therefore, we need an additional Hermitian operator, 
which commutes with H, to label the states. If we choose the symmetric gauge, i.e. 

( ), ,
2s
B y x= −Α                              (3) 

we can select the angular momentum in the z direction, ,z y xL xp yp= −  as the second 
operator. In this gauge, the ground states are given by [14] 

( ) ( )2 21
4

,
1 e ,
π ! 2

m eB x ym c
o m

eB x iy
m c

ψ
+

− + = + 
 





                 (4) 

where m is a label for the angular momentum in the z direction, such that 

0, 0,z m mL mψ ψ=                              (5) 

In this case, we see that the wavefunction depends on the parameters space and the 
physical space x. 

3. The Quantum Metric Tensor of the Landau Problem 

The QMT, ijG , is useful to define a distance in the system’s parameter space [1]. If our 
quantum system depends on n parameters, iλ , the QMT is given by 

( ), ,ij i j i jG e ψ ψ β β = ℜ ∂ ∂ −                         (6) 

where ψ  is the state of the system, i
iλ

∂
∂ =

∂
 and 

( ), ,i iiβ ψ ψ= − ∂                             (7) 

with this definition, the corresponding distance will be [1] 
2d d d .ij i jl G λ λ=                             (8) 

It is proved that the QMT is gauge invariant [1], nevertheless, this proof is not the 
most general. The demonstration assumes some specific features of the phase difference 
caused by a gauge transformation. In order to show the gauge dependence of the QMT, 
we need to compute it in different gauges. The first calculations will be in the symme-
tric gauge. 

3.1. The Quantum Metric Tensor in the Symmetric Gauge 

For the purpose of this paper, it is sufficient to consider only the variation of B, there-
fore the parameter space will be 1-dimensional, with 1 Bλ = , and setting BBG G=  is 
appropriate. We will compute the QMT of the ground state with 0m = , then, by using 
the state presented in Equation (4), the first term of the definition will be 

( ) 1, ,
2B Be

B
ψ ψℜ ∂ ∂ =                           (9) 

whereas 
0,Bβ =                               (10) 

therefore 



J. Alvarez-Jiménez, J. D. Vergara 
 

1630 

1 .
2

G
B

=                               (11) 

3.2. Comparison of the Quantum Metric Tensor in Different Gauges 

In order to prove the gauge dependence of the QMT, we make the calculation in dif-
ferent gauges. It is known [15] that when two gauges are related by 

( )2 1 , ,λ= +∇ΛA A x                          (12) 

the corresponding wave functions obey 

( ) ( )2 1, exp , .ei
c

ψ λ ψ λ = Λ 
 

x x


                    (13) 

According to the theory [1] [16], since the wave functions are related just by a change 
of phase, the QMTs should coincide. To explicitly show that this match does not always 
occur, we choose 1A  as the symmetric gauge and 

.gBxyΛ =                              (14) 

This particular Λ  allows us to examine several gauges using g as a parameter. In 
particular, when we set 1 2g = , we obtain the Landau Gauge LA  given by 

( )0, ,L B x=A                            (15) 

and with 0g =  we recover the symmetric gauge. In this case, Λ  depends on the pa-
rameter B and the physical space ( ),x y . 

Now, in Equation (13), we set 1ψ  as the ground state in the symmetric gauge, then 
the ground state with 0m =  in the new gauge will be 

( ) ( )2 2
0,0 , , exp exp .

2π 4
eB eB egB x y x y i Bxy

c c c
ψ    ′ = − +        

         (16) 

From Equation (16) and the definition of the QMT, we compute that 

2 1 1 .
2

G g
B

 ′ = + 
 

                         (17) 

The presence of g in Equation (17) clearly implies gauge dependence. This gauge de-
pendence is inherited by the distance in the parameter space. This means that we do 
not have a gauge independent distance in the parameter space. In the specific case of 
Equation (17) the distance is minimum when we work in the symmetric gauge ( 0g = ), 
and it increases indefinitely as we increase the absolute value of g. It is worth to notice, 
however, that the QMT diverges when 0B →  for any value of g. 

4. Real Gauge Invariant Quantum Metric Tensor 

If we perform a gauge transformation in the parameter space, given by 
( ),e ,iα λψ ψ′ = x                            (18) 

then iβ  changes as 

( )( ), .i i iβ β ψ α ψ′ = + ∂                        (19) 
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It has been assumed that the phase α , as well as its derivatives, can be taken outside 
of the internal product. Therefore, we would be able to simplify Equation (19) to 

,i i iβ β α′ = + ∂                           (20) 

when Equation (20) is valid, the tensor presented in Equation (6) is gauge invariant. 
This means that the QMT is gauge invariant when iα∂  is independent of the measure 
of the internal product. 

However, some phases, and its derivatives, may depend on the physical space, ( ),x y , 
or any other operators. See, for example, the phase in Equation (16). In these cases, 
Equation (19) cannot be simplified; thus, the tensor of Equation (6) is no longer gauge 
invariant. It is worth to notice that Equation (12) and Equation (20) seem to give the 
same transformation rule. However, in Equation (12) the derivatives are computed re-
spect to the coordinates, while in Equation (20), one derives respect to the parameters 

iλ . 
Before constructing the real gauge invariant QMT, we note that Equation (6) can be 

written as 

( )( ( ) ), ,ij i i j jG e i iβ ψ β ψ = ℜ ∂ − ∂ −                   (21) 

or, in the representation of coordinates 

( ) ( )3 *d ,ij i i j jG e x i iβ ψ β ψ = ℜ ∂ + ∂ − ∫                (22) 

because iβ  is real. Then, by looking Equation (20), we realize that iβ  transforms like 
a connection when α  is independent of the internal product. This means that the 
QMT of Equation (21) is constructed with covariant derivatives, using iβ  as the con-
nection. Nonetheless, in the general case iβ  transforms like it is shown in Equation 
(19), and it cannot be used as the connection. 

For constructing the gauge invariant QMT, we need a function iΓ  that transforms 
like 

,i i iα′Γ = Γ + ∂                            (23) 

when we perform a change of gauge given by Equation (18). With this new connection, 
the gauge invariant QMT will be 

( ) ( )( ), ,ij i i j jG e i iψ ψ = ℜ ∂ − Γ ∂ − Γ                    (24) 

or 

( ) ( )3 *d .ij i j jG e x i iψ ψ = ℜ ∂ + Γ ∂ − Γ ∫                  (25) 

In Equations (24) and (25), we recognize the covariant derivative, iD , given by 

,i i iD i= ∂ − Γ                            (26) 

which transforms like 

( ) e ,i
i iD Dαψ ψ′ =                          (27) 

under a change of gauge. Using the covariant derivative, the QMT takes the form 
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( ) ( )*3 , d . ij i j i jG e D D e x D Dψ ψ ψ ψ = ℜ = ℜ  ∫              (28) 

Equation (28) defines a gauge invariant QMT. Since Equation (27) is valid, then Eq-
uation (28) will always be gauge independent. Here we can see that if, instead of Equa-
tion (27), we perform a no Abelian gauge transformation we would generalize the QMT 
to a no abelian QMT. 

However, we need to find the correct connection that transforms like it is shown in 
Equation (23). The form of the new connection iΓ  will depend on the specific prob-
lem to be analyzed. iΓ  must reduce to iβ  in the case that iα∂  can be taken outside 
of the internal product. Therefore, the new QMT must also reduce to the one presented 
in Equation (6) when iα∂  is independent of the measure of the internal product. In 
the following section we present the BΓ  for the example studied in this paper. 

5. Gauge Invariant Quantum Metric Tensor of the Landau 
Problem 

Continuing with the example presented in Section 3.2, the new QMT is given by 

( ) ( )( ), .B B B BG e i iψ ψ= ℜ ∂ − Γ ∂ − Γ                   (29) 

The fact that 0Bβ =  in the usual case, suggests that we must set 
0,BΓ =                               (30) 

therefore, according to Equation (23), and using that eg Bxy
c

α =


, we find 

,B
gexy

c
′Γ =



                            (31) 

thus, under the transformation of Equation (18), we get 

( )*3d .B B
gexy gexyG e x i i

c c
ψ ψ    ′ ′ ′= ℜ ∂ + ∂ −        

∫
 

            (32) 

Applying Equation (32) to the state given by Equation (16), we obtain 
1 ,

2
G

B
′ =                               (33) 

for any gauge. That is, the QMT proposed in this paper is gauge independent. 

6. Gauge Dependence of the Quantum Fidelity 

As it was mentioned in the introduction, the QF is also useful to measure the distance 
between states. If the quantum system depends on n parameters λ , the QF is given by 
[2] 

( ) ( ) ( )( ), , ,F λ λ ψ λ ψ λ′ ′=                       (34) 

where ψ  is the state of the system. Continuing with the Landau problem, if we com-
pute the QF using the state given by (16), we obtain that 

( )
( ) ( )2 2

2,
4

BBF B B
B B g B B

′
′ =

′ ′+ + −
.                 (35) 
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In Equation (35) we can see dependence with the parameter g, therefore the QF also 
depends on the gauge chosen. This dependence occurs for the same reason that it ap-
pears in the QMT i.e. the phase difference is not independent of the internal product. If 
we start with a gauge whose state vector is 1ψ  the QF will be 

( ) ( ) ( )( )1 1, , ,F λ λ ψ λ ψ λ′ ′=                      (36) 

if we now perform the gauge transformation given by Equation (18), the QF fidelity will 
take the form 

( )
( )

( )
( )

( )2 2, e , e ,
e ei i

hc hcF
λ λ

λ λ ψ λ ψ λ
′Λ Λ 

′ ′=   
 

                (37) 

again, when the phase can be taken outside of the internal product Equation (37) sim-
plifies to 

( ) ( ) ( )( )2 2, ,F λ λ ψ λ ψ λ′ ′=                      (38) 

and the fidelities in different gauges coincide. However, for more general gauges, like 
the presented in the example studied here, we cannot take the phase outside and, 
therefore, the fidelities do not coincide. 

7. Discussion and Conclusions 

We explicitly showed that the QMT and the QF depend on the gauge. This dependence 
is directly related to the phase difference between the wave functions in different gauges: 
when the change of gauge introduces a phase whose derivatives iα∂  can be taken out-
side of the internal product, both, the QMT and the QF are invariant. However, when 
general phases are considered, they depend on the gauge. 

We also proposed a real gauge invariant QMT by defining a new connection iΓ  that 
transforms according to Equation (23). Despite the gauge independence, the connec-
tion iΓ  was not explicitly given, and the form of iΓ  will depend on the specific 
problem to be studied. In the example shown in this paper, i.e. the Landau Problem, we 
successfully proposed the correct iΓ  for obtaining a gauge invariant QMT.As it was 
pointed out before, the QMT and the QF have several applications in physics. The fact 
that the QMT and the QF depend on the gauge can give rise to new studies in the topics 
that apply this two tools. An important case is the applicability of the QMT for pre-
dicting quantum phase transitions. In the example studied in this paper, the gauge in-
dependent QMT, as well as the gauge dependent QMT, diverges for the same value of 
the field B in any gauge. This fact suggests that both QMTs are useful for predicting 
quantum phase transitions. However, the chosen gauge in this example is not the most 
general, and further studies are necessary. 
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Abstract 
The interaction between an electron with a three-dimensional domain wall was in-
vestigated using the Born’s expansion of the S scattering matrix. We obtain an influ-
ence of the scattering of the electron with the ferromagnetic domain wall in the spin 
wave function of the electron with the aim to generate the knowledge about the state 
of the electron spin after the scattering. It relates to the recent problem of generation 
of the spin polarized electric current. We also obtain the contribution of the elec-
tron-wall domain interaction on the electric conductivity ( )σ ω , through the wall 
domain, where we have obtained a peak of resonance in the conductivity for one 
value of 2.5Jω  . 
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1. Introduction 

The study of the quantum matter is an important topic of research in modern physics 
[1]. The description of particles interacting at low temperature is crucial in the deter-
mining and distinguishing of characteristics being an important problem in condensed 
matter physics. One of these problems is the study of the s − d-electron-scattering with 
the ferromagnetic domain wall [2], where an electric current density crosses a ferro-
magnetic metallic film. The domain wall resistivity is a rather old topic and has been 
thoroughly studied by many research groups [3]-[5]. 

The injection of a spin current in a magnetic film can generate a spin-transfer torque 
that acts on the magnetization collinearly to the damping torque [6]-[9]. Recently, the 
electron scattering by an one-dimensional domain wall in quantum wires that were de-
scribed by the Luttinger liquid model was studied using Bosonization and Renormali-
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zation group [10] [11]. The transport and the scattering in quantum wires with domain 
wall were considered in [12]. The interaction of the domain wall with an interacting 
one-dimensional electron gas was studied in [13]. Peter et al. [14] have studied the in-
fluence of the domain wall scattering in the electron resistivity. Moreover, the impor-
tance to study the influence of scattering electron-domain wall is due the connection 
with phenomena depending on the spin such as the Giant Magneto-Resistance (GMR) 
[15], where we can have a large variation of the electric resistance with the variation of 
magnetization through the domain wall. The Quantum information technology prom-
ises one faster and more secure means of data manipulation that makes use of the 
quantum properties of the matter [16]-[18]. This demands the control of the spin of the 
electron and the needless of filtration of the electric current. We transform an electric 
current spin polarized by the interaction of the spins of the electrons that compose the 
electric current with the spins of the wall domain, ( )V r  [19]-[21]. 

The model that we are interesting is described by the following Hamiltonian 

( ) ( ) ( ) ( ) ( )
2

2 ˆˆ .
2

V Js S
m

ψ ψ ψ= − ∇ + + ⋅r r r r r

               (1) 

where J  denotes the exchange interaction, ( )V r  is the nonmagnetic periodic po-
tential of the lattice and the last term ( )J ′⋅s S r  represents the potential of scattering 
of a electron spin with the spins of the domain wall. In an homogeneous magnetic do-
main wall, the magnetization is collinear, ( )ˆ ˆS r S= , hence it is natural to choose this 
direction for the axis of quantization of the spin of electron s . The interaction of each 
electron with the spins of the wall is depicted in Figure 1. In Figure 2, we present the 
behavior of the potential of interaction between the spin of the electron with the spins 
of the wall domain. 

The purpose of this paper is to verify the influence of the scattering of electrons with 
the ferromagnetic domain wall on the spin wave function of the electron. We have em-
ployed the Borns approximation and the Matsubara’s Green’s function method to study 
the influence of the scattering of electron with the wall domain. The paper is divided in 
the following way. In Section 2, we discuss about the mechanism of electron scattering 
with the domain wall, in the Section 3, we verify the influence of electron-wall domain 
interaction in the current and finally, in the last section, Section 4, we present the final 
remarks. 

2. Electron Scattering with the Domain Wall 

We use the Born’s expansion of ( ),f k k ′  to calculate the influence of the domain wall 
on the spin wave function of the electron. In large distance of the wall domain, the state 
of the electron is given by 

( ) ( )
( )

= ,
φ

ψ
φ
↑

↓

 
 
 

r
r

r
                             (2) 

where ( ) ( )inψ ψ= −∞r  is the state of the electron after interacting with the wall. In 
large distance of the domain wall, r , the eigenstates ( )outψ r  are given by 
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Figure 1. Interaction between one electron with the spins of the spherical domain 
wall of radius 2δ . 

 

 
Figure 2. Behavior of the potential of interaction between the electron with the do-
main wall, ( )V x , where the width of the wall is 2δ = . 
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( ) ( )

( ) ( )

1 0e, e ,
0 1

0 1e, e ,
1 0

i r
i

i r
i

f k k
r

f k k
r

ψ

ψ

⋅
⋅

↑

⋅
⋅

↓

   ′= +   
   
   ′= +   
   

k
k r

k
k r

k r

k r
                   (3) 

where ( ) ( )ψ ψ=r S r  and S is the scattering matrix. 

( ) 2, ,
2π

f k k µ′ ′= − k T k


                       (4) 

as T is the transition matrix, given by the Lipmann-Schwinger’s equation 

0

1
0iω += +

− +
T V V


                         (5) 

and 

( )
2

2
0 ,

2
V

m
= − ∇ + r

                           (6) 

( ) ( )ˆˆ .V Js S= ⋅r r                               (7) 

We consider J = 1. 

( ) ( ) ( )
0

, , ;n

n
f k k f k k

∞

=

′ ′= ∑                          (8) 

as n being the number of times that the V operators enters, 

( ) ( )1
2,

2π
f k k µ′ ′= − k V k



                       (9) 

and 

( ) ( )2 ˆ ,sd

B

J
V x S x

gµ
′ ′= − ⋅s                        (10) 

where x' corresponds to the region of x into the ferromagnetic wall domain. We have 
that 

( ) ( ) ( )1 2, ,f k k A k k
e

′ ′= −                         (11) 

where e is the electron charge and ( )A k  is given by 

( ) ( )( ) ( )2

2

cos arctan e sin d .xA k S kx x
δ

δ
δ

+ ′−
− ′ ′= ∫                 (12) 

The integral in the Equation (12) was solved approximately using the Maple program 
as 
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( ) ( )
2 2 2

3 32 2 2
2 2

2 2 2 2
4 2 2 2 22 2 2 2

2 2
4 32 2

1 2 e cos e cos 4e cos
2 2 24

e sin e sin 2e sin 2e sin
2 2 2 2

e cos e cos
2 2

k k kA k S k k k
k

k k k kk k k k

k kk k

δ δ δ

δ δ δ δ

δ δ

δ δ δδ δ δ
δ

δ δ δ δδ δ δ

δ δδ
−

−

        − + −     +      

       + − + −       
       

  + +  
  



2 2
4 42 2

2 2 2
2 2 2 22 2 2

e cos e sin
2 2

e sin 2e sin 2e sin ,
2 2 2

k kk k

k k kk k k

δ δ

δ δ δ

δ δδ δ δ

δ δ δδ δ

−
−

− −
−

    + +    
    

      + + −            

 (13) 

where δ  is the diameter of the wall. The potential of interaction of the spin electron 
with the spins of the domain wall ( )V x  has the form 

( ) ( )( )cos 4arctan e .x
sdV x J S δ−=                      (14) 

Such potential is plotted in Figure 2. We consider the expansion of Equation (8) in 
first order. An analysis considering terms of superior order will generate a large quan-
tity of terms in Equation (13) and must not generate any change in the physics proper-
ties of the scattering. 

We obtain a very complicated expression for the wave function of the electron after 
the scattering with the ferromagnetic wall domain however, in a combination of two 
polarization states. The presence of the coefficient ( ),f k k ′  in the second term, Equa-
tion (3), makes the control of the state of polarization of the electron after the scattering 
with the domain wall a very difficult analysis. 

3. Influence of the Spin-Domain Wall Interaction on the 
Conductivity 

The Hamiltonian of the electron that interacts with the domain wall can be written as 
[22] [23] 

0 ,sw w= + +                              (15) 

where 0  is the Hamiltonian of the free electron, sw  is the electron-domain-wall 
Hamiltonian and w  is the Hamiltonian of the wall domain. 

( )†
0

,
. . ,i j i j

ij i j
t c c h c n nµ↑ ↓ ↑ ↓= − + +∑ ∑                   (16) 

,
,sw i j

i j
V S s= ⋅∑                                   (17) 

,
.w i j

i j
J S S= ⋅∑                                   (18) 

V is given by Equation (10). 
Making the transformation of the spin operators 

† †2 , 2 ,i i i iS S A s Sa+ += =                           (19) 

2 , 2 ,i i i iS S A s Sa− −= =                            (20) 
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† †, ,z z
i i i i i iS S A A s s a a= − = −                        (21) 

we have for the Hamiltonian sw  

( )†

,
. . 'sw i j

i j
V A a h c= + +∑                        (22) 

where ′  contains terms of four or more operators ai and Ai. The contribution of the 
interaction between electron with domain wall for the electric current operator sw  is 
given by 

( )†

,
. . .sw i j

i j
V A a h c−∑                         (23) 

We use the Matsubara’s Green function method at finite temperature [22]-[25] to 
determine the contribution of the interaction of the electron with the wall domain for 
the regular part of the electric conductivity or continuum conductivity, ( )regσ ω  that 
is given by 

( )

( ) ( ) ( ) ( )
22 sin 1 1 ,

reg
sw

x
k k k k k k k k

k k k

kV sS f N W N f W
W

σ ω

δ ω ω δ ω ω
ω ω

 = + − − + − + + ∑
  (24) 

as ( ) 1
e 1k

kf
βω −

= +  is the fermion occupation number and ( ) 1
e 1Wk

kN β −
= −  is the 

boson occupation number associated with the spin waves of the wall domain and 
1 Tβ = . We have that in low energy limit 

,k vω = k                                      (25) 

( )cos , cos cos
3k x y z
JW k k k= + +                    (26) 

where v is the Fermi’s velocity. 
In Figure 3, we present the behavior of the contribution of the interaction of the 

electron with domain wall, ( )reg
swσ ω . Hence the electric resistance is the inverse of the 

electric conductivity, the ( )reg
swσ ω  provides the information about the electric resis-

tance generated by the ferromagnetic domain wall. Our results show a peak of reson-
ance in the contribution spin-electron wall at 2.5Jω   that indicates a peak in the 
electric conductivity in this point of ω . 

4. Conclusions and Final Remarks 

In summary, we have studied the scattering between the electrons with the spherical 
domain wall. We have used the Born’s approximation for the S scattering matrix. We 
obtain a large influence of the scattering on the spin wave function of the electron. We 
also obtain the contribution of the electron-wall domain interaction on the electric 
conductivity where it is obtained a peak of resonance in the conductivity for one value 
of ω  such as 2.5Jω  . We can improve the model Equation (1) with the inclusion 
of more terms, with objective to get a better description of the scattering of the electron 
with the wall domain. This is subject to a future work. 

From a general way, it is well known that the study of the electron scattering with the  
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Figure 3. Behavior of the contribution of the interaction between electron with the 
domain-wall, ( )reg

swσ ω  in the temperature T = 0.1 J. The very small value of this 

contribution is due to interaction of only one electron with the ferromagnetic 
three-dimensional wall domain. In the electric current we have a flow of N electrons 
by seconds. 

 
wall domain can generate a different way to generate a spin current spin polarized 
based on the Hall effect of spin caused by spin-dependent scattering of electrons in thin 
films [6]. From an experimental point of view, recently there is an intense research 
about spin transport by electrons where phenomena such as the quantum Hall effect for 
spins and spintronic [26]-[30] have been studied extensively. In the study of these ef-
fects, often only the sign difference between related quantities like magnetic fields can 
generate the spin and charge currents. 
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Abstract 
One-band effective mass model is used to simulation of electron gas properties in 
quantum well. We calculate of dispersion curves for first three subbands. Calculation 
results of Fermi energy, effective mass at Fermi level as function of electron concen-
tration are presented. The obtained results are good agreement with the experimental 
dates. 
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Quantum Well, In-Plane Dispersion, InAs, AlSb, Two Dimentional Electron Gas, 
Effective Mass, Cyclotron Mass 

 

1. Introduction 

In semiconductors, InAs and InSb of the conduction band are characterized by a strong 
nonparabolicity and recently intensively studied heterostructures based on them [1]-[3]. 
Nonparabolicity of the conduction band and the nature of the spin splitting of the elec-
tron in the quantum well (QW) are studied by the cyclotron resonance [4]-[7]. 

In [8] has been investigated InAs/AlSb based QW with well width L = 15 nm, where 
two dimensional (2D) electron concentration ranges from 2.7 × 1011 to 8 × 1012 cm−2. In 
this work has been found increase of the effective mass of almost 2 times. 

The purpose of this work—the calculation of: 1) subbands dispersion curves, 2) the 
density of states of 2D electron gas and 3) concentration dependence of effective mass 
in Fermi level for InAs/AlAs QW with width L = 15 nm. 

It is shown that an abrupt change in the density of states leads to a peculiar change in 
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the concentration dependence of effective mass. 

2. The In-Plane Dispersion 

Consider a single QW with width L (area A—InAs), concluded between barriers with 
height V (area B—AlAs). The energy is measured from the bottom of the band of the 
bulk InAs. 

In the one band effective mass approximation, the solution of the three-dimensional 
Schrödinger equation can be represented as ( ) ( )e x yi k x k y zψ φ+

= . Then for the area A and 
B, respectively, we can write the following one-dimensional equations 

( ) ( )
2

2
2 0A

A

z
q z

z
φ

φ
∂

+ =
∂

, ( ) 2
2

2 Am E
q E k= −



                (1) 

( ) ( )
2

2
2 0B

B

z
z

z
φ

χ φ
∂

+ =
∂

, ( ) ( ) 2
2

2 Bm E
V E kχ = − +



           (2) 

Here 2 2 2
x yk k k= +  and k −  is in plane wave vector, ( ),  A Bm E —energy-dependent 

effective mass of the electrons in the material A or B. Solving Equations (1) and (2), 
using the boundary condition 

( ) ( )0 0A Bφ φ= , 
( )

( )
( )

( )
0 0

d d1 1
d d
A B

A Bz z

z z
m E z m E z

φ φ

= =

=           (3) 

( ) ( )A BL Lφ φ= , 
( )

( )
( )

( )d d1 1
d d
A B

A Bz L z L

z z
m E z m E z

φ φ

= =

=           (4) 

we find the dispersion equation 

( )
( ) ( )

2
2

||
|| 0 2

||

π 2 sin
1  1

E E
E E E n Arc

E V E

γ

γ γ γ γ

  −  = + ⋅ −  − + + −    

       (5) 

here ( )2 2
|| 2 AE k m E=  , ( )2 2

0 2 AE m E L=  , ( ) ( )B Am E m Eγ = . 
Nonparabolicity of conduction band well takes into account by formulas 

( )
0 2 11

3
PA

A gA gA A

m E
m E E E E E

 
= + + 

+ + + ∆  
                  (6) 

( )
0 2 11

3
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B gB gB B

m E
m E E V E E V E

 
= + + 

− + − + + ∆  
            (7) 

where, 0m —the free electron mass, PE —the Kane parameter, gE —the band gap, Δ— 
the spin-orbital splitting of valence band, V—conduction band offset. Band parameters 
of InAs and AlSb are shown in Table 1. 

To describe the statistics of electrons, Equation (5) is non convenient because it is 
not solvable with respect to E or k. Therefore, we replace Equation (5) is by simple ap-
proximation 

( )
( ) ( )

( )
( )

2 2

0 2 0 0
A nA

n
A A A

m Em E kE E
m m m

≈ +
                      (8) 
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Table 1. Band parameters of InAs and AlSb. 

 InAs (A) AlSb (B) 

Eg, eV 0.42 2.37 

∆, eV 0.38 0.75 

EP, eV 21.2 20.85 

m(0), [m0] 0.023 0.11 

V, eV 0 1.35 

 
where, En—is bottom of n-th subbands. Now, approximation (8) is the best solution of 
(5). However, values of En in (8) now are obtained from Equation (5) at k = 0 by use 
numeric method. 

For InAs/AlSb QW with L = 15 nm, we have: E1 = 0.0454 eV, E2 = 0.158 eV, E3 = 
0.304 eV, and for case L = 6 nm we have: E1 = 0.163 eV, E2 = 0.509 eV, E3 = 0.903 eV. 

Calculated dispersion curves from Equation (5) and approximation (8) are compared 
in Figure 1(a), Figure 1(b). 

From Figure 1(a), Figure 1(b) follows that, the approximation (8) is sufficiently ac-
curate and/or (8) is the best solution of (5) in a wide range of width QW. It is conve-
nient when studying the statistics of electrons, kinetic, optical, or other characteristics 
of the 2D electron gas. Inconveniences approximation (8) is such that ( )1,2,3,nE n =   
depends on L, V and on other parameters of materials A,B. Therefore every time when 
changing these parameters, the value of nE  is recalculated from Equation (5) at k = 0. 

3. The Fermi Energy and Thermodynamic DOS 

The total electron concentration is 

( )
2 2

0
1

d
2 0

F

n

E

s
n AE

kn N
m=

 
=   

 
∑ ∫

                         (9) 

where 

( ) ( ) 15
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⋅ ×

= =
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. 

According (8) we have 

( )
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S S
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n n
=

= ∑ , ( ) ( )
( )

( )
( ) ( )0  

0 0
n A nA F

s F n F n
A A

m Em E
n N E E E E

m m
θ

 
= − − 

  
      (10) 

where ( )n
sn —is n-th subband concentration. 

In Equation (10), the terms in the sum should be positive. The negative terms in ( )n
sn  

excluded by the Heaviside function. It establishes a link between the Fermi energy FE  
and full 2D electron concentration sn . They also determine the concentration of elec-
trons in separate subbands ( )n

sn  for a given sn . 
From (10), we can estimate the critical concentrations of 1cn , in which the Fermi level 

comes to bottom of the second subband 2FE E= . In the structure of InAs/AlSb QW  
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Figure 1. The dispersion curves of the first three subbands (n = 1, 2, 3) in InAs/AlSb QW: the full 
(red) line—according to Equation (5), the dotted (blue) line—approximation (8); (a) L = 15 nm, 
(b) L = 6 nm. 

 
with the well width L = 15 nm can be found 

( )
( )

( )
( )

2 1 12 2
1 0 2 1  1.52 10 cm

0 0
A A

c
A A

m E m E
n N E E

m m
−

 
= − = × 

  
          (11) 

This estimation is close to experimental measured date 12 2
1,exp 1.2 10  cmcn −= ×  [8]. 

Similarly, the critical concentration of 2cn , in which the Fermi level comes to bottom 
of the third subband 3FE E= , is nc2 = 6.87 × 1012 cm−2. 
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The dependence ( )F sE n  is shown in Figure 2. It is obtained from Equations (10) 
by changing the Fermi energy in the range of 0 0.33 eVFE = ÷ . The graph shows that, 
depending on ( )F sE n  there exist a fractures—slowing of increase the Fermi’s energy. 
They are caused by abrupt changes (by jumps), the density of states at the critical 
points: 1s cn n= , 2FE E= , 2s cn n= , 3FE E= . 

These fractures occur at the critical concentrations of 1 2,c cn n  , where FE  inter-
sects the Fermi level of the bottom of the next subband. 

The thermodynamically DOS of electron gas at Fermi level ( ) d dT F S FN E n E=  is 
shown in Figure 3. 

4. The Cyclotron Mass 

According approximation (8), the electron effective mass at the Fermi level (cyclotron 
mass) ( ) 12 d d

F
c

E E
m k E k −

=
=   is 

( ) ( )d
d

F

A
c A

E E

m E
m m E E

E
=

 
= +  
 

                  (12) 

The dependence ( )c sm n  is shown in Figure 4. 
This dependence can be obtained from Equations (10) and (12) by changing the 

Fermi energy in the range 0 0.33 eVFE = − . 
This figure shows also the dependence of experimentally measured value of the effec-

tive masses (cyclotron mass) cm  at the Fermi level of the total concentration of 2D sn  
[8]. Fracture in the ( )c sm n  occur at critical points: 1s cn n= , 2FE E=  and 2s cn n= , 

3FE E= . 
 

 
Figure 2. The dependence of the Fermi energy on the 2D concentration in InAs/AlSb QW with L = 
15 nm, V = 1.35 eV. The critical points 1s cn n= , 2FE E=  and 2s cn n= , 3FE E=  shown by the 
shaded lines. 
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Figure 3. The thermodynamically DOS of electron gas at Fermi level in InAs/AlSb QW, L = 15 
nm, V = 1.35 eV. 

 

 
Figure 4. The dependence of the effective mass on the total concentration for InAs/AlSb QW, L = 
15 нм, V = 1.35 eV. 

5. Conclusion 

In this study are provided useful approximation (8) of subband dispersions and simpli-
fied Equation (10) to calculate the statistics of a degenerate electron gas in heterostruc-
tured InAs/AlSb QW, which satisfactorily describes the experimental results [8]. They 
are also useful to study of calculation of the transport, optical and magnetic properties 
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of electron gas in a Kane type 2D system. The above description of the algorithms can 
be applied to other QW heterostructures based on semiconductor group 3 5A B . 
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Abstract 
Counterfactual definiteness must be used as at least one of the postulates or axioms 
that are necessary to derive Bell-type inequalities. It is considered by many to be a 
postulate that not only is commensurate with classical physics (as for example Eins-
tein’s special relativity), but also separates and distinguishes classical physics from 
quantum mechanics. It is the purpose of this paper to show that Bell’s choice of ma-
thematical functions and independent variables implicitly includes counterfactual 
definiteness. However, his particular choice of variables reduces the generality of his 
theory, as well as the physics of all Bell-type theories, so significantly that no mea-
ningful comparison of these theories with actual Einstein-Podolsky-Rosen experi-
ments can be made. 
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Foundations of Quantum Mechanics, Foundations of Probability, Bell Inequality 

 

1. Introduction 

Bell’s theorem [1] has an unusual standing among mathematical-physical theorems. No 
other theorem has ever been discussed with respect to so many “loopholes”, physical 
situations that make it possible to escape the mathematical strictures of the theorem. It 
is shown that the reason for this fact is that Bell’s theorem is based on the postulate of 
counterfactual definiteness. The postulate of counterfactual definiteness to derive 
Bell-type inequalities is clearly asserted in the books of Peres [2] and Leggett [3]. 

Some of Einstein’s reasoning regarding Einstein-Podolsky-Rosen (EPR) experiments 
also contain counterfactual realism and Einstein’s special relativity is counterfactually 
definite in the mathematical sense presented below. This fact may have contributed to 
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the opinion that counterfactual realism is the major defining trait of “classical” theories. 
It will be shown, however, that great care must be exercised with respect to the choice 
of independent variables in the argument of the functions that are used to formulate a 
counterfactually definite physical theory. It will also be shown that the particular choice 
of variables, used for the derivation of Bell’s inequality and Bell’s theorem, imposes 
significant restrictions to the physical situations that can be described by Bell’s 
functions and excludes dynamic processes of classical physics, no matter whether 
deterministic or stochastic. To show this fact, we first repeat the main features of Bell’s 
functions that describe Einstein-Podolsky-Rosen-Bohm (EPRB) experiments and then 
connect them to a precise definition of counterfactual definiteness. 

2. EPRB Experiments and Bell’s Functions Representing Them 

EPRB experiments have been described extensively in the literature [4] [5] and measure 
the spins of entangled particle pairs at two space-like separated locations. The two 
particles of each pair are emanating from a source and propagate toward the space-like 
separated locations. The properties of these particles are measured by instruments that 
are described by a “setting” such as the direction of a polarizer or magnet which is 
characterized by a unit vector of three dimensional space denoted by j = a, b, c, ∙∙∙. 
Measurements of this type have been performed by a number of researchers and have 
had a checkered history with respect to the results. These, at first, contradicted and then 
confirmed quantum theory [4]. There are still significant deviations from quantum 
theory in current experiments, which are, however, mostly ignored [6]. We proceed 
here by just stipulating that indeed these experiments showed a violation of the, by now, 
famous Bell inequality and describe in the following only Bell’s postulates and 
assumptions, thereby focusing on the simplest case involving only three settings and 
not four, as used in actual experiments, see also [7]. Bell’s postulates and assumptions 
are considered by many researchers to be entirely general and valid for all EPR like 
experiments and Gedanken-experiments as long as they can be described by classical 
physics such as Einstein’s relativity. 

Bell’s classical-physics model for the system of measurement equipment and 
entangled pairs of the EPRB experiments is constructed as follows (see page 8 of [1]). 
He assumed that all experimental results, all data, can be described by using functions 
A that map the independent measurement results onto ±1 which symbolizes the two 
possible outcomes of the spin measurements. The variables in the argument of the 
function always include the settings j = a, b, c, ∙∙∙ and another variable, or set of 
variables, that Bell denoted by λ. Bell then proceeded to present a proof of his now 
celebrated inequality: 

( ) ( ) ( ) ( ) ( ) ( ), , , , , , 1,A A A A A Aλ λ λ λ λ λ+ − ≤ +a b a c b c          (1) 

where ⋅  indicates the average over many measurements. The left and right factor of 
each term correspond to the data taken at the two corresponding space like separated 
measurement stations. The events of measurements and corresponding data are linked 
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to clock times of two synchronized laboratory clocks. Therefore, the functions A as well 
as the variables j and λ must, for each of the products, correspond to pairs of clock 
times ,n nt t ′  where n is the measurement number. These clock times are not explicitly 
included as indexes or variables of Bell’s functions. 

Note that Bell’s original paper (see page 7 of [1]) assigned to λ only properties of the 
entangled pair. It is now generally assumed [8] that λ may stand for a set of arbitrary 
physical variables including space and time coordinates or even Einstein’s space-time st. 
Therefore, λ may also describe some properties of the measurement equipment (in 
addition to the magnet or polarizer orientation j), such as dynamical effects arising 
from many-body interactions of the entangled pair with the constituent particles and 
fields of the measurement equipment. Bell agreed with this assumption in his later 
work [1]. 

It is the purpose of this paper to show that the postulate of counterfactual definiteness 
in conjunction with the use of a setting variable j does not permit the introduction of 
general space and time related variables that describe the said many body dynamics. 
Therefore, Bell’s assumptions are not general enough to describe classical theories of 
EPRB experiments that include dynamic processes involving the measurement equip- 
ment. 

3. Counterfactual Reasoning and EPRB Experiments 

Peres [2] gave the following definition of counterfactual realism, which roughly agrees 
with the definition of Leggett [3]. Peres claims, as does Leggett, not to use traditional 
concepts of mathematics and physics to start with, but only “what could have possibly 
been the results of unperformed experiments” and bases his definition of counterfactual 
realism on the following statement: 

It is possible to imagine hypothetical results for any unperformed test, and to do 
calculations where these unknown results are treated as if they were numbers. 

We agree that it is possible, as a purely intellectual activity, to imagine hypothetical 
results for any unperformed tests. However, without significant additional assumptions, 
it is not possible “to do calculations where these unknown results are treated as if they 
were numbers”. Here we encounter the so often unrecognized gulf between sense im- 
pressions, even just imagined ones, and conceptual frame-works such as the axiomatic 
system of numbers or the probability theory of Kolmogorov. Peres, Leggett and a 
majority of quantum information theorists did not and do not recognize that giant gulf, 
that giant separation, between events of nature, recorded as data, and the axiomatic 
edifices of human thought. 

If Peres wishes to treat hypothetical “results” of unperformed tests as if they were 
numbers, he must be sure that these abstractions at least follow the axioms of numbers. 
There are several steps necessary to connect the “events” of the physical world to 
numbers. Boole derived ultimate alternatives and a Boolean algebra while Kolmo- 
gorov’s axiomatic system introduces an event algebra and probability space. It is true 
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that mathematicians often describe experimental situations or ideas about them by the 
Kolmogorov framework and just postulate that a probability space and σ-algebra exists. 
It is known, however, from the work of Boole [9] and Vorob’ev [10] that a given 
particular set of variables may not be able to describe certain correlations in any given 
set of data. 

In more elementary terms, we have to consider the following facts. If we perform 
“calculations where these unknown results are treated as if they were numbers”, then 
we must use the mathematical concept of functions or something equivalent in order to 
link the imagined but possible tests with numbers. A one to one correspondence of the 
possible tests and the numbers needs to be established and it needs to be shown that no 
logical-mathematical contradictions arise from such procedure. If no such corres- 
pondence exists, then the “purely intellectual activity” is nothing more than child’s play 
and the mathematical abstractions of such activity can certainly not be treated as if they 
were numbers with some relation to physics. 

Take any set of data derived from measurements on spin-1/2 particles with Stern- 
Gerlach magnets, that lists the measured spins as “up” or “down” together with magnet 
settings j = a, b, c, ∙∙∙. Can we replace “up” with +1 and “down” with −1 and expect that 
the so obtained set follows the axioms of integers? The “trespass” to deal with tests as if 
they were numbers has been committed by several textbook authors, in particular by 
Peres [2] and Leggett [3]. This point appears in clear relief, if we write down the data 
according to the way in which they are imagined to be taken in testing e.g. the Bell-type 
inequality. The data are recorded in pairs corresponding to detector-events that are re- 
gistered together with equipment settings and the clock times of synchronized labora- 
tory clocks. Thus we obtain data lists of the kind: ( ) ( ) ( )1 1 2 2

1 2 21
, , , , , , ,M M

N M

t t t t t tD D D D D D′ ′ ′
′ ′ ′j j j j j j  

the ,n n′j j  representing the randomly chosen setting pair and ,n nt t′  denoting the 
times of measurement. Here the D’s are symbols that represent the measured up/down 
spin in the example above but may as well represent the red/green color of a flash of 
light, etc. For numerical processing of this list of symbols, it is expedient to introduce 
new symbols ˆ tD j  taking values +1 and −1 that are in one-to-one correspondence with 
the original symbols tD j . The number of times that the setting (a, b), (a, c), and (b, c) 
was chosen is denoted by Na,b, Na,c, and Nb,c, respectively. The total number of pairs is 
then M = Na,b + Na,c + Nb,c. One cannot do justice to the number of different data-pairs 
by using models with three pairs of mathematical symbols such as Aa, Ab, Aa, Ac, and Ab, 
Ac as they are used in Bell-type proofs. One runs into problems even if one regards 
these mathematical symbols as “variables” (such as Boolean variables [11]) and not just 
as numbers; the reason being that one cannot cover all the different possible 
correlations of the data by such few variables. If we admit the two values +1 and −1 
for the D̂ ’s at different times of the same experiment, then we obtain Na,b + 1 
different values for the sum of the pair product , ,1

ˆ ˆn n
n n

M t t
j jn D Dδ δ ′

′=∑ a b a b . If we have three 
such sums with all independent variables, the number of possibilities is 
( )( )( ) ( )3

, , ,1 1 1 3 1N N N M+ + + ≈ +a b a c b c  for M sufficiently large. In contrast, we have 
for the Bell type variables Aa, Ab, Aa, Ac, and Ab, Ac only about ( )23 1M +  independent 
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choices of all possible different correlations of possible outcomes of these variables. 
This fact arises from Bell’s description of 3 M different pairs of measurements (6 M 
measurements) by only 3 different variables and represents another typical trespass that 
is explicitly made in both the book of Peres [2] and Leggett [3]: they use a model with a 
severe restriction of choices before any physics is introduced and thus”overburden” 
their variables in a way which cannot do justice to the complexity of the data. In real 
EPRB experiments, one uses four not three different randomly chosen settings [12] [13] 
but the above argument equally holds for this case, with ( )33 1M +  and ( )23 1M +  
being replaced by ( )44 1M +  and ( )34 1M +  for 4 M different pairs (8 M 
measurements), respectively. 

This more subtle problem, a well known problem in the area of computer 
simulations, reveals once more the enormous gulf between data and mathematical 
abstractions that describe the data. In the framework of Boole [11], we need to be sure 
that the data can be described by ultimate alternatives (the Boolean variables) and in 
the framework of Kolmogorov we must be sure to deal with random variables 
(functions on a Kolmogorov probability space). But how can we be sure? As a 
minimum requirement we need to introduce functions, with sufficiently many physical 
variables in their arguments, to enable the description of all the possible correlations 
and to guarantee a one to one correspondence of mathematical abstractions and the 
massive amount of data. 

To describe EPRB experiments in the general way that Bell intended and purported 
to actually have done, we need to introduce functions A with variables additional to j in 
their argument (or indexes, see below). We need to have variables such as tn, sn, stn, ∙∙∙ 
that are taken out of the realm of Einsteinian physics and do indeed guarantee the one 
to one correspondence to the data. For example, we may need to include tn, the time of 
measurement at one location and sn representing any property of the objects emanating 
from the source. It may also be necessary to include a more general four dimensional 
space-time vector stn instead or in addition to the measurement time tn and we include 
it here just for completeness. This way we obtain functions ( ), , , ,n n n nA A t s= j st  . 

Some may ask whether that is not precisely what Bell used by introducing his λ that, 
as he claimed [1], can stand for any set of variables and, therefore, also for the set 
( ), , ,n n nt s st  . We thus may have ( ) ( ), , , , ,n n n n n nA A t s A λ= =j st j . Indeed it is true 
that this is what Bell claimed. However, as we will see below his claim is incorrect, 
because he and followers have postulated complete independence of λ and j and thus 
postulated counterfactual definiteness in conjunction with the setting variable j 
according to the precise definition given in the next section. Einstein locality does not 
require independence of λ of the local setting (see Section 5). 

Note that quantum mechanics does not use any setting-type of variable as 
independent variable in the argument of the wave-function. There, the setting-type 
variables label the operators. A helpful discussion of explicit and implicit assumptions 
of Bell, with emphasis of the mathematical structure and consistency, was given by 
Khrennikov [14]. 
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4. Mathematical Definition of Counterfactual Definiteness and 
Bell’s Inequality 

Counterfactual definiteness requires the following. We must be able to describe a 
measurement or test by using a given set of variables in the argument of the function A, 
and thus for example a setting j = b. Then, we must also be able to reason that we could 
have used instead of setting b the setting c and would have obtained the outcome 
corresponding to the value of A, now calculated with setting c and all other variables in 
its argument unchanged. Although this type of reasoning is not permitted in the courts 
of law, its mathematical restatement looks natural and general enough: 

A counterfactually definite theory is described by a function (or functions) that 
map(s) tests onto numbers. The variables of the function(s) argument(s) must be 
chosen in a one to one correspondence to physical entities that describe the test(s) 
and must be independent variables in the sense that they can be arbitrarily chosen 
from their respective domains. 

This definition means that the outcomes of measurements must be described by 
functions of a set of independent variables. The definition applies, of course, to the 
major theories of classical physics, including Einstein’s special relativity. Counterfactual 
definiteness appears, therefore, as a reasonable and even necessary requirement of 
classical theories. However, most importantly, counterfactual definiteness restricts the 
use of variables to those that can be independently picked from their respective 
domains. However, a magnet- or polarizer-orientation, mathematically represented by 
the variable j, cannot be picked independently of the measurement times, which are 
mathematically represented by tn and registered by the clocks of the measurement 
stations. Once a setting is picked at a certain space-time coordinate, no other setting 
can be linked to that coordinate, because of the relativistic limitations for the 
movement of massive bodies and the fact that Bell’s theory is confined to the realm of 
Einsteinian physics and, therefore, excludes quantum superpositions. Thus any 
measurement is related to spatio-temporal equipment changes and the mathematical 
variables that describe the measurement need to represent the possible physical 
situations. 

Enter probability theory and we certainly cannot use the setting j as a random 
variable and the measurement time t as another independent random variable on the 
same probability space. The reason for this fact is rooted in the above explanation and 
can be further crystallized as follows. It is possible to define the setting j as a random 
variable on one probability space meaning that we may regard j as a function which 
assigns to each elementary event ω of a sample space Ω a so called realization of j e.g. 
( )1ω =j b . It is also possible, at least under very general circumstances, to formulate the 

measurement times as another random variable ( )t ω′ , where ω′  is an elementary 
event of a second sample space Ω'. Again, given some specific 1ω′  we obtain a 
realization e.g. ( )1 1t tω ′ = . 

However, the formation of a product probability space on which both random 
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variables j and t are defined presents now a problem. That space would necessarily 
contain impossible events (such as different settings for the same measurement times) 
with a non-zero product probability measure assigned to them. These facts can actually 
be formulated as a theorem stating that setting and time variables of EPRB experiments 
cannot be defined on one probability space [15]. 

Thus, the postulate of counterfactual definiteness in conjunction with the use of a 
setting variable restricts the independent variables additional to j in the argument of 
Bell’s functions A to a, physically speaking, narrow subset of variables that we denote 
by NB. This subset permits the physical description of static properties but cannot 
handle dynamic properties expressed by space-time dependencies. 

As a consequence, the choices that can be made for variables in addition to the 
setting variable j in Bell’s theory are extremely limited, particularly if these variables are 
related to space-time (or space and time). This limitation is so severe that it is 
impossible to describe general dynamic processes of classical physics with Bell’s 
independent variables. The way to describe general dynamic processes in Kolmogorov’s 
framework is by using stochastic processes. 

To describe a dynamics of EPRB experiments one needs to use two dimensional 
vector stochastic processes, which involves several subtleties that, if neglected, lead to 
incorrect conclusions. A general vector stochastic process is in essence a vector of 
random variables, such a (A1(tn), A2(tn), A3(tn), ∙∙∙), whose statistical properties change 
in time (we use here discrete time only). A precise mathematical definition can be 
found in Ref. [16], pp. 11-15. In relation to EPRB experiments we thus consider vectors 
such as (A1(tn), A2(tn)). 

A first difficulty that is usually encountered is related to the physics of spin mea- 
surements. According to Bohr, the outcomes of measurements on each separate side of 
the EPRB experiment are spin-up or spin down with equal likelihood, which appears to 
suggest stationarity or time-independence of the random variables A1(tn) and A2(tn). 
Bohr’s postulate, however, does not necessitate a time-independence of the statistical 
correlations between the random variables. This fact has been explained on the basis of 
a mathematical model involving time in Ref. [5] (pp. 55-60) and demonstrated by 
actual EPRB related computer experiments [7]. 

A second difficulty arises from the fact, explained in detail above, that the time and 
setting related variables of EPRB experiments cannot be treated as independent. This 
difficulty can be resolved by use of the following two-dimensional system of functions 
(vector stochastic process) on a probability space Ω: 

( ) ( )( ), .n
n n

t tnA Aω ω′
′j j                           (2) 

Settings and times are now included as indexes that are not independent. jn = a, b 
represents the randomly chosen settings at one measurement place and ,n′ =j b c  at the 
second. tn as well as nt′  are the respective measurement times. n = 1, 2, 3, ∙∙∙ indicates 
just the number of the experiment. Only one setting can occur at one given time in 
order to avoid physical contradictions and incorrect assignments of probability 
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measures. (Note that a generalization of the time-indexes to space-time stn is straight- 
forward.) 

Bell’s inequality then transforms to: 

( ) ( ) ( ) ( ) ( ) ( ) 3,n k mt t tt t tn k mA A A A A Aω ω ω ω ω ω′ ′ ′+ − ≤a b a c b c             (3) 

where the labels n, k, m are the appropriate, all different, experiment numbers for 
which the particular settings have been chosen. Equation (3) puts no restrictions on the 
correlations of EPRB experiments, because the actual experiments may now be 
represented by a countable infinite number of different functions instead of the three or 
four functions used by Bell. 

There do exist theorems that appear to prove the validity of Bell’s inequality for 
stochastic processes (the Martingales discussed in [17] are just special forms of 
stochastic processes). These theorems, however, do not use two-dimensional vector 
stochastic processes as used in Equation (2). They use, instead, counterfactual de- 
finiteness in conjunction with setting variables to arrive at three-, four- or higher 
dimensional stochastic processes (Martingales). Thus these theorems cannot encom- 
pass dynamic measurement processes [18] and time- (space-time-) related variables, 
because they would then imply the existence of events with more than one setting at a 
given measurement time and, therefore, involve impossible events with non-zero 
probability measure. Such theorems apply, therefore, only to the set of variables NB as 
defined above and do not apply to EPRB types of experiments that may involve 
dynamical processes in the measurement equipment. 

It is, therefore, imperative to view EPRB experiments in a different light. A violation 
of Bell-type inequalities need not be seen as crossing the border between the reasoning 
of classical Einstein type of physics and quantum mechanics, but indicating a possible 
dynamics in the interactions of particles and measurement equipment. This possible 
dynamics is what needs to be investigated, particularly as contrasted to the charac- 
terization of the measurement equipment by a completely static symbol [19]. 

5. Einstein Locality and Bell’s Reasoning Revisited 

Up to now, experimentalists have not used Bell’s theorem and its implications to search 
for a many body dynamics of local equipment. Instead, they have attempted to 
“uncover” the instantaneous dynamic influences of remote measurements, the so called 
quantum non-localities. Some consider these non-localities to be the most profound 
development of modern physics [5]. They maintain that the measurement of the 
entangled partner causes instantaneous influences over arbitrary distances. 

This search for influences due to distant events is based on the conviction, dating 
back to Bell’s original paper, that Einstein locality is necessary to derive Bell’s inequality. 
However, this is not the case. Bell’s assumption that λ is independent of the setting 
variable j is already contained in the postulate of counterfactual definiteness. The 
postulate of Einstein locality is not only redundant because of this fact, but does not 
require at all that λ be independent of all settings. Variables dependent on the local 
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setting and describing local many body interactions with the incoming particles are 
entirely permitted and necessary. It is counterfactual definiteness that requires that all 
additional variables represented by λ be independent of the setting variable. But why 
does our classical theory need to involve the setting variable in the way Bell has 
included it? One can use the setting variable as an index together with another index 
related to or representing space-time. These indexes are, of course not independent as 
was pointed out above for stochastic processes. 

From these facts, we can deduce that Einstein locality is not a necessary condition for 
Bell’s derivation, rather the opposite. Its correct implementation prevents the deriva- 
tion of Bell to go forward, as shown in Equation (3). 

6. Conclusion 

The major premise for the derivation of Bell’s inequality is counterfactual definiteness, 
which in connection with Bell’s use of setting variables restricts the domain of the 
variables in the argument of Bell’s functions A to a subset NB of general physical 
independent variables. NB does not encompass the variables that are necessary to 
describe a general dynamics of many body interactions with the measurement equip- 
ment. Using only the independent variables defined by NB, it is impossible to find a 
violation of Bell’s inequality, which therefore represents a demarcation between 
possible and impossible experience [9], not between classical and quantum physics. For 
a wider parameter space that permits the description of dynamic processes and includes 
space-time coordinates, the validity of Bell-type inequalities cannot be and has not been 
derived. This situation is reminiscent of that with the last theorem of Fermat before 
1984. There existed only rather trivial proofs of Fermat’s theorem for subsets of 
conditions, while a general proof was not known until Andrew Wiles supplied it in 
1984. Such more complicated and general proofs of Bell’s theorem have not been 
presented and, in the authors opinion, are not likely to be presented in the future, 
because they would need to remove the use of the setting variable j. 
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Abstract 
Influence of recombination centers’ changes on the form of phase portraits has been 
studied. It has been shown that the shape of the phase portraits depends on the con-
centration of semiconductor materials’ recombination centers. 
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1. Introduction 

Operation recombination processes allow to control the number of excess charge carri-
ers in semiconductor. Control of the concentration of charge carriers has special im-
portance at the production of semiconductor devices. There are many types of recom-
bination such as linear recombination and quadratic one, recombination through re-
combination centers and radiative recombination [1]-[3]. When recombination goes 
through recombination centers, the transition of the charge carriers from a free state to 
a bound one is independent of the presence of excess charge carriers of opposite sign. 
This means that there is no direct connection of an electron and the hole, that is, to 
complete the act first capturing one sign carrier by trap takes place and then capturing 
of the opposite sign does. There are many internal and external factors contributing to 
the growth and reduction of recombination centers. Changing the number of recombi-
nation centers may be undesirable for semiconductor devices and can disable them. In 
order to prevent interruption in the semiconductor devices work, it is necessary to 
conduct diagnostic of generation-recombination processes, and if it is necessary, re-
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place them. The process of generation and recombination is similar to the oscillatory 
process, since the increase and the decrease of concentration of charge carriers occur 
periodically. For analysis of oscillatory processes, phase portraits (PhP) are used effec-
tively, because they give the most complete picture of what is happening. In [4] using 
PhP the influence of frequency of variable deformation on the concentration of charge 
carriers in semiconductor illuminated by its forbidden zone’s light, it is shown that the 
frequency of the variable deformation has a strong influence on the shape of the PhP. 
However, in [4] influence of recombination centers in the form of PhP is not investi-
gated. In this paper, we investigate influence of the change of recombination centers in 
the semiconductor by PhP. 

2. The Continuity Equation Taking into Account the Combined 
Effects of Light and Variable All-Round Deformation 

The continuity equation expressing the change of concentration of charge carriers is 
described by the following expression 

1e
n

n g r
t q

∂
= − + ∇

∂
I                           (1) 

where g—rate of generation of charge carriers, r—rate of recombination of charge car-
riers, q—charge of electron, nI —the current density of electrons. In uniform sample, 
the continuity equation has the following form 

en g r
t

∂
= −

∂
                            (2). 

when illuminated by its forbidden zone’s light semiconductor becomes sensitive to ex-
ternal influences change of the absorption coefficient contributes to that [5]. At radia-  

tion generation is expressed by the following expression s
Ig

h
α
ν

= . Here, α-absorption  

coefficient, I—intensity of the light, h—Planck’s constant, ν —the frequency of the 
light. With the express permission of the transition frequency dependence of the absorp-
tion coefficient is ( ) ( )

1 2 1 21 2
g mA h E Ahα ν ν ν= − = −  where mν —the frequency of its 

forbidden zone’s light [1] [3] [6] A-certain coefficient which is defined by the following  

expression 
( )3 22 *

2 *

2 пр

e

q m
A

nch m
=  for direct allowed transitions 42 10A ≈ ×  [6], here 

* *
*

* *
h e

пр
h e

m mm
m m

=
+

—is the reduced effective mass, * *,e hm m —the effective mass of electrons  

and holes, respectively n —the index of refraction of the light, c—velocity of the light. 
Let’s consider the case when deformation of all-round strain effects on the semicon-

ductor. When the deformation of band gap changes as follows [7]-[9] ( )0g gE E ε= −Ξ , 
here Ξ—the constant of the deformation potential, ε—relative deformation. In the case 

( )0gE hν= , then if mν ν= , ( )( ) ( )
1 2 1 20gh Eν ε ε− +Ξ = Ξ  the absorption coefficient 

becomes ( )1 2Aα ε= Ξ . If the deformation changes periodically ( )0 1 sin dtε ε ω= + , 
whereas ( )( )1 2

0 1 sin dA tα ε ω= Ξ +  here ωd frequency of variable deformation, here  
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generation at light 
( )( )1 2

0 1 sin d
s

A t I
g

h
ε ω

ν

Ξ +
= . Equation (2) for this case is as follows: 

( )1 2
0 1 sin d

n g t r
t

ω∂
= + −

∂
, 

( )1 2
0

0

A I
g

h
ε
ν

Ξ
=               (3). 

At direct unpermitted transition frequency dependence of the absorption coefficient 

( ) ( )
3 2 3 23 2

g mB h E Bh h hα ν= − = −  where mν —frequency of its forbidden zone’s light,  

B—coefficient that is defined by the following expression 
( )5 22 *

2 * *

24
3

пр

e h

q m
B

nch m m hν
= , 41.3 10B ≈ ×  

[6]. 
Equation (2) for direct unpermitted transition will be as follows: 

( )3 2

0 1 sin d
n g t r
t

ω∂
= + −

∂
, 

( )3 2
0

0

B I
g

h
ε
ν

Ξ
=               (4). 

Taking into account the permitted and unpermitted direct transition continuity equ-
ation takes the form 

( ) ( ) ( ) ( )1 2 3 2
1 2 3 2

0 01 sin 1 sind d

A I B In t t r
t h h

ε ε
ω ω

ν ν
Ξ Ξ∂

= + + + −
∂

       (5). 

Let’s consider the case where the recombination through recombination centers 
takes place. According to statistics of the Shockley-Read, the rate of recombination is  

described by the expression: 
( )

( ) ( )

2

1 1

n p i
t

n p

c c pn n
r N

c n n c p p

−
=

+ + +
 Here, Nt—the concentra-  

tion of recombination centers, nc  and pc  coefficients capture electrons and holes, 
respectively [1] [3]. In this case, the continuity equation is 

( ) ( ) ( ) ( )

( )
( ) ( )

1 2 3 2
1 2 3 20 0

2

1 1

1 sin 1 sind d

n p i
t

n p

A I B In t t
t

c c pn n
N

c n n c p p

ε ε
ω ω

ω ω
Ξ Ξ∂

= + + +
∂

−
−

+ + +

 

        (6) 

3. Analysis of Phase Portraits 

Let’s consider the effect of deformation on a illuminated semiconductor. Let’s assume 
the following values: the temperature T = 300 K, the band gap Eg = 1.1 eV, the relative 
deformation ε = 10−6, the deformation potential’s constant is Ξ = 11.4 eV, lightl’s inten-
sity I = 1018 cm−2∙sek−1, the effective mass off electron *

nm  = 0.4∙m0, were m0—mass of 
free electron, the effective mass of holes *

pm  = 0.541∙m0, the coefficient of direct al-
lowed transitions A = 2 × 104 [6], the coefficient of unpermitted direct transition B = 
1.3 × 104 [6], the concentration of recombination centers Nt = 2 × 1013 cm−3, the elec-
tron capture coefficient cn = 4.4 × 10−10 cm3/sek, hole capture coefficient cp = 6.2 × 10−9 
cm3/sek, the intrinsic concentration ni = 2.2 × 1013 cm−3 [6] [10] [11]. Let the frequency 
of the variable all-round compression is ωd = 250 Hz. Let’s consider one period of vari-
able strain. Let’s consider the phase portrait in 0.3 seconds after the start of a periodic 
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deformation. The beginning of counting out is t = 0.3 sek, because by this time the car-
rier concentration becomes the stable value, 15 36 10 cmn −≈ ×  in which will returns pe-
riodically at the process of variable deformation of the sample (see Figure 1 and Figure 
2, point 1). As the deformation increases of the carrier concentration will increase and 
reach its peak 16 31 10 cmn −≈ ×  at point 2 as shown in Figure 1 and Figure 2. After 
this, decrease of the strain begins and the concentration at the point 3 has again signifi-
cance 15 36 10 cmn −≈ × . Further, when the strain is completely takes off the concentra-
tion takes minimum value 15 310 cmn −≈  at point 4. Upon completion of the period of 
hydrostatic compression at point 5 the concentration again returns to its primary value 

15 36 10 cmn −≈ × . This process will continue in this way until all parameters of the os-
cillatory system remain constant, and the phase portrait will take the form of a closed 
loop. 15 310 cmn −≈  

At prolonged effect of the strain, especially if the deformation is variable there is the 
probability of increase of recombination centers. The appearance of new defects and 
structural changes in the semiconductor caused by fatigue and wear material promote 
it. Let’s consider the effect of changes in the concentration of recombination centers in 
the form of phase portraits. Let the concentration of recombination centers grows in-
creases from 2 × 1013 cm−3 to 8 × 1013 cm−3, in this case the phase portrait will not be in 
the form of a closed loop, but it will curl into a spiral form (see Figure 3). The maximum 
value of the carrier concentration will be 16 31.6 10 cmn −≈ ×  when 13 32 10 cmtN −= × , 
and at 13 38 10 cmtN −= ×  the maximum concentration of charge carriers will be  
 

 
Figure 1. Dynamics of changes of the concentration of charge the carriers in 
the period of variable strain. 
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Figure 2. Phase portrait of the concentration (n) of charge carriers versus the 
rate of change of the charge carrier concentration (dn/dt). 

 

 
Figure 3. Phase portrait n versus dn/dt, for the case when the concentration of 
recombination centers variers from 13 32 10 cmtN −= ×  to 13 38 10 cmtN −= × . 
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15 36 10 cmn −≈ × . Such decrease of the concentration of charge carriers can be explained 
by the fact that the generation changes in a constant range, and the range of the recom-
bination increases with time. 

Figure 4 shows the phase portrait for the case when the concentration of recombina-
tion centers decreases from 2 × 1013 cm−3 to 2 × 1012 cm−3. In this case, when 

13 32 10 cmtN −= ×  the maximum concentration is 16 31.6 10 cmn −≈ × , and when 
12 32 10 cmtN −= ×  the maximum concentration is 16 32.9 10 cmn −≈ × . Increasing con-

centration of charge carriers is caused by that the range of the recombination term R in 
the Equation (2) decreases but the range of generation term g remains constant. 

Consideration of the phase picture’s transformation at the change of the system pa-
rameters is very important for understanding the physical processes in the system. 
Looking at the “phase portrait” under certain given values of the parameters it is possible 
to imagine all the possible movements in the system for any initial values. While you 
observe the modification in the picture at the change of the parameters, you represent all 
advances that the given physical system can have for all possible values of the parame-
ters. For example, the location and nature of the singular points on the phase plane make 
possible to do a number of conclusions about the processes in the system. 

Research of generational process by phase portraits method has practical importance 
because the phase portraits give the most complete picture of what is happening in the 
semiconductor. This allows make diagnostics of semiconductor devices and to replace 
them timely for preventing interruption of their work. 

 

 
Figure 4. Phase portrait n versus dn/dt, for the case when the concentration of 
recombination centers variers from 13 32 10 cmtN −= ×  to 12 32 10 cmtN −= × . 



G. Gulyamov et al. 
 

1667 

4. Conclusions 

Thus, the study of generation-recombination processes on the basis of the phase por-
traits allows us to make the following conclusions: 
• Increasing recombination centers in the semiconductor causes decrease of carrier 

concentration, and the phase trajectory rolls spirally toward the lowest values, both 
on the axis n and on the axis dn/dt. 

• Decreasing of recombination centers in the semiconductor causes with increasing 
carrier concentration, and the phase trajectory is set in a spiral towards the largest 
values as along the axis n as along the axis dn/dt. 

• The phase portraits permitted to conduct diagnostics of semiconductor devices 
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Abstract 
The paper introduces a simple theoretical model aimed to provide a possible deriva-
tion of the quantum fluctuations of the black body radiation. The model offers the 
chance of inferring and linking contextually quantum and relativistic results. 
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1. Introduction 

In 1859, Kirchhoff had the remarkable idea that a small hole in the side of a massive 
body of material containing a large cavity was the best experimental approximation of 
the concept of total absorber: the radiation penetrating through the hole was correctly 
assumed bouncing between the internal walls of the cavity with a little probability of 
escaping outside. With this viewpoint, still today acknowledged [1], Planck modeled 
1901 the thermodynamic equilibrium of the radiation field inside the cavity. Since any 
thermodynamic system is subjected to statistical fluctuations around the equilibrium 
configuration, Einstein proposed in 1909 a theoretical model about these fluctuations 
working on the Planck result. The Einstein model was focused essentially on the black 
body radiation assumed at the equilibrium in a cavity with perfectly reflecting walls. 
This assumption arose however the difficulty of explaining the thermalization mechan-
ism of the radiation field. The second law of thermodynamics states that any system left 
undisturbed for a sufficiently long time tends to the equilibrium state [2]; nevertheless 
the thermalization time of photons at temperatures below 109 K is expectedly very long, 
as their direct interaction is negligible compared to that with matter [3]. The fact that 
the thermalization process is slightly shortened in the presence of rarefied gas particles 
[4], shows that in fact the interaction of photons with matter, i.e. with the internal walls 
of the cavity, is required to explain the equilibrium condition of the black body at the 
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usual temperatures and times at which is tested the Planck law. The equilibrium condi-
tion is attained therefore considering partially reflecting walls of the cavity to promote 
the photon-solid matter interaction mechanism via continuous absorption and reemis-
sion of radiation. 

The problem of the quantum fluctuations of black body radiation is still today de-
bated for its theoretical interest [5] [6], in particular as concerns the thermalization 
mechanism of the photons in the cavity. Just this is the problem: any model aimed to 
describe the Planck law and its transient deviations from the equilibrium should infer 
explicitly this kind of interaction, without need of postulating it separately and pur-
posely. Moreover, the fluctuation of a thermodynamic system implies in general several 
non-equilibrium phenomena, e.g. local temperature gradients and configuration changes; 
specifically, are expected gradients of radiation frequency and mass evaporated from 
the internal surface of the cavity, whose dynamics contributes to the thermalization of 
photons. 

While focusing on the radiation field only seems reductive, the variety of phenomena 
involved when a black body system is out of the equilibrium suggests the usefulness of a 
comprehensive approach to the problem and introduces the three main motivations of 
this paper: 

1) To propose a model where the photon interaction with the walls of the cavity ap-
pears as a natural consequence of the theoretical approach underlying the black body 
physics. 

2) To highlight the thermodynamic aspects of the black body fluctuations with ref-
erence to their quantum basis, in particular the uncertainty principle. 

3) To show that relativistic results are also obtainable in the frame of a unique con-
ceptual model. 

After a preliminary outline of the main dynamical variables prospectively implicated 
in the problem, the model is specifically addressed to introduce not only the fluctuation 
but also the main physical laws expectedly useful to describe it. Despite the inherent 
complexity of the problem, the exposition is organized in order to be as simple, gradual 
and self-contained as possible. 

2. Preliminary Considerations 

Consider one free particle of mass m moving within a space range x∆  during a time 
range t∆ . It is in principle possible to express x∆  as a function of the Compton 
length Cλ  of the particle; so define the range size in Cλ  units putting 

, 1,hx n n
mc

∆ = ≥                            (1) 

where n is an arbitrary real number. The second position emphasizes that the range 
x∆  where the particle is allowed to move cannot be smaller than Cλ , which is an in-

trinsic physical property of the particle itself through its mass m. 
In principle, nothing hinders to express the numerical parameter n as the ratio c v , 

being v the component of velocity of the particle along x∆ : is attracting the chance 
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that 1n →  is consistent with Cx λ∆ →  whereas x∆ →∞  for 0v → , in agreement 
with the arbitrary size of x∆  and value of v in a given reference system R. The formal 
choice of introducing the range size in Cλ  units does not exclude thinking even a 
photon confined in x∆  during a time range t∆ , which compels therefore defining 

x c t∆ = ∆ . Dividing both sides of Equation (1) by c t∆ , one finds in R 

2 .x hn
c t mc t
∆

=
∆ ∆

 

Defining the link between time and space range sizes via c, in order to ensure that 
any massive particle is effectively confined within x∆  during t∆ , the positions 

1, ,x c v c
t t

ν∆
= = ≤

∆ ∆
                       (2) 

yield 

2
0 0, , , .cnE n mc E h

v
ε ε ν= = = =                   (3) 

The first equation simply rewrites 0 Eε ≥  as 2
mmc hν= , being ( )m c v tν ν= ∆ ≥ . 

Simple considerations show that these positions are physically sensible. The first eq-
uation reads indeed 

2, , ,h h v cmv h mc
c c
ν ν λ

λ ν
= = = =                   (4) 

i.e. mv  is related to the wavelength λ . Regard λ  with the physical meaning of wa-
velength of matter wave introducing a multiplicative factor 1γ <  necessary to express 
the wavelength as a function of v instead of c, as it appears in the third equation. Divide 
both sides of the first equation by the arbitrary number γ ; one obtains 

, , 1,mv h h c
c
ν γλ γλ γ

γ γ λ ν
′= = = = <

′
                (5) 

so that λ′  is in effect defined by v cγ′ =  instead of c; then 
2

2
h mc vp

cλ γ
= =

′
 

yields 
2

0
2 , , .h v mc mvp p

c
εε ε

λ γ γ γ
= = = = =

′
                (6) 

In other words, the matter wave propagating at rate v c<  implies λ λ′ <  in 
agreement with 0 Eε > . The result (6) is interesting because it is easy to show that 

( )21 ;v cγ = −                            (7) 

so, through the position n c v= , Equation (6) yield the De Broglie wave momen-
tum of the particle and contextually the relativistic expressions of energy and mo-
mentum, whereas Equations (1) and (6) imply the corpuscle/wave dual behavior of 
matter. 

To check this point, replace in the first Equation (6) vν λ′ ′= , so that 2 2v c hν ε′=  
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and thus ( )2 21 v c hε ε ν ′− = − ; hence 

2 2 21 .mc v c L hν ε′− − = = −  

At the left hand side appears the Lagrangian L of the free particle, which correctly 
results as a difference of two energies. Indeed by definition ( )h h vν λ′ ′= = pv , so that 

Lε = −pv . The concept of action dL t∫  also follows by consequence. Note that in the 
expressions (6) of ε  and p appears the ratio m γ ; admitting that this ratio is finite 
even in the limit v c→  if contextually 0m → , thus obtaining the undetermined form 
0/0, one finds 2

0m cε =  and 0p m c=  having put by definition 

( )0
0

lim .
v c
m

m m γ
→
→

=                            (8) 

This limit holds for a photon wave, in which case Equation (6) yields cpε = . For a 
massive particle instead 

2 21 , 1 .mv h hp t t v c
c c t
ν

γ γ
′= = = ∆ = ∆ −

′∆
                (9) 

If mv γ  is an invariant expression of momentum, then the right hand side must be 
an invariant quantity as well; in effect t′∆  for v const=  is the Lorentz transforma-
tion of t∆  between inertial reference systems displacing at rate v, in either of which 
the particle is at rest. Moreover it appears that γ  is not mere numerical factor, actually 
it allows linking the cases 0m ≠  and 0m =  depending on whether 1v c ≤ . 

These conclusions are inferred regarding in particular x∆  as a mere range size; i.e. 
the kinetic properties of a free particle follow simply as a consequence of the space and 
time ranges available to and compatible with its dynamical behavior. The frequency ν  
defines the range size 

cx
ν

∆ =                               (10) 

according to Equation (2); i.e., in agreement with the dual behavior of matter, the range 
size is related via ν  to the wavelength of the pertinent matter wave. 

Furthermore, an interesting consequence follows regarding x∆  as a physical con-
strain to the particle delocalization: for example one could suppose that x∆  is deli-
mited by two infinite potential walls that define its boundaries, in which case the par-
ticle must be thought bouncing back and forth in a given space range without chance of 
escaping. In other words, Equation (1) does not exclude that t the time t tδ∆ +  the 
particle could be located at x xδ∆ + , as instead it is purposely excluded now. If so, 
then x∆  is actually an one-dimensional cavity; thus the concept of frequency ν  is no 
longer the reciprocal time range 1t−∆  necessary for the photon to travel x∆ , rather it 
is related to the bouncing rate physically implied by the boundary potential walls. This 
is understandable thinking a steady photon wave with wavelength max 2 xλ = ∆  or mat-
ter wave with wavelength max 2 xλ γ′ = ∆  of Equation (5), both additional to all wave-
lengths allowed in the cavity. So, owing to Equation (2), the lowest frequencies allowed 
for photon or massive particle traveling through x∆  are respectively with obvious 
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notation 

0 0 0

max max

1 1 1, ;
2 2ph m ph

c v v c v c
t t

ν ν ν
λ λ γ γ

= = = = =
′∆ ∆

             (11) 

Consequently the minimum energies 2hν  and ( ) 2h v xγ∆  regard x∆  as a one- 
dimensional cavity where matter particles or even photons are confined without chance 
of escaping. Note that maxλ  and maxλ′  have been inferred in Equation (11) after hav-
ing simulated a confinement mechanism constraining any particle to move within x∆ ; 
it is easy to show however the possibility of reversing this path, i.e. that once admitting 
the existence of the limit momentum wavelengths maxλ  and maxλ′  it is possible to in-
fer a mechanism that constrains the motion of any particle within x∆  only. This point 
is highlighted just below and later in the Section 7. 

Implement to this purpose the case of a particle bouncing elastically back and forth 
against either boundary wall that delimits the confinement range, Equation (11); the 
momentum change of the particle reads thus 2p mv γ∆ = . If the bouncing lasts a time 
range t∆ , the force acting on the wall is 

2 ;
pw

p mvcF
t xγ

∆
= =

∆ ∆
 

the subscript pw  stands for “potential wall” to stress that this particular range is able 
to confine any particle. It is clearly possible to express F in Planck units via an appro-
priate multiplicative factor q; then the last result reads 

4 2 ,
pw

c mvcF q
G xγ

= =
∆

 

which yields 

3
2 .pw

mvGx
q cγ

∆ =  

This is not a hypothesis “ad hoc”, as the Planck units have fundamental worth, being 
based on dimensional relationships involving fundamental constants of nature. It is 
immediate to describe in this respect the particular case of photon confinement taking 
the limit for v c→  and 0m → , which yields 0m mγ →  according to Equation (8). 
Putting then 0M m q=  this limit corresponds to the confinement of a photon in x∆  
and reads 

2
2 ,co

MGx
c

∆ =                             (12) 

which expresses the condition even for a photon to be trapped inside any x∆  of such 
size together with M by consequence of the gravitational effect of this latter. For ob-
vious reasons, the subscript pw  has been replaced by that stressing the idea of M dri-
ven confinement. 

Start eventually from the identity (1) x h mv∆ ≡  to obtain p x h γ∆ =  thanks to 
Equations (1) and (3); being by definition 1γ < , one infers p x h∆ >  whatever 0v ≠  
might be in the reference system R. Moreover, replacing p via the first Equation (6) as 
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well, one also finds 2p x h v x cγ ε∆ = = ∆ ; thus h v t cγ ε= ∆  yields ( )c v h tγ ε= ∆  
in the same R. As of course 1c vγ > , reasoning exactly as before one finds t hε∆ > . 

Consider now the identity ( )o op p p p≡ + − , being op  a constant momentum 
component, and note that the right hand side defines an arbitrary range p∆  whose 
upper and lower boundaries are op p+  and op  respectively. Is essential the fact that 
both p and op  are arbitrary and independent each other, so that the same holds for 
the range size and its boundary coordinates. Regarding in an analogous way even tε∆ , 
the straightforward conclusion is 

, .p x h t hε∆ ∆ > ∆ ∆ >  

Apart from the simplicity of reasoning, is remarkable the fact that the most typical 
feature of the quantum physics, the Heisenberg inequalities, has been obtained from the 
relativistic Equation (6). 

Equation (3) and other results of this section have been inferred directly from general 
considerations about the properties of the space time [7] in the frame of a unique and 
comprehensive approach “ab initio”. Equation (7) will be examined further on in the 
Sections 4 and 7 to clarify how these considerations are linked to the quantum 
fluctuations. 

3. Fluctuations 

This section introduces the fluctuation of all variables previously introduced, with the 
aim of finding possible links between these variations. Differentiate 0 nEε =  to simu-
late the physical idea that both energies are subjected to fluctuate: as by definition the 
dynamical variable of 0ε  is the mass m whereas that of E is the frequency ν , write 
thus according to Equation (3) 

2
0 ,En E n v

c
δε δ δ= −                         (13) 

being 
2

0 , .c m E hδε δ δ δν= =                       (14) 

These positions relate in general mδ  and δν  to vδ . Thinking specifically the 
black body cavity, for example, the first Equation (14) describes the fluctuations of the 
amount of mass evaporated from the internal walls of the cavity, the second Equation 
(14) concerns the corresponding frequency fluctuation of the radiation field in it con-
tained. Equation (13) relates them and requires temperature fluctuation too, although 
not yet explicitly concerned. To clarify this point note that the changes 0δε  and Eδ  
are defined around the respective 0ε  and E, which can be regarded as equilibrium 
values. For the following purposes it is useful to calculate the average fluctuations 

0δε  and Eδ  considering arbitrary fluctuation ranges around an arbitrary refer-
ence energy value. For instance Eδ  is calculated considering various ranges jEδ  
of values around the equilibrium value eqE  and taking their mean value; if 1 j N≤ ≤ , 
then 1

jjE N Eδ δ−= ∑  is the average fluctuation of the system matter+radiation; the 
same holds indeed to define 0δε . In principle therefore 0δε  and Eδ  are inde-
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pendent of the respective eqE  and 0eqε , which will be denoted in the following as E 
and 0ε  for simplicity of notation. Trivial manipulations of Equation (13) yield 

2 2
0 ,n Y E E n Yδε δ ζδ ζ= = =                     (15) 

where 
2

2
1 1 , .

24
E E E vY

E n cn
δ δε δ δδε
δε δ δε

 
= − − =  

 
             (16) 

In general 

( ), , , , mY Y r v v r δν δ
δν

= =                      (17) 

emphasizes that the variables of the problem are four and that only Y depends upon 
vδ . Regard first Y and 2n  separately and introduce the mean value Y  calculated in 

arbitrary ranges of all variables except vδ . Thus 

1 1 1 d d dY Y v m
v m

ν
ν

=
∆ ∆ ∆ ∫∫∫  

defines 

( ) 1 ;k k v
Y

δ= =                           (18) 

of course 2 1v v v∆ = −  denotes an arbitrary range of velocity components with respect 
to which is integrated dY v , whereas vδ  is the velocity fluctuation concurring togeth-
er with mδ  and δν  to define the relationship (13) between Eδ  and 0δε . The no-
tation emphasizes that k is actually an arbitrary numerical parameter, i.e. a scale factor 
dependent on vδ  only, such that for example 

( ) ( )0 0, ;k E kE k kδ δ δε δ ε= =  

by consequence k is also a conversion factor such that kE  and 0kε  can be related to 
energies with different physical meaning with respect to the initial E and 0ε . 

Among the possible values of Y, calculate Equation (15) with the specific value Y ; 
hence, owing to Equations (3) and (13), 

2

2 2
0 0

, .E k Ek Y Y
n

δ
δε ε

= = ≡                       (19) 

This result yields: 
2

2
2 2 2

0 0

1E k Ek v k
n c

δ
δε ε

= = =                    (20) 

These equations are obtained simply averaging the ratios of Equation (19). It worth 
emphasizing that 2v  is linked to the average temperature in the case of an ideal gas 
where by definition the particles are non-interacting; this shows that v is the velocity of 
matter particles evaporated from the walls of the cavity. So 2v  is related to the equi-
librium temperature of the cavity containing the black body radiation field. In this 



S. Tosto 
 

1675 

one-dimensional approach x∆  is the distance between two matter boundary surfaces 
confining m and the photon wave of frequency ν , both subjected to the respective 
fluctuations mδ  and δν . Also, vδ  is the obvious consequence of the expected 
temperature fluctuation around the average value pertinent to 2v . 

So far the first Equation (3) is the only equation correlating E and 0ε . To find a 
second equation, the one linking E and v, consider now Equation (13) that involves the 
variables appearing in (17) and yields 

( ) ( )2 , ,E vn n E v v E
c E

δ ζ ζ ζ
δ

− = = =                  (21) 

It is evident that a hypothesis has been introduced regarding 2Yn  of Equation (15) 
as the function ( )Eζ . In principle Equation (21) is not new with respect to Equation 
(15); however the form of this latter was useful to infer Equation (18) and the tempera-
ture implied by Equation (20), whereas Equation (21) is now implemented thanks to its 
analytical form easily integrable. The solution 

( ), dE
E o

Ev Z c E
Z p

ζ= =
+ ∫                      (22) 

is the sought second equation linking E and v; the notation emphasizes that the integra-
tion constant op  has physical dimensions of momentum. Put 

2
0 1 2 ,E Eζ ζ ζ ζ= + + + ⋅ ⋅ ⋅                         (23) 

which yields at the first order of approximation 

2
0 1

, ;
2 o

o

Ev p const
p E c E cζ ζ

′= =
+ +

                 (24) 

if the position (23) is correct, then even this lowest order of approximation should give 
a sensible result. The validity of Equation (24) is preliminarily proven recalling Equa-
tions (3), according which v yields 

1
0 2

op c Ecn
v E

ζζ= = + +  

and then 
2

1
0 0 ;

2o
EnE p c E ζε ζ= = + +  

so, neglecting preliminarily the third addend at the right hand side, this result reads 

0 0E Eε = + , having put 0 1ζ =  and 0ocp E= . With the integration constant 0op ≥ , 
therefore, the result is nothing else but the statement 0 Eε ≥  of Equation (1). Clearly 
with an appropriate choice of the integration constant this inequality holds even re-
taining the 1ζ  term. 

Before proceeding, it is useful to verify further the validity of the equations hitherto 
inferred, in particular as concerns the physical meaning of the series expansion (23) of 
Equation (15). A simple one-dimensional approach is still enough for the present 
purposes. 
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4. Check of the Preliminary Results 

Recalling Equations (10) and (1), trivial manipulations show that Equation (19) 
reads 

2, .CE h D m D kδ δν νδ λ ν= = =                     (25) 

The first equation links mδ  and δν : if in particular Eδ  is due to the change of 
photon frequency in x∆ , then it can be nothing else but the quantum fluctuation of 
the radiation field in the range; also, δν  is related to the mass fluctuation rate mνδ  
occurring at a typical length scale of the order of the Compton length Cλ  that defines 

Eδ  through D. The free parameter k fits the basic physical definition 2
Cλ ν  of diffu-

sion coefficient to the appropriate value in specific situations. Specifically, as it will be 
shown below, this result also implies regarding x∆  as the distance separating the sur-
faces of two bodies of matter: thinking for example to the black body, m can be the 
mass of a particle evaporated from the internal surface of the cavity and diffusing 
throughout the cavity, whose size x∆  is defined as a function of n. 

From Equation (25) follow interesting consequences. Rewrite 

( ) 1log , ,o
DE m V

m
δ δ β

β ν
= =                    (26) 

where oV  is an arbitrary constant volume. 
Note that ( ) 1mν −  has physical dimensions time/mass; thus β  is the particle mo-

bility, also defined as velocity/force. Moreover D β  has physical dimensions force × 
length, i.e. pressure × volume. 

The dimensional analysis suggests that D β  should be related to, and thus propor-
tional to, Bk T . Putting indeed BD k Tβ ∝  and merging the proportionality constant 
with k of Equation (18), one finds concurrently three relevant results. 

First the well known law pressure volume Bk T× = ; of course this result holds for non 
interacting particles, as in the case of an ideal gas, whereas T is clearly linked to 2v  
previously found. With specific reference to the present model, the gas is that formed 
by evaporation of matter from the internal walls of the cavity containing the Planck 
radiation; 2v  is related to the temperature of gas particles in equilibrium with the 
surface of the cavity. 

Moreover 

, , log ,B B
o o

D C mk T E k T C
C V

δ δµ µ
β

 
= = = = 

 
           (27) 

where C is the concentration of m in oV  and o o oC m V=  is a constant. So the 
former equation is the well known Einstein equation linking diffusion coefficient and 
mobility. 

Eventually, the third equation defines the chemical potential; this clarifies the physi-
cal meaning of Eδ  and suggests the chance of identifying oC  as the equilibrium uni- 
form concentration that implies 0µ =  in correspondence to 0mδ = , which indicates 
the end of the diffusion process. 
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In effect, the diffusion equations are contextually obtainable. Dividing both sides of 
Equation (25) by xδ , one finds 

E mD
x x x

δ δµ δν
δ δ δ

= =  

i.e. this equation defines a force F acting on m. It is easy to convert force into mass flux 
J, having physical dimensions of mass per unit time and surface, dividing both sides by 

oV ν . Recalling that by definition F xδµ δ= − , this equation reads 

, .
o

C FJ D J
x V

δ
δ ν

= − =  

This is the well known Fick diffusion law, from which also follows the second Fick 
law with the help of an appropriate continuity equation that excludes mass sinks or 
sources within oV . Given a function ( ),f f x t= , its differential  

( ) ( )f f x x f t tδ δ δ= ∂ ∂ + ∂ ∂  

subjected to the condition 0fδ =  reads 0xv f x f t∂ ∂ + ∂ ∂ =  with xv x tδ δ= ; so 
with vector notation f f t⋅∇ = −∂ ∂v . Putting by definition f=G v , where G is an ar-
bitrary vector to be specified, the result f f t∇ ⋅ − ∇ ⋅ = −∂ ∂G v  yields f t∇ ⋅ = −∂ ∂G  
once having put 0∇ ⋅ =v . The solenoidal character of the velocity vector excludes 
sinks or sources of matter crossing from inside or outside the surface of an ideal flux 
pipe around v. Also, it is clearly convenient to identify the arbitrary vector G with the 
flux vector J and thus f C= . If so, then f t∇ ⋅ = −∂ ∂J  yields the component 

, C CC D
x x t
∂ ∂ ∂ = = ∂ ∂ ∂ 

J v  

i.e. the definition of mass flux and the one dimensional second Fick law. 
Eventually, Equation (26) reads with the help of Equations (3) and (27) as fol-

lows 

( )log ,B o o
o o

m mE k T m M M const
M M

δ δ= =  

Suppose now that m is the j-th mass in a system constituted of a number totj  of 
masses, i.e. actually it is regarded here as jm . Next sum up this equation over j, i.e. 
over all masses of the system; one finds thus 

log , , .j
B j j o j j

j j o

m
E k T M m

M
δ δ= Π Π = Π =∑ ∑  

Since by definition log log logj j oδ Π = Π − Π , assuming oΠ  independent of the 
index j one finds 

( )log , log .B j j o o o
j

E k S S
T
δ

= Π Π + = − Π∑  

This equation defines the entropy S a function oS  apart as 

, log ;o B j j
j

E S S S k
T
δ

= − + = − Π Π∑  
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note that oS  is not necessarily constant, simply it does not depend upon j, e.g. it can 
depend on T or pressure and so on. So at constant T one finds oE TS TSδ − = − . These 
contextual results show that the driving force of the Fick laws is the entropy increase, i.e. 
the second principle of the thermodynamics. 

All this is linked to the further information provided by Equation (25). Noting that 
( )m m mνδ δ ν δν= − , this equation yields 

( ) ;
mE mD D

δ νδ δν
δν δν
+

=                      (28) 

this equation relates Eδ  to ( )mδ ν ; depending on the sign of this latter, one can have 
mass fluctuations corresponding to δν , to which is related the energy fluctuation Eδ . 
If in particular m constν = , then m mνδ δν= −  implies h D mδν νδ= . It appears that 
the energy fluctuation δν  of the radiation is linked to the evaporation or deposition 
rates mν  of matter on or from the contact wall; their relative balance determines the 
increasing or decreasing amount of mass in the cavity correspondingly to the concur-
ring oscillations of δν . Eventually note that the left hand side of Equation (28) defines 
the energy h m Dε ν ν= +  to which contribute not only the radiation but also the mat-
ter through its evaporation rate mν . This conclusion automatically includes the inte-
raction between photon and solid matter, without excluding of course that of photons 
with gas particles evaporated from the surface. Moreover the model provides thermo-
dynamic information able to describe both the equilibrium state of the system and its 
transient deviation during its fluctuation. 

Combine now Equations (24) and (6) to eliminate v; as h mvλ=  owing to Equation 
(4) and thus 

,E pc v cγ γε= =  

the result is 

( ) ( )22 2
0 1 2 , .o

v pcE pc E pc p c w w
c

ε ζ γ ζ
γ γε

= + + = =  

So 

( )
2

2 2 1
0, .

2o
E pcE Z pc p c const Z

w w w
ζε ζ γ= + + =              (29) 

Put preliminarily 1 2 0ζ ζ= = , i.e. neglect the first and second order terms of Equa-
tion (23); this equation reduces to 0ζ ζ≈  and reads then 

( ) ( )222 2 , , , .op constE Z constp c m c p p m m
w w c mc

ε ε ε
ε

′ ′ ′ ′ ′ ′= + = = = =  (30) 

Equations (29) and (30) concern both arbitrary square energies, a scale factor apart 
for the three quantities characterizing the initial ε  and p of Equation (6), and thus 
are physically equivalent provided that 2p v cε′ ′ ′= ; this requires of course 

v p v pε ε′ ′ ′ =  and implies an appropriate scale factor that converts the initial m to 
m′ . In effect the variables of the problem are three, i.e ν , m and v, i.e. n; whatever 
the specific value of ( )Z Z E=  might be, the constrains of these positions are three 
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as well, i.e. the factors linking the last three equations. It is worth noticing that if 
m m′=  for const mc= , then ( ) ( ) ( )22 22 2 2p c pc mcε ε′ ′− = − =  by definition. Since 
this conclusion holds even if referred in particular to different coordinate systems in 
reciprocal constant motion, this shows that these equations represent invariant ex-
pressions of energy. 

Consider now that in Equation (29) 

( )
2

22 21 1 1 :
2 2 2
E pc E pc

w
ζ ζ ζ

γε γ ε= =  

this term having the form 2p ε  with 1 0ζ <  is a well known result of quantum grav-
ity, which solves three cosmological paradoxes [8]. In conclusion, combining the zero 
order approximation of Equation (23) with Equation (6) one finds the classical expres-
sion of relativistic energy; the additional first order term accounts for the quantum 
correction of the rest energy 2mc  of cosmological significance. The Section 7 will 
show that actually even this result is not accidental. 

The fact that 1 0ζ <  fits the physical meaning of the literature result stimulates a 
further idea. As ( ) 0E v c ε=  according to Equation (3), Equation (23) yields at the 
first order 

0 1 0
0 1 0, ;c v v v c v

c c
ζ ζ εζ ζ ζ ε

′+ ′= = = +  

in effect 1 0ζ <  is compatible with v c′ < . The form v av b′ = +  suggests that v and 
v′  could be, at least approximately, velocity components expressed in different refer-
ence systems. Is thus attracting the idea of implementing v′  to define n c v′ ′=  and 
then 0 n Eε ′ ′ ′=  in analogy with Equation (3) but in a different reference system. 
Moreover admit for generality that 0ε ′  and E′  depend on new mass m′  and fre-
quency ν ′ ; thus, differentiating 0 n Eε ′ ′ ′=  exactly as before to infer Equation (21), 
one finds 

2 .E v vn n
c E c

δ
δ

′ ′ ′
′ ′− =

′
 

In effect v′  has no peculiarity with respect to v previously introduced; both are ar-
bitrary velocities, both fulfill the same kind of connection between 0ε  and E. If this 
reasoning is correct, then even this result must have a sensible physical meaning. The 
check is again carried out solving this primed differential equation. One finds 

2 2 2
o

E cv
E c p ′

′
′ = ±

′ +
 

and thus 

2 2
.

1

v m cE
v c

′ ′
′ = ±

′−
 

Since E c′  is momentum, this result reads 
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2 2

2 2
, 1 ;

1
m vp v c

v c
γ

′ ′
′ ′= ± = −

′−
                 (31) 

i.e. is admissible Equation (21) with the right hand side having the form v c  instead of 
the definition (23) of ζ . In fact, this conclusion is still compatible with Equation (23) 
itself simply putting 0 0ζ =  as a particular case in an appropriate reference system. It 
is instructive to obtain this last result even through a different reasoning. 

Calculate via the second Equation (6) 
2

2 .mc
v v
ε γ

γ
∂ ∂

= −
∂ ∂

 

Split this equation putting by definition 

2
2 , .p p mc

v v
ε γ

γ
∂ ∂

= = −
∂ ∂

                      (32) 

The second position, allowed in principle by dimensional reasons, allows to handle 
the first equation as follows with the help of the first Equation (6) 

( )2 .
pvv pp vγ

ε ε ε
∂∂ ∂

= − = −
∂ ∂ ∂

 

Note that there is no reference to vδ  in this last result, which instead relates the 
changes of p and pv  to dε  of the energy. Assume therefore that these changes are 
due to dm  and not to dv . In this case, the first Equation (6) yields 

2
2

21 .v
c

γ = −                             (33) 

This result is confirmed by the second Equation (32), which yields with the help of 
the third Equation (6) 

2 ;mv mc
v
γ

γ
∂

= −
∂

 

this equation reads ( )2d dv c vγ γ = −  and is easily integrated. The result is 
2

2
2

1 12 ,
2 2

vconst
c

γ = −                        (34) 

being 2const  the integration constant. It appears that putting 1const =  the result 
coincides with that previously found, despite here has been considered the dependence 
of p and ε  on v. It is easy to realize that only the positions (32) allow a consistent cal-
culation of γ  in Equations (33) and (34); for instance, replacing Equation (32) with 
the vγ ε∂ ∂  and ( )2p mc vγ γ= ∂ ∂ , in principle also possible because γ  is dimen- 
sionless, would imply inconsistent expressions of γ . This conclusion agrees with the 
result of Equation (31). 

It appears in conclusion that the term 0ζ  is enough for the purposes of the present 
model, while it is confirmed that the zero order term of the series (23) accounts for 
“classical” relativistic results. 

Implement then Equation (21) in the simplest form 
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0 0 .Eδε ζ δ=                            (35) 

Comparing with Equation (19), 0ζ  is nothing else but anyone among the possible 
values of 2k n . Therefore, the third equation of the problem that regards separately 

0δε  and Eδ  reads 

0 0 02 , ;kE E
n

δ δε δ ζ δε= =                  (36) 

the physical meaning of this equation is to consider the averages of all possible Eδ  
and 0δε  compatible with the given E and 0ε ; in effect the arbitrary changes Eδ  and 

0δε  are independent of the respective E and 0ε , as already remarked. 
In conclusion, to the four variables appearing in (17) correspond three Equations (3), 

(21) and (36); the free parameter k introduced in (18) is a freedom degree of the prob-
lem as a function of which are in principle determinable various E, m and v, i.e. n. 

These results have been hitherto obtained without specific reference to the black 
body cavity and even regardless of the Planck formula. The next section concerns just 
this topic. 

5. The Black Body 

To specify the previous results in the case of radiation in a black body cavity of arbi-
trary volume V, it is useful to consider first the Planck law. Noting that this law reads 

( )
3

3
24π , , ,

exp 1Pl
B

N ch V N
V h k T
ν

ν ν
ν

ρ
νν

= = =
−

 

let us examine the three factors that define Plρ . 
The degeneracy factor 2 of the Bose statistical distribution of photons with the same 

energy corresponds to the orthogonal polarizations of light [9], to which is due the 
usual elliptic polarization of a light beam of frequency ν . 

The factor 4π  suggests an integration over a solid angle dΩ . The physical meaning 
of this statement is clarified below. It is anticipated here that the integral concerns the 
random impacts of photons on various points of the internal surface of the cavity be-
cause of multiple reflections; accordingly any element of this surface thermalizes the 
radiation trapped inside V. 

The notation N Vν ν  of the number density of photons with frequency ν  empha-
sizes that just the wavelength c ν  defines the volume Vν  enclosing a cluster of Vν  
photons with the same frequency ν , whereas instead the true volume V of the cavity is 
seemingly irrelevant; it is replaced by the local volume defined by the cluster of photons 
themselves, supposed of course non-interacting at the usual temperatures at which is 
modeled and tested the black body radiation law. Also this crucial point is concerned 
below. 

With these hints, is really easy to infer the Planck result even in the present physical 
frame only. 

First of all, Nν  is found implementing once more Equations (26) and (27). Integrate 
Equation (26) with the help of Equation (27) between two arbitrary energies ε  and oε ′ ; 
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one finds ( ) ( )logo B ok T C Cε ε ′− = . It is possible to write oC C Cν= ± , because in 
principle C can be greater or lower than the constant oC  of interest for the present 
reasoning; then this last equation reads ( ) ( )exp 1o o BC C C C k Tν ν ε ′= ∆ ± . Of course 

o o oC m V=  and oC m Vν ν=  are referred to the same arbitrary volume oV ; more- 
over the masses om  and mν  are proportional to the respective numbers oN  and 
Nν  of particles, as they refer to a unique material or kind of particle. Hence one finds 
with these positions 

( ), log
exp 1

o
o o B o

o

B

NN k T C C

k T

ν νε ε
ε ε

′= = −
 −

± 
 

          (37) 

Note that oε  has the same form of µ  of Equation (27) a constant oε ′  apart, i.e. it 
is chemical potential. This result is nothing else but the well known statistical distribu-
tion of bosons and fermions as a function of the energy; their occupancy numbers of 
quantum states are inferable in general from the respective profiles as a function of 
temperature for either sign, instead of being postulated “a priori”. 

This point does not need further comments. Here, with the minus sign and putting 
hε ν∆ = , one calculates the Planck equation. 

The number density N Vν ν  is calculated via a variable volume Vν  dependent 
upon the wavelengths allowed in the cavity compatibly with the fixed real volume V. 

Let the cavity contain Nν  photons of frequency ν  that define the energy density 
( ),Tη η ν=  in the physical volume Vν ; then 

3

, ,h N cV
V

ν
ν ν

ν ν ν

νη η
ν
 = = =  
 

∑ ∑                  (38) 

where clearly ν  is in general anyone of the nν  frequencies allowed in the cavity. In 
this equation, the wavelength is regarded as measure unit to express the size of each Vν , 
which in this way results consistent by definition with the existence of standing waves. 
Moreover the obvious condition 

,V Vν
ν

= ∑                          (39) 

is fulfilled because V has not yet been specified. Whatever V might be, the sum over the 
various ν  can be replaced by that over an arbitrary real number n via the position 

onν ν= , being o c xν = ∆  the lowest frequency allowed in a cavity of size x∆ . If the 
various ν  are very close each other, then n can be regarded as a continuous variable; if 
so, the sum can be replaced by an integral between 1on = , in order to include oν , and 
an arbitrary max 1n > . 

In this case one would find ( )2
max1 2oV V n−≈ − ; the notation emphasizes that re-

placing sum with integral implies a numerical approximation. Despite this result fulfills 
the obvious requirements of increasing and finite V for maxn →∞ , one would expect 

oV V> : by definition, indeed, oV  is the volume ( )3
oc ν  pertinent to the lowest fre-

quency only. Moreover if maxn  would be plain real number, the limit max 1n →  would 
yield 0V → ; so the energy Vη  inside the cavity should vanish, unless admitting 
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η →∞ . These inconsistencies, not merely numerical but physical, can be due to noth-
ing else but to the low values of n contributing to the sum badly approximated by the 
integration; indeed it is true that maxn →∞  behaves in fact like a continuous variable. 
In effect the contribution of the low values of n is underestimated by the integration. 
Examine therefore the chance that n can take integer values only: in this case one finds 

oV V>  even for the lowest max 2n = , whereas ( )3 1.202 oV Vζ= ≈  for maxn →∞ . 
Also, V remains anyway finite because n cannot longer approach arbitrarily to 1. 

It is known in effect that the steady wavelengths nλ  allowed within a range x∆  
must fulfill the condition 

,nx nλ∆ =                               (40) 

with n integer; in other words, the electric field of an electromagnetic wave must vanish 
at the boundaries of its physical volume of confinement, correspondingly to wave nodes 
at the boundaries. 

The seemingly innocuous position (39) implies thus the energy quantization in the 
cavity. Equations (2) and (3) yield indeed 

,n

n

hhc hcE
x n n

ν
λ

= = =
∆

 

i.e. 1h Eν =  and 2 2h Eν =  and so on for all nλ  allowed in the cavity once regarding 
x∆  as its size. If the photons are assumed non-interacting at the usual T of interest for 

the black body physics, the sum (38) consists of independent terms. Considering one of 
these terms, νη , and differentiating it, one finds at the first order 

, ;h N T
V T

ν ν ν
ν ν

ν

ν η ηη δη δν δ
ν

∂ ∂
= = +

∂ ∂
                 (41) 

thus 

( ) ( ) .
N V N VNh h T

V T
ν ν ν νν

ν
ν

ν
δη ν δν δ

ν
 ∂ ∂

= + + ∂ ∂ 
           (42) 

To highlight the physical meaning of the differentials δν  and Tδ , implement this 
equation to calculate the energy density per unit range δν , i.e. 

( ) ( ) .
N V N VN Th h h

V T
ν ν ν νν ν

ν

νδη δρ ν
δν ν δν

∂ ∂
= = + +

∂ ∂
          (43) 

All frequencies allowed in the cavity contribute to η  according to Equation (41), 
whereas Equation (43) selects some frequencies in the range δν : i.e. ρ  is an energy 
density per unit frequency range. All addends share the number density N Vν  of a 
cluster of photons with the same frequency; regard thus this ratio as characteristic 
property of the cluster. Consider now that the thermal equilibrium inside the cavity 
requires the exchange of energy between the various Vν  existing in the cavity. Since 
however the photons of each cluster have been assumed non-interacting, this exchange 
cannot be that between different clusters; hence the thermalizing interaction can be 
nothing else but that with the cavity surface enclosing all photon clusters and possibly 
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with the gas matter evaporated from the walls of the cavity. This fact suggests that the 
equation 

dρ ρ′ = Ω∫                            (44) 

defines the radiation energy density per unit frequency ρ′  at the thermal equilibrium 
with the whole internal surface of the cavity; the corresponding d dρ ρ′= Ω  
represents instead the local interaction of each cluster of photons per unit solid angle, 
i.e. with any elementary surface element 2d ds r= ∆ Ω . In effect the integral represents 
by definition the sum of all local interactions dρ Ω  of the photon cluster with ele-
mentary elements ds  of internal surface of the cavity; this supports the idea of 
regarding ρ  as a local quantity and ρ′  as an average global quantity. In other words, 
the integral corresponds to and represents the cumulative effect of all internal reflec-
tions of each photon cluster consistent with the physical model of black body cavity. 
This is equivalent to say that ρ  concerns the local thermal equilibrium of the photon 
cluster with one arbitrary surface element ds  only, ρ′  represents the complete 
thermal equilibrium after interaction of the cluster with the whole surface of the cavity. 
So ρ  and ρ′  differ numerically because of the amount of corresponding energy 
density exchanged between radiation and surface. 

If Equation (44) leads to the correct formulation of the Planck law, then it also 
proofs indirectly that the photon thermalization mechanism occurs at the surface of 
the cavity. 

The integration of dρ Ω∫  is immediate admitting that the interaction process is iso-
tropic, i.e. the energy exchange occurs uniformly for all frequencies and that any al-
lowed ν  is not appreciably perturbed by the small energy loss; being the radiation 
field at the equilibrium uniformly distributed inside the cavity, there is no dependence 
of ν  upon the arbitrary direction along which is defined δΩ . So the result of the in-
tegration is simply 4πρ ρ′ = . Equation (43) yields therefore the following energy den-
sity per unit frequency thermalized by all possible paths of the ν-th cluster of photons 
in the cavity: 

( ) ( )
4π 4π 4π .

N V N VN Th h h
V T

ν ν ν νν

ν

ν δρ ν
ν δν

∂ ∂
′ = + +

∂ ∂
           (45) 

Noting that 

( ) ( ) ( )
,

N V N V N VN
T T V T T
ν ν ν ν ν νν

ν

ν ν ν ν νν
ν ν

∂ ∂ ∂∂ ∂ ∂
= = +

∂ ∂ ∂ ∂ ∂ ∂
 

Equation (45) reads then 

( )
4π 4π 1 4π .

N VN NT Th h h
V T V T

ν νν ν

ν ν

ν δ ν δρ ν
ν δν δν

∂ ∂ ∂ ′ = + + + ∂ ∂ ∂ 
        (46) 

This expression can be considerably simplified because 

( )
3

3

exp 1o
B

N
N c

V h k T
ν

ν

ν
ν

−=
−
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has a maximum as a function of ν , which suggests 0N Vν ν∂ ∂ =  for an appropriate 
value *ν  of the ν -th frequency. In this case the second addend of Equation (45) va-
nishes for this particular value *ν ν= . Hence, replacing 2oN =  in Equation (37) to 
account for the light polarization states with the same ν  in the Bose function and cal-
culating Equation (46) with *ν ν= , the result at T const=  is simply 

( )
( )*3

3 *
*

24π 0.
exp 1Pl

B

N V
h

c h k T
ν ν

ν ν

νρ
νν =

∂
= =

∂−
             (47) 

Therefore, the plain Planck law corresponds to the particular set of frequencies that, 
among the ones allowed in the cavity, maximize the number density of photons with a 
given energy at a fixed T. 

Actually, however, no physical reason requires *ν ν=  and T really constant; nev-
ertheless, the analytical form of the first addend of Equation (46) is identical to that of 

Plρ  in Equation (47). This suggests that Plρ  is still given in general by the first ad-
dend of Equation (46) even though calculated with a frequency *ν ν≠  and thus 
without the constrain on T that annul the other terms; these terms account therefore 
for the frequency and temperature fluctuations with respect to the zero order term 
represented by the Planck function. This conclusion clarifies that δν  and Tδ  
represent just the frequency and temperature fluctuations of the cavity. 

In the present model it appears therefore that: 
• The interaction between degenerate photon clusters and internal walls of the cavity 

is responsible for the thermalization mechanism. 
• The fluctuations are inferred contextually to the Planck law itself. 

To emphasize these points, it is necessary now to link these fluctuations with Equa-
tions (19) and (20). As expected, the fluctuation is given by temperature and frequency 
deviations of ρ′  with respect to the mere equilibrium Planck term; simple considera-
tions show indeed that the fluctuation terms can have in principle positive or negative 
sign. 

Now it is possible to tackle the problem of describing the cavity for *ν ν≠  and 
0Tδ ≠ , i.e. when both frequency and temperature are allowed to fluctuate. 

6. Black Body Fluctuation 

The result (25) and Equation (44) imply the involvement of the material constituting 
the wall of the cavity to reach the condition of thermodynamic equilibrium of photons 
therein confined. In particular Eδ  appears related to mδ  and ( )mδ ν , i.e. to the 
material evaporating from the internal surface of the shell and present in the cavity to-
gether with the radiation field. This is confirmed by the mean square velocity 2v  of 
matter particles present in gas phase in the cavity contextually inferred. It is known 
from the elementary kinetic theory of gases that 2v  is related to Bk T . Even though 
the photons are admitted non-interacting, their thermalization process occurs by inte-
raction both with the internal wall of the cavity and with the amount of matter expec-
tedly evaporated and trapped in the cavity together with the radiation itself; clearly the 
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gas phase is at the thermal equilibrium with the cavity wall. 
For sake of clarity, collect together Equations (3), (27) and (25); one finds 

2 .B Bm k T k Th h mDh
n k k kmc

βν
ν

= = = =                    (48) 

These equations evidence in particular 

0
2. . ,B B

hk k T i e k k T
n n

εν
= =                      (49) 

whereas Equation (19) reads 

2 2
0

0

.EkE δε
δε

=                            (50) 

Since k has been defined as a mean value in Equation (18), let then be 
2 ,k q n=  

being q an arbitrary constant. Then, Equation (36) yields 
2

2
0

.
q En

n
δ
δε

=  

Since Equation (49) reads 
2

0 2
,B

n k T
q n

ε =  

so that merging these equations one finds 

0
0 ,Bk T

E
δε

ε
δ

=                           (51) 

the result obtained via Equation (50) is 

( ) ( ) ( ) ( )

2
2 20 022

2
0

.B B
BB

E Eq E k T k Tn E k Tk T EE
δε δεδ δ

δ δδ δ ε δδ
= =  

Therefore 

( ) ( )
2022

B
B

Eq E k Tn E k T
δε δ
δ δ

=  

yields 

( ) ( )
2 02 2 22, ;B

B

EU k T U Enq E k T
δε δ
δ δ

= =               (52) 

hence 

( ) ( ) ( )
2 20 02 0

0, .
( )B B

B B

E
U k T k T

q E k T k T q
δε δεδ ε

ε
δ δ δ

′
′= = =          (53) 

As 0 0δε δ ε′ ′= , this is just the famous Einstein equation [10]. To find this result, 
Einstein quoted the energy of a sub-volume enclosed by a large volume, both concur-
ring to the total volume of the cavity and exchanging energy. Here the role of the 
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smaller volume is proportional to 0ε , whose fluctuation is the source function of the 
Einstein model of a closed system. Actually this appears in Equation (44), because the 
photons are thermalized just impacting against the wall of the cavity, which is therefore 
the effective source of the photon energy. So it appears clearly that the fluctuations are 
controlled by the matter constituting the walls of the cavity; this conclusion has been in 
effect assumed in the paper [5]. If in fact 0 0δε = , then 2 0U = : i.e. the average 
energy is controlled by the matter at the walls of the cavity. Consistently 2U  is also 
related itself to the radiation field 2E , as it appears in Equation (52). Clearly it is rea-
sonable to put here 

( )* .E hδ ν ν= −  

Replacing Equations (51) into (53), one finds 

( ) ( )
2 *

0 , .B
B

E
U k T E

k T
δ

ε δ ν ν
δ

= = −                 (54) 

According to the previous considerations, 2 0U =  for *ν ν= ; this confirms that 
the left hand side of Equation (54) is a fluctuation energy. Equation (51) yields then the 
relationship between frequency and temperature fluctuations 

( ) . . .B
B B

kE k T k T i e T
h

δ δ δ δν δ= = =            (55) 

7. Discussion 

The fluctuations are likely the most typical manifestation of the probabilistic character 
of the quantum world, while also being the most striking evidence of the quantum un-
certainty. Nevertheless, elementary and straightforward considerations have shown that 
the equations describing the fluctuations are also compliant with relativistic corollaries: 
both have been concurrently inferred from Equation (1) in a unique theoretical frame. 
Despite the deterministic character of the relativity, the results so far outlined emphas-
ize this seemingly surprising connection. Actually a similar conclusion was already 
found also in [7] implementing an operative definition of space time, i.e. introducing 
ab initio the quantity 2hG c  as a basic postulate to be handled subsequently likewise 
any fundamental physical law. 

First of all, the present model plugs the problem of the black body radiation and its 
fluctuations in a wide context of physical laws having prospective interest for the 
non-equilibrium physics. The quantum basis of the Fick law is important because vari-
ous physical properties, e.g. the heat and electrical conductivities, have analogous form; 
here, in particular, the diffusion equations are in principle necessary to account for the 
unstable concentration gradients reasonably expected in gas phase due to random con-
centration fluctuations of the matter evaporated from the internal surface of the cavity. 
In effect the dynamics of matter particles that diffuse from the walls of the cavity con-
tributes to the thermalization process; in this respect, the model introduces concur-
rently even the free energy and entropy concepts useful to infer the Clausius-Clapeyron 
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equation governing the vapor pressure and thus the amount of matter in gas phase fill-
ing the cavity together with the radiation. In view of that, the Planck law has been in-
ferred in order to involve since the beginning the solid matter confining the photons 
and even their energy quantization and statistical distribution law. The interaction of 
photons with matter appears in fact essential to justify the thermalization mechanism. 
Strictly speaking, the radiation with wavelength larger than the finite size cavity should 
not be consistent with the standard approach to the Planck law; here however this 
problem is bypassed since the cavity volume V is not predetermined, rather it is deter-
mined by the radiation wavelengths themselves via the terms (39). Thus it is by defini-
tion compliant with the arbitrary size x∆  defining the allowed frequencies according 
to Equations (1), (2) and (38). For these reasons, is reductive the model [10] focused on 
the radiation field in the cavity only. 

The black body radiation field and its fluctuations have been contextually inferred 
merging two separate paths: the one from Equations (14) to (20) is apparently inde-
pendent on that leading from Equation (45) to Equation (53). The former series of equ-
ations does not refer specifically to the black body radiation, it introduces relationships 
between changes of dynamical variables that hold in general. The latter series of equa-
tions describes specifically the black body radiation under the boundary condition of 
Equation (20), which also implies Equations (21) to (24); this second path links the 
frequency and mass fluctuations, in agreement with Equations (4) to (9). Then, Equa-
tion (36) introduces the thermal equilibrium of Equation (50) leading to Equation 
(53). 

Yet other significant results are also easily inferable from the previous considerations 
of the Section 4. 

For example, combining Equations (26) and (27) with Equation (28) one finds at 
constant T 

( )
2

log .B
B

m k TDD k T
δ ν δβ δβ δ β
δν δν β δν δνβ

= − = − = −  

The equation ( ) logBD m k Tδ ν δ β= −  is easily integrated; calling 0β  the integra-
tion constant, the solution 

( )
0log log

B

D m
k T
δ ν

β β− = −∫  

yields 

( )
0

exp .
B

D m
k T
δ νβ

β

 
 = −
 
 

∫  

Owing to the first Equation (27) put then 

( )
0 0

0

exp , ,B
B

B B

D mD k T D k T
D k T k T

δ ν
β

 
 = − =
 
 

∫  

being 0D  a constant diffusion coefficient corresponding to the integration constant 
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0β . The conclusion is 

( )0 exp ,act
act

B

UD D U D m
k T

δ ν
 

= − = 
 

∫  

This Arrhenius-like equation is a well known property of the diffusion coefficient, 
whose quantum origin introduces the activation energy as a consequence. 

Other important equations of processes activated by the temperature follow this kind 
of dependence upon Bk T . 

A further significant result is obtained from Equation (6), assuming that the mo-
mentum p is time dependent variable. This compels regarding the wavelength λ  as 
time variable itself, as in effect it is possible because no restrictive hypothesis has been 
introduced about p and thus about λ  in Equations (2) and (4). Deriving thus 
p h λ=  with respect to time in the reference system R previously introduced to define 
t∆  and x∆  of Equation (2), one finds 

2 , , .C
hp h mc

t
δλλ λ λ λ λ
δλ

= − = =
∆

   

                  (56) 

It is possible to expand in series λ  around an arbitrary constant value oλ , e.g. 

( ) ,j
o j o

j
aλ λ λ λ= + −∑                        (57) 

being ja  appropriate coefficients. Implement Equation (40) to express again length 
x∆  as a function of wavelength λ ; here, however, λ  is the momentum wavelength 

of Equation (5). To highlight the physical meaning of the series expansion, retain pre-
liminarily the constant term only and consider two chances of rewriting the first Equa-
tion (56). Eliminate h from Equation (56), replacing it via the Planck mass Plm c G=   
and fine structure constant 2e cα =  ; so, being by definition 

2 22π 2π ,Plh m G c e cα= =                     (58) 

Equation (56) reads at the zero order of approximation of the series expansion accord-
ing to Equation (40) 

2 2 2 2

2 2

2π 2π 1 , .o Pl on m n ep F G x n
c cx x
λ λ

λ
α

= ≈ − = − ∆ =
∆ ∆

 

        (59) 

Since F is actually the component of a force along x∆ , which can have both signs, 
consider for brevity of notation its absolute value only. This expression reads then 

2 2 ,m m e eF G
x x
′ ′′ ′ ′′

≈ =
∆ ∆

                      (60) 

having put 

2

2π 2π, ,

2π 2π, , .

o o

o o
Pl Pl o o o

e en e en
c c

m m n m m n n n n
c c

λ λ
α α

λ λ λ λ λ

′ ′′
′ ′ ′′ ′′= =

′ ′′
′ ′ ′′ ′′ ′ ′′ ′ ′′= = =

 

 

  

 

As n and oλ  are arbitrary, likewise the primed and double primed quantities, these 
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approximate definitions of force correspond to the Newton and Coulomb interactions 
between arbitrary masses and steady charges, which have thus analogous form. In effect, 
at this level of approximation, neither term of the equality (60) depends on v. The only 
term that could introduce charge velocity is oλ ; yet no reason requires assuming 

( )o vλ . In lack of specific hypotheses, therefore, oλ  is consistent with stationary 
charges. In the case of gravity force, it is well known that the Newton law is generalized 
by the general relativity; it is reasonable therefore to expect that the terms of series ex-
pansions, here neglected preliminarily, account for the necessary relativistic corrections 
of the plain Newton law. To demonstrate this statement, calculate via Equation (56) the 
potential energy U generated by the mass m defining p at any point r r rx n λ∆ = ; the 
subscript emphasizes that rλ  concerns the radial distance of m′′  from m′ . As by de- 
finition rF U λ= −∂ ∂ , Equations (56) and (57) yield 

( ) 2, d .
r

jo
j o

jr

U h h a
λ

λ λ λ λ λ
λ

∞ −= − − Γ Γ = −∑∫


             (61) 

Whatever the value of Γ  might be, depending on the series coefficients ja , is re-
markable the fact that the potential here inferred differs from the Newtonian form just 
because of the presence of terms neglected in the classical Equations (59) and (60). It is 
well known that the perihelion precession of orbiting bodies is correctly calculated in 
the general relativity by potential terms additional to the mere Gm r− , which how-
ever cannot be justified in the plain Newton model [11]. Here, in effect, additional 
terms appear as a natural consequence of λ  of Equation (56): there is no reason to 
assume that λ  be equal to the constant oλ  only, being instead reasonably expecta-
ble a more general form like that of Equation (57). Actually it is easy to show that U 
cannot be equal uniquely to the first addend; owing to Equation (60) one would infer 
indeed 

2 ,
2πo r r

rPl

m m c x n
nm

λ λ
′ ′′

= ∆ =                     (62) 

in the mere Newtonian approximation of Equation (59). If so, however, the ratios 

Plm m′  and PLm m′′  in principle arbitrary likewise rn , could admit o cλ > , which is 
however impossible. So a correction term, i.e. Γ , is necessary to define U by compar-
ing Equations (56) and (61). This conclusion confirms therefore that the terms of the 
sum (57), neglected for simplicity in Equation (60), are in fact essential to agree with 
the finite light speed and have thus relativistic valence. 

It is possible to show the validity of these conclusions, which should hold for the 
Coulomb law as well, by demonstrating how to find well known results of the general 
relativity as a consequence of Equation (19). 

To this purpose it is necessary to generalize what mδ  actually means in 2
0 c mδε δ= . 

The previous considerations about the black body cavity have emphasized that mδ  
concerns the material evaporated from the internal walls of the cavity; as the tempera-
ture fluctuation modifies the vapor pressure of the cavity material, mδ  refers to the 
change of amount of material evaporating from or condensing on the internal wall of 
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the cavity according to the Clausius-Clapeyron equation. However the mass fluctuation 
can have a more general meaning, directly related to the concept of energy quantum 
fluctuation δε  itself; e.g. it is possible in principle that ( ) 2

0 m m cε δε δ+ = + . Of 
course this effect is reasonably negligible in the case of a black body cavity, owing to the 
small mδ  related to the usual cavity temperature and its fluctuations. Yet the follow-
ing examples aim to show that ( )m m m mδ ′ ′′= + −  is conceptually significant in prin-
ciple, even though 0mδ ≈ . If such a mass fluctuation is indeed allowed to occur, then 
it is significant to investigate the behavior of the transient formation of m′  and m′′  
related to mδ . Expectedly, this brings to the classical Kepler problem, where either 
mass orbits in the gravity field of the other; so, let us regard for example orm m′ =  and 

gfm m′′ = , where the subscripts stand for orbiting and gravity field. It is known that the 
general relativity predicts in this respect two effects, the perihelion precession of m′  
around m′′  and the emission of gravitational waves. Since these effects are concomi-
tant, being both features of any orbiting system, the following discussion aims to ex-
amine jointly both of them. 

Consider first just Equation (19) used to calculate the quantum fluctuations and note 
that the ratio at right hand side can be rewritten defining k such that ( )22

PlkE F r= ∆ : 
i.e., likewise as done to infer Equations (12) and (59), the definition of Planck force is 
again implemented here to introduce G into the present problem. So, thanks to the ar-
bitrary numerical factor k, the energy k E  is rewritten in order to introduce the ar-
bitrary displacement r∆  too. Equation (19) reads thus 

2
20 0

2 2
1 , .m G

E k E c r
δε ε ξ ξ
δ

′′
= = =

∆
                    (63) 

Introduce now at the right hand side the further mass m′ ; the last equation turns 
into 

2
0

2 .m m G
E m c r

δε
δ

′ ′′ =  ′ ∆ 
 

This result becomes next more familiar via a formal and elementary manipulation. 
Eliminate r∆  introducing the modulus of classical angular momentum orwm v r′= ∆M  
of m′ , being orv  the average orbital velocity of the mobile mass m′  and w the num- 
erical coefficient taking into account the vector nature of M and orv ; this allows con- 
sidering at the right hand side the modulus of or∆ ×r v . Eliminating thus m r′∆  at the 
right hand side, the last formula reads 

2
20

2 , , 1.or
or

m m Gvw M wm v r w
E c M

δε
δ

′ ′′  ′= = ∆ ≤ 
 

 

Eventually, recalling that or orv c n=  according to the initial definition (3), this equ-
ation reads 

2 2
20

2 2
1 , 1, 1.or

or

m m G wn
E cM n

δε θ
δθ

′ ′′ = ≥ = ≤ 
 

 

At the left hand side, the energies appear through a numerical coefficient times a ra-
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tio of the respective fluctuations. Consider now the case where this factor is 1≤ . Of 
course, nothing requires just this condition, which however is in principle possible and 
deserves attention for the related consequence of the initial Equation (63): this particu-
lar case is interesting because the left hand side can be regarded as a square probability 

2Π . Hence, it is appropriate to identify 2Π  with the product of two probabilities, that 
of angular displacement 2πδϕ  and that concerning the related tangential velocity 
component of m′ ; clearly the velocity component of orv  corresponding just to the 
advancement direction δϕ  in any point along the orbit has probability 1/3, because 
the independent local components of orv  are three. If so, then 2

0 Eδε θ δ  takes the 
meaning compatible with a known formula of the general relativity: indeed, regarding 
the right hand side of the last result in a probabilistic way as 

2
2 1 ,

2π 3
m m G

cM
δϕ ′ ′′ Π = =  

 
                       (64) 

one recognizes the well known formula of the perihelion precession. This identifica-
tion needs however a detailed justification and explanation: helps to this purpose a 
further result related to the energy loss via gravitational waves, still implied by Equa-
tion (63). 

It is known that an isolated orbiting system irradiates energy all around in the space; 
the energy loss causes the orbit shrinking closer and closer towards the central mass. 
The starting input to demonstrate this effect in the present context is still Equation (19), 
rewritten identically via Equation (35) as follows 

2 2
0 0 2, , ;k k

kk E k k
k

ε ζ ε ε
′

′ ′′= = =
′′

                   (65) 

i.e. k, whatever its specific value might be, has been split into k ′  and k ′′  suitable to 
obtain a new value of energy kε  from the early 0ε . This is in principle possible be-
cause the values of these latter are both arbitrary. The fact that ( )E hc c hc rν= = ∆ , 
in agreement with the position (10), suggests assuming 0k ζ′  in order that 

2 2
2

0
0

1, ;m m m mk E G k G
r hc

ζ
ζ

′ ′′ ′ ′′   ′ ′= =   ∆   
 

moreover if k q m′′ ′′∝ , being q arbitrary proportionality constant, then 

( )
2 2

22 2
2

0 0

1 1, , .k
m q m qqc k G k k k G
k hc k hc

ε
ζ ζ

′ ′   ′ ′′= = = =   ′′ ′′   
 

Hence the first Equation (65) reads 

( )
2

2 ,m mG qc
r
′ ′′  = ∆ 

 

where the right hand side is constant. Integrating now both sides over the solid angle 
dΩ , one finds 

2

d .m mG const
r
′ ′′  Ω = ∆ ∫  
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The square energy at the right hand side is constant; since it consists of fundamental 
constants only, thanks to the position assumed for k ′′ , it is reasonable to put 

Plconst hW= , being PlW  the Planck power. Moreover, if the space around the orbiting 
system is homogeneous and isotropic, so that the orbiting system irradiates energy un-
iformly to all directions, one finds 

24π , .r Pl r
m mhW G

r
ε ε∆ ∆

′ ′′
= = −

∆
                    (66) 

At this point the quantum uncertainty is of valuable help; it requires that r∆  and 
the momentum component rp∆∆  fulfill the condition rnh p r∆= ∆ ∆ . In the present 
case, introducing the reduced mass µ  of the orbiting system, the resulting uncertainty 
equations read 

24π , , , .r r
Pl

n nh r m mr r p r r
W r t m m

δµ ε µ µ
δ∆ ∆

′ ′′∆
∆ ∆ = ∆ = ∆ = ∆ = =

′ ′′∆ ∆ +
          (67) 

Replacing in Equation (66) h from the second equation, one infers 24π r Plr n W rε µ∆∆ = ∆ , 
i.e. 

( )
2 3

5 5 34π 4π .G m m Gr n G n m m m m
rc r c rµ
′ ′′  ′ ′′ ′ ′′∆ = = + ∆∆ ∆ 

            (68) 

With the minus sign and 1n = , this expression is nothing else but the well known 
Einstein result of orbit contraction contextual to the emission of gravitational waves: 
indeed 4π  approximates well the numerical value 64/5 of his original formula. This 
means that the possible time evolution of the orbiting system described by this energy 
equation is due to the integer n which can take different discrete values at various times; 
correspondingly, the orbiting system changes energy and orbital distance from the cen-
tral mass as well simply according to n. This quantum behavior already found in [12] is 
not surprising, since the starting point of the present reasoning was the quantum law 
governing the energy fluctuations. The related energy change rε∆  of the orbiting sys-
tem is immediately calculated. It is enough to note in this respect that 

, ,r r r
rF

r r t
ε δε δεε

δ δ
∆ ∆ ∆

∆= = =
∆ ∆ ∆






 

where F is force. Simply considering the elementary positions 
2 2

2, ,
2r

m m rG F r
r

µωε µω∆

′ ′′ ∆
= − = = ∆

∆
 

one finds 

( )

( )

2 3 6 4
2

5 3 5

2
3

4π 2π ,
2

.

r
r

r nG rr m m m m nG
r c r c

m m G
r

ε µω ωε µ

ω

∆
∆

∆ ∆′ ′′ ′ ′′= ∆ = + =
∆ ∆
′ ′′+

=
∆

 

      (69) 

The second equation is well known in the elementary Kepler problem identifying 
r∆  with the major semi-axis of the elliptic orbit. This result shows that the orbit size is 

subjected to change, concurrently to its angular displacement previously introduced; 
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indeed Equation (69) concerns in particular the perihelion distance. Once again ap-
pears the Einstein formula for 1n =  and without minus sign. The explanation of these 
two results and their connection with Equation (64) is really simple. 

Here rε∆∆   with 1n =  represents the energy gap ( ) ( )2 1r n r nε ε∆ = ∆ =−  related to the 
jump of m′  between orbits where ( )1r r n∆ = ∆ =  to ( )2r r n∆ = ∆ = , or in general 
to any ( )1r r n∆ = ∆ > , during the time range tδ∆ ; of course this latter is not a diffe-
rential dt, physically meaningless, but a finite time change of t∆  necessary for any 
physical process to occur. This quantum point of view leading to Equations (68) and 
(69) is coherent with Equation (19) leading to the fluctuation Equation (53). The quan-
tum standpoint also explains the lack of explicit minus sign in both Equations (68) and 
(69). In the Einstein result the orbital motion progressively decays towards distances 
closer and closer around the central gravitational mass with gradual energy loss only; 
accordingly, any orbiting system is destined to merge soon or later its bodies into a 
unique celestial body. In the present model instead Equation (68) is the distance gap 
between two contiguous orbits allowed with 1n∆ = , i.e. m′  can in principle decay or 
be excited towards a lower or higher n-th orbits. This also means that two gravitational 
systems can even exchange “resonant” energy, e.g. by exchanging gravitons, likewise as 
two atoms of the same kind do by exchanging photons if either of them is in any elec-
tron excited state and the other in the fundamental state. It is also evident the analogy 
with the electrons that do not fall on the nucleus, but occupy stable quantum levels. So 
the lack of minus sign means that the formulas concern the amount of quantum energy 
exchanged regardless of whether this energy is released or absorbed by a given orbital 
system. 

Consider now any point of the ellipse at a given time t∆  and at later time t′∆ ; e.g. 
this point could be, but not necessarily must be, the perihelion. Equation (68) of r∆   
shows that this point moves radially from its initial position, as it is evident in the mo-
mentum/position uncertainty Equation (67) implementing radial conjugate dynamical 
variables. Equation (64) accounts instead for the tangential motion of m′  in any given 
point along to the orbit: of course nothing, apart from the algebraic elaboration of the 
formulas, compels tangential displacement only or radial displacement only of the orbit 
of m′ . So, as previously emphasized, Equation (64) on the one hand and Equations (68) 
and (69) on the other hand simply complete each other in describing the dynamics of a 
unique phenomenon, i.e. the radial and tangential displacements of m′  along its orbit 
that rotates and deforms as a function of time; this is coherent with the fundamental 
idea of deformation of the space time in the presence of a gravitational mass m′′ . This 
is in effect the physical meaning of λ  in Equation (56), being λ  linked to x∆  via 
Equations (2) and (4). Note that m′  and m′′  can be exchanged while leaving identic-
al the results: as nothing distinguishes the specific role of either of them from a physical 
point of view, one concludes that the concepts of gravitational and inertial mass are 
physically indistinguishable. 

The idea of introducing Planck units is fruitful and general, as it is confirmed also in 
the following reasoning. 
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Rewrite 0 nhε ν=  as 

0 ,m mh c vε ν ν ν= =  

thanks to Equation (3). So, owing to Equation (21), Equations (19) and (15) yield 
2 2

0 0
2 2

1
E k E k

εδε ε ν
δ ν

= =  

while being owing to Equation (21) 
2

0 01 ,n E v vn n
E c E c E

δε εδ δ
δ δ δ

 = − = − 
 

 

whence 
2

0
02

0

1 1 , .m nE v v kn
c E c E

ν εδ δ ν ν
δ δν

= − = − =                 (70) 

Since ( )E v cδ δ  has physical dimensions of an energy, it is possible to put 

( ) 2
PlFE F x x

v c
δ

δ
′= ∆ = ∆  

where 4
PlF c G=  is the Planck force; being x′∆  and x∆  arbitrary lengths, the 

energy at the left hand side can be certainly expressed as F x′∆  and in turn this latter 
as 2PlF x∆ . These positions merely implement the general definitions of force and 
energy. The reason of having introduced the factor 1/2 appears soon after replacing in 
Equation (70); one finds 

2

2 2
0

21 .m mG
c x

ν
ν

= −
∆

 

Note that 0mν ν=  for 0m =  and for x∆ →∞ , i.e. in the absence of gravity field; 
also, owing to Equation (12), 0mν ν≤  implies 1cox x∆ ∆ < . Just this is the reason of 
having introduced the factor 1/2: to describe the red shift of a photon moving away 
from a gravitational mass, the photon must be outside the boundary of its confinement 
radius (12) of m; i.e., the previous limits hold outside the “event horizon” of m, other-
wise the photon could not freely escape to infinity. In conclusion the last equation reads 

2
0

21 .m rm G
c x

ν
ν

= −
∆

 

Is really significant the fact that also this result of the general relativity is obtained 
implementing Equations (19) and (18), from which have been obtained Equation (50) 
and then the black body fluctuation Equation (53). A wider landscape of results of the 
general relativity is inferred via an “ab initio” theoretical model in [7]. 

On the one hand, the result (60) highlights the quantum origin of the gravity force, 
simply inferable admitting time dependence of De Broglie momentum wavelength. In 
this respect Equation (59) prospects an interesting consequence as it yields 

2

2 2
2π1 1 1, .o

Pl

G e n
A e A A cm x

λα
= =

∆



                  (71) 
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So, owing to Equation (58), Equation (71) reduces to the trivial identity of two reci-
procal surfaces A admitting the equality 2

PlG e e m constα = = ; this equality is reason-
able, being mere consequence of the definitions of fine structure constant and Planck 
mass. Nonetheless, being 104.8 10 esue −= ×  and 52.18 10 gPlm −= ×  in the cgs sys-
tem where 8 3 1 26.67 10 cm g sG − − −= × ⋅ ⋅ , one finds 

3 2 3 2
2 1 cm g s.
Pl

G e
e m
α
= = ⋅                      (72) 

The fact that both ratios are almost exactly equal to 1 is not trivial: in general one 
would expect simply 2

PlG e e m constα = = , with const equal to a generic numerical 
value; the fact that 1const =  shows that G and e are linked directly, not via a propor-
tionality constant whose physical meaning should be specifically explained. Equation 
(72) reveals thus the direct correlation between e and G via α , i.e. between gravita-
tional and electromagnetic interaction. 

On the other hand, despite the simplicity of approach, the compliance of the present 
model with the relativity, already emphasized by the corollaries of the Section 4, does 
not appear accidental. This point is elucidated next by four relevant examples. 

1) According to Equation (2) 0c t x∆ − ∆ = , whence c t x s′∆ − ∆ =  with the arbi-
trary length 0s ≠  for x x′∆ ≠ ∆ . Hence in analogy with Equation (1) Cc t n sλ′∆ − = , 
being n c v′ ′= . Also, it is possible to write 

2 2h mc t n h tc t n s
mc mc t

′∆ − ∆′∆ − = =
∆

 

By dimensional reasons, it is also possible to put 2n h t m′ ∆ =  , being   an arbitrary 
length. So, let us show that are definable two invariant equations linked by a square in-
terval of size inv : from 

( )2 2c t sc t∆ − = ∆  

one expects both 

( )2 2 2 2 2 2, ,inv invc t x sc t∆ − = = ∆ − ∆ =     

as in effect it is true. Indeed it is possible to express   as q x= ∆ , with q arbitrary 
constant; this result reads ( ) ( )2 2 2 21c t q x∆ − = − ∆ . On the one hand, the right hand 
sides defines ( )2 2c t∆ −   in the same reference system of x∆ , i.e. it trivially concerns 
a smaller range. On the other hand, however, ( )2 2c t∆ −   is not necessarily related to 

x∆  via the proportionality constant 21 q−  only; being arbitrary by definition, it can 
be regarded in general as any x′∆ , i.e. x∆  in another reference system mowing with 
respect to that of x∆ . Hence, the left hand side is an invariant; it also holds therefore 
for s t∆ . Recalling Equation (9), the time and space invariants with v const=  read 
thus 

2 2

2 2
1 , .

1
xt t v c x

v c
∆′ ′∆ = ∆ − ∆ =
−

                 (73) 
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2) Let 1v  be the average velocity component with which one massive particle moves 
in the range x∆  and let the particle energy be subjected to fluctuations, during which 
its velocity component changes to the value 2v . Assume therefore that the particle can 
move in x∆  at average rates 1v  or 2v , both arbitrary and allowed to occur during 
the time range x c∆  of Equation (2) because of an unforeseeable fluctuation; the only 
constrain is that, according to Equation (1), 0m ≠  requires 1v c<  and 2v c< . 
Define therefore 

1 2
1 2 1 2

1 2

1 1, , ;v v
n c n c

Π = = Π = = Π = Π +Π  

the notations emphasize the probabilities Π1 and Π2 that m, delocalized within x∆ , tra-
vels just with either velocity before and after the fluctuation. Moreover, 1 2v c v cΠ = +  
emphasizes that anyway the particle moves, i.e. both velocity components are allowed 
to the particle; this is another way to state that fluctuation in fact occurred. But of 
course Π is effectively definable provided that 1 2 1v c v c+ ≤  too, which allows re-
garding Π as pertinent probability that both Π1 and Π2 are possible for the particle in 

x∆ . This is the first boundary condition of the present problem. Since this reasoning in 
R must hold likewise in any other reference system R′ , it is possible to describe the 
situation for the range size x′∆ , i.e. 

( )
1 2 1 2

1 1 1 11 , , ,q
n n n n

′ ′Π = + Π Π = + Π = +
′ ′

              (74) 

where again q is an arbitrary constant. Let the primed and unprimed velocity compo-
nents be defined in R' and R thinking that in general x′∆  shifts with arbitrary rate 
with respect to x∆ . Of course still holds in R' the boundary condition 1 2 1v c v c′ ′+ ≤  
in order that the energy fluctuation be regarded in an analogous way in both reference 
systems. This is the second boundary condition of the problem. Clearly the factor q > 0 
represents the link between primed and unprimed quantities, i.e. it determines the 
transformation law of velocity components in R and R′ : in fact the form (74) ensures 
that if 1Π ≤ , then anyway 1′Π ≤  as well. In principle the boundary conditions are 
unsatisfied simply summing 1v  and 2v , i.e. calculating 1 2Π +Π ; yet the actual form 
of the sum of velocity components depends on the choice of q. Note in this respect that 
it is reasonable to put 

1 2 ;q = Π Π  

this position ensures that both 1v  and 2v , whatever they might be before and after the 
energy fluctuation, are in fact allowed in R and R′ . In other words, the positions just 
introduced regard the ratios 1v c  and 2v c  as probabilities of states with and with-
out fluctuation accessible to the particle, and thus in fact occurring, regardless of the 
choice of reference system. The first Equation (74) reads therefore 

1 21
Π′Π =

+ Π Π
 

so that 
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1 2
1 2

1 2
2

.
1

v vv v v v v
c

+′ ′ ′= + =
+

 

In this way 1 2v v c+ ≤  is always consistent with the probabilistic meaning of 

1 2Π +Π . 
This is the well known composition rule of the velocity components along the direc-

tion of motion of two reference system reciprocally displacing. The probabilistic 
meaning of a relevant relativistic property also appears here, already emphasized in 
demonstrating the perihelion precession [7]. This explains why even the relativistic re-
sult is compatible with the quantum approach. 

3) It is easy at this point to highlight further the physical meaning of the length 
22mG c . Consider the first Equation (11) and calculate the photon energy 0 0

ph phE hν=  
putting once more 2

0
phh mc nν = , in strict analogy with the first Equation (3); so, in par- 

ticular, 22h t mc n∆ =  too. The left hand side introduces the idea of frequency 1 2 t∆  
of a photon necessarily confined within a range cox∆  via the position 0 2ph

coxλ = ∆ ; 
this implies indeed a steady wavelength actually consisting of two half-wavelengths 
spreading at rate c throughout cox∆ . Of course, Equation (3) holds also for the partic-
ular photon frequency 0

phν  related to such wavelength. Replacing once more h via the 
Planck length, 2 32π Plh l c G=  one finds 

2 3 2 2π, ;
2

Pll c mc
G n t

ω
ω= =

∆
 

then, dividing both sides of 2 3 22Plnl c mGcω =  by 4c , the result is 
2 2 2

2
2 , .Pl Pl Pl

co
n l l l mG x r v

c v r c
ω ω ω= = = = ∆ ∆ =

∆
 

Hence, 22mG c  of Equation (12) appears again here through the length 2
Pll r= ∆ . 

The circular frequency ω  shows that the photon cannot escape from the gravitational 
field of m, the photon can only “orbit” around m at the black hole distance   from the 
center of gravity. Obviously, this conclusion could be inferred for the second Equation 
(11) too. The interest to quote here a result already found is that of rising an interesting 
question: what happens if the photon transits a a distance cox x∆ > ∆  from m greater 
than that compelling its confinement? The most intuitive answer is that the photon 
should be simply deviated from its asymptotic straight propagation because of the 
presence of gravity field of m, which reasonably deforms the surrounding space time. 
Let be therefore according to Equation (12) 

2
2 1

co

MG
c x

=
∆

                           (75) 

and write then identically 

2
2 .cox mG

x c x
∆

=
∆ ∆

                          (76) 

Defining an angle φ  via the arc sδ  of circumference of radius x∆  such that 
s xφ δ= ∆ , the left hand side becomes ( )cox sδ φ∆ . Implement once more a probabil-
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istic approach, noting that cox x∆ < ∆  is compatible with 1cox sδ∆ < . Is in particular 
interesting the case where 1 2cox sδ∆ = Π = : indeed sδ  can be defined for a photon 
coming from minus infinity, approaches m and proceeds towards infinity after being 
deviated by the gravitational field of m; however this case is physically indistinguishable 
from that where the photon comes from infinity and proceeds towards minus infinity 
after an identical deviation. In other words sδ  must be such that −∞→+∞ +∞→−∞Π = Π , 
whereas of course 1−∞→+∞ +∞→−∞Π + Π = : i.e. the photons is anyway deviated wherever 
it comes from or proceeds to. Since however either chance only actually happens and 
has probability 1 2Π = , the previous result reads 

2
4 .mG
c x

φ =
∆

 

This is the well known formula of the light beam bending in a gravitational field, 
since the angle defining the arc of circumference is equal to that between the tangents 
to the circumference at the boundaries of the arc, which yield the sought path devia-
tion. 

4) Note eventually that 2 2 2 2
invc t x∆ − ∆ =   defines an invariant interval inv  what-

ever t∆  and x∆  might be. Of course this invariance property of the range size inv  
holds even if one considers in particular according to Equation (73) 

( )
2

2
2 2 2 2

2 2
1 ,

1
inv

xc t v c
v c

 ∆ ∆ − − =
 − 

  

as in this case both addends at the left hand side remain themselves identically un-
changed in two different inertial reference systems in reciprocal constant motion. This 
expression does not consider the mass of a particle possibly present in the space time. 
Consider now Equation (75) and introduce an arbitrary distance cox x∆ > ∆ , i.e. outside 
the confinement range, and consider the gravity field of M at an arbitrary point outside 
its event horizon; then Equation (12) yields 

2
2 1, , ,co M

M

MG x x v c
v x

= ∆ > ∆ <
∆

 

being Mv  the local velocity defined by MG  just at a distance x∆ . Hence 
2

2 2
2 1.MvMG
c x c

= <
∆

                          (77) 

Replacing v c  with Mv c , Equation (77) yields according to Equation (73) 

( )
2

2
2 2 2

2
1 2 .

1 2
M

xc t MG c x inv
MG c x

 ∆ ∆ − ∆ − =
 − ∆ 

 

Simple considerations show that the right hand side reduces to the form 2 2 2ds rδ δ− Ω  
in spherical coordinates; this is thus nothing else but the metric of the general relativity 
formulated by Schwarzschild. However this last result shows a crucial difference from 
the Einstein metrics: the latter assumes that the boundary of the ranges therein appear-
ing are exactly knowable as in the classical physics, the former are instead uncertainty 
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ranges that by definition satisfy the Heisenberg principle [7]. On the one hand this 
formal analogy explains why the formulas of the general relativity are also found via 
quantum approach; on the other hand their conceptual difference from the classical 
physics explains the difficulty of bridging relativistic and quantum ideas. However, the 
present reasoning shows that the link between quantum and relativistic physics exists 
indeed and is easily identifiable with the help of elementary considerations. Just this 
remarkable circumstance allows bridging quantum physics and relativity, despite the 
Einstein space time metrics is essentially classical physics extraordinarily enriched by 
the key concepts of four-dimensionality and covariancy of physical laws. In lack of a 
radically alternative way to infer the relativistic formulas, the mere attempt of modify-
ing or perturbing the standard formulation of the general relativity to bridge determi-
nistic metrics and probabilistic character of the non-real and non-local quantum world, 
would be difficult or even self-contradicting. 

8. Conclusions 

Starting from elementary considerations, the present model is allowed to describe the 
fluctuations in a wider theoretical context that includes even relativistic implications. 
No “ad hoc” hypothesis has been necessary to infer relativistic results, which deserve a 
few final remarks. The first one emphasizes that in the present context they have been 
obtained regardless of any preliminary consideration about the covariancy of the phys-
ical laws and even about the metrics describing the space time deformation in the 
presence of matter; actually, instead, the hidden probabilistic meaning of the most 
famous results of the general relativity is easily acknowledgeable. The second one 
stresses an open point left by Equation (56) and omitted for brevity taking the absolute 
value of F in Equation (60), i.e. that the space time deformation inherent the time de-
pendence of λ  could imply in principle contraction or expansion of the range x∆  
and thus both signs of λ ; hence, the signs of F correspond not only to attractive or 
repulsive interaction of the charges e′  and e′′ , well known, but also to different 
chances of gravity force. This point, also remarked in [7] [12], opens a critical problem 
about the existence of the anti-gravity. This conclusion deserves detailed investigation, 
too long and complex to be exposed in a short conclusion. 

A final remark deserves attention. With little effort and elementary mathematical 
formalism, Einstein could anticipate himself as done here the most significant discove-
ries of his general relativity: i.e., as side corollaries of Equation (54) describing the black 
body fluctuation. Unfortunately his paper [10], despite its great historical relevance, 
was too purposely focused on the new born Planck physics. May be, the reluctance of 
Einstein to accept the weird quantum ideas has been the main conceptual obstacle to 
his opening towards the possible implications of the quantum fluctuations. It is sur-
prising that great intuitions like the photon and the far reaching model of specific heat 
of solids settled eventually with the mere “hidden variables” of the EPR paradox. The 
present paper confirms indeed that there is no conceptual gap between quantum and 
relativistic ideas, as the conceptual foundations of both theories are actually rooted in 
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the quantum concept of space time uncertainty [13]. 
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Abstract 
No, Isaac Newton did not “explain” gravitation. What he did, and this certainly con-
stituted all and by itself a great achievement, was to recognize (to “assert”) the uni-
versal character of gravitation: all material objects (bodies) attract each other by gra-
vitation. But how does gravitation perform its deeds? This remained a mystery to 
Newton. In a “desperate move” at the end of his life, he introduced the concept of 
“Particles which are moved by certain active Principles [our emphasis]—such as is 
that of Gravity” he said. We resurrect this scheme, we provide it with a quantum 
structure—a stunning new insight into the workings of gravitation obtains. 
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1. Introduction 

Ever since in 1896, the great Swedish physical chemist Svante August Arrhenius (1859- 
1927) propagated the fallacious assertion making carbon dioxide (CO2) a dangerous 
“Greenhouse Effect” gas contributing to climate warming [1]. Physicists at large have 
displayed a startling ability to believe in just about anything. Astute observer of human 
nature, Albert Einstein, took advantage of this to cause physicists surreptitiously to see 
in him the greatest physicist who ever lived—after Newton, of course. Speaking of 
Newton, who has not heard of the legendary story of the future great Natural philoso-
pher watching an apple fall off a tree to the ground under the influence of that myste-
rious force, Gravitation, deciding then that he would be the one, some day, who would 
unravel the secrets of gravitation—decode the Gravitation Code—, a natural ambition 
for someone who, like himself, was destined to become a devoted theologian and 
alchemist [2]. 
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As it turned out, Newton did not break (decode) the Gravitation Code. What he did, 
and this certainly constituted all and by itself a great achievement, was to recognize (to 
“assert”) the universal character of gravitation: all objects (bodies) having mass attract 
each other by gravitation. If one of the two bodies is the Earth, gravitation is conven-
tionally called gravity. This constitutes, by the way; a circular reasoning: any two bodies 
which have mass attract each other by gravitation; any two bodies which attract each 
other by gravitation have mass. 

Very well, but how does gravity (gravitation) operate? This remained a frustrating 
puzzle to Newton to the end of his life. In an ultimate “desperate move”—and this 
might have been in the wake of his encounter a few years earlier with a young genius 
mathematician who did propose a “Mechanical” explanation of the workings of gravi-
tation—Newton introduced the concept of “Particles which are moved by certain active 
Principles—such as is that of Gravity”, he said (our emphasizes) [3]. 

Gravity caused by “active principles”… Newton meant an action arising from the 
“Will and the Spirit” of God, i.e. not caused by any mechanical, material agent. 

We retrieve this commonly ignored Newtonian scheme. We provide it with a quan-
tum formulation. A breathtaking revolutionary insight into the (hidden) workings of 
gravitation obtains. 

2. Birth of a Mechanical Model of Gravitation 
2.1. Birth of a Genius 

In 1683, after twenty years sharing the same rooms in Trinity College at the University 
of Cambridge, Newton’s companion John Wickens left Cambridge to become a country 
vicar somewhere else. Henceforth on his own to pursue in secrecy his alchemical expe-
riments and his arduous attempts to decipher the prophecies consigned in the Old Tes-
tament, Newton undertook to write the first Book of the philosophical treatise which 
was to make him famous, the renowned Principia. In the midst of these intense activi-
ties, he suddenly became involved with a young genius mathematician twenty-two 
years younger than him. 

Born the seventh child in a family of fourteen siblings originally established in the 
small town of Chiavenna in northern Italy, the boy is eight-years-old in 1672 when his 
father, Jean Baptiste Fatio, or Faccio short for Bonifaccio, acquires a new residence in 
the canton de Vaud in Switzerland, the Seigneurie de Duillier (Figure 1), whereby his 
son Nicolas assumed proudly henceforth the name Nicolas Fatio de Duillier. 

Talented, ambitious and adventurous, young Nicolas seeks from the start the com-
pany of men of high intellectual standing, preferring them to “little Persons”. At nine-
teen, he is in Paris working under the leadership of the great astronomer Domenico 
Cassini at the Observatoire royal, but the 22 October 1685 the King of France, Louis 
XIV, who used to sign his name Nous Louis Roi (We Louis King) promulgates the 
Edict of Fontainebleau which forbids the practice of Protestantism on the territory of 
his kingdom. Young Nicolas takes refuge in the Netherlands in the company of the 
“excellent Mathematician and good Philosopher” Christiaan Huygens, who soon takes  
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Figure 1. Le château de Duillier.  
https://upload.wikimedia.org/wikipedia/commons/thumb/a/
a4/Chateau_Duillier2.jpg/420px-Chateau_Duillier2.jpg 

 
him with him to London, where Fatio is promptly elected a Fellow of the Royal Society. 
He is twenty-four years old. Newton himself had been elected a Fellow of the Royal So-
ciety sixteen years earlier. 

The encounter between the two Fellows left them both in a daze: young Fatio in-
formed his elder that he had elaborated a “Mechanical” theory of gravitation! 

Written in seventeenth century French, Fatio’s Mémoire Sur la Cause de la Pesanteur 
[4]—Essay on the Cause of Gravity—remained unpublished during Fatio’s lifetime. It 
was retrieved among his papers after his death at his residence in Maddersfield near 
Worcester in England on May 10th 1753. 

2.2. Fundamental Assumptions 

The starting points of Nicolas Fatio’s mechanical theory of gravitation are four. We first 
list them as formulated by Nicolas Fatio in his original language, then express them us-
ing modern words and concepts. They are: 

1) The World—the Universe, the Cosmos—is composed of (apparently) solid bo-
dies—Fatio calls them “coarse bodies”—which in realty are composed of “Atoms” 
which are “porous”—i.e. full of (invisible) holes. 

2) Atoms have geometrical shapes which make them look the same in all direc-
tions—they are anisotropic. 

3) Besides “coarse bodies”, the World—the Universe, the Cosmos—also contains 
another kind of matter—Fatio calls it ethereal. 

4) In fine, the coarse bodies present in the Universe are so porous that the ethereal 
particles can move freely through them, generating in the process the phenomenon we 
observe as gravitation. 

These assumptions take on added significance when expressed in contemporary 
terms. Astrophysicists tell us indeed nowadays that the observable universe contains a 
phenomenal number of galaxies, each composed of billions of suns (stars), themselves 

https://upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Chateau_Duillier2.jpg/420px-Chateau_Duillier2.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Chateau_Duillier2.jpg/420px-Chateau_Duillier2.jpg


J.-P. Auffray 
 

1705 

agglomerates of atoms themselves made up of so-called elementary particles. If the ob-
servable universe—if the Cosmos—is made up of elementary particles—electrons, quarks, 
neutrinos and the rest—which individually occupy essentially no space, then, in fine, 
against all appearances said universe is fundamentally a huge vacuum—a Void— dot-
ted of point-like “nothings”, a thought that Fatio expressed in his days in these words: 
“Je suppose que les differents Espaces du Monde sont presque entierement Vuides [sic] 
de Matiere. —I assume that the different Spaces in the World are almost entirely Void 
of Matter.” 

Let us investigate these considerations in the context of a specfic example. 

2.3. The Special Case of Newton’s Falling Apple 

Consider the legendary example of Isaac Newton as a boy observing an apple fall off a 
tree down to the ground (Figure 2). To us, ordinary inhabitants of the planet Earth, 
nothing special about this: grass is green, the sky is blue, and ripe fruits fall off 
branches. Newton was more subtle: to him the Earth as a whole does not “attract” the 
apple; instead, the apple “sees” the Earth’s Center, “which is a mathematical point”, he 
said; the apple is attracted by it, or to it, and moves toward it—an Act of God, by New-
ton’s reckoning. 

This is where Nicolas Fatio’s genius intervenes. Let us idealize the apple by 
representing it as a small “coarse” solid sphere. By the criteria exposed in our Heading 
2.2., this sphere is really a ghost shell containing porous Atoms immersed in the “Vuo-
id”, as Fatio spells it. Essentially empty, this ghostly sphere is nevertheless capable of 
experiencing the effects of gravitation. How does it do that? 

Young Fatio imagined the following clever scheme. In addition to “coarse matter”, he 
said, the world—the universe, the cosmos—also contains other kinds or species of mat-
ter, and he described their qualities… 
 

 
Figure 2. Young Newton observing the falling apple.  
http://www.akg-images.co.uk/Docs/AKG/Media/TR5/0/3/3/f/AKG333767.jpg 

http://www.akg-images.co.uk/Docs/AKG/Media/TR5/0/3/3/f/AKG333767.jpg
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Fatio wrote his memoir using a vocabulary composed of seventeenth century French 
words which are difficult to “translate” properly in any contemporary idiom. Giving up 
word-for-word translation, we express in modern terms Fatio’s fundamental concept of 
the existence in the universe of at least two distinct kinds of matter—coarse matter and 
ethereal matter according to one of his choices of qualifiers. 

I-meteons—i-points in motion—constitute ideal quantum-world candidates to in-
carnate the “ethereal” or “second-nature” particles said by young Fatio to be responsi-
ble for gravitational effects. We invite the reader unfamiliar with the i-point and 
i-meteon concepts to consult the presentation of their significances in [5]. 

As per this contemporary quantum scheme, i-meteons are generated randomly, i.e. 
they propagate equally (indifferently) in all directions in Absolute space, the only re-
striction to their activity being that they each carry precisely one element—one unit, 
one quantum—of “motion”, a designation introduced to replace the term “dynamical 
action” ill-appreciated by theoreticians in general nowadays (they prefer to speak of 
“energy”). 

Let our idealized spherical “coarse apple” be on its own, isolated somewhere in the 
cosmos far from the influence of any other “coarse body” such as the Earth. Our apple 
is then exposed “naked” so to speak to the random flux of i-meteons arriving from all 
parts of the world (Figure 3(a)). Arriving randomly from all directions, the i-meteons 
exert no net “push” on the apple in any one particular direction—no gravitational pull 
or push is generated on our “apple”. 

Now allow another “coarse body” to be in the viccinity of the apple, say next to it for 
the purpose of illustration. By Nicolas Fatio’s contention—and this is the key to the 
proper functioning of his Mechanical model of gravitation—, being next to each other 
the two coarse bodies “filter” the ethereal Particles—the i-meteons for us—arriving on 
them from one side (Figure 3(b)). An asymetry or imbalance is generated in the sys-
tem, each of the two bodies is impiged less on one of its sides and starts moving in that 
direction, being apparently gravitationally “attracted” by the other body whose  
 

   
(a)                                             (b) 

Figure 3. (a) I-meteons impinging randomly from all sides on an isolated coarse spherical body 
generate no net “push” on it. 
https://upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Pushing1.svg/225px-Pushing1.sv
g.png (b) Coarse bodies “shadowing” each other.  
https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcRK4tfCKk7igUhiCcKXgXQJaZv7L6Y
76rq6kWJwvInTWBGpgf2C 

Shadow

https://upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Pushing1.svg/225px-Pushing1.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/2/2d/Pushing1.svg/225px-Pushing1.svg.png
https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcRK4tfCKk7igUhiCcKXgXQJaZv7L6Y76rq6kWJwvInTWBGpgf2C
https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcRK4tfCKk7igUhiCcKXgXQJaZv7L6Y76rq6kWJwvInTWBGpgf2C
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presence causes the imbalance to occur. In reality each of the two bodies is driven to-
ward the other by the “push” of unbalanced incoming i-meteons—etheral Particles for 
Nicolas Fatio. 

And suddenly, contemplating Figure 3(b), a simple, startling “explanation” as to 
why Newton’s apple falls vertically to the ground and why we are held vertically when 
we stand erect on the ground somewhere—anywhere—on the surface of the Earth 
minding our own business emerges. Unseen but nevertheless present around us, 
i-meteons impige on our “coarse body” just about equally from all directions… from all 
directions but one: the massive coarse Earth under our feet prevents i-meteons from 
entering our body vertically upward through our feet. As a result the i-meteons which 
enter our coarse body vertically downward through the top of our head are not com-
pensated by i-meteons entering our body from the opposite direction; they exert a net 
push vertically downward on our body—we stand vertically erect. 

It remains to account for the quantitative aspects of the phenomenon. 

3. Probing the Model 
3.1. Why the Inverse Square Law 

Gravitation is known to possess two fundamental characteristics: 1) it obeys an “in-
verse-square” law and 2) it satisfies the law of “mass proportionality”. Does our quan-
tum “shadow model” of gravitation satisfy these two requirements? 

The imbalance in i-meteon distribution is independent of the size of the enclosing 
sphere while the sphere surface area increases as the square of the radius. The imbal-
ance per unit area decreases inversely as the square of the distance between the two 
body centers: the inverse-square law obtains. 

3.2. Why Mass Proportionality 

Nicolas Fatio spent three years of his life thinking about it, he said… until he came up 
with a plausible answer while in London in the Fall of 1689. The key of his discovery is 
this. 

While crossing a “coarse body”, an ethereal particle can experience two kinds of mi-
shaps: 1) be “absorbed”—Fatio calls it be “condensed”; or 2) loose some of its momen-
tum—Fatio calls it loose some of its “Mouvement” (Motion). “Je reconnus que cette 
Condensation, he said, etoit aussi petite qu’on vouloit, de même que la Perte du 
Mouvement, jusques à devenir infiniment petite, si l’on faisoit les Suppositions neces-
saires.”—I found that the Condensation [Absorption] was as small as one might want, 
as well as the loss of momentum, so as to become infinitesimally small, if one made ap-
propriate Suppositions [Hypothesises]. 

Anticipating the modern belief in the existence in nature of elementary particles, he 
postulated the presence in coarse bodies of several “Orders” of particles which attract 
each other by gravitation, except for the particles belonging to one particular Order. 
The particles belonging in this Order are so perfectly ‘hard”, he said, that their “Res-
sort” [ability to reflect off an impinging entity] can be thought to be infinite, the Cause 
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of which is “Metaphysical in essence” and has its origin in “the Will of the Creator”, a 
belief he shared with Newton [2]. 

The fundamental question which arises in the frame of this scheme concerns the na-
ture of the interaction which takes place when an ethereal Particle—an i-meteon for 
us—goes through the “Vuoid” contained in a given coarse body. Nicolas Fatio’s key 
assumption in this regard stands in one sentence (our translation): “Gravity is pro-
duced, in my view, by Exceedance of the Speed of the Particles of this [ethereal] Matter 
which impinges on the Earth for example, or some coarse Atom of which it is com-
posed, over their Speed when they are reflected...” [4]. In brief: incident ethereal Par-
ticles strike the body at a very high speed, then rebound with a slightly lower speed. 

Advantages; This is actually a more sophisticated model than simply assuming total 
absorption because it reognizes that perfect reflection would result in no anisotropy at 
all in the surrounding flux, and therefore no net force of gravity. Instead it allows for a 
combination of reflection and absorption of momentum and avoids mass accumulation 
(Fatio assumed his ethereal Particles to have mass). He also stressed the fact that to 
produce a given amount of gravity, we can suppose the bombarding Particles to be ar-
bitrarily small while assuming their speeds to be arbitrarily great. This automatically 
diminishes the drag induced by the movement of coarse bodies to a negligible amount. 
Fatio also argued that by supposing the speed of the ethereal Particles to be extremely 
great, the amount by which they are slowed can be made as small as we wish, so there 
need be no appreciable dimunition of their agitation over time. 

These considerations fare well with our quantum scheme as described in [5]. When 
the ubiquitous quantum sets in motion one of the points the dimensionless Void con-
tains, this point becomes a e-meteon if the quantum sets it to move at the speed of light 
c; a i-meteon if the quantum sets it to move at speeds slower or faster than the speed of 
light—in brief at speeds not related to the speed of light. 

This concept will come as a shock to those who believe the speed of light to be the ul-
timate speed that a body can achieve while moving in the universe—a material body, 
yes, but i-meteons are not material bodies, they are i-meteons, i.e. they are points. 

In this regard, we call attention to the invention made by the incomparable Richard 
Feynman, Nobel Laureate for Physics in 1965, when he postulated in 1969 the existence 
in nature of point-like partons defined with respect to a physical scale making it possi-
ble for them to exist either as “valence constituents” of elementary particles, or as 
“nonvalence partons” forming a “sea” [6]. 

Two kinds of point-like partons…. We will not be surprised to find in this magical 
invention matter useful for enriching our own invention of i-meteons and help in un-
derstanding the nature of their behavior in interactions. We shall leave these considera-
tions for further studies to be conducted. 

4. Sad Ending 

After French King Louis XIV revoked the Edict of Nantes in 1685, a group of radical 
Protestants, the Camisards, began a violent insurrection in the French countryside. In 
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1706, after the movement was put down in France, some of the Camisards immigrated 
to England where they became known as the French Prophets. Fatio became a disciple 
of their leader, Elie Marion. He went with him into animated visionary trances during 
public sermons, claiming to perform miracles (including raising the dead), and made 
extravagant prophecies of the imminent end of the world. In 1707 Marion, Fatio, and 
another French Prophet were convicted of blasphemy and sedition and sentenced to be 
pilloried for two days. A sign placed over Fatio’s head explained the reason(s) for his 
being exposed to the pillory (Figure 4). 

“Nicolas Fatio convicted for abbeting and favouring Elias Marion, in the Wicked and 
counterfeit prophecies, and causing them to be printed and published, to terrify the 
Queen’s people.” 

In 1710 the French Prophets left England for Holland, where Nicolas Fatio was twice 
more sentenced to the pillory. He accompanied Marion thereafter on travels through 
various European countries, attempting to make converts. While in Turkey in 1712, 
Marion fell ill, and died. Fatio returned to England, settling near the town of Worcester 
where he remained for the rest of his life, meditating on the prophecies and pursuing 
his scientific research. After his death on May 12, 1753 (he was then 89-years old), 
Swiss mathematician Georges-Louis Le Sage, himself a Huguenot, visited Fatio’s former 
English estate in Maddersfield and retrieved his gravitation papers. In 1784 he made 
Fatio’s gravitation theory known under his own name, asserting that the ethereal particles 
responsible for gravitation actually originated in another world, deserving to be called 
accordingly “ultramundane corpuscules”. But this is another story, outside the scope of 
 

 
Figure 4. Pillory.  
http://media.virbcdn.com/cdn_images/resize_1024x1365
/0f/ContentImage-9524-287624-545pxPillory_PSF.png 

http://media.virbcdn.com/cdn_images/resize_1024x1365/0f/ContentImage-9524-287624-545pxPillory_PSF.png
http://media.virbcdn.com/cdn_images/resize_1024x1365/0f/ContentImage-9524-287624-545pxPillory_PSF.png
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the present note. 

5. Conclusions: Breaking the Gravitation Code 

Newton recognized (“asserted”) in his days the universal character of gravitation, but 
he never found nor proposed an explanation for it. He ended up believing gravitation 
to be the result of a (permanent) “Act of God” and he was sharply critical of those who 
thought otherwise. “That gravity should be innate, inherent, and essential to matter, he 
wrote, so that one body may act upon another at a distance through a vacuum, without 
the mediation of anything else, by and through which their action and force may be 
conveyed from one to another, is to me so great an absurdity [our emphasis], that I 
believe no man who has in philosophical matters a competent faculty of thinking, can 
ever fall into it.” To which he added this verdict: “Gravity must be caused by an agent 
acting constantly according to certain laws; but whether this agent be material or im-
material, I have left to the consideration of my readers.” [3] 

An “agent acting constantly according to certain laws”… the quantum to us in this 
note. 

Great mathematicians—among them James Maxwell and French mining engineer 
genius Henri Poincaré, inventor in 1900 of the famous relation E = mc2—have shown 
convincingly that classical collisions of incoming particles of some sort with the par-
ticles constitutive of matter could not legitimately account for gravitation [7]. 

I-meteons are quantum points, not “particles”. Their interventions in the affairs of 
the System of the World—at speeds not related to the “speed of light”—cannot be assi-
milated to those of the plain particles described in the Standard Model. Indeed, a new 
era in our understanding of the way motion (action) models the cosmos has been in-
itiated and awaits further investigations [8]. 

In his dreams, Newton decided “Gravity must be caused by an agent acting con-
stantly according to certain laws”. To us in this note, the agent Newton envisioned is 
the ubiquitous quantum. We shall leave it happily at that and salute with respect the 
memory of the brilliant young genius ex-Camisard sympathizer, ex-French Prophet 
who showed the way to Newton… and to us. Wouldn’t it be a wonder if, thanks to him, 
the Gravitation Code had at last been broken? 
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Abstract 
The aim of this research work is to analyze the surface characteristics of an improved 
AlGaN/GaN HEMT biosensor. The investigation leads to analyze the transistor per-
formance to detect human MIG with the help of an analytical model and measured 
data. The surface engineering includes the effects of repeatability, influence of the 
substrate, threshold shifting, and floating gate configuration. A numerical method is 
developed using the charge-control model and the results are used to observe the 
changes in the device channel at the quantum level. A Self-Assembled Monolayer 
(SAM) is formed at the gate electrode to allow immobilization and reliable cross- 
linking between the surface of the gate electrode and the antibody. The amperometric 
detection is realized solely by varying surface charges induced by the biomolecule 
through capacitive coupling. The equivalent DC bias is 6.99436 × 10−20 V which is 
represented by the total number of charges in the MIG sample. The steady state cur-
rent of the clean device is 66.89 mA. The effect of creation and immobilization of the 
protein on the SAM layer increases the current by 80 - 150 μA which ensures that 
successful induction of electrons is exhibited. 
 

Keywords 
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1. Introduction 

Over the past several years, there has been much research into developing newer and 
less invasive ways to monitor and detect several different biological cells and molecules 
[1]-[6]. Such biological elements include but not limited to proteins, enzymes, antibo-
dies, and tissue cells. The need for such development arises from the current method 
[7] [8]. With advances in medicine and technology, a growth in understanding of key 
biomolecules play certain roles and functions in the development of the diseases and it 
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is becoming more useful in the development of such electronics devices [5]-[8]. AlGaN/ 
GaN based HEMT devices have become very attractive in the world of biological mod-
ified field effect transistors (BioFETS/biosensing) due to their thermal stability, high- 
sensitivity, and label-free/real time detection. They also exhibit chemical inertness to 
extreme sensing environments [1]-[6]. The unique ability of GaN material is to exhibit 
spontaneous and piezoelectric polarization (~1200 - 1500 cm2/V-S) in heterojunctions 
without any need for material doping [8]-[10]. 

Kang et al. reported that the close proximity of this layer to the surface (<35 nm) is 
extremely sensitive to the ambient changes in surface charge and it results in greater 
detection sensitivity [2] [4] [11]. There exists a substantial amount of work on analyti-
cal and empirical modeling of the devices. However, a few of these models address the 
issue of the characteristics of the SAM layers. The effects of repeatability influence of 
the substrates, and threshold voltage shifting are also the key parameters in designing 
such bio sensor. 

Monokine induced by interferon gamma (CXCL9/MIG) is a critical biological mark-
er for determination of transplant rejection [12]-[21]. The range of concentration in 
normal disease states is approximately 0.2 - 3 ng/mL (or 40 - 100 pM) while concentra-
tion in pathophysiological disease states is 10 - 400 ng/mL (or as high as 34 nM) [22] 
[23]. It is a highly charged particle, having net 20 positive charges per molecule [23] 
[24]. Early detection of this key biomarker is significant and can result in quicker/ 
appropriate treatment. Preparation of such devices is rigorous, and due to the fragile 
nature and small scale of the HEMT and minute quantities of analytic solutions, careful 
preparation must be exercised to create a customized biosensor. 

2. Methodology 

An accurate and robust analytical and empirical model is imperative for predicting the 
device performance in thiol chemistry. In order to detect MIG, the gate electrode of the 
HEMT must be functionalized using thiol chemistry. Utilizing the gold-plated surface 
electrodes of the device, a self-assembled monolayer (SAM) is developed. This SAM 
layer consists of a crosslinker, (dithiobis succinimidyl propionate (DSP)) which forms a 
strong chemisorption bond with the gold surface. The linkage formed between DSP and 
the gold surface is very stable, exceeding the strength and stability of covalent silane 
bonds with glass [25]. An antibody for the target analyte (Anti-MIG) is then introduced 
to the gate surface and immobilized by the other end of the crosslinker. Anti-MIG is a 
negatively charged molecule and upon binding with DSP, an increase in drain current 
occurs, as the positive surface charge potential is altered and the resulting sheet carrier 
concentration in the hetero-interface is influenced [26] (Figure 1). After this step, the 
device is ready to use. The Anti-MIG will only interact with MIG and upon introduc-
tion of the analyte will bind to the immobilized Anti-MIG. The positively charged MIG 
pairs with the negatively charged Anti-MIG, neutralizes it, and the resulting activity al-
ters the conductivity of the channel by changing the charge distribution in the conju-
gated molecules (Figure 1). 
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Figure 1. Visualization of chemically prepared device before and after conjugation has taken place. Charges due to spontaneous and pie-
zoelectric polarizations are displayed to visually represent how surface charges are impacted by the chemical preparation of the device. 

 
This produces an observable decrease in drain current. The charges induced by these 

events are by way of capacitive coupling and therefore are analogous to the application 
of a DC bias at the gate surface [4] [27]-[31]. The SAM layer consists of the crosslinker 
(DSP) and the immobilized antibody (Anti-MIG). Charges due to spontaneous and 
piezoelectric polarizations are displayed to visually represent how surface charges are 
impacted by the chemical preparation of the device. 

3. Model Formulation 

MIG is positively correlated with transplant rejection and has been shown to have 
about net 20 charges per molecule at a pH concentration of 7.4 (the normal concentra-
tion of human blood) [23] [24]. Assuming a disease concentration of 34 nM, the ele-
mentary charge is 1.6 × 10−19 C. The number of charges per molecule and the total 
number of molecules in diseased states are calculated by using Avogadro’s number. The 
step by step process can be seen in the following series of equations. 

( ) ( )9 23 1 1634 mol 6.022 mol 2.04748 molec10 10 10 ules− −× × × = ×  [23] [24]   (1) 

16

17

2.04748 molecules 20 charges per molecule

4.09496 10 total charges present in diseased a e

1

t

0

s t

× ×

= ×
 

Recombinant MIG is a complex protein consisting of about 103 amino acid residues 
with a predicted molecular mass of 11.7 - 12 kDa [32]-[34]. Using solely the molecular 
mass, the number of charges per vial of sample solution used in experimentation (each 
vial contains 5 µg/mL of sample) can be determined by first finding the molarity of the 
solution. Then, the number of molecules in the sample size is found and associated a 
charge with each molecule independently. The following equations are used to determine 
the total number of charges per vial: ( ) ( )0.000005 g 11700 g mol 427.35 molρ= , 
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( ) ( )mol 0.001 L 4.27.35 M in a 5 μg mL sample of427.  so35 l utionρ η=     (2) 

Then, solving again for the number of charges per mole it is obtained: 

( ) ( )9 23 1427.35 10 mol 6.022 10 mol 2.5735 molecules− −× × × =  

182.5735 molecules 20 charges 5.147 10  total charges× = ×            (3) 

Given that 0.3 mL samples were used during experiment: 

( )18 185.147 10  charges 1 3 1.71567 10  total charges per experiment× × = ×  

Multiplying these total charges by + 1e, we obtain: 

( ) ( )18 191.71567 10 1.6 10 C 0.274507 C of charge total−× × × = . 

In solid state physics, electron-volts (eV) are used to represent a unit of kinetic ener-
gy obtained by accelerating an isolated electron across a potential difference of 1 volt. 
Thus, 1 eV is equivalent to 1 electric charge times one (1 * e) Joules. Since 1 volt = 1 
Joule/Coulomb, then 1 Coulomb = 1 Joule/volt. Since the proteins are immobilized on 
the floating gate surface, they directly influence surface charges which have an impact 
on interface charges. According to the work published by Abou-El-Ela (2013), the elec-
tron transport characteristics in Wurtzite blend GaN are compared and contrasted 
amongst varied Electric fields. It is demonstrated that electron velocity in GaN, in the 
absence (or very small value) of an applied Electric Field possesses velocities in the 
range of 0.25 × 105 m/s and 1.25 × 105 m/s and exhibit an allowable range of energies of 
~0.12 eV [35] [36]. Therefore, the DC bias can be calculated as: 

( ) ( )19Charge Energy Voltage 0.274507 C 1.6 10 0.12  Joules V− = → = × ×     (4) 

Solving for voltage yields V = 6.99436 × 10−20. This is the equivalent DC bias 
represented by the total number of charges in the MIG sample. 

4. Numerical Model 

AlGaN/GaN HEMTs on SiC, Sapphire and diamond substrates are designed using 
ATLAS™, DECKBUILD™, and TONYPLOT™ by SILVACO™. Charge-Control Analytical 
models for AlGaN/GaN HEMTs are used to develop the HEMT devices. The HEMT 
device consists of a 200 Å undoped AlGaN layer (with a concentration of 0.18) which is 
grown on a 1.5 μm GaN layer. A 400 Å buffer layer consisting of 150 Å AlN layer, and a 
250 Å AlGaN layer is developed on a 2 μm thick substrate. A gate length of 2 μm is 
used. A visualization of this device can be seen in Figure 2(a) along with the corres-
ponding band diagram taken at the heterojunction Figure 2(b). The changes in the de-
vice channel at the quantum level are observed. Real-time amperometric responses are 
also observed with the help of a designed circuit. 

The threshold voltage is developed using the Charge-Control Analytical models, Al-
brecht’s equations are used to model the knee voltage. Figure 3 compares the current- 
voltage behavior of the HEMT devices. The threshold voltages from the simulation re-
sults are in close agreement to the threshold voltage from the experimental results.  
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Figure 2. (a) Modeled device using SILVACOTM, (b) band diagram of HEMT. 

 

 
Figure 3. Simulated threshold voltage vs actual device threshold voltage. 

 
However, the saturation drain current is higher in experimental results. The reason is 
that even though the analytical model may not be accurate from the point of view of 
absolute value of the measured curve, it gives a rough estimation of how the electrical 
characteristics change when the parameters are modified. 

The threshold voltage is developed using the Charge-Control Analytical models, Al-
brecht’s equations are used to model the knee voltage. Figure 3 compares the current- 
voltage behavior of the HEMT devices. 

The threshold voltages from the simulation results are in close agreement to the 
threshold voltage from the experimental results. However, the saturation drain current 
is higher in experimental results. The reason is that even though the analytical model 
may not be accurate from the point of view of absolute value of the measured curve, it 
gives a rough estimation of how the electrical characteristics change when the parame-
ters are modified. 



H. F. Huq et al. 
 

1717 

The Output characteristics of the simulated AlGaN/GaN HEMTs with different VGS = 
−3, −2, −1, −0, 1. V are shown in Figure 4. The derived DC voltage is applied to a 
floating gate configuration on SILVACO™ to simulate the effect of creation and immo-
bilization of the protein on the SAM layer and an 80 - 150 μA increase in current is ob-
served on various substrates with VGS-4 to 1 V and VDS 0 - 4 V. Figure 5 shows the 
results where the drain current increases about 150 μA. Since Anti-MIG and MIG are 
equal and opposite in charge, an additional DC bias is modeled with a charge approx-
imately equal to 86.7% of the initial charge bias. 

Additional observations are seen at the heterojunction interface before and after 
conjugation. As expected, a change in current density at the interface is observed 
(Figure 6). 
 

 
Figure 4. Output characteristics of simulated AlGaN/GaN HEMTs with different VGS = −3, −2, −1, 0, 1 V. 

 

 
Figure 5. Change in drain current in the biosensor; the bottommost curve represents drain current of the clean device, the topmost curve 
represents the chemically modified device drain current, and middle curve represents the curve assuming an 87% conjugation success 
rate. 



H. F. Huq et al. 
 

1718 

The device parameters associated with the developed clean device model can be seen 
in Table 1. 

Table 2 shows the device physical characteristics at each step of its operation on dif-
ferent substrates.  

The simulation results show that the polarizations remain almost constant at the in-
terface regardless of the process step, and the substrate used. Also, as expected the 
charge concentration as well as the quantum well depth increases due to the chemically 
modified surface. 

5. Experimental Results 

Before any chemical modifications, the DC currents and voltages are measured using a 
DC probe station in conjunction with IC-CAP software. Figure 7 shows the ID—VDS  

 

 
Figure 6. A change in current density at the interface is observed; Electron current density of device at the interface before conjugation 
(left) and Electron current density of device at the interface after conjugation (right). 

 
Table 1. Modeled intrinsic device parameters taken at the interface. 

Parameter Value 

Charge Concentration (C/cm3) 0.75 

Cond. Current Density (A/cm2) 6.5e8 

Quantum Well Depth (eV) 0.04 

Electric Field (V/cm) 9e5 

Polarization Charge (C/cm3) 0.75 

Potential (V) 1.9 

Mobility (x) (cm2/V-S) 920,000 
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Table 2. Physical characteristics of simulated biosensor taken at interface. 

Mode Parameter SiC Sapphire Diamond 

Operating/Floating Charge Concentration (C/cm3) 0.82246 0.8273 0.82311 

Operating/Floating Cond. Current Density (A/cm2) 2.907e7 2.9067e7 2.9073e7 

Operating/Floating Electric Field (V/cm) 1.023e6 1.0245e6 1.0213e6 

Operating/Floating Polarization Charge (C/cm3) 0.768 0.768 0.768 

Anti-MIG Charge Concentration (C/cm3) 0.82522 0.8 0.82578 

Anti-MIG Cond. Current Density (A/cm2) 2.907e7 2.9077e7 2.9075e7 

Anti-MIG Electric Field (V/cm) 1.02235e6 1.019e6 1.02055e6 

Anti-MIG Polarization Charge (C/cm3) 0.768 0.768 0.768 

MIG Charge Concentration (C/cm3) 0.82453 0.82613 0.82365 

MIG Cond. Current Density (A/cm2) 2.9065e7 2.90685e7 2.90737e7 

MIG Electric Field (V/cm) 1.0247e6 1.0233e6 1.02043e6 

MIG Polarization Charge (C/cm3) 0.768 0.768 0.768 

 

 
Figure 7. Id vs VDS curves at different gate voltages. 
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characteristics of the AlGaN/GaN HEMT. The knee voltages of about 0.2 - 0.4 V are 
observed throughout the multiple devices of the same type. Current collapse pheno-
menon is observed at higher VDS values. It is known that current collapse phenomenon 
occurs in AlGaN HEMT devices under AC and pulsed conditions [37]-[41]. 

To prepare the proper sensing environment, 1.826 g of 0.1 M phosphate buffer solu-
tion (PBS) is dissolved in 8mL of de-ionized water. A pH meter is used to verify a pH of 
7.44. This is an environment which closely mimics the pH of blood. Then the cross- 
linker DSP is dissolved in 1 mL of organic solvent (Dimethyl Sulfoxide [DMSO]) to 
create an aqueous solution that could be used to coat the surface of the gate electrode 
on the HEMT device. After coating the device thoroughly, the device is incubated for 
20 minutes at room temperature. The surface is rinsed with PBS to remove the surface 
of any unbinded DSP. After rinsing, the Anti-MIG is applied to the surface. The antibody 
is added to 0.1 mL of PBS with the appropriate pH. This step needs to be performed 
immediately after the incubation period to ensure proper protein coupling [25]. The 
device is then left to incubate at room temperature for 2 hours. Conjugation between 
proteins does not advance significantly after the first 1 - 2 hours, but incubation can be 
variable anywhere between 1 - 4 hours [25]. The gate surface is rinsed to remove un-
conjugated proteins, and the drain current under DC conditions are observed and 
compared to clean device operations. Upon conclusion that conjugation is successful, a 
small sample of MIG is added to PBS (with the appropriate pH) and introduced to the 
gate surface of the device, and the immediate response is observed in real time. 

A simple circuit is constructed to observe real-time response of the device. In a floating 
gate configuration steady state current of the clean device is observed to be 66.89 mA. 
Upon construction of the SAM layer, an 80 μA rise in current is observed, which en-
sures that successful induction of electrons are exhibited. Upon introduction of a 2 μL 
sample of MIG in a 0.1M PBS onto the gate surface, a rapid response is observed with a 
70 μA decrease in steady state current after 30 seconds. Clearer results are seen after 1 
minute as demonstrated in Figure 8. The simulated results and experimental results are 
in good agreement with the approach taken. Small differences between the simulated 
and experimental results are observed due to trapping effects not taken into account by 
the 2-D simulation. Furthermore, the assumption that all charges in the MIG and An-
ti-MIG are live and equally distributed further contributes to the deviation.  

6. Conclusions 

A biosensor for the detection of Human MIG (CXCL9) by amperometric method is 
successfully demonstrated using AlGaN/GaN HEMT devices. A systematic approach is 
taken to create an improved two-dimensional model to investigate the quantum beha-
vior upon chemical modification of the gate electrodes. The results seen in this research 
indicate that it is possible to build a reliable, chemically inert, and thermally stable bio-
sensor. 

The developed analytical model can be improved by addressing trapping and all pa-
rasitic effects in the two-dimensional numerical simulation. Further work needs to be 
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Figure 8. Change in current and time before and after introduction of MIG to previously prepared SAM layer. Results are 
comparable to steady state current of clean device (66.89 mA). Note: V1 is 10 volts. 

 
conducted to determine the repeatability of the biosensor. A positive shifting in thre-
shold voltage has been observed after re-testing of a previously chemically modified de-
vice. Furthermore, the role of different type of substrates also needs to be investigated. 
2-D simulation shows an improvement in performance of the HEMT device on a Sap-
phire substrate; however experimental work is needed to validate these results. 
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Abstract 
The time of the energy emission between two neighbouring electron levels in the hy-
drogen atom has been calculated first on the basis of the quantum aspects of the 
Joule-Lenz law, next this time is approached with the aid of the electrodynamical pa-
rameters characteristic for the electron motion in the atom. Both methods indicate a 
similar result, namely that the time of emission is close to the time period of the 
electromagnetic wave produced in course of the emission. As a by-product of calcu-
lations, the formula representing the radius of the electron microparticle is obtained 
from a simple combination of the expressions for the Bohr magnetic moment and a 
quantum of the magnetic flux. 
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1. Introduction 

In physics, we often look for a simple explanation of the important phenomena without 
going much into details of the examined process. A well known example is the energy 
spectrum of the hydrogen atom. The first step to approach this spectrum theoretically 
was based on the idea that the force of the electrostatic attraction existent between the 
electron particle and the atomic nucleus remained in an equilibrium with the centrifug-
al force due to the circular electron motion about the same nucleus [1]. The second de-
cisive step was that the angular momentum which accompanied the motion leading to 
the equilibrium of the atomic system should be quantized in a proper way. A combina-
tion of these two steps gave a spectacular success of the Bohr atomic model expressed in 
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terms of positions of the electron energy levels present in the atom. 
But the point not examined in the Bohr theory was the transition time between dif-

ferent quantum levels necessary to obtain the energy spectrum effect. A kind of paradox 
becomes that if we have two quantum states in the atom, say a hydrogen atom, their 
energies are well known, and the same knowledge applies naturally to the energy dif-
ference 

1 0n nE E E+∆ = − >                           (1) 

between the states n + 1 and n entering the transition process, but we cannot answer 
how long is the time interval Δt necessary to perform such transition. Certainly, the in-
terval Δt is classified as “short” but no quasi-definite answer on its size is in practice 
available. 

A reason of such situation cannot be the so-called uncertainty principle between the 
intervals of energy and time introduced by Heisenberg [2] [3]. In fact, this principle 
concerns rather a mutual relation between two definite and accessible intervals ΔE and 
Δt entering a given quantum process than an “uncertainty” of the accuracy which can 
be attained in the measurement of the sizes of the mentioned intervals [4]-[6]. This im-
plies that there does not exist an a priori difficulty to obtain Δt when ΔE is known. 

The main source of difficulty to calculate Δt seems to be a probabilistic- and statistic-
al character of examination applied in the treatment of the electron transitions. This 
kind of approach, being typical for the old quantum theory [7] [8], obtained its farther 
background in the formalism of quantum mechanics [3] [9] [10]. In effect the results 
for Δt connected with the electron transition obtained respectively by the classical and 
quantum-mechanical approaches became diametrically different [10]. For, in order to 
obtain an agreement with the transition intensity of energy provided by the quan-
tum-mechanical theory, the classical approach to that intensity required the time inter-
val Δt of an infinite size, viz. 

,t∆ →∞                               (2) 

instead of a finite (small) Δt dictated evidently by an experimental practice. 
In a set of papers [11]-[15], we tried to approach the size of Δt with the aid of an 

examination of the electron transitions in small quantum systems with the aid of the 
Joule-Lenz law; see e.g. [16] [17]. For transitions connected with the population change 
of the neighbouring energy levels, i.e. n + 1 and n, the main result was that the relation 

E t h∆ ∆ =                              (3) 

should be satisfied. In the case of the harmonic oscillator 

E hω ν∆ = =                            (4) 

where 

osc

1
T

ν =                               (5) 

is the oscillator frequency of the emitted electromagnetic wave and oscT  is the time pe-
riod of that wave. In effect we obtain with the aid of (3)-(5): 
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osc

hh t t h
T

ν ∆ = ∆ =                          (6) 

or 

osc.t T∆ =                              (7) 

Because of (3) the emission intensity of a single wave having the frequency ν  be-
comes 

( ) ( )
( )

2 2 2

2 .
2π

EE h
t h h

ω ω∆∆
= = =

∆


                   (8) 

The intensity (8) can be referred to the the quantum-mechanical expression for the 
transition intensity of the harmonic oscillator [10] 

2 3

3
d 2
d 3
E e n
t c m

ω
=

                           (9) 

by the formula 

osc
d 2π
d
E E En T n
t t t

γ γ
ω

∆ ∆
= =
∆ ∆

                    (10) 

where 
2 2

3
2
3

e
mc
ωγ =                           (11) 

is the damping term of the oscillator and oscT  is the time period presented in (5); see 
also [10]. 

2. The Aim of the Paper 

The aim of the present paper is to examine in some detail the transition time Δt be-
tween the neighbouring quantum levels of the hydrogen atom. Certainly the size of Δt, 
because of its expected very short duration, seems to be hardly possible to be compared 
accurately with the experimental data. Nevertheless, an idea how Δt can be influenced 
by the electrodynamical parameters responsible for the electron transition could be 
given. This makes, in principle, the problem of the time transfer Δt between two quan-
tum states reduced to a semiclassical one, so it can be treated with the aid of the classic-
al electrodynamics. Before the electrodynamical properties will be discussed it seems of 
use to get an insight into the quantum aspects of Δt based on the Joule-Lenz law. 

3. Electron Transition Time Obtained from the Joule-Lenz Law 

A preliminary approach to the time transfer of energy in the hydrogen atom, but not 
only in such system, can be done with the aid of a quantum insight into the Joule-Lenz 
law; see [11]-[15]. The dissipation rate of the energy ΔE within the time interval Δt can 
be expressed by the formula 

2.E Ri
t

∆
=

∆
                          (12) 
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Here the R and i are respectively the resistance and current intensity of the electron 
transition process done in course of Δt. The process leads to the energy dispense (de-
crease) equal to ΔE. 

For an unmodified (stationary) electron motion in the atom the current intensity is a 
constant 

n
n

ei
T

=                             (13) 

for any quantum state n because of a constant time period Tn representing the circula-
tion of the electron charge e about the nucleus [18]: 

3 3

4
2π .n

nT
me

=
                          (14) 

Certainly in course of the transition from one orbit, say that of the quantum state n + 
1, to the orbit of state n, the intensity is modified from in+1 to in, but in fact the change 
of i is not large, especially when 1n . Therefore, we can assume that 

1
1

.n n
n n

e ei i i
T T+

+

= = ≈ =                     (15) 

The potential V entering the electric resistance 
VR
i

=                            (16) 

let be 

n
EV V
e
∆

= =                         (17) 

where in the numerator is substituted the energy difference between quantum states 
presented in (1). For large n, the energy ΔE becomes [18]: 

( )

4 4

1 2 2 2 2 3
1 1 .

2 1
n n

me meE E E
n nn

+

 
∆ = − = − ≅ 

+   

           (18) 

By combining Vn in (17) with in calculated from (13) and (14), we obtain the resis-
tance 

4 3 3

2 3 2 4 2 2
1 2π 2π

n

E me n hR
ei n e me e e
∆

= = = =
 



               (19) 

independent of the state n. The resistance R obtained in (19) is characteristic for the in-
teger quantum Hall effect [19]. The whole fraction (12) becomes 

( ) ( )

2 10 2 4
2 2 8

2 2 2 2 2 2 36 63 3

1
2π2π

n
E h h e h e m mei m e
t te e e nnn

∆
= = = =

∆ ∆





     (20) 

where in the last step we applied for ΔE the result of (18) obtained from large n. 
In effect, Δt attains the value 

4 6 6 3 3

2 3 8 2 4
2π 2πme n nt

n e m e m
∆ = =

 

 

                  (21) 
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which is formally equal to the size of the time period Tn given in (14). 
In the next step, by multiplying the both sides of (21) by ΔE taken from the final step 

of (18) we obtain 
4 3 3

2 3 4
2π 2π .me nE t h

n me
∆ ∆ = = =







                 (22) 

This is a result providing us with a very simple relation between the ΔE and Δt. 
The relation identical with (3) has been rather extensively applied in comparing the 

quantum-mechanical spectrum of transition probabilities between the electron states in 
the hydrogen atom [20] [21] with the intensity of the electron transitions calculated 
with the aid of ΔE and Δt entering the formula (22), i.e. the formula 

( )2EE
t h

∆∆
=

∆
                         (23) 

similar to (8) for the oscillator has been applied; see [11]-[15]. More precisely, the for-
mula (23) is valid solely for transitions 

1 ,n n+ →                           (24) 

but the transition time Δt corresponding, say, to situations 
2 ,
3 ,
4 ,

n n
n n
n n

+ →
+ →
+ →

                          (25) 

etc, can be composed from the Δt calculated for the case of (23) [13] [14]. 
Another important point concerning Δt in (23) is its reference to the time period T 

of the electromagnetic wave produced by the energy difference ΔE. In fact because of 
the result 

nt T∆ =                           (21a) 

obtained in (21), the formula (23) becomes reduced to 
1 1 ,E
t h T

ν∆
= = =

∆
                      (26) 

therefore we obtain 

nt T T∆ = =                          (27) 

which is similar to (7) for the harmonic oscillator. 
In fact, the formulae (23) and (27) are not specific solely for the hydrogen atom and 

the harmonic oscillator, but their validity can be extended to other quantum systems, 
for example the particle in a one-dimensional potential box; see [11] [12] [15]. Because 
of (21) and (27), we obtain also 

.
n

h h h E
T T

ν= = = ∆                      (27a) 

In fact on the basis of of (14), we have 
4 4

3 3 3 2 .
2πn

h hme me E
T n n

= = = ∆
 

                  (27b) 
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In the last step of (27b) the result obtained in (18) has been taken into account. 
The aim of the remainder of the paper is to show—for the hydrogen atom taken as 

an example—that the result of (26) obtained mainly on a quantum footing—could find 
its correspondence also in effect of a semiclassical approach to the electron transition. 

4. Electrodynamical Parameters Connected with the Electron 
Transition and Its Current 

First of the necessary parameters will be the magnetic flux Φ  and its changes in the 
atom due to the changes of the population of the quantum levels [15]. The magnetic 
field Bn connected with the quantum state n is an effect of the electron circulation along 
the orbit n. This implies that Tn in (14) and the time period causing the existence of Bn 
should be equal. Therefore (see e.g. [22] [23]) 

2π n
n

n

eB
T mc

Ω = =                         (28) 

where the field B is directed normally to the orbit plane. 
A substitution of Tn from (14) into (28) gives the relation 

13 3 4

4 3 3
2π2π neBn me

mcme n

−
 

= = 
 





                  (29) 

from which 
2 3

3 3 .n
m e cB
n

=


                          (30) 

The magnetic flux across the area of a circular orbit having the radius [18] 
2 2

2n
nr
me

=
                            (31) 

is equal to 
2 3 4 4

3 3 2 4π π
2n n n

m e c n cn hcnB S
e en m e

Φ = = = =
 



              (32) 

because the area enclosed by the orbit amounts to 
22 2 4 4

2
2 2 4π π π ,n n

n nS r
me m e

 
= = = 

 

                    (33) 

on condition the radius rn in (31) is taken into account. 
Evidently the absolute change of nΦ  associated with the change of n by 

1n∆ =                             (34) 

provides us for any n with the value 

.
2
hc

e
∆Φ =                            (35) 

This is a quantum a) independent of n, b) well-known from the physics of supe- 
conductors [23]-[25]. Let us note that if 



S. Olszewski 
 

1731 

2B
e
mc

µ =
                           (35a) 

is the Bohr magneton [3], the formula (35a) multiplied by 2π  and divided by the flux 
in (35) gives 

2

2
2π 22π

2
B e e e

mc hc mc
µ

= =
∆Φ

                    (35b) 

which is a distance known as the radius of the electron microparticle; see e.g. [17]. 
In fact the steady orbital current in+1 is perturbed in course of transition from n + 1 to 

n, nevertheless we expect this perturbation is small. The effective current of transition 
let be 

( )tr n di i i t= +                          (36) 

where solely 

( )d ni t i                            (37) 

is the current part dependent on time t. Assuming that the orbits system between states 
n + 1 and n behaves like a condenser, our idea is to introduce a current 

d
d d
e i
t
=                             (38) 

representing a discharge of the condenser [17] [26]. This 

( )d di t i=                            (39) 

enters (36) and (37). 
The interval ∆Φ  in (35) is coupled with the self-induction constant L by the for-

mula 

( )1 ,tr dLi L i i
c
∆Φ = = +                      (40) 

but the differentiation process with respect to time concerns solely the term id: 

d1 d .
d d

diL
c t t

∆Φ =                         (41) 

The resistance R is 

V ER
i ei

∆
= =                           (42) 

and the capacitance C for a planar condenser is 
2

.e eC
V E

= =
∆

                         (43) 

But because of a cylindrical shape of the orbits forming the condenser the formula 
(36) should be replaced by [26] 

22 .eC
E

=
∆

                           (44) 

The L, R and C parameters enter the time-dependent differential equation for the 
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current id in (36) (see [17]): 
2

appl2
d d 1 d

d dd
d d

d
i iL R i

t C tt
+ + =                    (45) 

where appl  is the applied electromotive force. If we assume that 

appl oapple ,j tω−=                          (46) 

where 

( )1 21 ,j = −                           (47) 

the solution of (45) becomes 

0
e ;j t

d di i ω−=                           (48) 

the e in (46) and (48) is the basis of the natural logarithms. 
On condition we assume that 

appl 0,=                            (49) 

the differential process of (45) performed upon (48) gives 

2 1 0.dL Rj i
C

ω ω − − + = 
 

                    (50) 

The solution of (50) leads to the frequency [17] [26]: 
21 .

2 2
R Rj
L LC L

ω  = − ± −  
 

                   (51) 

5. Calculation of the Frequency ω 

From Equation (40), we have 

2
hL

ci ei
∆Φ

≅ =                         (52) 

because of (35), so in view of (44): 
2 22 2 .

2
e h e ehLC

ci E ei E Ei
∆Φ

= = =
∆ ∆ ∆

                 (53) 

In the next step from (42) and (52) 

1 2 .
2 2
R E ei E
L ei h h

∆ ∆
= =                      (54) 

Therefore, (51) becomes 
2 2

.E i E E E e E Ej j
h eh h h T eh h

ω ∆ ∆ ∆ ∆ ∆ ∆   = − ± − = − ± −   
   

        (55) 

Since 

hh E
T

ν = = ∆                          (56) 

we have 
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1 ,E
T h

∆
=                           (57) 

so the expression entering the square root in (55) is equal to 
2

0.e E E
Teh h
∆ ∆ − = 

 
                      (58) 

In effect ω  in (51) becomes equal to the imaginary value 
1 .Ej j

h T
ω ∆
= − = −                       (59) 

This result gives for the current in (48) the formula 

0 0
e e ,

t
j t T

d d di i iω −−= =                       (60) 

With e in (60) being the basis of natural logarithms, we obtain for id a current expo-
nentially decreasing with time t. 

Let us note that when R = 0, which is the case where no resistance does exist for the 
transition current, the expression for ω  becomes [see (51)]: 

0

1 1
R

Ei E E
LC eh Th h T

ω ν
=

∆ ∆ ∆
= = = = = =             (61) 

in virtue of (57). 

6. Emission Rate and Its Damping Time 

On the basis of (20) and (21), it is easy to calculate the emission rate 
4 4 2 8

2 3 3 3 5 6 .
2π 2π

E me e m m e
t n n n

∆
= =

∆   

                  (62) 

By substituting for simplicity 2710m −≈ ≈  and 104.8 10e −≈ × , we obtain 

( ) ( )
2 527 6810

6 6

10 10 2.84.8 10 erg sec.
2π 2π

E
t n n

−−
−∆ ×

≅ × ≈
∆

          (63) 

This is a very high number especially for small n, nevertheless it is valid solely at the 
very beginning of the emission process. The duration of that process for the energy in-
terval ΔE is approximately equal to [see (21)]: 

( )
( )

3 127 33 3 3
16

4 410

2π 102π 2π 10  sec.
5.34.8 10

nE n nt
E t e m

−−
−

−

×∆
∆ = = ≅ ≈

∆ ∆ ×



       (64) 

7. Velocity of the Electron Transition between Two Neighbouring 
Quantum Levels 

The result of (21) and (26) allows us to calculate the velocity of transition of the elec-
tron particle between the levels n + 1 and n. This is 

,n n
tr n

n

r r Ev r
t T h

∆ ∆ ∆
= = = ∆
∆

                    (65) 
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where [see (31)] 

( )2 2
2

2

1
.n

n n
r

me
+ −

∆ =                         (66) 

With ΔE represented by a difference in the kinetic electron energy 

( )
( )

22
2 2

kin 1 2 2
1 1 ,

2 2 1
n n

m m eE E v v
n n

+

  
∆ = −∆ = − = −  

+    

 

this gives 

( )
( )

( ) ( )2 2 22 24 2 2
2

2 2 2 4 22

1 1 21 1 1 .
2 2 ππ1

tr n
n n n n ne m e ev v

h nh me n nn n
+ − + −

= ≅ = =
+





    (67) 

We find that the transition velocity of the electron between levels n + 1 and n is by a 
factor of 1 πn  smaller than the velocity nv  along the orbit n. This calculation is fully 
original and new. 

8. Comments 

Heisenberg strongly criticized the Bohr atomic model as useless because it applied the 
unobserved elements of the atomic structure like the electron orbits; see e.g. [26]-[28]. 

Nevertheless the combined orbital parameters, like the orbit radius or orbit length 
and the time period of the electron circulation, allowed us to approach correctly the 
parts of the electron kinetic and potential energy which—when added together—gave a 
proper total electron energy in the atom. This energy formula has been next confirmed 
by both the modern quantum theory (quantum mechanics) and experiment. 

But the modern theory did not provide us with an adequate information on the time 
duration of the electron processes in the atom, for example the time of the electron 
transitions. In this circumstance, a step towards the old quantum theory which applied 
definite periods of time seemed to be both realistic and useful. 

In the first step, we assumed that the classical Joule-Lenz theory can couple the 
amount of energy emitted in the quantum process of an electron transition with the 
time necessary for that process. This assumption led to an extremely simple relation 
between the emitted energy ΔE and emission time Δt. In the present paper our aim was 
to approach the time necessary for the emission of ΔE on a somewhat different way 
than a direct application of the Joule-Lenz law, i.e. mainly with the aid of a classical 
analysis of the electric current produced as an effect of transition giving the energy 
change ΔE. 

In the first step of this analysis, the quanta of the magnetic induction and magnetic 
flux are introduced to the formalism. It should be noted that the Bohr magneton di-
vided by the quantum change of the magnetic flux between the neighbouring levels [see 
(35b)] gives the well-known formula for the radius of the electron microparticle; see e.g. 
[17]. An earlier derivation of (35b)—different only in a constant factor—has been done 
in [29]; see also [30]. 

Next the electric current connected with the transition between two neighbouring 
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quantum levels is considered as due to a discharge of the condenser. In order to ex-
amine this current, the costants of self-induction, resistance and capacitance characte-
ristic for such condenser have been calculated. In effect an exponential decrease of the 
time-dependent part of the discharge current is obtained; see (60). 

A very simple approach to the discharge current from state n can be attained when 
the Ohm’s law is applied [21]: 

d .
don

Q Qi
RC t

= = −                           (68) 

Here Q = e and −dQ = de is a small decrease of charge of the condenser in a small 
time interval dt. The formula (68) gives 

( ) 1d d .Q RC t
Q

−= −                           (69) 

Therefore 

log cont cont
2

t tQ
RC T

= − + = − +                    (70) 

because 
22 2 2 .E e eRC T

ei E i
∆

= = =
∆

                       (71) 

Hence the charge Q decreases with t according to the formula 

2e .
t
TQ

−
=                              (72) 

The exponent of the natural logarithm basis e in (72) is a half of that obtained in (60). 
The rate of the emission in the form of the electromagnetic field energy has been dis-
cussed in [31]. 

It can be noted that Equations (3) and (22) are formally similar to the inequality 
proposed by Heisenberg called the uncertainty principle for energy and time. In fact the 
physical background for the intervals ΔE and Δt entering he Heisenberg principle is 
much different than the properties of the intervals Δpx and Δx, concerning—for exam-
ple—the x-coordinates of the momentum and position of a particle. For, contrary to the 
momenum and position, the energy E can be measured to any degree of accuracy at any 
instant of time. Therefore ΔE can be the difference between two exactly measured val-
ues of energy at two different instants; see [4]-[6]. 

9. Conclusions 

The paper approaches a seldom discussed problem of an individual electron transition 
between two quantum levels in the hydrogen atom. Consequently, no reference has 
been done to the well-known probabilistic theory usually applied to the quantum tran-
sitions. 

In the first step, the emission time of energy between two neighbouring levels in the 
atom is calculated on the basis of the quantum aspects of the Joule-Lenz law; see (21) 
and (22). This time is found equal to the oscillation period of the electromagnetic wave 
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emitted in course of the transition process; see (27). 
Next, the problem of the emission was approached with the aid of the classical elec-

trodynamics by assuming that the electron transition in the atom was roughly equiva-
lent to a discharge of an electrical condenser. The damping time of the current obtained 
in course of such discharge is found to be close to the transition time attained in the 
Joule-Lenz theory; see (60) and (61), as well as (72) for the case of a simplified treat-
ment of the calculation. 

By assuming that the transition time between the quantum levels is similar to the 
emission time, the velocity of transition of the electron particle between the neigh-
bouring orbits in the atom has been estimated; see (67). 

A by-product of the calculations is the result that the Bohr magneton divided by the 
quantum of the magnetic flux obtained from the flux difference of two energy levels in 
the atom approaches the geometrical radius attributed to the electron microparticle; see 
(35a) and (35b). 
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Abstract 
The aim in this paper is to construct an affine transformation using the classical 
physics analogy between the fields of optics and mechanics. Since optics and me-
chanics both have symplectic structures, the concept of optics can be replaced by that 
of mechanics and vice versa. We list the four types of eikonal (generating functions). 
We also introduce a unitary operator for the affine transformation. Using the unitary 
operator, the kernel (propagator) is calculated and the wavization (quantization) of 
the Gabor function is discussed. The dynamic properties of the affine transformed 
Wigner function are also discussed. 
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1. Introduction 

Geometrical optics serves as a powerful tool for investigating optical systems. The path 
of a light ray is described by an eikonal. When the light rays are paraxial rays, this is 
classified as linear optics. In this approximation, the propagation of the light ray is de-
scribed by the product of the refraction and the transfer matrices [1] [2]. Moreover, if 
the light ray is considered to have rotational symmetry with respect to the optical axis 
(skewness equal to zero), it is called meridian or Gaussian optics [3]. In this case, the 
refraction and transfer matrices are expressed by 2 × 2 matrices. The product of these 
matrices is also represented by a 2 × 2 matrix, and this is called an ABCD-matrix and 
specifies the optical system. 

In general, the ABCD-matrix is specified by a three parameter (A, B, C, D with AD – 
BC = 1) class of linear transformations [4] [5] in position and momentum. Linear ca-
nonical transformations have been studied by many authors at different times in dif-
ferent contexts. Good reviews can be found in [6] [7] and the references therein. Due to 
the condition AD – BC = 1, the ABCD-transformation is an area preserving transfor-
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mation in phase space. Therefore, the Wigner function is only distorted in phase space 
but does not move in it. 

In this article, we develop the mathematical properties of an affine transformation 
from the optical and mechanical points of view. Since the affine transformation has a 
displacement part, we are able to discuss the translation in phase space. Thus, we show 
that the affine transformation not only distorts but also displaces the Wigner function. 
Because this displacement can have time dependency, the Wigner function moves dy-
namically in phase space. 

This paper is organized in the following way. In Section 2, we define the affine trans-
formation and show the eikonals which generate this transformation. In Section 3, we 
turn to the quantum mechanical case for the affine transformation. We show that the 
operator of the affine transformation is obtained from the product of the displacement 
operator and the unitary operator of the ABCD-transformation. We also calculate the 
kernels of the affine transformation. In Section 4, we treat the wavization by referring 
to the Gabor function. In Section 5, we discuss the affine transformation of the Wigner 
function. We give an explicit form of the affine transformed Wigner function and ex-
amine the change in its configuration and the displacement of the Wigner function. 
Section 6 is devoted to a summary. 

2. Affine Eikonal 

The general affine transformation is defined by a linear combination of position q and 
momentum p with the four parameters A, B, C and D and the displacements for posi-
tion E and momentum F. We define the affine transformed position Q and momentum 
P as 

Q Aq Bp E= + + ,                          (1a) 

P Cq Dp F= + + ,                          (1b) 

with the lossless (area-preserving or power-preserving) condition 

1AD BC− = .                             (2) 

In classical mechanics, this condition comes from which affine transformation 
( ),Q P  satisfies the Poisson bracket (PB) 

{ }, 1PB

Q P P QQ P
q p q p

∂ ∂ ∂ ∂
= − =
∂ ∂ ∂ ∂

,                      (3) 

that is, Q and P are canonical variables [8]. 
In geometrical optics, the path of the light ray is described by an eikonal. In the fol-

lowing discussion, we restrict ourselves to Gaussian optics, so each q and p is one- 
dimensional variable. There are four types of eikonal in Gaussian optics. We list the 
four types below; 

( )1
1
2

V QP qp FQ EP= + − + −  for point eiknal,             (4a) 

( )2
1
2

V QP qp FQ EP= − − + −  for mixed eikonal,            (4b) 
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( )3
1
2

V QP qp FQ EP= + + + −  for mixed eikonal,            (4c) 

( )4
1
2

V QP qp FQ EP= − + + −  for angle eikonal.              (4d) 

By substituting (1) into (4), we rewrite these eikonals in terms of two of the four ca-
nonical variables q, p, Q and P, 

( ) ( ) ( )22
1 1 , ,

2 2 2
A D q EFV q Q E F Q E W q Q t
B B B

 = + + − − − − + = − 
 

    (5a) 

( ) ( ) ( )22
2 2 , ,

2 2 2
C B q EFV q P F E P F W q P t
D D D

 = + − − − + − − = − 
 

    (5b) 

( ) ( ) ( )22
3 3 , ,

2 2 2
B C p EFV p Q E E Q E W p Q t
A A A

 = − + − + − − + = − 
 

    (5c) 

( ) ( ) ( )22
4 4 , ,

2 2 2
D A p EFV p P F E P F W p P t
C C C

 = − − − + − − − = − 
 

   (5d) 

These four functions 1 4~W W  are sometimes called eikonals [3]. Because of the re-
lationship between optics and mechanics, we prefer to call them generating functions 
[8], and these generate the affine transformation (1) by differentiation with respect to 
the canonical variables as follows, 

( ) 1 1
1 , , for , ,W WW q Q t p P

q Q
∂ ∂

= + = −
∂ ∂

               (6a) 

( ) 2 2
2 , , for , ,W WW q P t p Q

q P
∂ ∂

= + = +
∂ ∂

              (6b) 

( ) 3 3
3 , , for , ,W WW p Q t q P

p Q
∂ ∂

= − = −
∂ ∂

              (6c) 

( ) 4 4
4 , , for , ,W WW p P t q Q

p P
∂ ∂

= − = +
∂ ∂

             (6d) 

We listed four types of the generating functions in (5). From the theoretical and ex-
perimental points of view, it sometimes happens that we cannot describe the affine 
transformation via one of them. For example, the affine transformation in (20) below 
has zero component in 0C = . In that case, we cannot use (5d), but the other ones are 
available. The relationship between these eikonals (generating functions) is depicted in 
Figure 1. The functions at the ends of the arrows are related to each other by a Legen-
dre transformation. For example, from the relation (6a), we obtain the variable Q in 
terms of q and P,  

( )1W D qP Q E F
Q B B

∂
= − = − − +

∂
. 

Substituting this relation into (5a) and 2 1W W PQ= + , we obtain (5b). 

3. Kernel of the Affine Transformation 

In this section, we consider the quantum mechanical version of the affine transformation.  
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V1 =  - W1 V2 =  - W2

V3 =  - W3 V4 =  - W4

V2 = V1 - QP

V4 = V2 + qp

V4 = V3 - QP

V3 = V1 + qp

 
Figure 1. The eikonals (generating functions) are disposed on the corners of the square. The 
functions at the ends of arrows are related to each other by a Legendre transformation. 
 
Corresponding to the canonical transformation in classical mechanics, the unitary 
transformation plays a central role in quantum mechanics. Analogous to the classical 
affine transformation (1), we define the quantum mechanical affine transformation as 
follows, 

†ˆ ˆ ˆˆ ˆ ˆQ T qT Aq Bp E= = + + ,                    (7a) 
†ˆ ˆ ˆˆ ˆ ˆP T pT Cq Dp F= = + + ,                    (7b) 

where ∧  describes the q-number and T̂  is a unitary operator which generates the af-
fine transformation. Here, 1AD BC− =  is also needed when the canonical commuta-
tion relations [ ] ˆ ˆˆ ˆ, ,q p Q P i = =   are satisfied. 

To obtain the unitary operator T̂ , we introduce two operators. One is the displace-
ment operator D̂ , 

[ ]ˆ ˆ ˆexpD iEp iFq= − +                         (8) 

which generates the displacements in position and momentum, 
†ˆ ˆˆ ˆD qD q E= + ,                         (9a) 
†ˆ ˆˆ ˆD pD p F= + .                        (9b) 

The other one is the unitary transformation Û , 
2 2ˆ ˆ ˆ ˆ ˆ ˆˆ exp ,

2 2 2
p qp pq qU i α β γ

  +
= − + +  

  
             (10) 

which generates the ABCD-transformation [9] 
†ˆ ˆˆ ˆ ˆU qU Aq Bp= + ,                     (11a) 
†ˆ ˆ ˆ ˆU pU Cp Dp= + ,                    (11b) 

where 

cosh sinh sinh

sinh cosh sinh

A B
C D

β α

γ β

 ∆ + ∆ ∆   ∆ ∆=   
   − ∆ ∆ − ∆ 
 ∆ ∆ 

,        (12) 

and 2 2β αγ∆ = − . Note here that when we assign 
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cosh cos sinh sin sinh
,

sin sinh cosh cos sinh
A B
C D

ξ θ ξ θ ξ
θ ξ ξ θ ξ
+   

=   −   
           (13) 

then Û  describes the squeezed operator [10]. 
We consider the unitary operator T̂ , which generates the quantum affine transfor-

mation (7), as a product of D̂  and Û , 
ˆ ˆ ˆT DU= .                              (14) 

Indeed, we obtain 

( )† † † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆQ T qT U D qDU U q E U Aq Bp E= = = + = + + ,          (15a) 

( )† † † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆP T pT U D pDU U p F U Cq Dp F= = = + = + + ,         (15b) 

which is the quantum mechanical affine transformation (7) as we expected. 
Now, we calculate the kernel of the affine transformation. The kernel is just the tran-

sition amplitude from the position q at an initial time to the position Q at a later time 
given by ( ) ˆ,affine Q q Q T q= . To obtain the kernel, we use the coordinate identity 
operator d 1q q q′ ′ ′ =∫  between the displacement operator D̂  and the unitary op-
erator Û : 

ˆ ˆ ˆ ˆ ˆdQ T q Q DU q q Q D q q U q′ ′ ′= = ∫               (16) 

Using the formulae 

ˆ exp
2
iD q q E iFq EF = + + +  

,                  (17a) 

ˆ exp
2
iD p p F iEp EF = + − −  

,                 (17b) 

we obtain 

( )

ˆ ˆd exp
2

ˆ exp .
2

iQ T q q Q q E q U q iFq EF

iQ E U q iF Q E EF

 ′ ′ ′ ′= + +  
 = − − +  

∫
           (18) 

Substituting the transition amplitude in terms of Û  [9], we obtain the result: 

( ) ( )221ˆ exp
2π 2 2 2

A D q EFQ T q i q Q E F Q E
iB B B B

   = − − − − + − − −   
   

. (19) 

We include the “irrelevant” constant phase factor which has often been neglected in 
the literature [11] [12]. The function in the exponent is in the same form as that of the 
generating function (5a). For example, let us consider a particle with mass m, subjected 
to a constant external force f, moving from ( ),q p  to ( ),Q P  in time t. The exact so-
lution for this problem is described in the following, 

2

1
2

0 1

t ftQ q
m mP p ft

        = +               

.                   (20) 
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Substituting these parameters into (19), we obtain 

( ) ( )
2 3

2ˆ exp
2π 2 2 8
m m ft f tQ T q i q Q q Q

it t m
  

= − − − − + +  
  

,      (21) 

which is the same equation as that obtained from the path integral [13]. 
The other kernels are derived in the same manner. We list all four types of transition 

amplitude below: 

( ) [ ]1 1
1 1ˆ exp , exp

2π 2π
Q T q iW q Q iV

iB iB
= − =   ,        (22a) 

( ) [ ]2 2
1 1ˆ exp , exp

2π 2π
P T q iW q P iV

D D
= − =   ,        (22b) 

( ) [ ]3 3
1 1ˆ exp , exp

2π 2π
Q T p iW p Q iV

A A
= − =   ,         (22c) 

( ) [ ]4 4
1 1ˆ exp , exp

2π 2π
P T p iW p P iV

iC iC
− −

= − =   ,       (22d) 

where the W’s in the exponentials are the generating functions (5) which generate the 
canonical transformation (1). 

It is worth commenting here that it is well known in classical mechanics [8] that the 
generating functions (5) are related to each other by a Legendre transformation (Figure 
1), whereas the kernels (22) are related to each other by a Fourier transformation. 
These relations are depicted in Figure 2. 

4. Wavization of Gabor Function 

Quantum mechanics is obtained by the “quantization” of classical mechanics. Similarly, 
physical optics is constructed by the “wavization” of geometrical optics [3] [6]. The 
famous example is that of Fraunhofer diffraction obtained by wavization of a plain 
wave. Let us consider the Gabor function [6] [14]; 

( )
1 4

20
0 02 2

1 1exp
2π 2
qq Gabor ip q q q

σ σ
   = − − −        

,         (23) 

where 0p  is the wave number and 0q̂ q=  is the center of this wave packet. The  
 

<𝑄|T�|𝑞> <𝑃|T�|𝑞>

<𝑄|T�|𝑝> <𝑃|T�|𝑝>
 

Figure 2. The kernels are disposed on the corners of the square. The functions at the ends of ar-
rows are related to each other by a Fourier transformation. 
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width is obtained from 

22ˆ ˆ
2

q q q σ
∆ = − = .                     (24) 

To make the calculation easier, this wave packet (23) can be rewritten in the form, 
21 4 2 2

2 2
1 2exp

2 2π 2
zq z zq Gabor q

σσ σ

  = − + − −  
    

,         (25) 

with 0
0

1
2

qz i pσ
σ

 = + 
 

. Note that when 1σ = , it gives the position-representation  

of the coherent state wave function q z . It is also worth writing down the Fourier 
transformation of (23) and (25), 

( )
1 42 2

20
0 0exp

π 2 2
pp Gabor iq p p pσ σ    = − − − −    

    
,        (26) 

1 4 22 2 2
2exp 2

π 2 2 2
zzp i zpσ σ σ

  
= − − + −  

    
.         (27) 

Using this expression, we obtain 0p̂ p=  and the width 

22 1ˆ ˆ
2

p p p
σ

∆ = − = .                   (28) 

This result with (24) gives 

1
2

q p∆ ⋅∆ = ,                         (29) 

that is, the Gabor function satisfies the minimum uncertainty relation. 
We obtain the affine transformation of the Gabor wave packet by using the kernel 

(22), 

( ) ( )
21 4 * 2

2
2 2 2

ˆ ˆd

1 2exp ,
2 2 2π 2

Q T Gabor q Q T q q Gabor

zH z G z EFQ E iF Q E i
G GG G σσ σ

=

   = − − + + − − − +          

∫
 (30) 

and 

( ) ( )
1 4 22 2 * 2

2
2

ˆ ˆ ˆd d

2exp ,
2 2 2 2π

P T Gabor q P T q q Gabor p P T p p Gabor

zG z H z EFP F i E P F i
H H HH

σ σ σ

= =

   
= − − − + − + − −          

∫ ∫
 (31) 

where we introduce two complex variables, 

2
BG A i
σ

= + ,                          (32a) 

2H D i Cσ= − .                         (32b) 

Having the probability density from (30) and (31), we obtain 
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( ){ }2 2
0 02 22 2

1 1ˆ exp
π

Q T Gabor Q Aq Bp E
G Gσ σ

 
= − − + + 

  
,   (33a) 

( ){ }
2 22 2

0 02 2
ˆ exp

π
P T Gabor P Cq Dp F

H H
σ σ 

= − − + + 
  

.       (33b) 

The center of the Gabor function propagates along the affine transformation (1). 
From these Equation (33), we obtain the variances  

22ˆ ˆ
2

Q Q Q Gσ
∆ = − = ,                  (34a) 

22ˆ ˆ
2
H

P P P
σ

∆ = − = ,                   (34b) 

and the uncertainty relation 

( )
2

2 2 4 2
4

1 1
2 2

BQ P G H A D Cσ
σ

 
∆ ⋅ ∆ = ⋅ = + + 

 
.          (35) 

Since the only constraint for the parameters ( ), , ,A B C D  is 1AD BC− = , these 
parameters have time dependency. So, these results (34) and (35), show the time de-
velopment of the variances and the uncertainty relation of the Gabor function. 

Let us show two examples here. As we saw in (25), the Gabor function with 1σ =  
signifies a coherent state. So, using (13) as ( ), , ,A B C D , (35) becomes 

( )21 1 sinh 2 sin
2

Q P ξ θ∆ ⋅ ∆ = + ,                (36) 

which coincides with the uncertainty relation of the squeezed state [10]. The other ex-
ample is where we use (20), then (35) becomes 

2

4 2
1 1
2

tQ P
mσ

∆ ⋅∆ = + ,                    (37) 

which coincides with the uncertainty relation [15] of the spreading of the Gaussian 
wave packet in time. 

5. Affine Transformation of the Wigner Function 

The Wigner function [16]-[18] is widely used in studying optics and the correspon-
dence between classical and quantum mechanics [6] [7]. The Wigner function for any 
wave function ψ  is defined by 

( ), d e
2 2

iuP u uf Q P u Q Qψ ψ= − +∫ .            (38) 

When we take a Gabor function (23) for any wave function Gaborψ = , the Wigner 
function (38) becomes 

( ) ( ) ( )2 22
0 02

1, 2expGf Q P Q q P pσ
σ

 = − − − −  
.        (39) 
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Now we apply the unitary operator T̂  to any wave function; T̂ψ ψ→ . We ob-
tain the affine transformation of the Wigner function, 

( ) †ˆ ˆ, d e
2 2

affine iuP u uf Q P u Q T T Qψ ψ= − +∫ .          (40) 

To cast the right hand side, we use the coordinate identity operator d 1x x x =∫  
twice, 

†ˆ ˆd d d e
2 2

iuP u uu x x Q T x x x x T Qψ ψ′ ′ ′− +∫ .         (41) 

Substituting the kernel (22a) into (41) and integrating over u, we obtain 

( ) ( )

( )

2 2d d exp
2π 2

2π ,
2

x x A Q Ex x i x x i x x
B B B

D Q E x xP F
B B

ψ ψ

δ

′ − ′ ′ ′− − −  
− ′+

× − − + 
 

∫
       (42) 

where ( )zδ  is a delta function of z. Changing the variables u x x′= −  and 
2

x xv
′+

= , 

we obtain 

( ) ( )( )

d d exp
2π 2 2

2π ,

u v u u A Q Ev v i uv i u
B B B

B B P F D Q E v

ψ ψ

δ

− + − −  
× − − − +

∫           (43) 

where we use the formula ( ) ( )1ax a xδ δ−= . Integrating over v , we obtain 

( ) ( ) ( ){ }

( ) ( ) ( ) ( )

, d e

2 2

iu A P F C Q Eaffinef Q P u

u uD Q E B P F D Q E B P Fψ ψ

− − −=

× − − − − − − − +

∫
,    (44) 

where we use 1AD BC− =  and change the variable u u→ − . This is the affine trans-
formation of the Wigner function which is a generalization of (38) and can be applied 
to any wave function ψ  and to any affine transformation with the condition AD – 
BC = 1. Equation (44) shows that the ABCD-part describes the area-preserving distor-
tion, and the E, F-part describes the displacement in phase space. It is permissible for 
any affine transformation to have time dependency, so we are able to investigate the 
dynamic properties of the Wigner function in phase space. 

As an example of a wave function ψ , we take a Gabor function. Substituting the 
Gabor function (23) into (44) and integrating over u, we obtain 

( )

( ) ( ){ } ( ) ( ){ }2 22
0 02

,

12exp

affine
Gf Q P

D Q E B P F q A P F C Q E pσ
σ

 = − − − − − − − − − −  

. (45) 

This equation is a generalization of (39), that is, in its initial state, the Wigner func-
tion of the Gabor function is represented by (39). Once the affine transformation 
switches on, the Wigner function changes along with (45). Note that integrating (45) 
over P and Q respectively, we recover (33); 
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( )
2d ˆ,

2π
affine

G
P f Q P Q T Gabor=∫ ,                (46a) 

( )
2d ˆ,

2π
affine

G
Q f Q P P T Gabor=∫ ,                (46b) 

which is the correct character of the Wigner function. 

6. Summary 

We have developed the mathematical properties of an affine transformation from the 
optical and mechanical points of view. The kernels of the affine transformation were 
clearly derived and comprise the eikonals (generating functions) which generated the 
affine transformation in optics (mechanics). 

Using the kernel, we discussed the wavization of the Gabor function. The Gabor 
function has a Gaussian profile and is symmetric in position and momentum. We 
found the time development of the uncertainty relation, according to the affine trans-
formation. 

We also discussed the affine transformation of the Wigner function and showed not 
only the distortion but also the dynamic movement of the Wigner function in phase 
space. 
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Abstract 
It is proved strictly based on general relativity that two important factors are neg-
lected in LIGO experiments by using Michelson interferometers so that fatal mis-
takes were caused. One is that the gravitational wave changes the wavelength of light. 
Another is that light’s speed is not a constant when gravitational waves exist. Ac-
cording to general relativity, gravitational wave affects spatial distance, so it also af-
fects the wavelength of light synchronously. By considering this fact, the phase dif-
ferences of lasers were invariable when gravitational waves passed through Michel-
son interferometers. In addition, when gravitational waves exist, the spatial part of 
metric changes but the time part of metric is unchanged. In this way, light’s speed is 
not a constant. When the calculation method of time difference is used in LIGO ex-
periments, the phase shift of interference fringes is still zero. So the design principle 
of LIGO experiment is wrong. It was impossible for LIGO to detect gravitational 
wave by using Michelson interferometers. Because light’s speed is not a constant, the 
signals of LIGO experiments become mismatching. It means that these signals are 
noises actually, caused by occasional reasons, no gravitational waves are detected re-
ally. In fact, in the history of physics, Michelson and Morley tried to find the absolute 
motion of the earth by using Michelson interferometers but failed at last. The basic 
principle of LIGO experiment is the same as that of Michelson-Morley experiment in 
which the phases of lights were invariable. Only zero result can be obtained, so LIGO 
experiments are destined failed to find gravitational waves. 

How to cite this paper: Mei, X.C., Huang, 
Z.X., Ulianov, P.Y. and Yu, P. (2016) LIGO 
Experiments Cannot Detect Gravitational 
Waves by Using Laser Michelson Interfero-
meters. Journal of Modern Physics, 7, 1749- 
1761. 
http://dx.doi.org/10.4236/jmp.2016.713157  
 
Received: July 28, 2016 
Accepted: September 25, 2016 
Published: September 28, 2016 
 
Copyright © 2016 by authors and 
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International 
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

   Open Access

http://www.scirp.org/journal/jmp
http://dx.doi.org/10.4236/jmp.2016.713157
http://www.scirp.org
http://dx.doi.org/10.4236/jmp.2016.713157
http://creativecommons.org/licenses/by/4.0/


X. C. Mei et al. 
 

1750 

Keywords 
Gravitational Wave, LIGO Experiment, General Relativity, Special Relativity, 
Michelson Interferometer, Michelson-Morley Experiment, GW150914, WG151226 

 

1. Introduction 

February 11, 2016, LIGO (Laser Interference Gravitational-Waves Observatory) an-
nounced to detect gravitational waves events GW150914 [1]. Four months later, they 
announced to detect another two gravitational events WG151226 and LVT151012 [2]. 
In LIGO experiments, Michelson laser interferometers were used. Based on general re-
lativity, we proved strictly that by using Michelson interferometers, LIGO cannot detect 
gravitational waves. The basic principle of LIOGO experiment is wrong. The so-called 
detections of gravitational waves and the observations of binary black hole mergers are 
impossible. 

The design principle of LIGO experiments is as follows. According to general relativ-
ity, gravitational waves stretch and compress space to change the lengths of interfero-
meter’s arms. When two lights travelling along two arms which are displaced vertically 
meet together, the shapes of interference fringes will change. Based on this phase shifts, 
gravitational waves can be observed. 

There are two methods to calculate the phase shift of interference fringes in classical 
optics. One is to calculate the phase difference of two lights and another is to calculate 
the time difference of two lights when they arrive at the screen. In LIGO experiments, 
two of them were used. But the calculations are based on a precondition, i.e., light’s 
speed is a constant. 

As well-known, light’s phase is related to its wavelength. The stretch and squeeze of 
space also cause the change of light’s wavelength and affect phases. However, LOGO 
experiment neglected the effect of gravitational wave on the wavelength of light. If the 
effects of gravitational wave on light’s wavelength and interferometer arm’s lengths are 
considered simultaneously, light’s phases are unchanged in Michelson interferometers. 
So it is impossible for LIGO experiments to detect gravitational waves. 

On the other hand, light’s speed was considered as a constant in LIGO experiments. 
It is proved strictly based on general relativity that when gravitational waves exist, 
light’s speed is not a constant again. If light’s speed is less than its speed in vacuum 
when it travels along one arm of interferometer, its speed will be great than its speed in 
vacuum when it travels along another arm, i.e., so-called superluminal motion occurs. 
In this way, no time differences exist when two lights meet together in Michelson in-
terferometer. Therefore, according to the second method of calculation, LIGO experi-
ments did not detect gravitational waves too. 

The other principle problems existing in LIGO experiments are briefly discussed in 
this paper. The conclusion is that LIGO experiments do not detect gravitational waves 
and no binary black hole mergers are observed. The signals occurred in LIGO experi-
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ments could only be noises caused by some occasional reasons. 

2. Light’s Phase Difference Is Invariable in LIGO Experiments 

According to general relativity, under the condition of weak field, the metric tensor is 

( ) ( )g x h xµν µν ηνη= +                         (1) 

Here µνη  is the metric of flat space-time and ( )h xµν  is a small quantity. Substi-
tute (1) in the Einstein’s equation of gravitational field, it can be proved that the modal 
of gravitational radiation is quadrupole moment. In a small region, we may assume 

( ) ( )h x h tην ην= . When gravitational wave propagates along the x-axis, the intensity of 
gravitational field is ( )11h t . While it propagates along the y-axis, the intensity is 

( )22h t . It can be proved to have relation ( ) ( )11 22h t h t= −  [3]. 
On the other hand, according to general relativity, we have 2d 0s =  for light’s mo-

tion. Suppose that gravitational wave propagates along the z-axis, when lights propa-
gate along the x-axis and the y-axis individually, we have [4] 

( )2 2 2 2
11d d 1 d 0s c t h t x= − + =                      (2) 

( )2 2 2 2
22d d 1 d 0s c t h t y= − + =                      (3) 

It is obvious that time is flat but space is curved according (2) and (3). The propaga-
tion forms of light are changed when gravitational waves exist. Due to 11 1h  , 

22 1h   and ( ) ( )11 22h t h t= − , we have 

( )11
11

1d d 1 d
21

cx t c h t t
h

 = = − +  
                  (4) 

( )11
22

1d d 1 d
21

cy t c h t t
h

 = = + +  
                  (5) 

LIGO experiments used Michelson interferometers to detect gravitational waves. The 
principle of Michelson interferometer is shown in Figure 1. Light is emitted from the 
source S and split into two beams by beam splitter O. Light 1 passes through O, arrives 
at reflector 1M  and is reflected by 1M  and O, then arrived at E. Light 2 is reflected by 

 

 
Figure 1. The principle of Michelson interferometers. 
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O, arrives at 2M  and is reflected, then arrived at E too. Two lights overlay and form 
interference fringes which can be observed by observer at E. 

In order to reveal the problems of LIGO experiments clearly, we discuss the simplest 
situation. Suppose that the length of interferometer’s arm is 0L  and let h11(t) = h = 
constant. The time interval is 2 1 2t t τ− =  when the light moves a round-trip along the 
arm. The integral of (4) and (5) are 

( ) ( )0 02 1 2 , 2 1 2x L h y L h= − = +                    (6) 

Here 0L cτ= . So the optical path difference is 02L y x L h∆ = − =  for lights move 
along two interferometer’s arms. Suppose that the electric fields of lasers are 

( ) ( )0 0cos , cosx yE E t kx E E t kyω ω= − = −                (7) 

Here, 2πk λ= , 2πω ν=  and cνλ = . According to classical optics, by adding 
two amplitudes together directly and taking square, we obtain light’s intensity which is 
unrelated to time 

( ) ( )22 2
02 1 cosx yE E E E δ= + = + ∆                   (8) 

The difference of phases is 

( ) ( )2πk y x y xδ
λ

∆ = − = −                      (9) 

If there is no gravitational wave, we have 02y x L= =  and get 0δ∆ = . If there is a 
gravitational wave which passes through the interferometers, according to the current 
theory, the difference of phases is 

( ) 04π2π 0L hy xδ
λ λ

∆ = − = ≠                    (10) 

Therefore, gravitational waves would cause the phase changes of interference fringes. 
By observing the change, gravitational waves would be detected. 

However, the calculation above has serious defects. At first, according to general re-
lativity strictly, the formulas (1) and (2) are only suitable for two particles in vacuum 
without the existence of electromagnetic interaction. In LIGO experiments, two mirrors 
are hanged in interferometers using fiber material. Interferometers are fixed on the 
steal tubers which are fixed on the surface of the earth. Whole system is controlled by 
electromagnetic interaction. As we known, the intensity of electromagnetic interaction 
is 1040 times greater than gravitational interaction. Therefore, gravitational waves can-
not overcome electromagnetic forces to change the length of interferometer’s aims or 
make two mirrors vibration by overcoming the stain forces acted on fiber material. This 
is just the reason why J. Weber’s gravitational wave experiments failed. This is the crit-
ical defect of LIGO experiments. We have discussed this problem in Document [5], so 
we do not discuss it any more here. 

Second, the major point in this paper is to emphasize that the effect of gravitational 
wave on the wavelength of light has not been considered in LIGO experiments. In fact, 
if gravitational wave causes the change of spatial distance, it also causes the change of 
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light’s wavelength. Both are synchronous. According to (6), when gravitational waves 
exist, the wavelengths of lights should become 

( ) ( )1 2 , 1 2x yh hλ λ λ λ= − = +                     (11) 

when two lights meet together, the difference of phases should be 

0 02 22π 2π 0
y x

L Ly xδ
λ λ λ λ

   ∆ = − = − =       
                (12) 

Therefore, interference fringes are unchanged. That is to say, it is impossible to 
detect gravitational waves by using Michelson interferometers. If ( )11 constanth t ≠ , we 
write it as 

( ) ( )11 0sinh t h t θ= Ω +                         (13) 

Here, Ω  is the frequency of gravitational wave. Substitute (13) in (5) and (6), the 
integrals become 

( )

( ) ( )

2

0
0

0 0 0 0

2 sin d
2

cos 2 cos 1 2
2

chx c t t

chL L A

τ

τ θ

τ θ θ

= − Ω +

 = − Ω + − = − Ω

∫
            (14) 

( )

( ) ( )

2

0
0

0 0 0 0

2 sin d
2

cos 2 cos 1 2
2

chy c t t

chL L A

τ

τ θ

τ θ θ

= + Ω +

 = + Ω + − = + Ω

∫
            (15) 

Here 

( )0 0
0

cos 2 coschA
L

τ θ θ = Ω + − Ω
                   (16) 

The result is the same with (6) by substituting A for h. 
In LIGO experiments, by assuming that gravitational wave’s speed is light’s speed in 

vacuum, the frequency of gravitational wave is 30 ~ 300 Hzν =  and the wavelength is 
63 10 mcλ ν= = × . The length of interferometer’s arm is 3

0 4 10 mL = × , so we have 

0Lλ  . In the extent of interferometer size, the wavelength of gravitational wave can 
be considered as a fixed value. The formula (11) is still suitable by substituting A for h. 
So, even though (13) was used to describe gravitational waves, LIGO experiments could 
not detect gravitational waves too. 

3. Light’s Speed Is Not a Constant When Gravitational Waves Exist 

Based on (4) and (5), we can obtain an important conclusion, i.e., light’s speed is not a 
constant again when gravitational waves exist 

11
11

d 11
d 21x
x cV c h c
t h

 = = ≈ − ≠ +  
 

y 11
22

d 11
d 21
y cV c h c
t h

 = = = + ≠ +  
                  (17) 
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This result also causes a great effect on LIGO experiments. The current theory always 
considers light’s speed to be a constant in gravitational fields. According to Reference 
[4], (17) means that the spatial refractive index becomes 1 2kkh+  from 1 due to the 
existence of gravitational waves. In this medium space, light’s speed is changed. More 
interesting is that if 11 0h > , we have xV c<  and yV c> . That is to say, yV  exceeds 
light’s speed in vacuum. How do we explain this result? No one consider this problem 
at present. 

Reference [4] also indicates that “For Gaussian beam, the interval of space-time is 
not equal to zero. In the laser detectors of gravitational waves, Gaussian beams are used. 
Do these lights exist in curved space-time?” [4]. According to strict calculation, when 
gravitational waves exist, the propagation speed of Gaussian beam is 

( ) ( )2 2
0 0

21
2

cV c c
k zω ω

= − <
+

                  (18) 

Here, 2
0ω  is the spot size of Gaussian beam, k is the absolute value of wave’s vector 

and z is the coordinate of light beam. These results will cause great influence on the 
waveform match in LIGO experiment. The original matching signals would become 
mismatching when comparing them with the templates of waveforms. The conclusion 
to detect gravitational waves should be reconsidered. 

In fact, LIGO team also admits that gravitational wave changes light’s wavelength. In 
the LIGO’s FAQ page (https://www.ligo.caltech.edu/page/faq) we can see the following 
question: 

“If a gravitational wave stretches the distance between the LIGO mirrors, doesn’t it 
also stretch the wavelength of the laser light?” 

The answer of LIGO team is: 

“A gravitational wave does stretch and squeeze the wavelength of the light in the 
arms. But the interference pattern doesn’t come about because of the difference 
between the length of the arm and the wavelength of the light. Instead it’s caused 
by the different arrival time of the light wave’s “crests and troughs” from one arm 
with the arrival time of the light that traveled in the other arm. To get how this 
works, it is also important to know that gravitational waves do NOT change the 
speed of light. 

The answer is very confusing, showing that they aware of the problem but try to es-
cape from it. Then they say 

“But the interference pattern doesn’t come about because of the difference between 
the length of the arm and the wavelength of the light.” 

The sentence makes no sense. In the above explanation, we see that 

“Instead it’s caused by the different arrival time of the light wave’s ‘crests and 
troughs’ from one arm with the arrival time of the light that traveled in the other 

https://www.ligo.caltech.edu/page/faq
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arm. To get how this works, it is also important to know that gravitational waves 
do NOT change the speed of light.” 

In this sentence, LIGO emphases that gravitational waves do not change light’s speed. 
This is the foundation of LIGO experiments. Because this conclusion does not hold, 
LIGO’s explanation is untenable. 

It is a confused problem for many physicists whether or not light’s speed is a con-
stant in gravitational field. To measurement speed, we first need to have unit ruler and 
unit clock. According to general relativity, gravitational field cause space-time curved. 
In the gravitational field, we have too definitions for ruler and clock, i.e., coordinate 
ruler and coordinate clock, as well as standard ruler and standard clock (or proper ruler 
and clock). Coordinate ruler and coordinate clock are fixed at a certain point of gravi-
tational field. They vary with the strength of gravitational field. Standard ruler and 
standard clock are fixed on the local reference frame which falls free in gravitational 
field. In local reference frame, gravitational force is canceled, so standard ruler and 
standard clock are unchanged. 

It has been proved that if the metric tensor 0ig  which is related to time is not equal 
to zero, i.e., 0 0ig ≠ , no matter what ruler and clock are used, light’s speed is not a 
constant. If 0 0ig = , by using coordinate ruler and coordinate clock, light’s speed is not 
a constant. Using standard ruler and standard clock, light’s speed becomes a constant. 
But in this case, the observer is also located at the reference frame which falls free in 
gravitational field [3]. 

In LIGO experiments, observers located at a gravitational field caused by gravitation-
al wave, rather than falling free in gravitational field, so what they used were coordinate 
ruler and coordinate clock. Therefore, light’s speed in LIGO experiments are not a con-
stant. In fact, according to (2), the time part of metric is flat and the spatial part is 
curved, so the speed d dxV x t=  is not a constant certainly. 

According to this definition, by using coordinate ruler and coordinate clock, light’s 
speeds in gravitational fields are generally less its speed in vacuum. For example, light’s 
speed is ( )d d 1rV r t c r cα= = − < in the gravitational field of spherical symmetry ac-
cording to Schwarzschild metric and 21 1rV c kr R= − <  at present moment with 

1R =  in the gravitational field of cosmology according to the R-W metric. But in the 
early period time of cosmos with 1R < , light’s speed is great than its speed in vacuum. 
So it is not strange that light’s speed may be greater than its speed in vacuum at a cer-
tain direction if gravitational waves exist. 

4. Phases Shifts Cannot Be Obtained by the Calculation Method of 
Time Difference in LIGO Experiments 

In classical optics, the difference of time is also used to calculate the change of interfe-
rence fringes. However, it has a precondition, i.e., light’s speed is a constant. LIGO ex-
periments used time differences to calculate the changes of interference images [6]. Due 
to the fact that light’s speed is not a constant when gravitational waves exist, we prove 
that it is impossible to use time difference to calculate the change of interference fringes. 
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Thought the lengths of interferometer’s arms change, the speed of light also changes 
synchronously, so that the time that light travels along the arms is unchanged too. 

Because light’s frequency is 2π 2πcω ν λ= = , when gravitational wave exists, if 
light’s speed is unchanged but the wavelength changes, the frequency ω  will change. 
In this case, (7) should be written as 

( ) ( )0 0cos , cosx x x y y yE E t k x E E t k yω ω= − = −             (19) 

when two lights are superposed, we cannot get (8). The result is related to time and be-
comes very complex. If light’s speed is not a constant, according to (6) and (11), we 
have 

2π2π 2π 2π2π , 2π yx
x x y y

x y

VV c cω ν ω ω ν ω
λ λ λ λ

= = = = = = = =        (20) 

In this case, light’s frequency is invariable and the formula (8) is still tenable. So, 
when gravitational waves exist, we should think that light moves in medium. Light’s 
frequency is unchanged but its speed and wavelength change. Only in this way, we can 
reach consistency in physics and logic. In fact, (20) is well-found in classical physics. As 
mentioned in [7], in a static medium, wave’s speed changes but frequency does not 
change, so wavelength also changes. 

We know from (7) that light’s phase is determined by both factors tω  and kx . 
Here 2πkx x λ=  is an invariable quantity according to discussion above. Because of 

2π 2π Tω ν= =  and T is the period of light which changes with t synchronously. We 
always have 2π 2π 2πt T t Tω ν ω′ ′ ′ ′= = = = . Because gravitational waves do not affect 
time t, the phase tω  of light is also unchanged in LIGO experiments. 

5. The Problems Existing in the Third Method to Calculate Phase 
Shifts of Light 

There is a more complex method to calculate the phase shift of light for LIGO experi-
ments by considering interaction between gravitational field and electromagnetic field, 
or by solving the Maxwell’s equations in a curved space caused by gravitational wave 
[8]. This method also has many problems. We discuss them briefly below. 

In this calculation, two arms of interferometers are located at the x-axis and the y- 
axis. If there is no gravitational wave, the vibration direction of electric field is along the 
y-axis for the light propagating along the x-axis (electromagnetic wave is transverse 
wave), we have 

( ) ( ) ( ) ( )0 2 0
0 02e ei kx t i kx t ka

yE E Fω ω− − − − = − = −                  (21) 

Here, a is the coordinate of reflect mirror, ( )0
ikF  is electromagnetic tensor. The form 

of magnetic field is the same, so we do not write it out here. When the light propagates 
along the y-axis, the vibration of electric field is along the direction of x-axis with 

( ) ( ) ( ) ( )0 2 0
0 01e ei ky t i ky t ka

xE E Fω ω− − − − = + = −                  (22) 

Meanwhile, gravitational wave propagates along the z-axis with 
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( )11 22 cos g gh h A k z tω= − = − −                    (23) 

when gravitational wave exists, electromagnetic tensors become 
( ) ( )0 1

v v vF F Fµ µ µ= +                          (24) 

Here, ( )1
vFµ  is a small quantity of electromagnetic field induced by gravitational field. 

Substitute (24) in the equation of electromagnetic field in curved space-time, the equa-
tion ( )1

vFµ  satisfied is [9]: 
( ) ( ) ( ) ( )1 0 0, 2

, , ,
v

v v vF h F h F O hρν ρ νρ
µ ρ µ ρ ρ µ ρη = + +               (25) 

( ) ( ) ( )1 1 1
, , , 0v v vF F Fµ ρ ρ µ ρµ= + =                            (26) 

By solving (25) and (26), the concrete form of ( )1
vFµ  can be obtained and the phase 

shifts caused by gravitational waves can be determined. The phase shifts along two arms 
are [8] 

sin , sin
2 2x g y g

g g

A Aω ωδϕ ω τ δϕ ω τ
ω ω

= = −             (27) 

The total phase shift between two arms is x yδϕ δϕ δϕ= − . However, by careful 
analysis, we find following problems in this calculation. 

1) This method is also based on the precondition that light’s speed is unchanged. As 
proved above, this is impossible. 

2) Because the phases of lights are not affected by gravitational waves, the forms of 
(21) and (22) are invariable when gravitational waves exist. We have ( )1 0vFµ =  in (24), 
no phase shifts of lights can be obtained by this calculating method. 

3) According to (21) and (22), the vibration directions of two lights propagating 
along the x-axis and the y-axis are vertical, so they cannot interfere to each other. How 
did gravitational waves make the shifts of interference fringes? This is another basic 
problem for this calculation method. 

In addition, the phase differences xδϕ  and xδϕ  caused by gravitational waves 
cannot be obtained independently and simultaneously by solving Equations (25) and 
(26). The author of the paper admitted that “we solve these equations in a special 
orientation which does not correspond to an actual interferometer arm” [9]. So the pa-
per introduced “a fictitious system which is composed of an electromagnetic wave 
propagating along the z axis, …is perturbed by a gravitational wave moves along the 
y-axis.” It means that the calculation did not consider the light propagating along 
another arm of interferometers. 

After simplified calculation, a coordinate transformation was used to transform the 
result to original problem. For the light propagating along the x-axis, the coordinate 
transformations are t t′ = , x y′ = , y z′ =  and z x′ =  (The coordinate reference 
frame rotates 90 degrees around the x-axis, then rotates 90 degrees around the z-axis 
again along the clockwise directions.) For the light propagating along the y-axis, the 
coordinate transformations are t t′ = , x x′ = , y z′ =  and z y′ = −  (The coordinate 
reference frame rotates 90 degrees around the x-axis along the anticlockwise direction.). 
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In this way, two problems are caused. 
1) When a light propagates along one arm, the interaction between gravitational 

wave and electromagnetic field is different from that when two lights propagate along 
two arms, or the formulas (25) and (26) are different in two situations. So this simpli-
fied method cannot represent real experiment processes. 

2) After coordinate transformation, the electric field of light originally propagating 
along the x-axis becomes [8] 

( ) ( ) ( )0 2
0 e ei kz t i kz t ka

xE E ω ω′ ′ ′ ′− − + − ′ = −                     (28) 

The electric field of light originally propagating along the z-axis becomes 

( ) ( ) ( )0 22
0e e ei kz t i kz t kaika

xE E ω ω′ ′ ′ ′ ′− − + − ′ = −                   (29) 

The gravitational waves become 

( )11 33 cos g gh h A k y tω′ ′= − = − −                    (30) 

It is obvious that though the vibration directions of two lights become the same so 
that the interference fringes can be created, two lights move along the same directions. 
The process is inconsistent with real experiments of Michelson interferometers. That is 
to say, it is hard for this calculating method to reach consistence. 

In fact, the result of this calculation contracts with the calculation in this paper. The 
method of this paper is standard one with clear image and definite significance in 
physics. If the results are different from it by using other methods, we should consider 
whether or not other methods are correct. 

It is obvious that there are so many foundational problems in theory of LIGO expe-
riments. It is meaningless to declare the detection of gravitational waves. Even thought 
the experiments are moved to space in future, it is still impossible to detect gravitational 
wave if Michelson interferometers are used. 

6. Comparison between LIGO Experiment and Michelson-Morley 
Experiment 

The principle of detecting gravitational wave by using Michelson interferometers was 
first proposed by M. E. Gertenshtein and V. I. Pustoit in early 1960s [8] and G. E. Moss, 
etc. in 1970s [9]. However, before Einstein put forward special relativity, A. A. Michel-
son and E.W. Money spent decades to conduct experiments by using Michelson inter-
ferometer, trying to find the absolute movement of the earth but failed at last. This re-
sult led to the birth of Einstein’s special relativity. The explanation of special relativity 
for this zero result is based on the length contraction of interferometer. When one arm 
which moved in speed V contracted, another arm which was at rest was unchanged. 
The speed of light was considered invariable in the process so that no any shift of inter-
ference fringes was observed. 

It is obvious the principle of LIGO experiment is the same as that in Michelson expe-
riments. Because Michelson’s experiments could not find the changes of interference 
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fringes, it is destined for LIGO experiments impossible to find gravitational waves [10]. 
We discuss this problem in detail. Suppose that the interferometer’s arm is located 

along the y-axis and the arm along the x axis moves in speed V. For an observer who is 
at rest with the y-axis, the length contraction and time delay of the arm along the x-axis 
are 

2 2 2 21 , 1x x V c t t V c′ ′= − = −                  (31) 

Suppose that the period is T ′  and the frequency is ν ′  for a light moving along the 
x-axis, we have 1Tν ′ ′ = , 2π 2π Tω ν′ ′ ′= = , as well as 2 21T T V c′ = −  (period is 
also time). So we have 

2π 2π 2π 2π,t t x xt t k x kx
T T

ω ω
λ λ

′ ′
′ ′ ′ ′= = = = = =

′ ′
             (32) 

It means that in the rotation processes of Michelson interferometers, the phase 
t kxω −  of light is unchanged. In this way, the absolute movement of the earth cannot 

be observed. The key is that light’s speed is unchanged, frequency and wavelength 
change simultaneously in the processes. But in LIGO experiment, as shown in (2), (3) 
and (17), due to the fact that the time part of metric is flat but space is curved, light’s 
speed and wavelength had to change when gravitational waves exist. This is just the 
difference between LIGO experiments and Michelson experiments. But the phases of 
lights are invariable in both experiments. We can only obtain zero results, so LIGO ex-
periments are destined failed to find gravitational waves. 

Let’s make further calculation. The speed that the earth moves around the sun is 
43 10 m sV = × . The length of Michelson interferometer’s arm is 10 mL = . According 

to special relativity, the Lorentz contraction of one arm in Michelson experiments is 

( ) ( )2 2 2 2 81 1 2 5 10 mL L V c L V c −∆ = − − = × = ×          (33) 

In LIGO experiment, the length change of arm is about 10−18 m, about one 20 bil-
lionth times smaller than that in Michelson experiment. Suppose that the shift of inter-
ference fringes can be observed in Michelson experiments. According to classical me-
chanics, the number of fringe shifts is about 0.2. Suppose that IGO experiments can 
detect the shift of interference fringes caused by gravitational waves, the number of 
fringe shifts is only one 100 billionth of Michelson experiment. How could LIGO expe-
riments separate such small shifts from strong background noises of environment (in-
cluding temperature influence) and identified that they were really the effect of gravita-
tional waves? 

In fact, LIGO’s interferometers are fixed on two huge steel tubes with length 4000 m. 
The steel tubes are fixed on the surface of the earth under wind and rain. It is impossi-
ble to put so huge interferometers in a constant temperature rooms. The tubes are dis-
placed vertically and 4000 m is not an ignorable length. The differences of temperatures 
exist and change with time frequently. Suppose that at a certain moment, the tempera-
ture of one tube changes 0.001 degree in one second. This is a conservative estimation. 
We calculate its influence on LIGO’s experiment. 
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The expansion coefficient of common steel tube is 1.2 × 10−5 m/degree. When tem-
perature changes 0.001 degree, the change of tube length is 1.2 × 10−5 × 0.001 × 4000 ≈ 
5 × 10−5 m in one second. The action time of gravitational wave is 1 second. In this time, 
the length change of tube caused by gravitational wave is 10−18 m. The length change of 
tube caused by gravitational wave only is 2 × 10−12 times less than that caused by the 
change of temperature. 

What is this concept? It means that LIGO used a ruler of 10 Km to measure the ra-
dius of an atom. The length changes caused by temperature completely cover up the 
length changes caused by gravitational waves. No any reaction can be found when a 
signal of gravitational wave hit the interferometers of LIGO. LIGO’s instrument cannot 
separate the effect of gravitational waves from temperature’s effect. The SNR (signal to 
noise ratio) of 13 and 24 declaimed by LIGO is only an imaginary value in theory, hav-
ing nothing to do with practical measurements. 

7. Conclusions 

In this paper, based on general relativity, we strictly prove that the LIGO experiments 
neglect two factors. One is the effects of gravitational waves on the wavelengths of light. 
Another is that light’s speed is not a constant when gravitational waves exist. If these 
factors are considered, no phase shifts or interference fringe’s changes can be observed 
in LIGO experiments by using Michelson interferometers. 

In fact, in the laser detectors of gravitational waves, Gaussian beams are commonly 
used. The propagation speed of Gaussian beam is not a constant too. So the match of 
signals becomes a big problem without considering these factors in LIGO experiments. 

In addition, in Reference [5], X. Mei and P. Yu pointed out that no source of gravita-
tional wave burst was found in LIGO experiments. The so-called detections of gravita-
tional waves were only a kind of computer simulation and image matching. LIGO ex-
periments had not verified general relativity. The argument of LIGO team to verify the 
Einstein’s prediction of gravitational wave was a vicious circle and invalid in logic. The 
method of numerical relativity to calculate the binary black hole mergers was incredible 
because too many approximations were involved. 

In Reference [11], P. Ulianov indicated that the signals appeared in LIGO experi-
ments may be caused by the changes of frequency in the US power grid. The analysis 
shows that one of noise sources in LIGO’s detectors (32.5 Hz noise source) is connected 
to the 60 Hz power grid and at GW150914 event. This noise source presents an unusual 
level change. Besides that, the 32.5 Hz noise waveform is very similar to the gravita-
tional waveform, found in GW150914 event. As LIGO system only monitored the 
power grid voltage levels without monitoring the 60 Hz frequency changes, this kind of 
changes over US power grid (that can affect both LIGO’s detectors in a same time win-
dows) was not perceived by the LIGO team. 

Based on the arguments above, we can conclude that it is impossible for LIGO to 
detect gravitational waves. What they found may be some noises by some occasional 
reasons. So called finding of gravitational waves is actually a game of computer simula-
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tions and image matching, though it is a very huge and accurate game. 
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Abstract 
Cosmological expansion or inflation is mathematically described by the theoretical 
notion of inverse gravity whose variations are parameterized by a factor that is a 
function of the distance to which cosmological expansion takes prominence over 
gravity. This assertion is referred to as the inverse gravity inflationary assertion. 
Thus, a correction to Newtonian gravitational force is introduced where a paramete-
rized inverse gravity force term is incorporated into the classical Newtonian gravita-
tional force equation where the inverse force term is negligible for distances less than 
the distance to which cosmological expansion takes prominence over gravity. Con-
versely, at distances greater than the distance to which cosmological expansion takes 
prominence over gravity. The inverse gravity term is shown to be dominant generat-
ing universal inflation. Gravitational potential energy is thence defined by the 
integral of the difference (or subtraction) between the conventional Newtonian gra-
vitational force term and the inverse gravity term with respect to radius (r) which al-
lows the formulation, incorporation, and mathematical description to and of gravita-
tional redshift, the Walker-Robertson scale factor, the Robinson-Walker metric, the 
Klein-Gordon lagrangian, and dark energy and its relationship to the energy of the 
big bang in terms of the Inverse gravity inflationary assertion. Moreover, the dynam-
ic pressure of the expansion of a cosmological fluid in a homogeneous isotropic un-
iverse is mathematically described in terms of the inverse gravity inflationary asser-
tion using the stress-energy tensor for a perfect fluid. Lastly, Einstein’s field equa-
tions for the description of an isotropic and homogeneous universe are derived in-
corporating the mathematics of the inverse gravity inflationary assertion to fully 
show that the theoretical concept is potentially interwoven into the cosmological 
structure of the universe. 
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Gravitational Redshift, Robertson-Walker Scale Factor, Klein-Gordon Lagrangian, 
Dark Energy, Stress-Energy Tensor, Friedman-Walker-Robertson Metric, Photon 

 

1. Introduction 

The theoretical notion that cosmological expansion or universal inflation occurs due to 
inverse variations in gravitational force whose rate of change is regulated by a limiting 
factor or parameter is introduced. Thus, it is asserted that cosmological expansion or 
inflation is an inherent property of nature mathematically described by the difference 
between conventional Newtonian gravitational force and its inverse term which is mul-
tiplied by an inflationary parameter which regulates its rate of change. The inflationary 
parameter multiplied by the inverse term of Newtonian gravitational force is deter-
mined by (and is a function of) an astronomical distance to which cosmological expan-
sion over takes gravitational force on a cosmic scale. The establishment of the core 
concept of the inverse gravity inflationary assertion aforementioned is the foundation 
to describing the universe in terms of the new assertion. Thus, the aim of this paper is 
the incorporation of the inverse gravity inflationary assertion (IGIA) into proven and 
established mathematics describing cosmological inflation. 

A more detailed introduction is that this paper formulates the correction to the 
Newtonian gravitational force equation incorporating an inverse gravity term and its 
conditions. This permits the derivation of gravitational potential energy in terms of the 
IGIA. Resultantly, the relationship between gravitational potential energy, dark energy, 
gravitational redshift, the Klein-Gordon Lagrangian, the energy of the big bang, the 
Robertson-Walker scale factor, and the Friedman-Walker-Robertson metric in terms of 
the inverse gravity inflationary assertion (IGIA) is formulated and defined. The IGIA is 
then applied to the stress-energy tensor for describing the dynamic pressure of an ex-
panding cosmological fluid in a homogeneous and isotropic universe. Lastly, the IGIA 
is applied to Einstein’s field equations for the description of a spherically homogeneous 
isotropic universe which establishes the inverse gravity inflationary assertion. This will 
elucidate how the IGIA is interwoven into the cosmological structure of the universe. 

2. The Correction to the Newtonian Gravitational Force Equation 
and IGIA Inflationary Parameter 

To begin the heuristic derivation, mass values 1m  and 2m  are the combined masses 
of cosmological bodies (such as galaxies) evenly dispersed over an isotropic and homo-
geneous universe and G is the gravitational constant. The terms of gravitational force 
which are a function of radius r are given such that [1]: 

( ) ( )
2

1 2
02

1 2

, gg
Gm m rF r F r B

Gm mr
 

′= =  
 

                  (1.0) 

where ( )gF r  is the classical expression of Newtonian gravitational force and ( )gF r′  
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is the inverse term of Newtonian gravitational force, constant 0B  is the inflationary 
factor or parameter. Inflationary factor 0B  is stated such that: 

0 0 02
0

1 ;1 0; 1B B r
r

= > > >                        (1.01) 

The constant 0r  is the astronomical distance to which cosmological expansion takes 
prominence over gravity. The inverse term of gravity ( )gF r′  can be re-expressed in 
terms of distance 0r  such that: 

( )
2

2
1 20

1
g

rF r
Gm mr

   
′ =    

  
                       (1.02) 

The total gravitational force ( )TF r  or the Newtonian correction is stated as the dif-
ference between force values ( )gF r′  and ( )gF r  such that: 

( ) ( ) ( )gT gF r F r F r′= −                        (1.03) 

Therefore, 

( )
2

1 2
2 2

1 20

1
T

Gm mrF r
Gm mr r

   
= −   

  
                   (1.04) 

The direction (+ or −) of the value of total force ( )TF r  has relationships defined by 
the inequalities of radius r and distance 0r  given by the conditions below. 

( )0For ; Tr r F r> +                          (1.05) 

( )0For ; Tr r F r< −                          (1.06) 

Condition (1.05) describes cosmological expansion ( )TF r+  away from the gravita-
tional force center or gravitational source for distances 0r r> .Conversely, for condi-
tion (1.06), inverse gravity term  ( )gF r′  in total force ( )TF r  is negligible at distance 

0r r<  causing force direction ( )TF r−  toward the center of gravitational force. 
The value of the cosmological parameter of distance 0r  is determined where total 

force value ( )TF r  equals zero and radius r equals cosmological parameter 0r  ( 0r r=  
and ( )0 0TF r = ). Furthermore, this implies that for the condition of ( )0 0TF r = , the 
force terms ( )0gF r′  and ( )0gF r  in total force ( )0TF r  are equal ( ( ) ( )0 0g gF r F r′ = ). 
Therefore, total force ( )0TF r  can be presented such that: 

( ) ( )
( )

2
0 1 2

0 2 2
1 20 0

1 0T
r Gm mF r

Gm mr r

  
= − =  

    
               (1.07) 

This reduces to: 

( )
1 2

2
1 2 0

1 0Gm m
Gm m r
 

− = 
 

                     (1.08) 

Solving Equation (1.08) for the cosmological parameter of distance 0r  gives a value 
such that: 

0 1 2r Gm m=                           (1.09) 

Conclusively Equation (1.09) above, gives the value of distance 0r  to which cosmo-
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logical expansion takes prominence over gravity. In describing an isotropic and Ho-
mogeneous spherical universe, mass values 1m  and 2m  will be evenly (and uniformly) 
distributed about the spherical volume. Mass value um  denotes the total mass of the 
universe, therefore the dispersion of cosmological mass um  will be described via the 
function ( ), ,g m θ φ  at mass variable m and the spherical coordinates at θ  and φ  
[2]. Resultantly, mass цm′  (corresponding to each mass value of 1m  and 2m ) which 
represents a portion of cosmological mass dispersed about the sphere is set equal to 
function ( ), ,g m θ φ  as shown below. 

( )ц , ,m g m θ φ′ =                          (1.10) 

Function ( ), ,g m θ φ  takes on a value of [2]: 

( ) ( ) ( ) ( )
1 22 2 2, , cos sin sin sin cosg m m m mθ φ θ φ θ φ φ = + +         (1.11) 

The gravitational interaction of symmetric portions of cosmological mass цm′  and 

цm′  separated by distance 0r  is stated as the product between the two mass values 
such that: 

( )( ) ( )( ) ( )( )2
ц ц , , , , , ,m m g m g m g mθ φ θ φ θ φ′ ′ = =              (1.12) 

Thus, the continuous sums (or integration) of gravitational mass interaction ц цm m′ ′  
to whom are located on opposite sides of distance 0r  is taken to a value π and to the 
value of the mass of the universe um . Thus, the gravitational interaction of mass values 

1 2m m  in Equation (1.09) equals the triple integral shown below [2]. 

( )π π
1 2 ц ц0 0 0

d d dum
m m m m m m θ φ′ ′= ∫ ∫ ∫                    (1.13) 

As the continuous sums of the integrals in Equation (1.13) progress in concert with 
angles θ  and φ  and sum up to a value π , the interacting mass values of 1m  and 

2m  on opposite sides of distance 0r  sum up in concert with variable mass m to en-
compass both halves of the spherical volume, giving the gravitational interaction of the 
entire spherical volume. Thus, the integration of (1.13) gives the gravitational mass in-
teraction of the entire spherical volume. Therefore substituting the value of Equation 
(1.13) into (1.09) gives the proper mathematical description of distance r0 shown below. 

( )π π
0 ц ц0 0 0

d d dum
r G m m m m θ φ ′ ′=   ∫ ∫ ∫                 (1.14) 

The aim and scope of this paper is to introduce the notion and mathematics of the 
Inverse gravity inflationary assertion, thus we leave the calculation and value of Equa-
tion (1.14) as an exercise to the scientific community based on data obtained (The value 
of universal mass um ) by astronomical observations. 

3. The IGIA Mathematical Integration into Established 
Fundamental Concepts in Cosmology 

This section applies the mathematical concept of the inverse gravity assertion to gravi-
tational potential energy, gravitational Redshift, the Robertson-Walker scale factor, 
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Friedman-Walker-Robertson metric, the Klein-Gordon lagrangian, dark energy, and 
the energy of the big bang. Gravitational potential energy ( )TU r  describing the ener-
gy of inflation in terms of the IGIA is equal to the conventional integral of total force 

( )TF r  (Equation (1.04)) with respect to radius r (for the condition of 0r r> ) as 
shown below [1]. 

( ) ( )dT TU r F r r= ∫                         (2.0) 

Thus after evaluating the integral above, one obtains a value of potential energy 
( )TU r  such that: 

( )
3

1 2
2

1 20

1
3T

Gm mrU r
Gm m rr

   
= +   

  
                (2.01) 

As a photon propagates across the expanding cosmological expanse, its energy is af-
fected by the gravitational potential energy ( )TU r . Thus, photonic energy E is set 
equal to potential energy ( )TU r  in terms of the IGIA; this equivalence is displayed 
below [1]. 

( )T
g

hcE pc U r
λ

= = =                      (2.02) 

where gλ  is the photon’s wavelength influenced by potential energy ( )TU r , the 
photonic energy affected by the potential energy field of ( )TU r  can be expressed such 
that [1]: 

3
1 2

2
1 20

1
3g

Gm mhc r
Gm m rrλ

   
= +   

  
                 (2.03) 

Resultantly, wavelength gλ  affected by the potential energy field of ( )TU r  of the 
IGIA has a value expressed as [1]: 

13
1 2

2
1 20

1
3g

Gm mrhc
Gm m rr

λ
−

    
= +    

    
              (2.04) 

Energy 0E  is the initial energy value ( ( )0 0E hc λ= ) of the emitted photon prior to 
it traversing through a region of space-time under the influence of gravitational poten-
tial energy ( )TU r  in terms of the IGIA, thus redshift z is given such that [3]: 

( ) 0
0 0

0 0

1gT

g

hc E
U r E

z
E E

λ λ
λ

 
−  −  = = ≡ −               (2.05) 

This reduces to [3]: 

0

0

1 1 1
g g

hcz
E

λ
λ λ

 
= − ≡ −  

 
                   (2.06) 

Red shift value z can then be expressed in terms of the IGIA such that: 

3
1 2

2
0 1 20

1 1 1
3

Gm mrz
E Gm m rr

    
= + −    

    
               (2.07) 
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Thus, the photonic energy value ghc λ  is substituted by the value of potential 
energy ( )TU r  in Equation (2.06) giving the value of redshift z in Equation (2.07). 
Observe the expression below where 0a  is the scale factor of the universe as it is pre-
sently and ( )ema t  is the scale factor at the emission time emt  of the photon (or a 
scale factor of the universe as it was in the past as some authors state it) [4]. 

( )
01
em

az
a t

+ =                        (2.08) 

Substituting the value of redshift z of Equation (2.07) into (2.08) above gives [4]: 

( )
3

01 2
2

0 1 20

1 11 1
3 em

aGm mr
E Gm m r a tr

      
 + + − =             

          (2.09) 

This reduces to: 

( )
3

01 2
2

0 1 20

1 1
3 em

aGm mr
E Gm m r a tr

    
+ =    

    
              (2.10) 

The value of the scale factor at the time of the emitted photon ( )ema t  is given such 
that [4]: 

( )
1

3
1 2

0 2
0 1 20

1 1
3em

Gm mra t a
E Gm m rr

−
     

= +     
       

           (2.11) 

where Equation (2.11) is of the form ( ) ( )1 1a t z= +  [4] which implies that 0a  equals 
1 ( 0 1a = ). Equation (2.11) adequately shows the relationship of the Robertson-Walker 
scale factors and gravitational redshift to the IGIA. At this juncture, the IGIA connec-
tion to Friedman-Lemaitre-Walker-Robertson metric 2dΣ  is shown below [3]. 

( )
2

2 2 2 2 2 2 2 2
2

dd d d sin d
1

rt a t r r
kr

θ θ φ
 

Σ = − + + + − 
         (2.12) 

The scale factor ( )a t  in Equation (2.12) above is set equal to the scale factor ( )ema t  
of Equation (2.11) ( ( ) ( )ema t a t= ) giving Equation (2.12) such that (note: for our pur-
poses emt t= ) [3]: 

( )
2

2 2 2 2 2 2 2 2
2

dd d d sin d
1em

rt a t r r
kr

θ θ φ
 

Σ = − + + + − 
        (2.13) 

Substituting the value of scale factor ( )ema t  Equation (2.11) into Equation (2.13) 
above gives the Friedman-Walker-Robertson metric in terms of the IGIA such that: 

2 2

21
3 2

2 2 2 2 21 2
0 2 2

0 1 20

d d

1 1 d d sin d
3 1

t

Gm mr ra r r
E Gm m rr kr

θ θ φ
−

Σ = −

         + + + +         −         

 (2.14) 

This establishes the IGIA relationship to the Friedman-Walker-Robertson metric, 
where constant k in Equation (2.14) is equal to +1 ( 1k = + ) and 0r r>  for positive 
spherical curvature describing the expansion of the cosmological fluid [3]. 



E. A. Walker 
 

1768 

The inverse gravity inflationary assertion (IGIA) can be defined in terms of field 
theory via its relationship to the Klein-Gordon lagrangian. In formulating the expres-
sions describing this relationship, IGIA potential energy ( )TU r  is set equal relativistic 
energy denoted relE  as shown below [1]. 

( )
1 22 4 2 4

T relU r p c m c E = + ≡                    (2.15) 

This can be expressed such that: 
3 1 22 4 2 41 2

2
1 20

1
3rel

Gm mrE p c m c
Gm m rr

    
 = + = +          

          (2.16) 

where ( )цxφ  is a scalar field function at Minkowski coordinates цx , the momenta p 
is expressed as a tangent vector on the Minkowski coordinates цx  which is a function 
of (or parameterized by) time t ( ( )ц цx x t= ) as shown below [3]. 

( ) ( ) ( )ц ц ц
ц ц

ц

1 1 1x x x
p x

c t c x t c
φ φ

φ
∂ ∂ ∂

= = = ∇
∂ ∂ ∂

             (2.17) 

Expressing Equation (2.16) in terms of field ( )цxφ  and substituting the value of 
momentum p (of Equation (2.17)) into Equation (2.16) gives [5]: 

( ) ( )( ) ( )( )( ) 1 23 2 22 41 2
ц ц ц ц2

1 20

1
3rel

Gm mrE x x m x c
Gm m rr

φ φ
      ≡ + = ∇ +           

 (2.18) 

where the relativistic energy relE  is expressed as a function of Minkowski coordinates 

цx  ( ( )цrelE x ) which gives a form of the Klein-Gordon equation. The speed of light c is 
set equal to unity ( 1c = ). A priori is that the differential momentum value ( )ц цxφ∇  
relates to the energy value of the IGIA such that (or solving Equation (2.18) for the dif-
ferential term ( )ц цxφ∇ ): 

( ) ( )( ) ( )( )( ) 1 22 22
ц ц ц цrelx E x m xφ φ ∇ = −  

              (2.19) 

Equation (2.19) can be alternatively expressed in terms of the IGIA such that: 

( ) ( )( )( )
1 22

3 221 2
ц ц ц2

1 20

1
3

Gm mrx m x
Gm m rr

φ φ
       ∇ = + −             

      (2.20) 

where r is a function of the Minkowski is coordinates ( { }ц 1 2 3, , ,x it x x x= ), distance r 
can be expressed such that [3]: 

( ) ( )
1 2232

ц ц1r t x r x = − + =
 ∑                    (2.21) 

Equation (2.19) can then be expressed in terms of radius ( )цr x  ( ( )цr r x= ) as 
shown below. 

( ) ( )( )
( ) ( )( )

1 22
3

2ц 21 2
ц ц ц2

1 20 ц

1
3

r x Gm mx m x
Gm mr r x

φ φ

         ∇ = + −             

      (2.22) 
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Therefore, we introduce momentum p′  expressed as the differential term ( )ц
цxφ∇  

(observe the superscript ц ) as shown below [3]. 

( ) ( ) ( )цц ц
ц ц ц

ц x
p x x

t
σ σ φ

φ η φ η
∂

′ = ∇ = ∇ =
∂

             (2.23) 

(Note: Recall thatthe speed of light c is set equal to unity ( 1c = )) Where the Min-
kowski metric цση  is expressed such that [ ]ц 1,1,1,1diagση = −  [3], relativistic ener-
gy ( )цrelE x′  corresponds to momentum p′  and the IGIA such that: 

( ) ( )( ) ( )
3 1 22ц 2 41 2

ц ц2
1 20

1
3rel

Gm mrE x x m c
Gm m rr

φ
      ′ ≡ + = ∇ +           

    (2.24) 

Equation (2.25) below is the Klein-Gordon equation expressed such that [3]: 

( )( ) ( ) ( ) ( )( )2 2ц 2
ц ц ц ц цKGE x x x m xφ φ φ φ= ∇ ∇ −              (2.25) 

Thus, as presented by Wald [3], the Klein-Gordon lagrangian is of the form shown 
below. 

( )( ) ( ) ( ) ( )( )2 22
ц ц ц ц ц

1 1
2 2

ц
KG KGL E x x x m xφ φ φ φ = = − ∇ ∇ +  

      (2.26) 

Expressing the Klein-Gordon lagrangian (Equation (2.26)) above in terms of the 
IGIA, the value of Equation (2.23) is substituted into Equation (2.26) (where  

( ) ( )ц ц
ц ц цx xσφ η φ∇ = ∇ ) giving: 

( )( )
( ) ( )( ) ( )( )

2
3

2 2цц 2 21 2
ц ц2

1 20 ц

1 1
2 3KG

r x Gm mL m x m x
Gm mr r x

ση φ φ

           = − + − +                 

 (2.27) 

This implies that the product of differential terms ( ) ( )ц
ц ц цx xφ φ∇ ∇  takes a value 

incorporating the IGIA such that: 

( ) ( ) ( )( )
( ) ( )( )

2
3

2цц ц 21 2
ц ц ц ц2

1 20 ц

1
3

r x Gm mx x m x
Gm mr r x

σφ φ η φ

         ∇ ∇ = + −             

    (2.28) 

Solutions to Equations (2.27) and (2.28) pertain to mathematical methods of solving 
differential equations. Conclusively, Equation (2.28) is the IGIA correlation to various 
areas of field theory especially quantum energy fields describing vacuum energy (and 
the stress-energy tensor described in the next section). Lastly, dark energy darkE  in 
terms of the IGIA is given by the conditions shown below. 

3

2
1 20

1
3dark

rE
Gm mr

   
=    

  
                         (2.29) 

Thus, dark energy is interpreted according to the IGIA as the inverse term of potential 
energy ( )TU r  (of Equation (2.01)). An important consideration is that the energy of 
expansion or energy darkE  is different from the energy of the big bang which will be 
denoted energy BBE  for the purposes of this explanation. Thus energy BBE  is far 
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greater in magnitude than the energy of gravity at the big bang denoted ( )BB iU GMm r=  
(along with other elementary forces such as electromagnetism, the strong nuclear force, 
and the weak nuclear force opposing universal expansion) at the big bang where radius 

ir  is the infinitesimally small distance of the big bang ( BB BBE U> ). Where big bang 
energy BBE  is composed of kinetic energy and electromagnetic energy of the universe, 
this implies that energy BBE  is also sufficient for accelerating the total cosmological 
mass beyond the astronomical distance or radius 0r  to which cosmological expansion 
takes prominence over gravity and where energy darkE  can generate cosmological ex-
pansion. 

4. The Dynamic Pressure of an Expanding Cosmological Fluid in 
Terms of the IGIT 

This section mathematically defines the dynamic pressure of a cosmological fluid in a 
homogeneous isotropic universe in terms of the IGIA. The stress-energy tensor for a 
perfect fluid used to describe the expansion of the cosmological fluid is given such that 
[3]: 

ab a b ab KGT g L= ∇ ∇ +φ φ                        (3.0) 

where φ  is the field function of the space-time manifold [5] that the stress-energy 
tensor is defined on, abg  is the metric tensor, and KGL  is the Klein-Gordon lagran- 
gian such that [3]: 

2 2 21
2

c
KG cL m c = − ∇ ∇ + φ φ φ                     (3.01) 

The 4 space tangent vectors a b∇ ∇φ φ  in Equation (3.0) obey the geodesic rule such 
that [3]: 

( ) ( ) ( ) 0c
c a b c a b ab a b∇ ∇ ∇ = ∇ ∇ ∇ + ∇ ∇ ≡φ φ φ φ φ φΓ             (3.02) 

Thus showing the appropriate use of the Christoffle symbol c
abΓ  [3]. The partial 

derivative c∇  in Equation (3.02) is of the form ( )c cx∇ = ∂ ∂ . The tangent vector of 
the form µ∇ φ  is defined by the chain rule such that [2]: 

ц

ц

x
x tµ

∂∂
∇ =

∂ ∂
φφ                          (3.03) 

where the time coordinate has a value ct and the speed of light c is set to unity ( 1c = ) [5], 
the spatial coordinates цx  in 4R  are the Minkowski coordinates ( { }ц 1 2 3, , ,x it x x x=  
and ( )ц цx x t= ) [5]. Thus the tangent vector µ∇ φ  at time t is the 4-velocity of the 
cosmological fluid denoted цu  ( 4

цu R∈ ) as shown below [3]. 

ц
ц

ц

x
u

x tµ
∂∂

= ∇ =
∂ ∂
φφ                       (3.04) 

Therefore the product of tangent vectors a∇ φ  and b∇ φ  ( a b∇ ∇φ φ ) are given such 
that [3]: 

( )2
ццa b a bu u u∇ ∇ = ⋅ = ∑φ φ                    (3.05) 
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It must be noted that tangent vectors a∇ φ  and b∇ φ  are symmetric ( a b∇ = ∇φ φ ) 
which implies the fluid velocities au  and bu  are also symmetric ( цa bu u u= = ), 
therefore ( )2

ццa bu u u=⋅ ∑ . Total dynamic pressure abP  (where the subscripts ab per- 
tain to a 4 by 4 matrix) is given in terms of fluid 4-velocity цu  such that [1] [3]: 

( )2
цц

2ab

u
P

ρ
=

∑                        (3.06) 

This implies that [1]: 

( ) ( )
2

цц

2 2
a b

ab

u
P

ρ ρ ∇ ∇
= =

∑ φ φ
                 (3.07) 

In the task of defining the expansion of the cosmological fluid in terms of the IGIT, 
consider the unit vector û  in 4R  ( 4û R∈  and 4x Rµ ∈ ) shown below [2]. 

such thatˆ ˆ ˆ 1u u
x

u
x
µ

µ

= ⋅ =                    (3.08) 

Multiplying unit vector û  to the IGIT force value ( )TF r  of Equation (1.03) gives 
vector valued force ( )( )TF r

µ
 in 4R  ( ( )( ) 4

TF r R
µ
∈ ) such that [2]: 

( )( ) ( )( )ˆT TF r ru F
µ
=                       (3.09) 

This can be expressed such that: 

( )( ) ( ) ( )gT g

x
F r F r F r

x
µ

µ
µ

′ = −                   (3.10) 

where A′  ( 24πA r′ =  [3]) is a spherically symmetric area, the sum or superposition of 
4 pressure components is as expressed below [3]. [Where pressure = force ÷ area 
( P F A= )][1] 

( )( )
( ) ( )T

gg

F r x FF r F r
A AA x

µ µ
µ µ

µ

 
′ =  −  → ′ ′  

∑ ∑ ∑          (3.11) 

(Note: that the pressure component 00P  of the 4 by 4 matrix of the stress-energy ten-
sor has a value of energy density Eρ  ( 00 EP ρ= ) [3]) This is set equal to total dynamic 
pressure abP  of Equation (3.07) as shown below [1]. 

( ) ( )( )2
цц

2
T

ab

F ru
P

A
µ

µ

ρ
= =

′
∑ ∑                 (3.12) 

This implies that [1]: 

( ) ( )( ) ( )
2

цц

2 2
T a b

ab

F ru
P

A
µ

µ

ρ ρ ∇ ∇
= = ≡

′
∑ ∑

φ φ
          (3.13) 

which also implies the equivalence of: 

( )( )2 2T
a b ab

F r

A
Pµ

µρ ρ′
∇ ∇ = ≡∑φ φ                (3.14) 

Therefore this can be expressed such that: 
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( ) ( )2 2
a b gg ab

x
F r F r P

A x
µ

µ
µρ ρ

 
′ ∇ ∇ =  −  ≡ ′  

∑φ φ          (3.15) 

Now substituting the value of force term ( ) ( )ggF r F r′ −  into Equation (3.15) gives: 

2
1 2

2 2
1 20

2 1 2
a b ab

x Gm mr P
Gm mr rA x

µ
µ

µρ ρ

     
∇ ∇ =  −  ≡    ′      

∑φ φ     (3.16) 

Thence, substituting the value of a b∇ ∇φ φ  (shown above) for the value of Equation 
(3.15) into the stress-energy tensor abT , the stress-energy tensor can be expressed such 
that: 

( ) ( )2
ab g ag b KG

x
T F r F r g L

A x
µ

µ
µρ

 
′ =  −  − ′  

∑           (3.17) 

which is equivalent to the stress-energy tensor such that: 

2
1 2

2 2
1 20

2 1
ab ab KG

x Gm mrT g L
Gm mr rA x

µ
µ

µρ

     
=  −  −    ′      

∑        (3.18) 

Equation (3.18) can be expressed in matrix form such that: 

01 02 03

10 11 11 12 13

20 21 22 22 23

30 31 32 33 33

2

2

2

E

KG

ab
KG

KG

T T T

T P g L T T

T
T T P g L T

T T T P g L

ρ

ρ

ρ

ρ

 
 

  −    
=   −    
  

−  
  

 

The correlation of the stress-energy tensor abT  formulated in terms of the IGIA to 
Einstein’s field equations describing an isotropic and homogeneous universe is given in 
the conclusion. Thus, we conclude with the formulation and incorporation of the IGIA 
in Einstein’s field equation in its entirety. 

5. Conclusions: Einstein’s Field Equations Describing an 
Expanding Homogeneous and Isotropic Universe in 
Terms of the IGIA 

In describing an expanding homogeneous isotropic universe in terms of the IGIA, it is 
of great importance that the IGIA is fully incorporated to Einstein’s field equations as a 
whole. Thus, we began the heuristic derivation according to Wald [3] with expressions 
of Einstein’s Field equations such that: 

8π 8πtt ttG T ρ= =                         (4.0) 

** **8π 8πG T P= =                         (4.1) 

The expressions of the stress-energy tensor in Equations (4.0) and (4.10 ( ttT  and **T ) 
are related the average value of cosmological mass density ρ  and to pressure value P 
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[3]. The two expressions of Einstein’s tensor ttG  and **G  are given such that [3]: 
a b

tt abG G u u=                           (4.2) 

**
a b

abG G s s=                           (4.3) 

where цu  and цs  are contra variant unit tangent vectors of homogenous surfaces of 
the isotropic and expanding universe [3]. Thus as depicted by Wald, the Robertson- 
Walker metric for describing a flat spatial geometry is expressed such that [3]: 

( ) ( )2 2 2 2 2 2d d d d ds t a t x y z= − + + +                  (4.4) 

The scale factor at time t denoted ( )a t  in the metric above is equal to the value of 
scale factor ( )ema t  of Equation (2.11) ( ( ) ( )ema t a t= ) in terms of the IGIA. This equi- 
valence can be stated such that: 

( ) ( )
1

3
1 2

0 2
0 1 20

1 1
3em

Gm mra t a t a
E Gm m rr

−
     

= = +     
       

           (4.5) 

Recall that for our purposes emt t= . Substituting the value of Equation (4.5) into 
Equation (4.4), the flat space Robertson-Walker metric of equation of (4.4) can be 
stated in terms of the IGIA (similarly to Robertson-Walker metric of Equation (2.14)) 
such that: 

( )
21

3
2 2 2 2 21 2

0 2
0 1 20

1 1d d d d d
3

Gm mrs t a x y z
E Gm m rr

−       = − + + + +              
     (4.6) 

Thus solving Equation (4.6) for the value of scale factor ( )ema t  in Equation (4.6) 
gives the equivalence of values: 

( ) ( ) ( )
11 31 22 2 2 2 2 1 2

0 2
0 1 20

1 1d d d d d
3em

Gm mra t s t x y z a
E Gm m rr

−
−       = + + + = +               

(4.7) 

The time derivative of scale factor ( )ema t  is denoted a  (and a is simply ( )ema a t= ) 
and can be expressed such that [3]: 

( )ema t
a

t
∂

=
∂

                               (4.8) 

The coordinate цx  represent the Minkwoski coordinates ( { }ц , , ,x it x y z= ) [5]. 
Where the time coordinate has a value of ct and the speed of light c is set to unity 
( 1c = ) [5]. The question in reference to calculations is “how does the scale factor 
( )ema t  in terms of the IGIA (Equation (2.11) or (4.5)) relate to the time va-

lued-derivative a  of Equation (4.8) shown above?”. The radius r is defined on the 
Minkowski coordinates ( , , ,it x y z ), thus the value (or magnitude) of radius r (where 

2 2r s= ∆ ) is expressed such that [5]: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 22 2 2 22 2

1 22 2 2 2
i i i i

r s t x y z

it it x x y y z z

 = ∆ = ∆ + ∆ + ∆ + ∆ 

 = − + − + − + − 

            (4.9) 
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Distance r is measured from the center of expansion (or the center of the universe), 
thus the initial values of ti, xi, yi, and zi equal zero. Therefore substituting zero for all in-
itial values ti, xi, yi, and zi ( ( ) ( ), , , 0,0,0,0i i i it x y z = ) and solving for radius r in Equation 
(4.9) gives (Similarly to Equation (2.20)): 

1 22 2 2 2r t x y z = − + + +                        (4.10) 

Substituting the value of Equation (4.10) into Equation (2.11) (or Equation (4.5)) 
gives the IGIA scale factor as a function of the Minkowski coordinates ( ( ), , ,a t x y z ) 
such that: 

( ) ( )

( )
1

3 22 2 2 2
1 2

0 2 1 22 2 2 2
0 1 20

, , ,

1 1
3

ema t a t x y z

t x y z Gm ma
E Gm mr t x y z

−

=

   − + + +    = +        − + + +        

   (4.11) 

Thus pertaining to the time coordinate ( 0x it= ), the scale factor ( )ema t  in terms of 
the IGIA is now differentiable to the time valued derivative of Equation (4.8), therefore 
permitting the continuation of the formulation without ambiguity. Equation (4.11) af-
fords the opportunity to briefly present Hubble’s constant in terms of the IGIA such 
that [3]: 

( ) ( )
( )d , , ,1

, , , d
a t x y zaH t

a a t x y z t
 

= =  
  



                (4.12) 

In continuing the IGIA’s incorporation to Einstein’s field equation, the scale factors a 
(keep in mind that ( ) ( ) ( ), , ,ema a t a t a t x y z= = = ) relate to the symmetric Christoffel 
symbols such that [3]: 

t t t
xx yy zz aaΓ = Γ = Γ =                                (4.13) 

x x y y z z
xt tx ty yt zt tz a aΓ = Γ = Γ = Γ = Γ = Γ =                  (4.14) 

Thus we acknowledge that the Christoffel symbols a
bcΓ  is of the form [3]: 

1
2

a ad cb ca bc
bc b c cd

g g g
g

x x x
∂ ∂ ∂ Γ = + − 
∂ ∂ ∂ 

∑                 (4.15) 

The components of the Ricci tensor are calculated according to the equation of [3]: 

cab c acb
R R= ∑                          (4.16) 

This can alternatively be expressed such that [3]: 

( ) ( ),
c c d c d c

ab ab cb ab dc cb dac ac c d c

yR
x x
∂ ∂

= Γ − Γ + Γ Γ −Γ Γ
∂ ∂∑ ∑ ∑        (4.17) 

The Ricci tensor is then related to the scale factor a (or ( )ema t  in terms of the IGIA) 
by the equations of (where ( )( )2 2d , , , da a t x y z t= ) [3]: 

3ttR a a= −                                (4.18) 

( )2
2

** 22xx
aaR a R

a a
−= = +





                    (4.19) 
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As stated by Wald, the value of Ricci tensor xxR  in Equation (4.19) above relates to 
the Christoffel symbol such that [3]: 

( ) ( ),
c c d c d c

xx xx cx xx dc cx dxc xc c d c

yR
x x
∂ ∂

= Γ − Γ + Γ Γ − Γ Γ
∂ ∂∑ ∑ ∑       (4.20) 

Therefore the value of the scalar curvature R is given such that [3]: 

**3ttR R R= − +                        (4.21) 

Substituting the value of Equation (4.18) and (4.19) into Equation (4.21) give a value 
such that [3]: 

( )2

** 23 6tt
aaR R R

a a

 
 = − + = +
 
 





                   (4.22) 

Conclusively, the values of Einstein tensor values ttG  and **G  are given such that 
[3]: 

( )2

2

31 8π
2tt tt

a
G R R

a
ρ= + = =



                    (4.23) 

( )2

** ** 2
1 2 8π
2

aaG R R P
a a

= − = − − =




               (4.24) 

As stated by Wald, using Equation (4.23), Equation (4.24) can be rewritten such that 
[3]: 

( ) ( )
2

2

3
4π 3

a
P

a
ρ= − +



                     (4.25) 

Due to the fact that the description of the IGIA is defined in reference to a homoge-
neous and isotropic universe, the general evolutions for isotropic and homogeneous 
universe are given such that [3]: 

( )2

2 2

3 38π
a k

a a
ρ= −



                       (4.26) 

( )3 4π 3a P
a

ρ= − − +
                      (4.27) 

where scale factors a and their corresponding time derivatives ( a  and a ) can be de-
fined in terms of the IGIA of Equation (4.10) ( ( ), , ,a a t x y z= ), constant k is equal to 
+1 ( 1k = + ) and 0r r>  for positive spherical curvature describing the expansion of 
the cosmological fluid in an homogeneous isotropic universe [3]. At this juncture, the 
relationship of the scale factor of Equation (4.5) (and Equation (2.11)) in terms of the 
IGIA to Einstein’s field equation have been formulated. 

Equation (4.1) ( ** **8π 8πG T P= = ) shows the relationship between pressure P and 
the stress-energy tensor abT  of Equation 3.18 [3]. This implies that P can be minimally 
substituted for the stress-energy tensor ( abP T→ ). Thus, the pressure term P relates 
the IGIA stress-energy tensor of Equation (3.18) (of the previous section) such that: 

2
1 2

2 2
1 20

2 1
ab ab KG

x Gm mrP T g L
Gm mr rA x

µ
µ

µρ

     
→ =  −  −    ′      

∑        (4.28) 
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Resultantly, this can be expressed such that: 

2
1 2

2 2
1 20

2 1
ab KG

x Gm mrP g L
Gm mr rA x

µ
µ

µρ

     
=  −  −    ′      

∑           (4.29) 

Spherically symmetric area A′  is equal to a value of 8π ( 8πA′ = ), therefore Equa-
tion (4.29) can be stated such that: 

2
1 2

2 2
1 20

2 1
8π ab KG

x Gm mrP g L
Gm mr rx

µ
µ

µρ

     
=  −  −    

      
∑           (4.30) 

Substituting the value of pressure P presented above into Equation (4.27) gives a val-
ue such that: 

2
1 2

2 2
1 20

3 2 14π 3
8π ab KG

x Gm ma r g L
a Gm mr rx

µ
µ

µ

ρ
ρ

         = − +  −  −              
∑



    (4.31) 

Equation (4.31) gives an additional incorporation of the Mathematics of the IGIA 
showing that the theoretical concept is well ingrained to the cosmological structure of 
the universe. The incorporation of the IGIA mathematics to Einstein’s field equations 
gives a complete description to validate the concept and convey a new theoretical pos-
sibility to the physics community. 
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Abstract 
We review the Nambu and Jona-Lasinio model (NJL), proposed long time ago, in the 
sixties, as a fermion interaction theory with chiral symmetry. The theory is not re-
normalizable and presents a symmetry breaking due to quantum effects which de-
pends on the strength of the coupling constant. We may associate a phase transition 
with this symmetry breaking, leading from fermion states to a fermion condensate 
which can be described effectively by a scalar field. Our purpose in this paper is to 
exploit the interesting properties of NJL in a different context other than particle 
physics by studying its cosmological dynamics. We are interested in finding whether 
possibly the NJL model could be used to describe the still unknown dark energy 
and/or dark matter, from up to 95% of the energy content of the universe at present 
time. 
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1. Introduction 

In the last years the study of our universe has received a great deal of attention since, on 
the one hand fundamental theoretical cosmological questions remain unanswered and, 
on the other hand we have now the opportunity to measure the cosmological parame-
ters with an extraordinary precision. In the last decades, research in cosmology has re-
vealed the presence of unexplained forms of matter and energy called Dark Energy “DE” 
and Dark Matter “DM” making up to 95% of the energy content of the universe at 
present time. The study of supernovas SNIa shows that the universe is not only ex-
panding, but besides it is accelerating [1]-[6]. Such behaviour can be explained by the 
existence of a new form of energy, Dark Energy with an anti-gravitational property, 
which would be explained by a fluid with negative pressure. Independent evidence for 
Dark Matter (DM) and Dark Energy (DE), is provided through the analysis of the 
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Cosmic Microwave Background radiation (CMB) [7]-[10], which has been measured by 
satellite WMAP [11], and more recently by Planck mission [12], and the dynamics of 
galaxies, clusters and super clusters, and the study of the formation of Large Scale 
Structure [13]-[16] in the universe and weak lensing (the gravitational deviation of 
light), which point out the existence of matter that do interacts with ordinary standard 
model matter only weakly, as due to gravity. Other important measurements are the 
Baryon Acoustic Oscillations “BAO” [17]-[19]. 

It has been established that our universe is flat and dominated at present time by Dark 
Energy “DE” and Dark Matter “DM” with 0.692 0.02DEΩ ± , 0.308 0.009mΩ = ±  
and Hubble constant ( )67.27 0.66oH = ±  1 1km s Mpc− −⋅ ⋅  [12]. However, the nature 
and dynamics of Dark Energy and Dark Matter are topics of major interest in the field 
[20]. The equation of state “EOS” of DE is at present time 0.93 0.13ow − ±  but we 
still do not have a precise measurement of ( )w z  as a function of redshift z [12] [16]. 
Since the properties of Dark Energy are still under investigation, different DE parame-
trizations have been proposed to help discern on the dynamics of DE [20]-[23]. Some 
of these DE parametrizations have the advantage of having a reduced number of para-
meters, but they may lack a physical motivation and may also be too restrictive. Per-
haps the best physically motivated candidates for Dark Energy are scalar fields which 
can be minimally coupled, only via gravity, to other fluids [20]-[23] or can interact 
weakly in interacting Dark Energy “IDE” [24]-[27]. Scalar fields have been widely stu-
died in the literature [20]-[23] and special interest was devoted to tracker fields [22] [23] 
since in this case the behavior of the scalar field φ  is very weakly dependent on the in-
itial conditions at a very early epoch and well before matter-radiation equality. In this 
class of models the fundamental question of why DE is relevant now, also called the 
coincidence problem, can be ameliorated by the insensitivity of the late time dynamics 
on the initial conditions of φ . 

Nowadays there are a huge number of ideas aimed to explain these unknown cos-
mological fluids DE and DM, from the theoretical point of view, none of them being 
still conclusive. This situation supports and motivates our research. Given that our 
most successful theory of matter, the Standard Model of particle physics (SM), which is 
settled within the theoretical frame of Quantum Field Theory (QFT), it would be rea-
sonable to ask a theory attempting to describe dark fluids to be based on QFT as well. 
In this paper we study a fermion interaction theory with a chiral symmetry, the Nam-
bu-Jona-Lasinio (NJL) model. Though this is an old and well known model in the con-
text of hadron physics, it has interesting properties and it is worth to consider it with a 
different perspective, by studying its possible relevance for Cosmological Physics. Other 
examples of QFT models of DE and DM have been proposed using gauge groups, simi-
lar to QCD in particle physics, and have been studied to understand the nature of Dark 
Energy [28] [29] and also Dark Matter [30] [31]. 

We organized the present work as follows: In Section 2 we present the NJL model. In 
Section 3 we review the pertinent cosmological theory. Sections 4 and 5 present a study 
of the cosmological dynamics of a NJL fluid with a weak and strong coupling, respec-
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tively. In Section 6 we consider the addition of a cosmological constant to our NJL fluid, 
and analyze the different possible behaviours. In Section 7 we comment an interesting 
possible way to modify the original NJL model, obtaining an additional term in the ef-
fective potential which could be related with a Cosmological Constant. Finally, in Sec-
tion 8 we summarize our results and present the conclusions. 

2. The Nambu-Jona-Lasinio Model 

Inspired by a, by then recently explained phenomenon in Superconductivity research, 
professors Y. Nambu and Jona-Lasinio, suggested that the mass of fermion particles 
(described by a Dirac equation) could be generated from a primary four-fermion self 
interaction, leading to a chiral symmetry breaking. The proposed Lagrangian, invariant 
under chiral transformations, has the form 

( ) ( )
2

22
5 ,

2
gi µ

µψγ ψ ψψ ψγ ψ = ∂ + −                      (1) 

where ψ  is a four-component spinor, and g is a coupling constant. From Equation (1) 
the four fermion interaction term is given by 

( ) ( )
2

22
52int

g ψψ ψγ ψ = −                              (2) 

with no original mass term for the fermions. Since the coupling has dimension-2 in 
mass units, the theory is non-renormalizable. However, we are interested in consider-
ing the NJL model as an effective theory, useful below certain energy scale. The theory 
(1) describes a four-fermion interaction which can be expanded following conventional 
perturbation theory, and represented by Feynman diagrams (Figure 1). 

The infinite number of fermion loops can be resumed giving a non-perturbative po-
tential. This can be easily done by introducing an auxiliary scalar field φ  and an equi- 
valent Lagrangian for Equation (2) in the form 

2 21 .
2int mg mϕψψ φ= −                          (3) 

The field φ  plays the role of a Lagrange multiplier which can be eliminated using  

the Euler-Lagrange equations, 
( ) 0µ

µ

δ δ
δφδ φ

∂ − =
∂
  . For the Lagrangian above we find 

,g
m

φ ψψ=                                    (4) 

where φ  has mass dimensions, and by substituting Equation (4) in Equation (3) one 
can recover the original Lagrangian Equation (2). Note that we introduced the parame- 
 

 
Figure 1. Feynman diagram for a four-fermion interaction. 
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ter m with a physical dimension of mass, so that mg  is a dimensionless coefficient, 
and we have dimensional consistency for all the physical quantities.1 The term 5ψγ ψ  
in Equation (1) represents a pseudo-scalar quantity, and we have allowed ourselves to 
ignore the field contribution associated with it in the new Lagrangian in Equation (3), 
as we would like to start to study the simplest possible model.2 

From the equivalent Lagrangian one may read the fermion mass and the tree level 
scalar potential 0V . We have respectively: 

( )22 2 2
0

1, .
2

m mg V mψ φ φ= =                            (5) 

The effect of quantum processes (represented by loop diagrams) may be taken into 
account through the well known Coleman-Weinberg potential 

( )2 2 2 2
1

1 log d ,
8π

V p p m pψ= − +∫                          (6) 

the minus sign in 1V  is because it corresponds to the fermionic contribution to the 
Coleman-Weinberg potential. As we will see, for the strong coupling case, this will ena-
ble the effective potential to adopt a negative value when the field stabilizes at the 
minimum. The integral grows up indefinitely as the upper limit goes to infinity, i.e. it 
has an ultraviolet divergence. Because of the non-renormalizability of the theory, we 
cannot avoid this divergence, so we regularize by introducing a cut-off Λ . This para-
meter defines the energy scale below of which the theory is valid. We define the x varia-
ble as 

2 2 2 2

2 2 ,
m m gx ψ φ

≡ =
Λ Λ

                             (7) 

and the potential becomes 
2

0 2 ,
2

xV
g

Λ
=                                    (8) 

( )
4

2
1 2 log log 1 .

116π
xV x x x

x
Λ   = − + + +  +  

                     (9) 

Notice that the one-loop potential 1V  is negative since it corresponds to the contri-
bution of the original fermion field ψ , and we choose to parameterize it in terms of 
the effective scalar field φ  c.f. Equation (4). 

For the sake of concision we also define 

( ) ( )
4

2
2 , log log 1 .

116π
xA f x x x x

x
Λ  ≡ = + + + + 

               (10) 

In this way, taking quantum corrections into account we obtain an effective potential 
given by 

( )
2

0 1 2 ,
2

xV V V Af x
g

Λ
= + = −                           (11) 

 

 

1Remember that the dimension of a scalar field equals that of mass. 
2It will become clear that by doing so does not affect qualitatively the implied physical processes. 
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with the complete potential 

( )
2 2 2 4

2
0 1 2 2 21 log log 1 .

12 8π 16π
x g xV V V x x

xg
 Λ Λ Λ   = + = − − + +    +   

              (12) 

As a function of φ  it can be written explicitly as 

( )

2

2 4 24
2 2

2 2

1 log log 1 .
2 16π

1

mg
mg mg mgV m

mg

φ
φ φ φφ φ

φ

        Λ Λ        = − + + +         Λ Λ Λ          +   Λ    

 (13) 

Equation (13) gives the complete NJL scalar potential, and we are interested in stud-
ying its cosmological implications. Let us determine the asymptotic behaviour of the 
scalar potential V in Equation (13). To analyze the potential we seek for extremum 
points. For the function ( )f x  in Equation (10) we have the derivative 

( )d
2 1 log ,

d 1
f x xx

x x
  = +   +  

                         (14) 

and for the derivative of V we have 
2

22 2 2

2 2 2 2
4π 1 log ,

4π
1

mg
V m mg

g mg

φ
φ φ

φ φ

      ∂ Λ  Λ    = − −    ∂ ΛΛ     +   Λ   

              (15) 

2 2 2

2 2 2
4π 1 log .

14π
V m xx

xg
φ

φ
 ∂ Λ  = − −  ∂ +Λ   

                         (16) 

The condition 0V
φ

∂
=

∂
 implies the following equations: 

2

2 2
4πi) 0, or ii) 1 log .

1
xx

xg
φ  = − =  +Λ  

                  (17) 

The first one says that the origin 0φ =  is an extremum, and if we take the second  

derivative 
2

2
V
φ
∂
∂

 

2 2 2 2 2

2 2 2 2
0

4π 1 ,
4π

V m g
gφφ

=

 ∂ Λ
= − ∂ Λ 

                     (18) 

we see that if 
2

2 2
4π 1

g
>

Λ
 then the extremum at 0φ =  corresponds to a minimum, 

while for 
2

2 2
4π 1

g
<

Λ
 we have a maximum at the origin. The equation above suggest to  

define a critical value of the coupling cg  as 
2

2
2

4π
cg ≡

Λ
                              (19) 

so that we see that for a weak coupling cg g<  we have a minimum at the origin, while 
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at strong coupling cg g>  we have a maximum. The type of extrema at the origin of 
the potential corresponds to the value of the coupling. 

Now let us determine the second (possible) extreme of the potential. Since the r.h.s of  

the second equation in Equation (17) is negative (i.e. log 0
1

xx
x

  ≤ + 
) this equation  

has a solution only for a strong coupling cg g> . A value for x (or that of the scalar 
field φ ), at the minimum cannot be solved analytically, since the second equation in 
Equation (17) is a transcendental equation. One way to determine a solution is to seek  

for the intersection between the curve of the function log
1

xx
x

 
 + 

 r.h.s. in the  

second Equation (17), and the constant in the l.h.s. In this case do exist an intersection 
(only one, as the r.h.s. is a monotonic function), giving a solution for the x variable, 
leading in its turn to a non-trivial solution in minφ φ=  which is a minimum.3 The ex-
tremum in this case corresponds to a minimum. Notice that in all cases we have at large 
x the limit V →∞  for x →∞  regardless of the value of the coupling g. 

Therefore, we have: if cg g< , the potential minimizes in the origin 0φ = ; whereas 
for cg g> , the potential minimizes in a non trivial value minφ φ= . The value of the 
coupling cg g=  define a critical value separating between both behaviours of the po-
tential (in Figure 2 we show all the three cases , ,c c cg g g g g g< = > ). When for 

cg g>  we see that the full potential 0 1V V V= +  becomes negative, due to the contri-
bution of 1V , and a fermion condensate 0ψψ ≠  is formed and is parameterized by 
the scalar field ( )g mφ ψψ= , c.f. Equation (4). 

To estimate the value of the potential at the minimum for cg g> , the equation ii) in 
Equation (17) should be solved. However, since it is a transcendental equation in the 
variable x, an algebraic expression cannot be written, and we need to use numerical  
 

 
Figure 2. Effective potential (13) as a function of φ . The critical value of 
the coupling cg , separates two kinds of behaviours. 

 

 

3According to definition Equation (7), x is a quadratic function in φ : 2~x φ , so for a given value of x we 
have two solutions in φ  related by a change of sign. Due to this symmetry, we will allow ourselves to refer 
to only one solution. 
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procedures. Let us introduce a parameter s to write g in the form
 2π .cg s g s= ⋅ = ⋅

Λ
                                (20) 

In this way we make sure to have a strong coupling by taking 1s > . Now, for a given 
value of the coupling with cg g> , there exists a definite value of x, say 0x , satisfying 
the condition ii) in Equation (17), which is the solution for the minimum. Therefore, 
the potential valuated at this point yields the minimized potential, i.e. ( )min 0V V x= . 
Then, by substituting ii) Equation (17), and using Equation (20) in the expression for 
the potential Equation (12), we can write minV  in the suitable form 

( ) ( )
4

0
min 02 2 log 1 , , 1 ,

16π c
xV x g s g s
s

Λ  = − + = ⋅ >  
              (21) 

which provides a good idea of how minV  is related to the energy scale. 
From Equation (4) the field ~φ ψψ , is a Lorentz invariant quantity, so φ  is scalar 

field. When the field φ  is stabilized, a non trivial expectation value reflects the pres-
ence of a fermion condensate. 

Now, if the field has an expectation value 0φ = , it means that the state of paired 
fermions ψψ  is not present, so we have a system consisting in the original massless 
fermion particles with a 4-Fermi interaction, and a condensate is not energetically fa-
voured. This happens for a “weak” coupling cg g< . On the other hand, if the expecta-
tion value 0φ ≠ , then we have a fermion condensate represented effectively by the 
scalar field. This happens for a “strong” coupling cg g> , and a fermion condensate is 
dynamically formed since it reduces the energy of the system. 

Thus, we see that two different fluid phases (massless fermions or fermion conden-
sate) are obtained depending on the strength of the coupling. Next, we investigate the 
cosmological dynamics of each of these fluids. 

3. Standard Cosmology 

The widely accepted current standard cosmological model (the Big Bang theory) is 
based in Einstein’s theory of General Relativity. If conditions of spatial homogeneity 
and isotropy are assumed, the space-time metric adopt the well-known simple form 

( )
2

22 2 2 2 2 2 2
2

dd d d sin d
1

rs t a t r r
kr

θ θ φ
 

= − + + − 
                (22) 

where the variables , ,r θ φ  are comoving coordinates parameterizing the spatial sec-
tion of space-time, and k takes the values +1, 0, −1 for spaces of constant positive 
(spherical), zero (flat), or negative (hyperbolic) curvature. When this metric is used in 
the Einstein’s equations, the so called FRWL equations (Friedmann-Robertson-Walker- 
Lemaitre) can be obtained. As these assumptions agree with observations4 to a very 
high precision, we will use this same theoretical framework. Because the necessary equ-
ations are well known and their deduction can be found in standard text books, in the 

 

 

4CMBR is a smooth bath of radiation, whereas Large Scale Structure reveal uniform distribution of matter at 
cosmological scales, with 100 Mpc . 
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following we limit ourselves to write them and to give only a brief explanation. 
The equation 

2

2 2
8π ,

3
a k G
a a

ρ+ =


                            (23) 

relates the expansion rate (in time) of the scale factor a, and the curvature k of the un-
iverse, to the total energy density ρ . Along this paper we will always take a flat geome-
try 0k = , as suggested on the one hand from the theory of early cosmological inflation, 
and on the other hand (and most important) from observation of the CMBR. 

Introducing the usual definition relating the Hubble parameter H with the rate of 
change in time of the scale factor a 

,a a H= ⋅                                 (24) 

Equation (23) (with 0k = , flat universe) becomes 

2 8π .
3
GH ρ=                                (25) 

The continuity equation for a fluid with energy density ρ  and pressure P is 

( )3 0.H Pρ ρ+ + =                             (26) 

For a perfect fluid “α” satisfying a barotropic equation of state P wα α αρ= , with wα  
a constant, Equation (26) can be solved analytically. We sometimes will refer to such a 
fluid with the name of “barotropic fluid”. From the cosmological point of view, the 
substances contained in the universe can be described as radiation, which has 1 3rw = , 
and matter (dust) having 0mw =  (besides the Dark Energy component). For those we 
have respectively 

4 3

, .r ri m mi
i i

a a
a a

ρ ρ ρ ρ
− −

   
= =   

   
                       (27) 

A scalar field φ , with a self-interaction potential ( )V φ , has energy density φρ  and 
pressure Pφ  given by 

( ) ( ) 21, ,
2k k kE V P E V Eφ φρ φ φ φ= + = − =                  (28) 

where we have also defined the kinetic energy kE  in the third equation. Considering 
an universe containing radiation, matter and a scalar field, the total energy density is 
written 

.r m ϕρ ρ ρ ρ= + +                             (29) 

For a given component fluid “α”, it is useful to know its relative density, defined as 
the ratio of its energy density to the total energy density: 

2

8π
,

3
G
H

α α
α

ρ ρ
ρ

Ω = =                           (30) 

where we have used Equation (25) in the second equality. In a flat universe one has the 
condition 

1.r m φΩ +Ω +Ω =                           (31) 
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It is interesting to note that while Equation (31) remains valid even when we have a 
negative αρ , the quantity αΩ  is no longer constrained to the values 0 1α≤ Ω ≤ . In 
the work presented here, the fluids can have a negative energy density, giving 0αΩ < , 
or a total energy density ρ  that vanish at finite values of the scale factor ( )a t , in 
which case we would have αΩ → ±∞ . 

Taking the time derivative in Equation (25) and using Equation (26), it can be found 

21 4 .
2 3m rH ρ ρ φ = − + + 
 

                        (32) 

Note that the r.h.s. in Equation (32) is always negative. The equation of motion for a 
spatially homogeneous scalar field, (a modified Klein-Gordon equation) is given by 

3 0.H Vφφ φ+ + ∂ =                               (33) 

It is also useful an equation for the acceleration of the scale factor: 

( )4π 3 .
3

a G P
a

ρ= − +


                            (34) 

Differential Equations (24), (32), (33), together with (27) constitute a complete set 
which can be solved numerically (since we cannot always write an analytical solution). 
Nevertheless, it is convenient to attempt to outline the general behaviour of the dy-
namical system. Thus, before going to solve for our NJL potential, let us point out the 
following generic facts: 

The evolution of the scalar field is such that it will minimize the scalar potential 
( )V φ , so for an arbitrary initial value iφ , the field will roll to lower values of the poten-

tial, in such a way that eventually it will adopt a constant value ( minφ φ=  being the 
minimum). Given than the scale factor is a positive defined quantity, the energy densi-
ties for matter and radiation Equation (27) are always positive quantities and never 
equal to zero for finite values of the scale factor ( )a t . So, the total energy density Equ-
ation (29) remains always positive as long as the condition 

0r m φρ ρ ρ ρ= + + >                          (35) 

is satisfied. Thus, Equation (25) says that 0H = , that is 0a = , never happens (Equa-
tion (24)) as long as 0ρ ≠ . This implicates that 0a >  always. This means that the 
scale factor ( )a t  never reaches an extremum value along its time evolution (taking an 
initial condition 0iH > , since we know that the universe is expanding at present 
time). 

Nevertheless, it is interesting o note that there is no known physical principle forbid-
ding the existence of a fluid with a negative potential ( ) 0V φ < , at least for some val-
ues of the field φ . In this case, it could well happen that Equation (35) become an 
equality, meaning 0ρ =  for finite values of ( )a t , which in turn implies 0H = , and 

0a = ; i.e., the scale factor reaches an extremum value (indeed a maximum, since as 
seen before, it was initial growing). Now, Equation (32) imposes an always decreasing 
Hubble parameter H (because the right hand side is always negative), so that after being 

0H =  it must be 0H < , and therefore 0a < , i.e. the scale factor decrease. In other 
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words, the universe must be contracting after reaching its maximum size. Observe that 
this result is a consequence only of the negativity of the potential, and it is independent 
of its specific form. This collapsing universe is valid even for a flat universe 0k = . To 
conclude, if a fermion condensate is energetically favored then the minimum of poten-
tial ( )V φ  is negative and the universe will recolapse. 

4. Dynamics of Massless Fermions Phase (Weak Coupling g < gc) 

As we have seen in Section 2, for a weak coupling cg g<  the minimum of the poten-
tial ( )min 0V φ =  is located at the origin with min 0φ = , and V does not take negative 
values. Therefore, the total energy density and H never vanish for finite values of the 
scale factor a, and we have 0a >  due to Equation (24). So the scale factor ( )a t  is al-
ways growing, going to an infinite size in an infinite time. Now, from Equation (34), it 
can be seen that, in order to have 0a < , i.e. the universe to slow down its expansion 
rate, then 

( )22 1
3 2r m Vρ ρ φ φ+ + >                           (36) 

is a condition to be satisfied. This, of course, in not always the case: we could take an 
initial field amplitude iφ  as big to make the initial value of the potential ( )i iV V φ=  
big enough so that inequality (36) does not hold, and we would have instead  

22 1
3 2r mV ρ ρ φ> + +  . In this case we could have an acceleration of the scale factor, i.e.  

an accelerating universe, though it would be an “early” acceleration, as it would be 
present an initial times, i.e. before letting the fluid densities to dilute and field to evolve. 
As time passes, the field rolls down minimizing the potential, and eventually acquires 
some value iφ φ<  such that condition (36) becomes fulfilled.  

Given that the densities of matter and radiation never reach a null value in a finite 
time, and that the field amplitude tends to be stabilized around the minimum (i.e. 

0φ → ), for a big enough amount of time, we expect a vanishing potential and velocity, 
~ 0V , ~ 0φ  to be a good approximation to a final situation, in which (36) is still sa-

tisfied. 
We show an example of numerical solution in the figures. In Figure 3 we see that the 

field has a damped oscillation around 0φ = , and in consistency with this, its kinetic 
energy (velocity) diminish in time and we show in Figure 4 the evolution of the relative 
densities , ,rad mat φΩ Ω Ω  for radiation, matter and φ . Simultaneously, the potential 
valuated at ~ 0φ  goes to lower values (according to ( )min 0V φ = ). We can see that 
although the universe is expanding, it always ends up in a non-accelerating regime 
(Figure 5). A Taylor expansion for the potential about 0φ =  gives 

2 2
2 2

2
1 1 ,
2 4π

gV m φ
 Λ
− 

 
                           (37) 

where the whole coefficient multiplying on 2φ , is a positive quantity, as 2 2 24πg < Λ . 
The coefficient of state φω  defined below Equation (26), for the field φ , written ex-
plicitly is 
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Figure 3. Left: Scalar field amplitude φ . Right: State equation coefficient φω . Both variables are 

shown as functions of time. 
 

 
Figure 4. Left: Relative densities αΩ  for radiation, matter and φ . Right: Total relative density 

for barotropic fluids (matter and radiation) and for the field φ . The horizontal axis in both 
graphics represents time. Note that we show a different scale of time in each plot for the same 
solution. 
 

 
Figure 5. Left: Scale factor ( )a t . Right: Acceleration of the scale factor ( )a t . Both variables are 

shown as functions of time. Note that ( )a t  adopt mostly negative values (tends to zero from 

below). 
 

.k

k

P E V
E V

φ
φ

φ

ω
ρ

−
= =

+
                             (38) 

Since at late times, when the field oscillates around its minimum with a quadratic 
potential, the average value is 0φω =  and φρ  evolves as matter with 3aφρ

−∝  
[24]. 

Within the context of Early Cosmic Inflation theory, the so called Slow Roll parame-
ters are defined as follows: 

2 2
2, ,

2
p

p

M V VM
V V

η
′ ′′   = =   

   
                    (39) 
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which have to satisfy the conditions 1< , 1η <  in order to the potential may cause 
a positive acceleration. Even though they are valid for a single field, without additional 
fluids (matter and/or radiation), we show them in Figure 6 the Slow Roll parameters, 
for the seek of completeness. 

5. Fermions Condensate Dynamics (Strong Coupling, g > gc) 

The strong coupling case leads to a fermion condensate and therefore to a negative po-
tential V at its minimum. The potential has at the origin ( )0 0V φ = =  and decreases 
to negative values for min0 φ φ< < . For minφ φ>  it grows monotonically, eventually 
passing from negative to positive values. Let us consider at first the simpler approach of 
a universe containing only a scalar field ( 0r mρ ρ= = , i.e. no additional fluids), evolv-
ing under a generic potential possessing a negative value ( )min min 0V V φ= <  when mi-
nimized. If the initial velocity 0iφ = , then the kinetic energy of the field has a null 
value as well, so we have for the initial energy density 

i iVφρ = . The initial amplitude 
for the field iφ  cannot be such that makes ( ) 0iV φ < , because it would lead to an im-
aginary value for H, according to Equation (25). Thus, we must take always iφ  such 
that 0iV > . As before we begin with 1 0iH = > , therefore Equation (24) says that 
( )a t  initially is increasing in time. The equation (32) is written ( ) 2= 1 2H φ−  , so that 

H always diminish in time. As the potential is minimized, it goes from positive to nega-
tive values, and from Equation (25) eventually it will be 0H = , and after this 0H < , 
corresponding respectively to 0a =  and 0a < . In words this means that after an ini-
tial period of expansion (increasing scale factor), a maximum value is reached, followed 
by a period of contraction. Since H  remains always negative, then ( )a t  will con-
tinue decreasing, so that it necessarily will collapse. In other words, it will be 0a =  in 
a finite time in the future (because the evolution is forward in time: the field minimizes, 
not otherwise). 

Now, while the expanding phase is taking place, the field is rolling down, eventually 
entering in a damped oscillatory regime nearly the minimum, where the potential has 
become negative, min 0V < . Because of the damping, the kinetic energy tends to a zero 
value, 0kE → . Thus, the energy density of the field kE Vφρ = +  goes from positive 
values (near iφ ) to negative values (near minφ ), so at some time in between, it is 

 

 
Figure 6. Slow roll parameters   (dashed-red curve), and η  (continuous-blue). Left: From 

0φ =  to 0.5φ = . Right: From 1φ =  to 6φ = . Only in the region 1.4φ   approx. (and fur-
ther on) one can expect the acceleration conditions 1< , 1η <  to be satisfied. 
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0φρ = . The total energy density, as well as the individual densities for each fluid (if 
there were additional fluids), would go to diminish in time (as can be seen for radiation 
and matter in Equation (27) with ~ naαρ

− , and ( )a t  increasing). By a similar rea-
soning, because ( )a t  is decreasing in the contracting phase, the energy densities be-
have the opposite way, i.e. they all increase in time. Therefore, we expect 0φρ =  to 
happen twice. In its turn, this implicate that the coefficient of state φω , Equation (38) 
become a divergent quantity also twice, around this two points, and near them, φω  is 
not anymore a useful parameter to characterize the fluid represented by the field φ . 
Below we show a numerical solution example (Figures 7-11). 

As we mention before, in Section 3, a similar circumstance arises in dealing with the 
relative densities αΩ : it is considered that in order to this parameter to make sense, a 
relative density should adopt values 0 1α≤ Ω ≤ . However, as can be seen in Equation 
(30), if at some time is 0H = , then nearly this value, each αΩ  turns into a divergent 
variable. The situation is even weirdest for the field, because near the minimum it is 

min~ 0Vφρ < , the energy density of the field is similar to the potential, which is nega-
tive. This would make αΩ → −∞  (a divergent and negative relative density!). 

Consider now a universe containing matter and radiation in addition to our NJL flu-
id. An interesting question is, may the presence of these fluids prevent the universe to 
collapse? Remember that the condition for an increasing scale factor can be reduced to 
the inequality (35). If the scale factor is supposed to grow forever, this condition must 
be hold always. Now, according to the explanations given above, initially the scale fac-
tor is growing indeed. Thus, from Equation (27) we see that the densities of both baro-
tropic fluids (matter and radiation) must be decreasing. At the same time, because the 
field is stabilizing in the minimum of the potential, the kinetic energy of the field 

( ) 21 2kE φ=   is diminishing to zero, whereas the potential is going to a constant value 

minV V→ , in such a way that necessarily, condition (35) ceases to hold. Therefore, even 
in presence of additional barotropic fluids (does not matter the relative amount with 
respect to that of the fluid associated with the field), the collapsing universe situation 
cannot be avoided. 

The previous qualitative generic analysis is verified by the numerical solution for our 
NJL potential in particular (Figures 7-11). By observing the graphics, we found an un-
predicted interesting non-trivial behaviour of the field amplitude: while the scale factor 
undergoes the expanding, and contracting phases successively, an damped oscillating 
phase around minφ  is taking place, as expected. But then, at some point in the con-
tracting phase, the field amplitude goes to bigger values, and as the scale factor ap-
proach to 0a = , the field is taken out from the minimum and it begins to increase 
monotonically!5 Is this an acceptable result? Intuitively, as a is decreasing, it is reasona-
ble to expect all densities to be growing. In particular, if the field density kE Vφρ = +  
is getting bigger, it should be due to an increase in the field velocity (so kE  gets big-
ger), or in the field amplitude (so V gets bigger); or both. This behaviour can indeed be  

 

 

5It could decrease instead, depending on the initial conditions. Whatever the case, the monotonic growing in 
absolute value is an unexpected behaviour, which do happen indeed. 
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Figure 7. Left: Total energy density r m φρ ρ ρ ρ= + + . It is a positive quantity, but vanishes at a 

single point, near 200t   approx. Right: Energy density of the field. It is a null quantity ( 0φρ = ) 

twice: one time in the expansion phase (near 60t =  approx.), and again in the contraction 
phase (about 340t =  approx.); and becomes a negative quantity in between. 
 

 
Figure 8. Left: Although the kinetic energy (red-upper curve) is zero initially, it overtakes the 
potential energy (blue-lower curve) and remains dominant all the way even to the collapsing time 
when ( ) 0a t = . Right: The field oscillates around minφ  and is becoming divergent as getting 

close to 400t  , which is the time when ( ) 0a t → . 

 

 
Figure 9. Left: Hubble parameter. It is a null quantity about 200t   approx. Right: Relative 
density of the field. As ( )H t  vanish, φΩ  becomes a divergent quantity near the null point. 
 
explained observing Equation (26). The energy evolution of a barotropic fluid bρ  is 
given by 

( ) ( )3 3 1 ,b b b bH P H wρ ρ ρ= − + = − +                       (40) 

and for a scalar field with energy density ( )kE Vφρ φ= +  and pressure  
( )kP E Vφ φ= −  and 2 2kE φ=   

( ) 23 3 6 .kH P H HEφ φρ ρ φ= − + = − = −

                      (41) 
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Figure 10. Slow roll parameters   (dashes-red curve), and η  (continuous-blue). Left: From 0 
to 0.1 in φ . Right: From 1 to 6 in φ . Only in the region 1.4φ   approx. (and further on) one 

can expect the acceleration conditions 1 , 1η   to be satisfied. 
 

 
Figure 11. Left: Scale factor. Right: Acceleration ( )a t . Both plots are to be interpreted as de-

scribing a universe which expands without acceleration (note that ( )a t  is never greater than 

zero), reaching a maximum value about 200t   approx., thereafter falling in a contracting 
phase all the way long to collapse. 
 

We can see from Equations (40) and (41) that for a positive barotropic fluid bρ  
with an EQS 1w < , the sign of bρ  and φρ  are negative as long as H is positive 
while they become negative for 0H < . Therefore ,b φρ ρ  are decreasing functions as 
a function of time for 0H >  and increasing for 0H < . Since we have seen that H  
is negative, this implies that H is always a decreasing function of time. If H can vanish 
at a finite time only if φρ  becomes negative, i.e. if the potential V becomes negative 
and kE V= −  at say ct t= . After this time ( )cH t t>  becomes negative and will re-
main negative for ct t>  and bρ  and φρ  will start growing with time for ct t≥ . 

Figure 8 show both kinetic and potential energies, and we can see that even though 
the initial kinetic energy is zero, it overtakes the potential energy and remains so until 
the collapsing moment finalt  when ( ) 0a t =  at late times. Nevertheless, the potential 
energy also grows as the time is approaching finalt , so the field amplitude is eventually 
expelled from oscillating about the minimum. 

6. NJL Fluid with a Cosmological Constant 

Due to its theoretical properties and observational requirements, a Cosmological Con-
stant is a very usual and useful ingredient included in cosmological models, and it is 
worth to consider such contribution in our model. Its defining property is an energy 
density ρΛ  which does not vary in time, and a coefficient of state 1ωΛ = − , which 
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gives a pressure P ρΛ Λ= − . In a universe containing only a Cosmological Constant, the 
equation (34) is written ( )8π 3a G a ρΛ= ×  which, as 0ρΛ > , implicates ( ) 0a t >  
always. Therefore, such an universe is always accelerating its expansion. In fact, in this 
case the Equation (24) may be solved analytically, after substituting Equation (25), giv-
ing the well known solution ( ) ( )exp 8π 3ia t a t GρΛ= . How do the presence of a 
Cosmological Constant affect our previous considerations of a universe including our 
NJL fluid, besides matter and radiation components? Will the universe accelerate or 
collapse, even in the presence of a scalar field with a negative potential 0V < ? Because 
the density ρΛ  is constant, we have that the differential equations are not modified, 
other than just adding a term in the expression for H, equation (25). In particular, the 
equation of motion Equation (33) remains unchanged, so the field dynamics is not af-
fected. As before, we have to deal with two cases. 

a) Free Fermions ( cg g< ). As studied before, the potential is 0V ≥ , and its min-
imum value is min 0V = . Also, with the pass of time, both matter and radiation densities 
dilute, going to vanish. From Equation (34), it can be deduced the condition for un-
iverse to decelerate: 

( ) ( )1 2 for 0 .
2r m kE V aρ ρ ρ φΛ < + + − <                   (42) 

Given that the left hand side in this inequality is diminishing in time, whereas the 
right hand side remains constant, we have that eventually this inequality cannot hold 
anymore, and becomes an equality, meaning 0a = . This points the beginning of the ac-
celeration period, i.e. 0a > , where the inequality (42) gets inverted. Had the initial 
conditions been such that inequality (42) were the opposite, then there would be always 
an acceleration holding always, because the LHS would never go back to grow. 

Thus, we see that for a free fermions NJL fluid with a Cosmological Constant, the 
universe necessarily accelerate, the precise moment depending on the amount of energy 
densities mρ , rρ , with respect to that of ρΛ . This can be specified in the initial con-
ditions, which in their turn can be chosen to solve for a realistic model fitting the ob-
servations. 

b) Fermion Condensate ( cg g> ). We found before that, for a strong coupling, the 
potential is negative when minimized, min 0V < . Do the universe necessarily accelerate 
also in this case? In order for this to happen, condition (42) eventually must turn into 
an equality, meaning 0a = . This is a minimal condition to be satisfied, because it 
points at least the beginning of an acceleration; it remains to be sure that acceleration 
will be sustained. Let us label all quantities with a subindex “ac” at time act , when 

0a =  (vgr. ( )ac acV t V= ). From Equation (36), we have6 

( )1 2 for 0 .
2rac mac kac acE V aρ ρ ρΛ ≥ + + − ≥                (43) 

Remember that the potential take positive values as well as negative ones, so both 
possibilities must be taken into account. Certainly one can find such set of values of V 

 

 

6 ρΛ  does not need a label because it is a constant. 
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for a given ρΛ  to satisfy the inequality. However, if we rather want to consider realis-
tic models, we should consider plausible values from observations (besides, we would 
not like to complicate our lives by considering unrealistic generic situations). 

From definitions (30) it can be found that ( )1r m z rΩ Ω = + , where z is the redshift, 
and 0 0r mr = Ω Ω  says the amount of radiation with respect to that of matter. The 
subindex “0” refers to current values, i.e. quantities measured “today”. Now, the esti-
mate for z (the time when acceleration begins) is around ~ 1z ; and it has been meas-
ured 4~ 10r −  (for the seek of simplicity, here we are interested only in orders of mag-
nitude). Then we have 4~ 10rac mac mac

−Ω ×Ω Ω , or rac macρ ρ . Now, remember 
that a decelerating period dominated by matter is supposed to have taken place before 

0a = . In order for this to happen, condition (42) should have to be true before condi-
tion (43). For ~ 1z  (it could be even as big as, let’s say ~ 10z , as this would not 
change the essence of the argument) and using condition (42) we would have 

( ) ( )2 2 in order to be 0 .m kV E aρ ρΛ> + − <                   (44) 

If a positive acceleration eventually come up, the above expression is expected to be-
come an equality. Now, suppose 0V > . Then, unless kE  decrease even fast, the RHS 
in the inequality should be decreasing as time passes, because the potential is minimiz-
ing. But kE  cannot behave like that indeed, as the field is under a damped rolling, not 
to mention that kE  is never a negative quantity, so the sum of terms 2 kV E−  will 
end up decreasing (would the values of these terms been such that the equality some-
how would be accomplished at some time, in this case the acceleration could not be at-
tached to ρΛ  anyway). On the other hand, for 0V < , the inequality would become 
even more strong in time, because again, the potential is minimizing: minV V→ , and 

min0 V V> > . Therefore, if initially the inequality (44) begins being satisfied, it will re-
main being so always; in other words, the universe will never accelerate. 

What about a collapse in the future? May the presence of a cosmological constant 
prevent a decreasing scale factor (time going forward)? For a growing scale factor we 
have 0a > , which is true indeed because we take 0iH >  is the initial value of H.7 As 
we explained before, if the scale factor is to reach a maximum maxa a= , it must be 

0a = . Let us name amt  the time when this is accomplished (if so), and label with a 
subindex “am” the variables valuated at this time. We have for the total energy density 

0amρ = , thus ram mam kamEρ ρ ρΛ + + +  0.amV+ =  The only way in which this could 
happen is for 0amV < . In that case am amV V= − , so the equation, as a condition to be 
satisfied by ρΛ , can be written in the more intelligible form 

( )to get 0 .am kam mam ramV E aρ ρ ρΛ = − − − =                 (45) 

If we want to keep our analysis as simple as possible, we may ignore the contribution 
from radiation, 0ramρ =  (observe that, had an acceleration would be possible, then we 
should assume ac amt t< , i.e. acceleration before receding, otherwise the model would 
not be useful. So, if 1racρ   the approximation ~ 0ramρ  is even better, as 

ram racρ ρ< ). 

 

 

7Observe this initial condition must be taken to be positive, because otherwise, the universe would be already 
contracting. 
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Now, nothing forbids to exist a potential sufficiently deep min 0V < , so that the 
equality (45) can be accomplished. The exact time at which this is achieved will depend 
on the relative amounts kamE , mamρ , with respect to ρΛ , i.e. on the initial conditions. 
However, we can estimate a limit value by making 0mamρ → , 0kamE → , and a stabi-
lized potential minV V→ . Then we have 

( )Maximum allowed value for the universe to collapse .minVρΛ =         (46) 

After 0a = , i.e. H = 0 (Equation (24)), the universe must enter into a contraction 
phase because H is always decreasing (Equation (32)), meaning 0amH H→ < , i.e. 

0a < . So, eventually the universe will collapse in the future in a finite lapse of time. For 

minVρΛ > , the scale factor would never go to contract, as in this case the total energy 
density ρ  would never vanish. 

It is interesting to observe that a Cosmological Constant may be seen as a particular 
case of a scalar field evolving under a potential stabilized with a positive minimum. As 
we have seen, the NJL model has two different behaviours depending on the value of 
the coupling constant g. For weak coupling cg g<  the potential ( )V φ  has a mini-
mum at the origin with ( )0 0V φ = =  and ( ) 0V φ ≥  otherwise. On the other hand, at 
strong coupling cg g>  one has a negative minimum ( )

min
0V φ < . So let us approx-

imate the potential V around the minimum and take the ansatz 

( )( ) ( )( )221 ,
2o oV t V m tφ φ φ= + −                       (47) 

with oV  a constant value (it would be 0oV =  at weak coupling and 0oV <  at strong 
coupling) and oφ  a constant. We can now ask ourself if we can have an accelerating 
universe. The evolution of the scalar field is just 23 0H mφ φ φ′ ′ ′+ + =  , with oφ φ φ′ ≡ −  
and we could redefine  

( )22 2 21 1
2 2k o k o o kE V V E m V E mφρ ρ ρ ρ φ φ ρ φΛ Λ Λ Λ ′+ = + + = + + + − = + + +  w h i c h  

corresponds to a massive scalar field with energy density 2 21
2kE mφρ φ′ ′= +  in the  

presence of a cosmological constant oVρ ρΛ Λ′ = + . A massive scalar field may accele-
rate the universe only at large values of φ′  (larger than the Planck mass) when the 
Slow Roll parameters   and η  are smaller than one, while at a late time when the 
scalar field oscillates around the minimum the energy density φρ ′  redshifts as matter, 
i.e. 31 aφρ ′ ∝ . In order to have 0a >  we must have the quantity 3 0pξ ρ≡ + < . So 
for a scalar field (with potential given in Equation (47)) a barotropic fluid, which we 
now take for simplicity as matter (without lose of generality), and a cosmological con-
stant ρΛ , we have ( )4 2m kE Vξ ρ ρΛ= + − + . Since the potential oV  vanishes at 
weak coupling and is negative at strong coupling, there is a cancelation between the two 
cosmological constants ρΛ  and oV , and the NJL model plays therefore against an ac-
celerating phase around the minimum of the potential, since oV  is negative. 

7. Dark Energy from NJL and SUSY Gauge Theory 

As we have seen until now, the original NJL model has interesting cosmological conse-
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quences. However, the model by itself does not reproduce the observed feature of an 
accelerated expansion of the universe, and it is not desirable to introduce a cosmologi-
cal constant by hand, without a good explanation. We rather ask for any model to be 
motivated from a deeper fundamental theory. Nowadays, a paradigm for such funda-
mental theory is played by Super Symmetric Field Theories, and a lot of work has been 
done in attempting to explain Dark Matter as well as Dark Energy as some super sym-
metric particle (references are given in the introduction, sec. 1). Nevertheless, any con-
clusive theory has been established yet to present date. We would like now to generalize 
the NJL potential to include a physically motivated potential from supersymmetric 
gauge theories. These class of models have been previously studied in Dark Energy 
models derived from gauge theory [28] [29] (and references therein), [21] [28]-[35] and 
are based on ADS (Affleck-Dine-Seiberg) superpotential [35]-[38]. The derived poten-
tial is of the form 

4 ,n nU φ+ −= Λ                                (48) 

which is obtained from a non-perturbative super potential in a gauge theory, e.g. 
( ) ( )2 c f c fn N N N N= + −  for an ( )cSU N  with fN  flavours, and φ  represent a 

fermion condensate, i.e. φ ψψ≈ . The condensation energy Λ  is the scale of 
breaking of the gauge symmetry.8 We now add the potential in Equation (48) to our 
NJL model. Since the effective NJL potential in Equation (13) has a quadratic term  

2 21
2

m φ  let us take 2n =  in Equation (48) so that we have the symmetry under  

1φ φ→ . Then, at some lower scale Λ , the self interaction of the field φ  becomes 
more involved and the dynamics of the field is also governed by the effective NJL po-
tential. By adding Equations (13) and (48), we would have the total potential 

( )( )
4 6

2 2
2 2

1 .
2 16πNJLV V U m f xφ φ

φ
Λ Λ

= + = − +


                  (49) 

shown in Figure 12. Of course, this is an effective theory which is plausible to the ex- 
 

 
Figure 12. Graph of the total potential V = VNJL + U, as a function of 
the variable x. 

 

 

8In general, the scales Λ  and Λ  are not the same, and should not be confused. 
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tent that NJL and Equation (48) are valid or useful theories. This is on the same footing 
than using the NJL model to study the dynamics of hadrons, without having obtained 
the model directly from the QCD Lagrangian. Since we are simply adding a term to the 
already studied NJL potential, we use the results of the previous section 2. Using eq. ii), 
(17), the condition to be satisfied by the minimum x is now written (remember that we 
wrote before cg sg= , Equation (20))

 
( )

22 3
2

2 4
1 4π1 2 log ,

1
ms xx x x

xs
α

 Λ  − = − − ≡   +Λ   



             (50) 

where we have defined the function ( )xα , which is seen to be parameterized through 
, , mΛ Λ . This function has 1α−∞ < < +  and it is a monotonous growing function, 

regardless of the values of the parameters (they all are positive definite). Now, we know 
that the NJL potential NJLV  is minimized in a non-trivial minimum min 0φ ≠  when 

cg g> , or 1s > . In this case, the LHS in Equation (50) is a positive quantity, corres-
ponding to 0 1α< <  in the RHS, determining a solution 0x x= . This means that the 
total potential (49) still is minimized for some 0x , giving in its turn a non-trivial 0φ . 
Given that the minimum 0x  satisfies (50), the minimized potential can be written 

( )
24 2 3

0
min 02 2 2

0

6πlog 1 .
16π

x msV x
xs

 Λ Λ = − + +    Λ   



               (51) 

From this equation we see that, it is possible to obtain min 0V >  (which would be-
have like a cosmological constant), if the parameters satisfy 

( )
( )

2 23
0

0 04 2 2 22

1 1 log 1 .
6 4π

xm x x
s s
  Λ

> + −   Λ   



                 (52) 

Let us show an example. Suppose that 2 cg g= , i.e. 2 1s = > . Also, we need to 
say something about the parameters, so let us take 4 2 38π mΛ = Λ . In this way the Equa-
tion (50) is written 

2

1 1 log ,
2 1

xx
xx

 = − −  + 
                         (53) 

which has the solution 0 1.83x x=  . Then, RHS Equation (52) gives the number  

( )
2
0

0 0log 1 0.23
2
x

x x+ −  . This means that, in order for the potential to be positive at  

the minimum, the parameters must satisfy 3 4 51.22 10m −Λ Λ > × . We can use Equation 
(51) to obtain minV ; in order of magnitude we have 2 4

min ~ 10V − Λ . Let us now estimate 
some real physical values. The total energy density today is about ( )44 3~ 10 eVo oEρ −= , 
and the Dark Energy contribution is DEo DEo oρ ρ= Ω . If we identify our NJL fluid with 
DE, we would have ( )k DEoE V φ ρ+ = . Now, in the limit of stabilized fields about the 
minimum9 the energy density of our NJL fluid is ( ) minkE V Vφ+ → . Then, (approx-
imating 2 3 ~ 1DEoΩ  ) we may write 4

0 minDEo E Vρ = = . Thus we may write 

 

 

9We must keep in mind that in general, the field could be in a rolling regime, so the kinetic energy would not 
be negligible. Therefore we must be careful in the conditions that we are talking about. 
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4 310 eV−Λ =                               (54) 

with the precise value of coefficient   depending on the value minV , as shown above 
(for our example we have 2~ 10− ). Given that this theory allows min 0V >  as a result 
of the dynamics of the field, we have a possible explanation for the presence of a cos-
mological constant, and an accelerating universe. 

8. Summary of Results and Discussion 

The fermion model of Nambu and Jona-Lasinio (NJL) includes two different fermion 
states resulting from quantum effects, each one being associated with two different 
physical phases. For a weak coupling cg g<  we have massless fermion fluid, whereas 
for a strong coupling cg g>  a massive fermion condensate fluid is obtained. In this 
later case we can determine the mass of fermions and it is due to non-perturbative ef-
fects due to the strong coupling. A very convenient way to describe the system is to 
consider an equivalent scalar field φ  moving under an effective potential 0 1V V Vφ φ= + , 
which has a different form depending on the coupling strength. 

Notice that in the strong coupling case cg g> , the potential has a non-trivial nega-
tive minimum due to the negative contribution one-loop potential 1V  in Equation (6). 
The negative sign of this potential is due to the fermionic origin of ψ  field, and we 
have chosen to parameterize the fermion condensate in terms of an effective scalar field 

~φ ψψ , as in Equation (4). 
Here we studied the potential and solved the cosmological evolution for each fluid in 

presence of additional barotropic fluids (e.g. matter-dust or radiation). 
For a weak coupling, we found a coefficient of state φω  with oscillating values 

around zero, in such a way that the average value 0φω = . Also, because the potential 
goes as 2~V φ  near the minimum, we have that the NJL fluid in the form of free fer-
mions dilutes as a matter. A universe containing such a fluid (with or without matter 
and/or radiation) will expand forever without accelerating. On the other hand, a un-
iverse containing this NJL fluid besides a cosmological constant (with or without matter 
and/or radiation), will eventually accelerate necessarily, expanding forever. 

On the other hand, the strong coupling case (without a cosmological constant) al-
ways causes an eventually vanishing energy density. This is due to the fact that the po-
tential is negative when minimized, and even the additional presence of matter and/or 
radiation does not prevent this to happen. Since the vanishing energy (which is asso-
ciated with the scale factor reaching a maximum), is followed by a contracting period, 
this means that a fermion condensate always makes the universe collapsed. The energy 
density of the field φρ  vanishes a couple of times (one in the expanding phase, and the 
another one in the contracting phase). Because of this, some quantities ( φΩ , φω ) be-
come inadequate to describe the fluid. It is important to point out the following inter-
esting fact: 

Equation (23) has been known and well studied since long time ago. If the curvature 
parameter is 1k = + , the universe is said to have a spherical geometry; the scale factor 
is expected to get a null value eventually, so we have a collapsing universe. Because a 
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spherical universe is also finite or closed, a collapsing universe was always associated 
with a closed universe. On the other hand, if 0k = , the universe has a flat geometry. 
For ordinary matter the total energy density could be diminishing, but it could never 
vanish effectively in a finite time, so the scale factor in this case is expected to be always 
increasing. Because divergent geodesic lines in a plane never meet again, a flat universe 
is said to be open. So, an open universe was thought to be infinite in size (although not 
necessarily, but in any case, always growing). Now, remember that from the beginning, 
in our present study, we have taken the curvature parameter to be 0k = , so we have 
been treating with a flat universe all the time. Nevertheless, we found that, if the un-
iverse contains a scalar field with a negative potential, then a future collapse cannot be 
avoided, giving a collapsing flat universe! In particular, because a negative potential 
arises naturally for the NJL model, a collapsing flat universe is also a natural conse-
quence. 

We also studied a variant of the strong coupling model, consisting in the addition of 
a cosmological constant. We found that, if the energy density ρΛ  is not big enough to 
overtake at least the minimized potential minV , the eventual receding of the scale factor 
cannot be avoided, and the universe will collapse inevitably. But if ρΛ  exceeds minV , 
then the scale factor will accelerate eventually, and the collapse will be absent. 

Perhaps it is worth to emphasize that, in both cases of weak and strong coupling and 
without considering a cosmological constant, one may induce an acceleration of the 
scale factor by manipulating the initial condition for the field amplitude iφ , but we do 
not interest in it because 1) it has to be fine-tuned, and 2) it does not allow to include 
realistic models in which a previous deceleration period of matter dominance took 
place. 

It is important to keep in mind that, once we settle a coupling strength (weak or 
strong), there is nothing in the theory to allow to switch between them, so actually a 
phase transition cannot be considered. 

A very appealing feature of the NJL model is, in our opinion, the fact that 1) it is 
based on a “fundamental” symmetry (chiral symmetry), 2) the model leads to a poten-
tial which, due to quantum corrections, can adopt negative values in a natural way, and 
3) it includes only one parameter: the coupling constant g (two parameters if we count 
the cut-off Λ ). In return we obtain interesting consequences, as allowing more than 
one physical phase (each having different cosmological implications), and the possibil-
ity of a collapsing universe. This is to be compared with other models involving a sym-
metry breaking10 or introducing new kinds of fluids aimed to be relevant to cosmologi-
cal problems, but at the expense of introducing several fields or parameters.11 

Finally, we saw that by considering an additional term besides the NJL potential, in 

 

 

10For instance in Higgs-like models are required two parameters “m” and “λ” in order to get a potential 

2 2 41 1
2 4

V m ϕ λϕ= + , which have to have a “correct” relation between them in order to break the symmetry. 

11For instance, to “justify” the existence of scalar fields with useful potentials, frequently one has to invoke 
more sophisticated theories, like String, Kaluza-Klein, GUT’s, etc. which demand a bigger effort to derive re-
levant results, and often implicate new exotic physics. 
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the form of an inverse power (which is motivated from some supersymmetric theories), 
then it is possible to obtain a total potential with a positive minimum, thus allowing to 
explain a cosmological constant as a consequence of a field dynamics, which is a fer-
mion particle (instead of a scalar field) governed by simple basic symmetries. 
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Abstract 
We evaluate three of the quantum constants of hydrogen, the electron, e−, the Bohr 
radius, a0, and the Rydberg constants, R∞, as natural unit frequency equivalents, v. 
This is equivalent to Planck’s constant, h, the speed of light, c, and the electron 
charge, e, all scaled to 1 similar in concept to the Hartree atomic, and Planck units. 
These frequency ratios are analyzed as fundamental coupling constants. We recog-
nize that the ratio of the product of 8π2, the ve− times the vR divided by va0 squared 
equals 1. This is a power law defining Planck’s constant in a dimensionless domain as 
1. We also find that all of the possible dimensionless and dimensioned ratios corres-
pond to other constants or classic relationships, and are systematically inter-related 
by multiple power laws to the fine structure constant, α; and the geometric factors 2, 
and π. One is related to an angular momentum scaled by Planck’s constant, and 
another is the kinetic energy law. There are harmonic sinusoidal relationships based 
on 2π circle geometry. In the dimensionless domain, α is equivalent to the free space 
constant of permeability, and its reciprocal to permittivity. If any two quanta are 
known, all of the others can be derived within power laws. This demonstrates that 
8π2 represents the logical geometric conversion factor that links the Euclid geometric 
factors/three dimensional space, and the quantum domain. We conclude that the 
relative scale and organization of many of the fundamental constants even beyond 
hydrogen are related to a unified power law system defined by only three physical 
quanta of 

e
v − , Rv , and 

0av . 
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1. Introduction 

The quantum properties characterizing hydrogen are fundamental constants important 
in many divergent areas of physics [1]. We focus on the electron, e−, Bohr radius, a0, 
and the Rydberg constant, R∞, within hydrogen as a unified physical and mathematical 
system. These constants represent a mass, a distance, and a frequency (1/time) so they 
span the physical units. These constants are all known to be inter-related through pow-
er laws with the geometric factors of 2, π, the fine structure constant, α, the speed of 
light, c, and Planck’s constant, h. In fact, each one of the hydrogen quantum constants 
is defined utilizing α, c, h in its derived unit value. None of them are experimentally di-
rectly measurable. This system is associated with all of the elements through Mosley’s 
law. These quanta are related to the kinetic energy equation through Sommerfeld’s 
original physical interpretation of α as a velocity divided by c, a dimensionless β. For 
the hydrogen system, the product of the rest mass of the electron times the speed of 
light times α both squared divided by 2 equals the hydrogen ionization energy. Through α 
and these constants, broad segments of physics are directly mathematically and con-
ceptually inter-related within systematic power laws [2] [3]. 

Our goal is to evaluate these three quantum values as frequency equivalents: Rv , 

0av , and e
v −  in the simplest fundamental manner, ratios, which are independent of any 

arbitrary physical unit system. We evaluate these three quantum constants all as natural 
unit frequency equivalents, v Hz similar to Planck’s time, and the Hartree atomic units 
[4]-[6]. This unit transformation is equivalent to Planck’s constant, h, the speed of 
light, c, the electron charge, e, all scaled to 1. By definition when h equals 1, its angular 
momentum is dimensionless. Their SI unit values can be reconstructed by multiplying 
the dimensionless calculation times the SI units. The final results are identical. We are 
searching for power law and harmonic sinusoidal patterns since these quanta are asso-
ciated with quantum oscillators that have wave properties, and these constants are in-
ter-related by many different power laws utilizing their SI units. Any other physical 
units such as mass, energy, or distance would result in the identical coupling constants, 
and not change the conclusions or dimensionless calculations. We conceptually choose 
frequency as our physical unit of choice since we are searching for wave properties. 

We find that these three quantum ratios and α represents an integrated power law 
system broader than presently recognized. They are fundamentally related to the geo-
metric factors of 2 and π as a composite in 8π2 [7]. It is possible to define any of these 
quantum values as a power law of any other quantum value utilizing these geometric 
factors. We also find that many other fundamental constants can be simply defined in 
terms of these three quanta in this dimensionless domain simplifying and unifying the 
unit system greatly. 

2. Methods 

All data for the constants’ transformations to frequency equivalents were obtained from 
the websites: http://physics.nist.gov/cuu/Constants/, and  
http://physics.nist.gov/cuu/Constants/energy.html The NIST site has an online physical 

http://physics.nist.gov/cuu/Constants/
http://physics.nist.gov/cuu/Constants/energy.html
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unit converter that can be used for these types of calculations. The respective frequency 
equivalents are: the Rydberg constant, Rv , 3.28984196(17) × 1015 Hz, Bohr radius, 

0av , 
5.66525639(28) × 1018 Hz, and the electron, e

v − , 1.23558996(05) × 1020 Hz. The reci-
procal of α is 137.0359999(78). The relative precision of the calculations is 5 × 10−8, and 
limited by the uncertainty of h. 

The italic number 1 is utilized after the standard constant’s symbol to notate that is it 
scaled in the units of 1 for h, c, and e rather than SI units, or in the dimensionless do-
main. Two examples are ε01, and h1. Many of the possible dimensionless and dimen-
sional ratios of Rv , 

0av , and e
v −  define fundamental integer power laws, and har-

monic circle sinusoidal relationships. 
We use a specialized notation to abbreviate the power law ratio relationships. These 

all represent fundamental constants. The notation allows for complicated ratios and 
powers to be expressed as text. Fundamental constants are commonly associated with 
super and subscript notations characterizing them. Capital A is chosen to represent ra-
tios. The superscript are the symbols for the frequencies of Rv , 

0av , e
v −  or α of the 

numerator. The subscript is for the denominator. The powers of Rv , 
0av , e

v −  or α are 
within parentheses to their right. These represent power laws so different points along a 
single power line are all inter-related. For example, ( )

( )0 15
14

a

e
Aν
ν −

 Hz, 1.028140195(51) Hz, 
and ( )

( )

0

14

15
e
a

A
ν

ν
−  s, 0.972630001(49) s are reciprocals. All three of the following A values fall 

on a common power law line, ( )
( )0 15
14

a

e
A Hzν
ν −

, ( ) ( )0 15 14 1 14a

e
A Hzν
ν −

 1.00198421(05) Hz(1/14), and 

( )
( )0 1 15

14 15
a

e
A Hzν
ν −

, 1.00185181(05) Hz(1/15). Note that within the dimensional domain the 
A powers related to Hz vary, but add to an integer power of Hz when transformed back 
to the SI units. 

Equation (1a) demonstrates a pure geometric factor. 1/8π2 equals the ratio of the 
product of e

v −  and Rv  divided by the square of 
0av  [7]. This is the foundation of all 

of the other power laws. Different arrangements of equivalent relationships are shown 
as lettered Equations. Equation (1b) rearranges the equation to an identity Equation 
equaling 1. 

0 0 0
0

(2)2 2
1

8π
Re e R

a a a

Re

a

A A A
ν ν ν ν
ν ν ν

ν ν
ν
− − −

 
= = =  
 

                          (1a) 

0 0 0
0

2 2 2 2
(2)2

11 8π 8π 8π 8π
2π 4π

Re eR
a a a

Re

a

A A A
ν ν νν
ν ν ν

ν ν α
αν

− − −
 

= = = =  
 

        (1b) 

Equations (2a), (2b), (3a, 3b), (4a), (4b), (4c) are all of the possible dimensionless 
frequency ratios of Rv  

0av , and e
v − ; and are systematically related to α and the geome-

tric factors: 2, 2π, and 4π [7]. Each represents another fundamental constant or rela-
tionship. 0 1a

e
Aν
ν −

 is related to the ratio of 
0av  divided by e

v − , or 2πα, and equals 0. 
0458506184(23). 

0
1R

aA  equals Rv  divided by 
0av , α/4π, and equals 5.80704866(29) × 

10−4. 1
e

RAν −
 equals Rv  divided by e

v − , α2/2, and equals 2.66256772(13) × 10−5. 

0

2π
a

e

ν
α

ν −

 
  =
 
 

                          (2a) 
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0 02π 1a

e

a

e

Aν
ν

ν
α

ν −
−

 
  = =
 
 

                        (2b) 

0

4π R

a

ν α
ν

 
=  

 
                               (3a) 

0
0

1
4π

R
a

R

a

Aν
ν

ν α
ν

 
= =  

 
                          (3b) 

( )1 2
2 R e
ν ν α− =                             (4a) 

2

1
2

R

e

R

e

Aν
ν

ν α
ν −

−

= =                            (4b) 

2

1
2

R

e
R e e

Aν
ν

αν ν ν− − −
= =                        (4c) 

The derivation of the dimensionless values for permittivity, ε01 and permeability, μ01, 
are shown in Equations (5)-(11). Here ε01 equals 1/α, 137.0359999(78), and permeabil-
ity, μ01 equals α, 7.29735256(36) × 10−3. Equation (5) demonstrates the relationship 
between α, electron charge, e, ε0, 2, 4π, h, ħ, and c used in the derivation. Equation (6) 
derives the ionization energy of the electron in hydrogen. Equation (7) transforms the 
ionization energy from joules to frequency in Hz by dividing by h. In Equation (7) the 
a0 is converted to a frequency equivalent utilizing a ratio with c. Equation (8) trans-
forms the relationship to the dimensionless coupling constant of Rv  divided by 

0av . 
Substitution of Equation (5) converts to the ratio of α and 4π, identical to Equation 
(3b). 

22 2

0 0

1
2 4π

ek ee e
hc c c

α
ε ε

    
= = =     

     

                       (5) 

2

0 0

1
4π 2R

eE
aε

  
=   
  

                                    (6) 

0

2

08π
aR

R

eE
h hc

ν
ν

ε

 
= =   

 
                                   (7) 

0
0

2 2

0 0

1 1 1
8π 4π 2 4π

R
a

R
e

a

e e A k
hc hc

ν
ν

ν α
ν ε ε

     = = = = =     
    

           (8) 

Coulomb’s dimensionless unit 1 constant, ke1, must equal α/4π, 5.80704866(29) × 
10−4. Equations (8) and (9) derive the dimensionless ε01 constant from ke1. Here, ε01 
must equal 1/α, 137.0359999(78). 

( ) 0
00

1 11 1
14π 1 4π4π

R
a

R
e

a

k Aν
ν

να
ε ν

α

 
     = = = = =               

            (9) 
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The dimensionless relationship of ε01, μ01, and c1 is shown in Equation (10). μ01 
equals α, 7.29735256(36) × 10−3. 

2 2
0 0

11 1 1 1 1c cµ ε α
α
 = = 
 

                       (10) 

The following is an example a power law derivation of one hydrogen quantum value 
from another utilizing a different, but parallel method. This example derives 

0av  from 

Rv , α, and 4π based on Equation (3). Equation (11) evaluates the ratio of 4π/α or 0a

R
Aν
ν  

raised to a consecutive integer power series divided by Rv  in search of the value in 
seconds that is closest to 1 second. All of the constants demonstrate this power pattern. 
This is equivalent to when 4π/α or 0a

R
Aν
ν  raised to a power is nearly equal to vR1. This 

can be substituted for a v1 value. The powers of 
0av  and Rv  must be separated by 1, 

so the ratio is not dimensionless. The A values are related to identity relationship with-
in these equations, but these A values represent fundamental constants. These powers 
represent natural quantum number powers. They can be derived by searching arbitra-
rily through ratio power matrix of consecutive integer series for each constant’s power. 
The ratio where the scalar is closest to 1 represents the A ratio and the natural powers. 
Table 1 is an example of the type of arbitrary search for natural powers linking Rv  and 

0av  All of the constants demonstrate this pattern with scalars near 1. 

( )
( )

0

0 0
11

4π

1a

R

nn
a

n
naR

nn
R R R

s s s A sν
ν

ν
ννα

ν ν ν ++

          = = = ≈  
 

              (11) 

For these two hydrogen constants, the ( )
( )0

1
a

R

n
nAν

ν +  value closest to 1s occurs when the n 
power is 5. The ratio of 4π/α to the fifth power, equals Rv  times 

0

5
aν  divided by 6

Rν , 
or the product of Rv  and ( )

( )0 5
6

a

R
A sν
ν , Equation (12). Here, 4π/α to the fifth power equal 

1.514337482(75) × 1016.  

( )
( ) ( )0 0

5 5
5

66
4π 4.60307060 23 sa

R

a
R R R

R

Hz s HzA s Hzν
ν

ν
ν ν ν

α ν

   = = =      
×


       (12) 

 
Table 1. Power law ratio matrix. 

0

row column
R av v  4 5 6 7 

4 1.13 × 10−13 2.00 × 10−32s 3.54 × 10−51s2 6.25 × 10−70s3 

5 3.74 × 102 Hz 6.60 × 10−17 1.16 × 10−35s 2.05 × 10−54s2 

6 1.23 × 1018 Hz2 2.17 × 10−1 Hz 3.83 × 10−20 6.76 × 10−39s 

7 4.04 × 1033 Hz3 7.14 × 1014 Hz14 1.26 × 10−4 Hz 2.22 × 10−23 

Table 1 is a power ratio matrix of Rv  raised to the row power divided by va0 raised to the column power where the 
powers are consecutive integer series. The ratio with a scalar value closest to 1 is searched for within an arbitrary 
matrix. Those powers represent the natural quantum number powers linking those two constants. This occurs with 

Rv  raised to the 6th power divided by va0 raised to the 5th power. The ratio is 2.17 × 10−1 Hz. Note that all of the other 

values are widely divergent from 1. Here 2.17 × 10−1 Hz is the reciprocal of ( )
( )0 5
6

a

R
sAν

ν , and the reciprocal of 4.06 s as 

seen in Equations (12)-(15). 
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The ratio relationships in Equations (2)-(4) are solved for any hydrogen quantum 
value, and are raised to the ninth power which is closest to a scalar value of 1, for this 
example 

0av , and the power of 5. This exposes the powers of Hz and seconds, Equation 
(13). The derived value for 4π/α raised to the fifth power is substituted from Equation 
(12) into Equation (13). The fifth power of 

0av  is derived from the product of Rv  
raised to the sixth power and ( )

( )0 5
6

a

R
A sν
ν . 

( )
( )0 0

0

5 5
55 5 6 6 6 6

65
4π a

R

a
a R R R

R

Hz s Hz A sν
ν

ν
ν ν ν ν

α ν

  = = =       
              (13) 

In Equation (14) 
0av  is derived from fractional powers of Rv . Here, ( )

( )0 1 5
6 5

a

R
A sν
ν

equals 1.35709274(07) s(1/5). 

( )
( )

( )0 0
0

1 5 1 56 5 6 5 6 5 6 5
6 5 6 5

4π a

R

a
a R R R

R

Hz s Hz sAν
ν

ν
ν ν ν ν

α ν
  = = =  

   
         (14) 

Equation (15) is another power law variation of this relationship deriving 
0av  

from Rv . ( )
( )

0

6
5

R

a
A Hzν
ν  equals 0.21724628739519 Hz. The sixth power of 4π/α equals 

2.60775752(14) × 1019. 

( ) ( )
( )

( )
( )
( )

0 0

0

6 6 6
6
56 5 6

4π 4π RR
a a

a

v Hz A Hz
ν

α αν

        = =         

               (15) 

Equation (16) is another example that derives e
ν −  from Rv . Here, ( )

( )2 7
9 7

e
R

A s
ν

ν
−

equals 1.38426983(05) s(2/7). 

( ) ( )
( )

( ) ( ) ( )
( )

( )9 7 9 7 2 7 9 7 9 7 2 7
9 79 7

e
R

e
R Re

R

Hz s Hz A s
ν

ν

ν
ν ν ν

ν
− −

−

 
= =  

 
           (16) 

3. Results 

Equation (1) is related to Planck’s constant in the dimensionless domain, and equals 1, 
Equations (17a), (17b). This is logical since h1 is intentionally scaled as 1 in this system 
since energy and frequency are scaled identically in a pure frequency domain. This ratio 
is equivalent to an angular momentum since the ratio represents the product of a mass, 
a frequency, a distance squared, (kg∙m2/s) in the SI dimensional domain. Since this ratio 
is in the frequency domain, a distance is related to the reciprocal of the frequency 
equivalent. This relationship is related to the annihilation energy of a mass. Equation 
(17b) demonstrates that the reduced Planck’s constant, ħ, equals 1/2 in the dimension-
less domain, ħ1. 

0 0 0
0

2 2 2 2
(2)2

11 8π 8π 8π 8π 1
2π 4π

Re eR
a a a

Re

a

h A A A
ν ν νν
ν ν ν

ν ν α
αν

− − −
 

= = = = =  
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11 4π
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R e
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 
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Equations (18a) and (18b) demonstrate that this same relationship is valid in the 
standard SI unit equations of h and ħ. 

2 2
08π Re

h m v a−=                         (18a) 

2
04π Re

m v a−=                          (18b) 

Equation (4c) is equivalent to the prototype kinetic energy equation where the prod-
uct of a mass times the velocity divided by c, β squared divided by 2. 

Equation (2) demonstrates that the α derivation from 
0av  and e

ν −  is within a cir-
cle equation related to a radius, circumference, and 2π. This must be related to a sinu-
soidal harmonic system, and a fundamental momentum relationship. 

The dimensionless constants that define ε01, μ01, and ke1 are all very simple values 
related to α and geometric factors, Equations (8)-(10). ke1 logically is related to α/(4π) 
since the energy is proportional to the distance frequency equivalent. This is a universal 
relationship for any distance as a frequency equivalent. Here, 

0av  times α/(4π) equals 

Rv , Equation (3). 
Equations (12)-(16) demonstrate that if any two of the quantum values, including an 

A factor, are known then all of the constants can be derived. 
The A factors do not represent errors, but are fundamental essential constants in-

corporating the geometric factors that are imbedded within the quantum domain scalar 
values. These geometric factors represent conversion factors that bridge between Euclid 
geometry; and the power laws of Rv , 

0av , e
ν −  and α. The geometric factors are essen-

tial in projecting the power laws into the harmonic linear domain, and three dimen-
sional spaces from a system solely defined by sinusoidal waves. Here, 2 is related to ki-
netic energy, Equation (4). In Equations (17a) and (17b), the factor 2 is similar to the 2 
in the Schwarzschild equation since it refers to the transition of matter to an annihila-
tion boson state. This is not a kinetic state. Here, 2π is related to a radius and its asso-
ciated circumference as seen in Equations (17a) and (17b). Here, 4π is related to 4π 
times the radius squared that defines the surface of the sphere seen in force fields such 
as electrical charges, or magnetic fields, as in ke1, Equations (3), (5), (7)-(9), (11)-(15). 

4. Discussion 

The existing physical unit system of SI units is an arbitrary system of mass, time, dis-
tance, and energy units. They were chosen for measurement convenience, and their 
previous utilization/standardization. In quantum physics integer quantum numbers are 
associated with natural quantum units, such as the Rydberg constant. Planck’s time is a 
classic time natural unit. Quantum spin is associated with h as a natural unit. This me-
thod has a long history, and is a valid approach in physics [4]-[6]. Natural units are not 
arbitrary, and essential if the system is to be evaluated from a quantum number pers-
pective. The ratio of two natural units of a single physical unit represents a fundamental 
dimensionless scaling ratio. The Standard Model is not helpful in most scaling rela-
tionships between particles. The Higgs boson could not be predicted with accuracy 
within the Standard Model. The Buckingham Pi theory of dimensionless analysis of 
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physical systems is well established, and states that physical systems can be analyzed in 
a dimensionless domain. These reasons are the rationale for the methods utilized to 
search for the most fundamental quantum relationships. 

This paper demonstrates that many of the fundamental constants in this hydrogen 
system demonstrate very simple, and integrate definitions as ratios of three hydrogen 
quanta and geometric factors. It is logical that all of these ratios should be related to 
fundamental constants and relationships. These are truly the only three constants in 
this global power law system. This is not the typical concept of these individual con-
stants. Though they are inter-related they are not thought of as being only ratio or 
product projections of just three quanta. Equations (1), (17a), (17b) demonstrate that 
Planck’s constant is related to the dimensionless ratio of the frequencies defining an 
angular momentum scaled to the number 1. This is anticipated in a natural unit system. 
Planck’s reduced, ħ1, constant is scaled to 1/2. This is logical since Planck’s constant 
times one Hz represents at minimum unit of energy per cycle. This equates the annihi-
lation energy of a mass to an equivalent frequency. The h1 is directly related to a spin of 
1 since it refers to 1 Hz times a dimensionless value associated with the energy of a 
wave with a frequency of 1 Hz. Photons have a spin of 1. The reduced Planck’s constant 
ħ1 is 1/2, and associated with a spin of 1/2 of a fermion, in this case the electron. The 
8π2 geometric factor is the composite of 2π squared, 4π2; and 2. The 2π squared scales 
the circumference distance an electron orbiting the proton. The 2 is related to the fact 
this angular momentum refers to the process of mass annihilation to photons, not to a 
kinetic energy. 28π

 
is also found as the geometric factor of the Schrodinger equation. 

Multiple different ratios of Rv , 
0av , e

ν − , and geometric factors are related to α, 
Equations (1)-(4). One of them is equivalent to the kinetic energy of a mass as a proto-
type form for all kinetic energies. One of the ratios is related to 2π a relationship of 

0av  
and e

ν − , Equation (2). This demonstrates a harmonic sinusoidal nature to this system. 
This must also define a fundamental relationship between distance and mass, (Equation 
(2)) similar to that seen with distance and energy in Equation (3). This must be related 
to a linear momentum. The Coulomb constant’s dimensionless value, ke1 is related to 
the ratio of Rv  divided by 

0av , or α/4π. Here 4π is the classic geometric factor related 
to a spherical surface and a force field. Dimensionless permittivity and permeability 
equal 1/α, and α. This is a remarkably unified and simplified system of units demon-
strating their most fundamental scaling inter-relationships. 

This work demonstrates that there are a myriad of power law relationships where any 
constant can derived if any two are known including an A value, Equations (12)-(16). 
There are many power laws of these constants in the SI unit domain, but since their 
scaling relationships are not apparent these types of derivations starting with only three 
quanta are not possible. We present only a few of the possible power laws. In the SI unit 
system there are many different constants that appear to be unique values, but based on 
this analysis they actually represent only a product or ratio combination of the same 
three hydrogen quanta. Equation (5) is a standard unit equation and inter-relates five 
different physical constants. In this dimensionless unified domain three of the con-
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stants drop out from the scaling of the calculations as 1’s. The other two are in-
ter-related by a geometric factor. Two of the constants are both related to the same 
natural unit value, α. There is really only one essential quantum constant that in-
ter-relates all five of the SI values. 

These power law relationships are not felt to coincidental or mathematically con-
trived, but rather fundamental. The ratio of the 

0av  to the 15 power divided by e
ν −  

to the 14 power equals 1.028140195(51) Hz. This is a ratio of 1.987438 × 10281 Hz15 di-
vided by 1.933042 × 10281 Hz14. It is highly unlikely that ratios of the integer powers of 
these quantum values, that represent gigantic scalar values far beyond what is typical, 
are all nearly equal to 1 by chance. Every hydrogen quantum constant demonstrates a 
similar pattern. It is also essential that they not be equal to 1 so that is not a logic or 
mathematical error. They cannot be equal to 1 since the geometric factors are imbed-
ded in their scalar values. There are many similar fundamental ratio power laws, and 
most are not known. A recent paper describes the quantum mechanical derivation of 
the Wallis formula for π [8]. Therefore, these types of relationships between the quan-
tum constants and geometric factors of 2 and π do not represent inappropriate specula-
tion, but are logically imbedded within the constants’ natural unit scaling. 

5. Conclusion 

This paper describes the fundamental scaling relationships between the unified physical 
system of the electron, Bohr radius, and Rydberg constant of hydrogen within a natural 
unit dimensionless or dimensional system. It is found that classic geometric factors are 
embedded within the scaling of these quanta. This system bridges from the quantum 
wave domain to three dimensional space domains. When the relationships of these 
three constants are analyzed, their simple ratios and products project out to a wide ar-
ray of other fundamental constants and relationships. There are also a myriad of power 
laws, and A values, some known and some new, inter-relating these constants so that 
they can all be derived from the knowledge of just two. These finding demonstrate that 
the fundamental constants of hydrogen represent a highly integrated logical harmonic 
power law system that extends beyond hydrogen. This represents a new perspective on 
the Standard Model within a parallel power law system. 
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Abstract 
In this work, we propose a model of oscillation of Davydov solitons in three wells. It 
can be used as a mathematical and physical frame in simulation of circle of some 
nonlinear oscillation of excitations via acupuncture system. The calculation shows 
that this sort of oscillation is possible if the initial rate of average occupational num-
ber of the quasi-particles in the wells is not equal to zero. One of oscillations arising 
relies on the initial rate of average occupational number of quasi-particles to be equal 
with each other within three wells. Then, the oscillation is not a kind of Josephson 
oscillation and has complicated frequency distributions. However, the total behavior 
of oscillation played is similar to three big solitons concentrated in three wells. In this 
sense, this model generally reveals a sort of oscillation mechanism of the acupunc-
ture system how to work in the body, which allows us to understand the oscillation 
that may be one of fundamental natures in the acupuncture system. 
 

Keywords 
Nonlinear Oscillation, Davydov Soliton, Acupuncture System 

 

1. Introduction 

Bio-excitations interaction with living organization of our body appears many non- 
linear effects, which is a significant issue studied in biophysics, bio-photonics, or even 
life sciences [1]. In early 1973, Davydov has proposed protein molecules excited “soli-
tary” model of the energy transport [2]-[4]. According to his theory, three spiral micro- 
vibration and lattice distortion of amide-I exciton in a protein molecule produce collec-
tive excitations to form a soliton, along the helix propagation, so that the adenosine 
triphosphate (ATP) molecules are hydrolyzed to produce energy from one place to 
another place. This can be found in the experiment that soliton resonance light de-
composes into excitons and local deformation, corresponding to a new band in 1650 
cm−1, with amide-I exciton infrared absorption spectra observed on the 1666 cm−1 line, 
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which demonstrates that there is a red shift of 16 cm−1 corresponding to the formation 
of just soliton bound energy. However, Davydov soliton seems to appear that short 
time span is serious obstacle to explain why it is a basic unit of energy and information 
transmission in bio-systems. For improving this weakness of the model, many scholars 
proposed modified models [5]. After that, Pang Xiaofeng improved and developed the 
Davydov soliton model with longer life span and established a sort of biological soliton 
transmission theory based on his nonlinear quantum theory [6], by which Pang Xiao-
feng showed that the revised Davydov solitons could play a basic metabolism role in 
energy and information transmission of bio-systems including human body. 

In this work, we propose a model of oscillation of the Davydov solitons, via an acu-
puncture system (so called medial vein), in three wells of potentials to simulate the Da-
vydov solitons condensation in three areas of living system. The author hopes this 
studying is constructive to allow us understand that there may exist three condensa-
tions of solitons restricted in three areas in human body, which may provide a possible 
mechanism to explain working nature of three acupuncture points, i.e. upper, middle 
and lower Dantian as described by Chinese medicine and acupuncture theory [7]. 

2. Model of Oscillation 

Let us consider a Davydov bio-vibration system in our body which is described by a 
nonlinear Schrödinger equation [8] 

( ) ( ) ( ) ( )
2

2
, , , ,

2 exti t V g t t
t m

 ∂ ∇
Ψ = − + + Ψ Ψ ∂  

r r r r              (1) 

where g is a coupling number, the wave function ( ), tΨ r  is supposed to be divided 
into three parts to oscillate (via a so called medial vein) among three potential wells. 
Here, the medial vein is one of parts of the acupuncture system, which passes through 
three acupuncture points described by the upper, middle and lower Dantian [7]. Then, 

( ), tΨ r  is expanded as 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3, ,t a t b t c tϕ ϕ ϕΨ = + +r r r r                (2) 

where ( )1ϕ r , ( )2ϕ r  and ( )3ϕ r  is a basic wave function in three wells, respectively, 
while ( )a t , ( )b t  and ( )c t  are correspondingly probability amplitude, with 

( ) ( ) ( )2 2 2
1.a t b t c t+ + =                       (3) 

By instead Equation (2) into Equation (1), we obtain 

( )
( )
( )

( )

( )

( )

( )
( )
( )

2

2

2

0
2

d ,
d 2 2

0
2

vC a t
a t a t

v vb t C b t b t
t

c t c tv C c t

γ

γ

 + − 
    
    = − −    
        − − + 

 

        (4) 

which can describe oscillation of soliton in three wells, where the relevant parameters 
are defined by 
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( ) ( ) ( )2 21 d , 1, 2,3,
2j j ext jV j

m
γ ϕ ϕ = ∇ + =  ∫ r r r r                   (5) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3
13 ,

2 extv V
m

ϕ ϕ ϕ ϕ ϕ ϕ = ∇ ∇ ∇ +  ∫ r r r r r r r          (6) 

and 

2 1 2 3 .γ γ γ γ γ= − = −                          (7) 

3. Solution of the Equation 

Then through observation, the solution for Equation (4) can be approximately con-
structed by 

( )
( )
( )

( )
( )
( )

1

2

3

.
a t f a t
b t f b t
c t f c t

′  
   ′=   

   ′   

                          (8) 

Then replacing Equation (8) into Equation (4), we can get 

( )
( )
( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

( )

( )

( )

1 1
1 1

1
2 2

2 2 2

3
3 3

33

d dd d
d d dd

d dd dd
d d d d

dd dd
dd d d

0
2

0
2 2

0

f fa t a t
f a t a tf

t t ttf a t
f fb t b t

f b t f b t f b t
t dt t t t

f c t c tf fc t
ff c t c t

tt t t

v

v v

v

γ

′ ′    
′ ′+    

    ′ 
 ′  ′    ′ ′ ′= + = +     
     ′     ′ ′

′ ′+    
    

−

= − −

−

( )

( )

( )

( )
( )
( )

2
1

1
2

2 2

2 3
3

0 0

0 0 .

0 0
2

C f a t f a t
C f b t f b t

f c tC f c tγγ

  
    ′ ′    

     ′ ′+     
   ′    ′ − +     −    

 (9) 

This gives 

( )

( )

( )

( )
( )
( )

1

1

2 2

3

3

d
0d 2

d
0 ,

d 2 2
d 0

2d

a t vf
t f a t

b t v vf f b t
t

f c tvc t
f

t

γ

γ

′   −     ′  ′     ′= − −       ′  ′   − −     

              (10) 

and 

( )

( )

( )

( )

( )

( )

( )
( )
( )

1
2

1
1

22
2 2

2 3
33

d
d 0 0

d
0 0 .

d
0 0d

d

f
a t

t C f a t f a t
f

b t C f b t f b t
t

f c tC f c tf
c t

t

 
′   ′  ′  

    ′ ′ ′=    
     ′ ′    ′ 
 

     (11) 
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The first Equation (10) can be simplified as 

( )

( )

( )

( )
( )
( )

d
0d 2

d
0 ,

d 2 2
d 0

2d

a t v
t a t

b t v v b t
t

c tvc t
t

γ λ

η
λ

γ
η

′   
−   

  ′  
′     ′= − −    

     ′ ′   − −     

               (12) 

where the physical meaning of λ  and η  are approximately proportional to the rate 
of average occupational number of quasi-particles in the wells, 

32 32

1 1 2 2

~ , ~ ,
nn ff

f n f n
λ η= =                    (13) 

here 1n , 2n , 3n  is the average occupying quasi-particle number in three po-
tential wells, respectively. Thus, the solution of Equation (12) is approximately gotten by 

( ) ( )

( )

( )

2 2

2 2

2 2 2 2

2 2

2 22 2 2 2 2 2 2
1 22 2

2 22 2 2 2 2
3

2 22 2
2 2

1 2 3

2 22 2 2 22
2 2 3 1 32 2

1 2 2 2 2 2 2 2 e
2

2 2 2 2 2 e

e e ,

2 2 2 25 2 e 5 2 e

v t

v t

v t v t

v t

a t C v v v C
v v

v v C

A A A

b t C C v C C C v
v v

γ

γ

γ γ

γ

γη γ γ γ γ η
γ

γ γ γ η

γ γ λη γ γ λη

+

− +

+ − +

+ −


′ = − + + + + ++ 


+ + − − 



= + +

   
′ = + + + − − +      

   

( )

2 2

2 2 2 2

2 2 2 2

2 2
2

2 22 2
2 2

1 2

2 22 2
2 2

1 2 3

e e ,

e e ,

v t

v t v t

v t v t

B B

c t C C C

γ

γ γ

γ γ

+

+ − +

+ − +

= +

′ = + +

(14) 

where 1C , 2C , and 3C  are three integral constants which can be determined by the 
initial conditions ( )0a′ , ( )0b′ , and ( )0c′ . For instance, if the average occupational 
number is equal with each other in three wells then 1C , 2C  and 3C  are determined 
by 

( ) ( )( ) ( )( )

( ) ( )( )(
( ) ( ) ( ) ( ))

( ) ( )( )(
( ) ( ) ( ) ( ))

2 2 2
1 2

4 4 2 2 2 2 2
2 4 2 2

3 2 2 3 3 2 2 2

4 4 2 2 2 2 2
3 4 2 2

3 2 2 3 3 2 2 2

1 0 0 5 4 2 0 ,
6

1 0 8 2 2 6 2 12 2
12 2 2

0 2 3 2 2 2 2 0 2 2 ,

1 0 8 2 2 6 2 12 2
12 2 2

0 2 3 2 2 2 2 0 2 2

C b v c v a v
v

C c v v v v
v v

a v v v v b v v

C c v v cv v
v v

a v v v v b v v

γ γ

γ γ γ γ
γ

γ γ γ γ

γ γ γ γ
γ

γ γ γ γ

′ ′ ′= − − − +

′= + + − +
+

′ ′− + − − + +

′= + + + +
+

′ ′+ + + + + +

  (15) 
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here the conditions ( )4 2 212 2 2 0v v γ+ ≠  and 

( )4 4 2 2 2 2 28 2 2 6 2 12 2 0v v cv vγ γ γ γ+ + + + ≠  have to be considered for the above 
Equation (15) to have mathematical meaning. 

On the other hand, for solving the second Equation (11) it is obviously to have 

( )( )
2 2 2 2

2 2 2 2

2 2 2 2

1
2 2

1

1
2 22 22 2

2 2
1 2 3

22
2 2 2 22 32

1 2 2 2 2

1
2 2 22 21 31 2 2 2

2 32 2 2 2

2 d

2 e e d

222 e e
2 2

4 24 2 e e 2 ,
2 2

v v

v t v t

v t v t

f C a t t

C A A A t

CACACA t
v v

CA ACA A CA A t
v v

γ ι γ ι

γ γ

γ γ

γ γ

γ γ

−

−

+ − +

+ − +

−
+ − +

′= −

 
 = − + +
 
 


= − − +
 + +


− + − 

+ + 

∫

∫
      (16) 

( )( )
2 2 2 2

2 2 2 2

1
2 2

2

1
2 22 22 2

2 2
1 2

1
22 2

2 2 2 21 2
1 22 2 2 2

2 d

2 e e d

2 2e e 4 ,
2 2

v t v t

v t v t

f C b t t

C B B t

CB CB CB B t
v v

γ γ

γ γ

γ γ

−

−

+ − +

−

+ − +

′= −

 
 = − +
 
 

 − = + −
 + + 

∫

∫       (17) 

and 

( )( )
2 2 2 2

2 2 2 2

2 2 2 2

1
2 2

3

1
2 22 22 2

2 2
1 2 3

22
2 2 2 22 32

1 2 2 2 2

1
2 2 22 21 31 2 2 2

2 32 2 2 2

2 d

2 e e d

22 e e
2 2

4 24 2 e e 2 .
2 2

v t v t

v t v t

v t v t

f C c t t

C C C C t

CCCCCC t
v v

CC CCC C CC C t
v v

γ γ

γ γ

γ γ

γ γ

γ γ

−

−

+ − +

+ − +

−
+ − +

′= −

 
 = − + +
 
 

= − − +
 + +


− + −
+ + 

∫

∫
     (18) 

Therefore, we eventually obtain the solution ( ) ( ),a t b t  and ( )c t  by combining 
Equations (16)-(18) with Equation (14), namely 

( )
( )
( )

( )
( )
( )

1

2

3

.
a t f a t
b t f b t
c t f c t

′  
   ′=   

   ′   

                       (19) 

This shows that the oscillation posesses complicated frequency distributions and 
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therefore it is not a Josephson oscillation as ( )a t′ , ( )b t′ , and ( )c t′  with the period  
2

22π
2
v γ+ , for 0C =  [8]-[10]. Secondly, the initial distribution of the average oc-  

pying quasi-particle numbers for the oscillation 0C ≠  in three potential wells should 
be not equal to 0, for instance, if they are equal with each other in three wells, i.e. 

32 32

1 1 2 2

~ 1, ~ 1,
nn ff

f n f n
λ η= = = =                    (20) 

then the total oscillation will take part in three big solitons confined in three wells, re-
spectively, which are described by Equation (19). 

4. Conclusion and Remarks 

In conclusions, the above model can be used in simulation of circle of some nonlinear 
excitations moving in the acupuncture system in advanced level, such as meaning of qi 
(here can be understood that the Davydov solitons is a kind of qi) moving in the medial 
vein and oscillation in three Dantians. The calculation shows that this sort of oscillation 
is possible if the initial rate of average occupational number of the quasi-particles in the 
wells is not equal to zero. One of simple oscillations arising relies on the initial rate of 
average occupational number of quasi-particles to be equal with each other within three 
wells, then the oscillation is not a kind of Josephson oscillation and has complicated 
frequency distributions, however the total behavior of oscillation played is similar to 
three big solitons concentrated in three wells. In the same way, the model of oscillation 
can be extended to oscillation over three wells system, such as oscillation in seven wells, 
to mimic working function of complicated medial vein + circle system which is also 
described by the theory of ancient Indian Yoga. In this sense, this model generally re-
veals a sort of oscillation mechanism of acupuncture system to working in our body, 
and explains clearly what means oscillation of qi, i.e. oscillation of Davydov solitons. 
This allows us to propose an assumption: there is no clear bio-structure (in the level of 
anthropotomy) and only has functional structure for acupuncture system. The oscilla-
tion of various excitatoins [11] falls into the acupuncture system, by which the infor-
mation and energy can be transmitted to many places of the body and returning mes-
sage is also the feedback for regulating the body. This is an oscillation which may be 
one of fundamental natures of our acupuncture system. We hope this studying could 
expose certain physical essences of the circle of qi in three Dantian via the medial vein 
for helping practitioners to increase their level. 
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Abstract 
Although Newton’s law of gravity already exists for centuries, and its validity is be-
yond any doubt, we are still lacking a basic theory to explain the specific features of 
this law. The general belief is that any suitable theory should include, or will be a 
merger of, classical quantum theory and general relativity, but until now no accept-
able mathematical model taking both aspects into account has proposed. The present 
letter is written to present a new scheme of analysis for the mutual interaction be-
tween particles that have some exchange with respect to time and space. It is found 
that the right form of Newton’s gravity law emerges by consequently working 
through the existing schemes of both quantum mechanics and the basic equations of 
relativity theory as expressed by the Dirac equation. 
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1. Introduction 

Newton’s law of gravity is the cornerstone of many disciplines in space technology, as-
tronomy and cosmology, but so far no acceptable theory to explain its peculiarities is 
existing. It is broadly accepted that any suitable theory should include, or will be a 
merger of, classical quantum theory and general relativity [1] [2]. The main problem is, 
however, that the basic equations of quantum mechanics and relativity are not in cor-
respondence. This fact is most easily seen that, when the common factor in the Dirac 
equation and the Schrödinger equation are used to combine both, a contradiction shows 
up. The reason for this contradiction is that relativity requires co-variance throughout 
where the Schrödinger equation is not co-variant. There are examples where this con-
tradiction is circumvented like in the theory of the magnetic moment of particles, lead-
ing to the spins. In the present paper, a new scheme of analysis is presented for the 
mutual interaction between particles that have some exchange with respect to time and 
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space. The specific requirements on invariance and co-variance of operators and quan-
tities will be carefully taken care of and are finally found to be of great importance for 
the result. This pair formation is described quantum mechanically, either starting from 
the classical Schrödinger equation or the relativistic Dirac equation. This latter is for-
mulated in a quantum mechanical setting. Both result in the same wave function de-
scribing pairs of particles. Since this wave function represents a pair potential, a relati-
vistic mass can be attributed to it which is used in the Dirac equation to derive an inte-
raction field between the members that form the ensemble. It is found that the right 
form of Newton’s gravity law emerges by consequently working through the proposed 
schemes of both quantum mechanics and the basic equations of relativity theory as ex-
pressed by the Dirac equation1. 

2. Forming of Pairs 

Starting point is the assumption that there are two independent particles indicated by 
the masses mi and mj which are described by the normal Schrödinger equation. In the 
present treatment the kinetic energy is taken into account and they experience some 
force reflected by the potential Vi and Vj. Spherical symmetry is next adopted and the 
only boundary condition is that the wave function is zero at infinity. An observer at mi 
at a distance rij from particle mj and another on mj at rji from particle mi will see that the 
total wave equation is defined as follows [5]:  

 ( )
2

2 2
, , , ,2 2

1 1
2

.ij ij t ij t ij ji ij t i j ij t
ij ij j ji jiij ji

H i r r V V
t r r m r rr r

 ∂ ∂ ∂ ∂ ∂
Ψ = Ψ = − + Ψ + + Ψ  ∂ ∂ ∂ ∂ ∂ 



   (1) 

where ,ij tΨ  is the time and space dependent wave function. The time dependence can 
be removed by replacing the time dependent wave function ,ij tΨ  by e ijiE t

ijΨ  . Fur-
ther define jiV V+  by ijV  and we get: 

( )
2 2

2 2
2 2

1 1 0.
2 2ij ij ij ij ij ji ij

i ij ij j ji jiij ji

E V r r
m r r m r rr r

∂ ∂ ∂ ∂
− Ψ + Ψ + Ψ =

∂ ∂ ∂ ∂
ħ         (2) 

To simplify the equation replace ij ijE V−  by ijε  to propose a solution that is valid 
in areas where the Vij is not of great influence anymore as follows: 

e ,ij ij ji jii r i rij ji
ij

ij jir r
β βα α + 

Ψ = +  
 

                       (3) 

where ijα  and ijβ  are constants independent of space coordinates and time. This 
solution means that we consider the wave function outside the surroundings where the 
potential energy with all its peculiarities has a very minor effect on the shape of the 
wave function. The only interaction that can play a role will then be based solely on 
gravitational interaction. By substituting the solution in Equation (3) the following re-
lation is found: 

 

 

1The analysis is based on standard arguments of quantum theory and specific and general relativity theory. 
Specific reading on the separate subjects in monographs which are easily accessible to appreciate the forego-
ing analysis can be found in [3] [4] together. 
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2 22 2

e e
2

e 0.

ij ij ji ji ij ij ji ji

ij ij ji ji

i r i r i r i rij ji ji ij ij ji ij ji

ij ji j i i j ij ji

i r i rij ji
ij

ij ji

i
r r m m m m r r

r r

β β β β

β β

α β α β β β α α

α α
ε

+ +

+

    
− + − + +        

    
 

+ + =  
 

 

     (4) 

The first term at the left hand side is to be set to zero so that in a pair-wise process 
0ij ji j ji ij im mα β α β+ =  and 2 2 2 22 2ij i ji j ijm mβ β ε+ =  . 

At the moment not much is known about the α's, but one requirement to be imposed 
on the wave function is that it represents a pair of particles. For the time being it can be 
said that: 

a) The α's cannot depend on the running variables in the wave equation: rij or t. It 
will be a constant that can only depend on fundamental nature constants and the par-
ticle masses. 

b) It should make no difference for the outside world how one member sees its part-
ner or whether and how we see the two members of the pair. It means that most likely 
we can say: ( ) ( ).ij i jf m f mα =  

c) There is no pair if either mi or mj equals zero so that ( ) 0if m =  for 0.im =  
Later it will be found that, for the sake of symmetry in the mutual gravitational inte-

raction, the two α's should be equal. It also means that the β’s have opposite signs and 
fixed values and by taking the α's equal we make their values independent of the masses 
and the energies of the members of the pair. The ijε  could have been split into two 
separate quantities as ijε  and jiε  to dedicate the 2

ijβ  and 2
jiβ -values to the separate 

energies of the two particles. It is also interesting to notice that the solution of the wave 
equation for the pair looks different from a solution for a single particle: 

e i ii ri
i

ir
βα 

Ψ =  
 

.                          (5) 

For instance if we take a look at the ri dependence in the solution (3) we see that 
there is an extra r2 dependent factor in the exponential term. This latter term is insuffi-
cient to make such a solution applicable for the operator working on r2. For it to be suf-
ficient we need the total pre-exponential factor as given in Equation (3). 

Another approach is taking the Dirac equation as the starting point. In this way, we 
guarantee full co-variance throughout the entire analysis. The Dirac equation reads [6]: 

2 2 2 2 4
0E p c m c− =  

or expressed alternatively: 
2 2 4 2 2 2 4

0 0 1E m c p c m c− = , 

and translated into quantum mechanical language for an ensemble of two particles: 

( ) ( ) ( )22
2 2 4 2 2 4 2 2 2 2

,0 ,0 ,0 ,0 0.ij i ji j ij ij i ji j ijE m c E m c p m c p m c −  
 

− Ψ − Ψ =       (6) 

where ijp  is the momentum operator to be written out in spherical coordinates as in 
Equation (1) and mi,o the rest mass of the particle i in the ensemble ij. Also in this case 
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it immediately can be seen that, with the solution of the form as in Equation (3), the 
same interpretation as before can be given. 

For the α's it means that: 
d) If the energy of the ensemble should be related to the masses of each member, 

which definitely is the case outside the area where the potential energy is not of any 
importance, it follows that: ( )2 2 2 22 2ij i ji j ij i jm m m mβ β ε σ+ = = +   and a similar 
equation in the case that the Dirac equation is taken as starting point. It means, follow-
ing the other boundary condition 0ij ji j ji ij im mα β α β+ = , that ij jiα α= . This is in 
accordance with the argument given in point b). For the transparency of the analysis, 
we will, however, not yet take into account that the α's are equal. Leaving the statement 
of the equality of the ijα  values for later has an interesting, causality related, conse-
quence on the symmetry of the gravitational interaction between particles. 

It appears that with the simple assumption of having a pair of particles, and taking a 
wave equation with spherical symmetry, a solution is obtained that, apparently, couples 
the particles into pairs. It is surprising that the procedure only works well with sets of 
two particles. 

The wave function as derived gives the presence of an entity for which it is derived. 
In this case it is the pair potential so that a mass can be dedicated to this potential de-
fined as * 2

ij o ijmΨ Ψ  and which becomes equal to: 
2

* 2
0

ij ji
ij ij

ij ji

m
r r
α α 

Ψ Ψ = +  
 

.                      (7) 

As said before, in this expression the 2
0m  which occurs in the Dirac equation can be 

identified as a quantity that represents the presence of a pair of particles. It is related to 
the mass of the pair since the product of the complex conjugated wave function and the 
wave function with the appropriate operator, in this case the 2

0m , gives the expectation 
value of the operator. The α-values in this last equation accommodate the influence of 
this 2

0m  but, as it follows from 0ij ji j ji ij im mα β α β+ =  with ij jiα α=  that there is 
some freedom in choosing its dependence on relativistic parameters such that the right 
hand side of Equation (7) becomes an invariant as it should be. 

3. Relativistic Interaction 

Now, as a next step, the pair is considered as essentially one entity and the problem can 
be analysed in the relativistic four dimensional space where the Dirac equation is the 
appropriate starting point [1] [6]: 

2 2 2 2 4
0E p c m c− =  or 2 2 2 4 2

0p c m c E− = − . 

Again we will have to translate this equation into the appropriate quantum mechan-
ical language for pairs as one entity and therefore make the following transformations: 

( )2 2 2 4 2
, , 0 , ,ij t ji t ij t ji tp c m c Eϕ ϕ ϕ ϕ− = − , 

and 
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 ( )2
2

2 2 2 2 2
2 2 2 2

1 1 1 1 .

ij ji

ij ji ij ji
ij ij ji ji ij ji ji ijij ji ij ji

p p p

r r r r
r r r r r r r rr r r r

= +

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 


 

The last expression is, as different from earlier, a mixed sum of the momenta. This 
representation is a consequence of the fact that the particles have been treated only in 
pairs and that spherical symmetry remains to be adopted. Referring to Figure 1 the to-
tal relativistic Dirac equation for an undefined number of pairs (ij) is set up. There are 
  particles which make a total of   = N!/(2(N − 2)!) pairs, each of which are 
described by a wave function as a solution of the initial Schrödinger equation. As before 
the α-values accommodate all necessary multiplication constants. Adding up for all 
pairs and treating them as mutually independent and taking into account the basic 
rules of quantum mechanics, lead to: 

 ( )

2 2 2 2 2 2
, ,2 2 2 2

2 2

, ,

2

, ,2 2

1 1 1 1

2 .

ij ji ij ji ji t ij tij
ij ij ji ji ij ji ji ijij ji ij ji

ij ij ji ji
ji t ij t i j ij t ji tij ij

ij j

ij

i
j i

j
ii j

j i

c r r r r
r r r r r r r rr r r r

E E
r rr r

ϕ ϕ

α α α α
ϕ ϕ ϕ ϕ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + ×  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 
= + + −  


×


+ ×

∏∑

∑∏∑ ∏



(8) 

As before the time dependences can be removed by setting: 

( )
, , e ,ij jii E E t

ij t ji t ij jiϕ ϕ ϕ ϕ +
=

                          (9) 

so that: 
 

 
Figure 1. Forming and describing of ( )! 2 2 !N N= −  pairs. 
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 ( ) ( ),

2

,
2

.i j ij t ji t ij ji ij jiij ijE E E Eϕ ϕ ϕ ϕ=+ +∑ ∑                (10) 

If all α's would have been equal to zero, a propagating wave , ,ij t ji tϕ ϕ  extending in the 
radial direction with the light velocity would have resulted. Non zero values of 𝛼𝛼 re-
duce this speed and, as a consequence, give mass to the field , ,ij t ji tϕ ϕ . The proposed 
solution will be:  

cij
ij ij ijrαϕ γ=  ,                            (11) 

which is inserted into: 

( )
2 2 2 2 2

2 2 2 2

2 2

2 2

2

2 1 1 1 1

2 .

ij ji ij jiij

ij ji ij ji ij jiij
ij ij ji ji ij ji ji ijij ji ij ji

ij ij ji

ij

ji
ij jiij

ij jiij j

ij

i
ij

c

E E

r r r r
r r r r r r r rr r r r

r rr r

ϕ ϕ

ϕ ϕ

α α α α
ϕ ϕ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 
= + +  

 

+ ×

+ ×

×

∏

∏

∑

∑

∑ ∏

 (12) 

From the boundary condition that ( ), 0ij ji ijrϕ α =  for jir  to infinity a fifth condi-
tion on the α's can be derived: 

e) ijα  is negative under all circumstances. 
Putting all five conditions on ijα  together we can already conclude that the explicit 

expression for it is: 
f) ( )2n

ij ji i jm mα α σ ′= = −  with n equal to 1, 2 etc.  
Now, some algebra needs to be done, but in order to redistribute the various contri-

butions it is easiest to start from the simplified equation: 

( )
2

2 2

2

2

2

2 2 22 2

2 .

ij ij ji ji ij ji ij ji ji ij ij ji
ij ji ji ij ij ji

ij ji ij ji
ji ij ji ij

ij jiij ji

E E E E
r r r r r r

c
rr

c

rr

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

α α α α
ϕ ϕ ϕ ϕ

 ∂ ∂ ∂
+ + + + +  ∂ ∂ ∂ ∂ 
 

+ + =  
 





  (13) 

with the solution proposed in Equation (11) it can immediately be seen that the sixth 
term in the first line is equal to the right hand side. 

At this point a remark has to be made: removing the term 2 2
kl klrα  means that some 

basic interaction occurs between the gravitational field and the particle. Obviously, for 
this separate term, a Dirac equation can be formulated that shows that an entity with 
some relativistically derived mass operates and leaves behind a contribution to the in-
teraction energy in the Equation (13). So already at this point there is direct interaction 
between the pair and the field around. Also removing the sixth term left together with 
the only remaining term at the right means that there is third interaction between the 
fields and the pair. 

Taking all these interactions into account it is seen that all α-terms in Equation (12) 
have disappeared. This has a profound meaning: in this model gravity is due to second 
order effects of peculiarities of the spherical symmetry in a relativistic setting. The ef-
fect is weak and operates over a long range so: 
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( )2 2

2 2

2 2 2

0

2

.

2
ij ij ji ji ij ji ij ji ji ij

ij ji ji ij

ij ji
ji ij

ij ji

E E E E
r r r r

c
r r

cϕ ϕ ϕ ϕ ϕ ϕ

α α
ϕ ϕ

 ∂ ∂
+ + + +  ∂ ∂ 
 

+ +  
 

=





        (14) 

The contributions can now be redistributed, but first multiply all terms by ij jir r  and 
observe that the proposed solution is the only one that gives a sharp value for the quan-
tity ij ijE r  and ji jiE r : 

( )2 2 0,ji
ij ji ij ij ji ji ij ij ji ij ij ji ij ij ji

ij

r
E r r E E r r c c

r
ϕ ϕ α ϕ ϕ α ϕ ϕ+ + + = 

        (15a) 

( )2 2 0.ij
ji ji ij ij ji ji ij ij ji ji ij ji ji ij ji

ji

r
E r r E E r r c c

r
ϕ ϕ α ϕ ϕ α ϕ ϕ+ + + = 

       (15b) 

Cutting the Equation (14) into two separate ones as given in Equations (15a) and 
(15b) looks like arbitrary, as any cut between terms can be made, but if we now come 
back to the original suggestion as made in f), we a see that the gravitational interaction 
becomes symmetric. The gravitational energy of particle i is equal to the gravitational 
energy of particle j. It also reflects the point that a pair has to be seen as one entity. The 
observer cannot distinguish between the separate members of the pair. 

It is also important to notice that the operators kE  and lr  commute. It means that 
“Er” is the quantity that has a sharp value, meaning that E has a sharp value if r is well 
defined. 

4. Law of Gravity 

Most important for finding out how the members of a pair see each other is to look at 
the Equations (15a) and (15b) by an observer on mi who sees the particle mj at a dis-
tance of rij and an observer on particle mj looking at mi from a distance rji. Both see each 
other from the same distance ij jir r R= =  and they already know that ij jiα α α′= = − . 
There are no operators anymore in Equation (15), and they can conclude that 

ij jiE E E= = . This is an important conclusion. Obviously an electron and a proton 
forming a pair will have mutual interactions which are the same although their masses 
differ by some factor of about 1800 [7]. The result is a simple relation: 

2 2 3 2.E R c α′=                          (16) 

The boundary condition is that ij jiϕ ϕ  goes to zero for r to infinity so that 0α′ > , 
and because both particles in the pair change their energy by the same amount. It fol-
lows for the two members of the ensemble together that: 

2 6 ,ER c α′= 
                         (17) 

and the gravitational force is given by: 22 constant .E R R−∂ ∂ =  
All the work done to describe the total gravitational force, or rather the potential 

energy, has been based on the idea that all pairs that have been formed are acting inde-
pendently so that we can add all the contributions of different masses constituting bo-
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dies in the real world without any interference. 
Now it is important to see how pairs consisting of particles of different masses 

present themselves in α′ . As a consequence of Einstein’s law that the rest energy of a 
particle is proportional to its mass which is also a direct consequence of the fact that the 
pairs which gives gravitational interaction are acting as single entities, and in view of 
Equation (17) we can only conclude that the exponent n in condition f) is equal to one. 
As a consequence of the result in this equation the attractive force between two par-
ticles is proportional to the product of the two interacting masses. It also follows that 
due to gravitational interaction which carries energy, and for which a separate Dirac 
equation can be set up, some mass, although not much, is attributed to the pairs. 

The final result is: 

( )6 i jE c m m Rσ ′= ⋅                         (18) 

Referring to Figure 2 where two masses M1 and M2 have particles numbered as m1j 
and m2k form N1 × N2 pairs described by 1 2kl k lφ ϕ ϕ=  in which each kl-combination 
contributes separately to the interaction energy. Adding up all the interactions between 
 

 
Figure 2. Interaction between masses. 
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particles, which in principle see each other at different distances which is a problem that 
has already been solved in the formulation of the classical theory of electrostatics [8].  

Finally, Newton’s gravitation law is obtained which reads: 4πdiv Gρ=g  in which 
g  is defined as a gravitational field around an entity constituting a space coordinates 

dependent mass density ρ . G is the well known gravitational constant equal to: 6.673 × 
10−11 m3∙kg−1∙sec−2. 

In accordance with the theory of electrostatics the gravity law can also be given in 
vector representation for bodies M1 and M2 which have their centres of gravity at a se-
paration of R: 

( )3
12 1 2 .GM M R=F R                           (19) 

From Equations (18) and (19), an explicit expression for the parameter σ ′  can be 
derived and also, with the help of Equations (11) and (12), the small mass to be attri-
buted to the gravitational interaction can be found. 

5. Discussion 

Without claiming anything about the validity or the consequences of the model pro-
posed, a simple straightforward model on the mutual interaction between two particles 
that influence the surrounding field leads elegantly to the right description of the gravi-
tational interaction between two masses. 

First, the Schrödinger equation is set up for two particles where the only assumption 
is that they are there and that the wave equation will have purely spherical symmetry. 
Surprisingly this is a solution that leads to the forming of pairs, in which only two par-
ticles are participating. One particular particle can form pairs with all others present, 
but each pair has to consist of two individual particles. The pair density probability, 
given by the wave function, is then used to substitute for the relativistically invariant 
entity, 2

0m , in the Dirac equation [1] [6]. It has been shown that the Dirac equation can 
be taken in the first calculation as well so that the whole analysis would be based on 
co-variant equations. This would lead to the same form of the probability density, al-
though with different constants, but it creates no problems when allocating the mass 
dependences to the α's. 

Replacing the quantities in the Dirac equation by the appropriate operators, and 
again taking purely spherical symmetry, it is found that a solution is only possible when 
the interaction energy of the pair is proportional to the inverse of the distance between 
them. It is important consider that the operators kE  and lr  commute. It means that 
“Er” is the quantity that has a sharp value, meaning that E has sharp value if r is well 
defined. 

After adding up the effects the appropriate form of the classical Newton gravitation 
law is found. 

The gravitational constant in Newton’s law, G, is expressed by 6G cσ ′=   in 
which the parameter σ ′ , equal to 2.34 × 104 m/(kg)4, can be seen as a universal con-
stant that connects relativity with quantum mechanics. 
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The surprising, and at the same time bizarre, conclusion of the analysis given is that, 
apparently, each single particle has interaction with all other particles. It means that in 
the universe an unimaginable number of pair-wise interactions exists with greatly va-
rying intensity and extensions and which depend on the masses of the members of the 
pair. It is difficult to comprehend, but it follows unambiguously from the equations de-
scribing the behaviour of the pairs. 

An important aspect to mention is the fact that the right hand side in Equation (12) 
should be invariant under Lorentz transformation. However, the rkl is not. Therefore 
the parameters klα  should transform in the same way as rkl, but apparently it would 
make left and right hand side in equation 16 transform differently, which cannot be the 
case. We should however notice that the Planck’s constant, h, is invariant, but 

2πh=  is not. 
Make the following “thought experiment”. Consider a pair flying away from us at a 

speed v such that the separation vector of the members of the pair is aligned in the di-
rection of v. Due to the fact that π transforms just like 1/rkl the result is that the interac-
tion energy of the pair we measure becomes invariant. There is invariance throughout if 
the alignment is perpendicular to the speed. So the conclusion is that the interaction 
energy in the pair is invariant and independent of the alignment towards the observer, 
as it has to be. 

Two remarks have to be made about the analysis proposed: 
1) Equation (16) allows for both minus and plus signs for the E-values. It means that 

the force between particles can be negative and positive: repulsive and/or attractive. 
Apparently nature as we observe it has chosen for the low energy attractive variant. If 
the opposite would have been taken the universe could not exist. 

2) The Equation (3) has singularities for rkl to zero. However, one might take the 

0ij rα  constant below a certain distance ( 0r ) from the particle centre and solve the 
Equation (8) for just one single particle and see that, differing from the analysis for 
pairs, a first order solution emerges and mass ( 0ij r cα ) is attributed to the particle, 
which to some extent is in analogy with superconductivity to explain the Meissner ef-
fect [1] [9] [10].  

6. Conclusions 

1) Using basic rules of quantum mechanics and relativity and preserving side condi-
tions of invariance and co-variance where necessary, Newton’s law on gravity can be 
derived theoretically. It contains the main factors of mass dependence and distance 
between particles and bodies in the right way. 

2) It has by no means relevance to dark matter or dark energy. But the result allows 
for both attractive and/or repulsive gravitational interaction. It can be speculated that at 
certain distance or strength of the interaction it may change sign. 
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Abstract 
This work extends the author’s two previous works (2015), Journal of Modern Phys-
ics, 6, 78-87, and 1360-1370, by obtaining the index of refraction n of the dark energy 
for additional values of the cosmological density parameters, and for the two me-
thods of obtaining n: least squares fit, and electromagnetic theory. Comparison of the 
alternative model with the accelerating universe for the new values of the density pa-
rameters and n is given in two tables. The new values for n are used to obtain a range 
of ages for the Einstein de Sitter (EdS) universe. It is shown that the EdS universe 
must be older than the comparison accelerating universe. This requirement is met 
for the Planck 2015 value of the Hubble constant, corrected for the speed of light re-
duction by n. A supporting measurement as well as a disagreeing measurement is al-
so discussed. Possible support from a stellar age determination is also discussed. It is 
shown that the expression obtained earlier for the increased apparent magnitude of 
the SNe Ia provides as good a fit for a closed universe with ( ) 1.005totΩ = , as it does 

for the flat EdS universe. Comparison is presented in a third table. An upper bound 
on ΛΩ  is given for a closed universe that eventually collapses back on itself that is 
too small for the value needed for the accelerating universe. 
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1. Introduction 

In two previous works by the author [1] [2], hereafter referred to as I and II, it was 
shown that it is possible to explain the diminished brightness of the Type Ia supernovae 
(SNe Ia) found by Perlmutter et al. [3] [4], Riess et al. [5], and Schmidt et al. [6], and 
the increased distance to the “standard ruler” of the baryon acoustic oscillations (BAO) 
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determined by Anderson et al. [7] [8], by assuming that the speed of light through the 
dark energy of intergalactic space has been reduced to c/n, where n is the index of re-
fraction of the dark energy. Thus, in this alternative model, the dark energy no longer 
has associated with its energy-momentum source tensor a negative pressure that causes 
the expansion of the universe to accelerate (for a review see, e.g., Wang [9]), but instead 
has an index of refraction greater than unity. It was also assumed that the dark energy is 
another phase of dark matter, and that the phase transformation started to take place at 
about redshift 1.65 0.15z = ± , as discussed in Riess et al. [10], where there appears to 
be a supernova not exhibiting acceleration, and in the proposed alternative model, is 
where the dark energy started to appear as a consequence of the expansion cooling of 
the dark matter that was present in intergalactic space. Since that expansion cooling did 
not take place for the dark matter associated with the galaxies, because it is the space 
between the galaxies that expands, not the galaxies themselves, hence within the galax-
ies, n remains unity, and the speed of light is c. Since galaxies do not have a sharp 
boundary, with the dark matter halos extending well beyond the central luminous ba-
ryonic regions, there will be a transition region where n changes from unity to its in-
tergalactic value, but for simplicity this is ignored at this stage of the study. 

The purpose of this work is to extend the previous work in I and II by making use of 
additional values of the cosmological density parameters to obtain new values for n, 
and to use these new values to obtain additional estimates of the age of the universe ac-
cording to the alternative model. 

Also, since the comparisons in I and II have been between the ΛCDM accelerating 
universe, and only the flat Einstein de Sitter universe, for completeness, an additional 
comparison is made here with a closed universe. 

In Section 2, the new values of n will be obtained by using both the least squares me-
thod that was introduced in I, and the square root method based on electromagnetic 
theory that was introduced in II. Both methods will be based on the values of the cos-
mological density parameters from the Planck satellite work of Abe et al. [11]. A com-
parison with the prediction for the increased distance to the SNe Ia, and the BAO stan-
dard ruler for different values of the cosmological density parameters is presented in 
Table 1 and Table 2. In Section 3, the range of values for n obtained in Section 2 is 
used to obtain a range of ages for the universe. All of these ages are greater than or 
equal to 14 Gyr, and hence exceed that for the accelerating universe of 13.8 ± 0.1 Gyr as 
given in [11]. Significantly, a qualitative argument is presented that shows that the age 
of the comparison Einstein de Sitter universe has to be greater than that of the accele-
rating universe, as was already found quantitatively in II. Possible empirical supports, 
as well as a possible empirical objection to the alternative model, are also discussed. In 
Section 4, as mentioned above, instead of comparing the accelerating universe with the 
flat Einstein de Sitter universe, the comparison is made with a closed universe. In I it 
was briefly noted that the expression that was found there for the increase in the ap-
parent magnitude of the SNe Ia did not require the universe to be flat, and in this sec-
tion, this is demonstrated for a closed university with a total density parameter, 
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1.005Ω = , which is the one sigma upper bound given in [11]. It is also shown that fo-
this case, both the least squares value of n, and the age of the closed universe, are the 
same (to three places) as that for the Einstein-de Sitter universe. In Table 3, a compar-
ison is made between the closed universe and the flat universe for their percentage fit 
with the accelerating universe. An upper bound on ΛΩ  for a closed universe that 
eventually collapses back on itself is also derived and discussed. In Section 5, there are 
concluding remarks. 

2. Additional Determinations of n 

In I, where the cosmological density parameters were given by 0.30mΩ = , 0.70ΛΩ = , 
the least squares value of n was found to be 1.49n = . In II, upon setting deΛΩ = Ω  
(where the subscript “de” refers to dark energy which in the alternative model has the 
same energy density as the cosmological term, but, in contrast, has negligible stress), 
and using the electromagnetic relation, ( )1 2

n KKµ= , where K is the dielectric con-
stant, and Kµ  is the relative permeability of the dark energy, and the assumption that 

de mKKµ = Ω Ω  so that one has another method of determining n given by 
( )1 2

de mn = Ω Ω , it was found for the above density parameters that 1.53n = . In what 
follows, it will be convenient to denote the least squares value for n as ( )n ls , and to 
denote the value for n obtained from the square root as ( )n sr . It was also found in II 
that ( ) 1.47n ls =  and ( ) 1.46n sr = , upon employing the one sigma upper limit of 

0.308 0.012mΩ = ±  given in [11], so that 0.32mΩ = , and 0.68ΛΩ = . In this section, 
values of ( )n ls  and ( )n sr  will be obtained for the mean value 0.308mΩ = , and the 
one sigma lower limit 0.296mΩ = , with 1m ΛΩ +Ω =  as before, so that 0.692ΛΩ = , 
and 0.704ΛΩ = , respectively. 

For the reader’s convenience, the analysis leading to ( )n ls  will next be briefly re-
viewed. As derived in Section 6 of I, and briefly recapitulated in II, ( )zΛΧ  is propor-
tional to the distance in the accelerating universe out to an object at redshift z, while 

( )m zΧ  is proportional to the distance for the Einstein de Sitter universe. (See also the 
discussion in Section 4 below, where more details are given.) The general expression for 
( )zΧ  is 

( ) ( )
0

d
z

z z E z′ ′Χ = ∫ ,                           (1) 

with 

( ) ( ) ( ) ( ) ( )1 2 3
0 1m mE z H z H z Λ≡ = Ω + + Ω Ω ,              (2) 

where ( )H z a a≡   is the Hubble parameter, and H0, its value at the present epoch, 
the Hubble constant, and where a is the FLRW expansion parameter, and also 
( ) ( )0 1a z a z= + . From (1) and (2), as given in I and II, it follows that 

( ) ( ) ( ) ( )1 2 3

0
d 1

z
m mz z z−

Λ Λ′Χ = Ω + + Ω Ω∫ ,                (3) 

so that for the values 0.308, 0.692m ΛΩ = Ω = , one has 

( ) ( )1 2 3

0
0.308 d 1 2.247

z
z z−

Λ ′ ′Χ = + +∫ .                  (4) 
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As noted in I and II, this integral has to be evaluated numerically. In contrast, for the 
Einstein de Sitter universe, with 1, 0m ΛΩ = Ω = , one has the same value for ( )m zΧ  
as was found in I and II, for which the integral is immediate, and given by 

( ) ( ) ( )( )3 2 1 2

0
d 1 2 1 1

z
m z z z z− −′ ′Χ = + = − +∫ .                 (5) 

As in I and II, the difference of the logarithmic proportional distances between the 
accelerating universe and the Einstein de Sitter universe is given by 

( ) ( ) ( ) ( )( )log log logm mz z z z dΛ ΛΧ − Χ = Χ Χ = ,              (6) 

where 
( ) ( )( )log 1 1 ln 1d n z= + − +                       (7) 

is the prediction of the alternative model under the assumption (for which there is as 
yet no theoretical foundation) that the light speed has been reduced to c/n when trav-
eling through the dark energy of intergalactic space, as shown in I, Section 4, page 82, 
and where the increase in apparent magnitude δm is shown to be given by 5m dδ = . 
For the percentage comparisons, it is sufficient to work with d rather than mδ . For 

0.308mΩ = , 0.692ΛΩ =  it was found for the redshift range, 0 ≤ z ≤ 1.0, that n(ls) = 
1.48. Another value for n is obtained under the assumption that it is of electromagnetic 
origin, and as discussed in II, and above, so that ( ) ( ) ( )1 2 1 2

de mn sr KKµ= = Ω Ω . Hence, 
for 0.308, 0.692m de ΛΩ = Ω = Ω = , one has ( ) 1.50.n sr =  In Table 1, a comparison is 
given for the percentage disagreement with the accelerating universe for ( )n ls  and 
( ) 1.50.n sr = , this is analogous to Table 1 in II, and for just ( )n ls , to Table 3 in I. 

 

Table 1. Comparison of ( ) ( )( )log mz zΛΧ Χ  with ( ) ( )( )log 1 1 ln 1d n z= + − +  for ( ) 1.48n ls =  

and ( ) 1.50n sr = , ( ) ( )( )log md z zΛ∆ ≡ − Χ Χ , and for brevity, ( )log ,mR Λ≡ Χ Χ  and the 

arguments for R, , mΛΧ Χ  are omitted. 0.308, 0.692m ΛΩ = Ω = , 2.247mΛΩ Ω = . 

z ( )log mΛΧ Χ  ( )1.48d  ( )1.48∆  ( )1.48 %R∆  ( )1.50d  ( )1.50∆  ( )1.50 %R∆  

0.1 0.0208 0.0194 −0.0014 −6.7 0.0202 −0.0006 −2.9 

0.2 0.0387 0.0364 −0.0023 −5.9 0.0379 −0.0008 −2.1 

0.3 0.0539 0.0515 −0.0024 −4.5 0.0535 −0.0004 −0.7 

0.4 0.0671 0.0650 −0.0021 −3.1 0.0675 0.0004 0.6 

0.5 0.0786 0.0772 −0.0014 −1.8 0.0802 0.0016 2.0 

0.6 0.0885 0.0883 −0.0002 −0.2 0.0917 0.0032 3.6 

0.7 0.0972 0.0985 0.0013 1.3 0.1022 0.0050 5.1 

0.8 0.1048 0.1079 0.0031 3.0 0.1119 0.0071 6.8 

0.9 0.1115 0.1166 0.0051 4.6 0.1209 0.0094 8.4 

1.0 0.1175 0.1247 0.0072 6.1 0.1292 0.0117 10.0 
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In Table 2, the percentage disagreement results are given for 0.296,mΩ =  and 
0.704ΛΩ = . It was found that for this case, ( ) 1.50n ls =  and ( ) 1.54n sr = . Hence 

with Table 1 and Table 2 here, and Table 1 in II, the totality of cases are presented for 
0.308 0.012mΩ = ± , along with the corresponding values for ΛΩ . 

 
Table 2. Comparison of ( ) ( )( )log mz zΛΧ Χ  with ( ) ( )( )log 1 1 ln 1d n z= + − +  for ( ) 1.50n ls =  

and ( ) 1.54n sr = , ( ) ( )( )log md z zΛ∆ ≡ − Χ Χ , and for brevity, ( )log ,mR Λ≡ Χ Χ , and the ar-

guments for , , mR ΛΧ Χ  are omitted. 0.296, 0.704m ΛΩ = Ω = , 2.378mΛΩ Ω = . 

z ( )log mΛΧ Χ  ( )1.50d  ( )1.50∆  ( )1.50 %R∆  ( )1.54d  ( )1.54∆  ( )1.54 %R∆  

0.1 0.0210 0.0202 −0.0008 −3.8 0.0218 0.0008 3.8 

0.2 0.0394 0.0379 −0.0015 −3.8 0.0408 0.0014 3.6 

0.3 0.0551 0.0535 −0.0016 −2.9 0.0575 0.0024 4.4 

0.4 0.0686 0.0675 −0.0011 −1.6 0.0725 0.0039 5.7 

0.5 0.0804 0.0802 −0.0002 −0.2 0.0860 0.0056 7.0 

0.6 0.0906 0.0917 0.0011 1.2 0.0982 0.0076 8.4 

0.7 0.0996 0.1022 0.0026 2.6 0.1094 0.0098 9.8 

0.8 0.1074 0.1119 0.0045 4.2 0.1197 0.0123 11.5 

0.9 0.1144 0.1209 0.0065 5.7 0.1292 0.0148 12.9 

1.0 0.1206 0.1292 0.0086 7.1 0.1381 0.0175 14.5 

 

It is clear from the last column in Table 2, in which, particularly at 0.5z = , the dis-
agreement is 7.0%, that ( ) 1.54n sr =  is ruled out. However, this need not mean that 
the square root method of obtaining n is at fault, rather it could be that the problem is 
with the values of the density parameters, i.e., 0.296, 0704m ΛΩ = Ω = . If one assumes 
that ( ) de mn sr = Ω Ω  yields a valid determination of n for, say, redshifts, 0 0.7z≤ ≤ , 
then it follows that the large percentage disagreement for ( ) 1.54n sr =  is indicative 
that the above values of the cosmological density parameters are ruled out instead. If 
one demands that the percentage disagreement not exceed |2%|, for 0.5z = , then from 
Table 1, 0.308mΩ =  provides a lower bound for mΩ , while for an upper bound, it 
was found that for 0.317mΩ =  the disagreement at 0.5z =  is −1.8%, while for 

0.318mΩ ≥ , the disagreement is less than −2%, it follows that 0.317mΩ =  provides an 
upper bound. Hence, allowing 2%±  disagreement, the requirement that the square 
root method is valid, can be seen as predicting 

0.308 0.317m≤ Ω ≤ .                       (8) 

Also, since for 0.317mΩ = , 0.693de ΛΩ = Ω = , one has that ( ) 1.47n sr = . The 
corresponding range of values of n, that include least squares values as well as square 
root values is given by 0.02

0.011.48n +
−= . However, in calculating ( )n ls , for 0.308mΩ = , if 
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one restricts the redshifts to 0.7z ≤ , one finds that ( ) 1.49n ls = . Thus a possibly bet-
ter estimate of n is given by 

0.01
0.021.49n +
−= .                          (9) 

Indeed, for n = 1.49, at z = 0.5, one finds from Table 1 that 0.0001∆ = , and hence 
0.1%.R∆ =  

It will be noticed from the tables that lower values of n fit better for higher values of z, 
while higher values of n fit better for lower values of z. Interestingly, the disagreement 
for the lower values of z, i.e. 0.3z ≤ , suggest that if the alternative, model is correct, it 
predicts a slightly brighter SNe Ia than the accelerating ΛCDM universe for this lower 
range of redshifts. As noted in I, this could provide another means for choosing be-
tween the two theories. On the other hand, the percentage disagreements for, say, 

0.7z > , are probably an indication that the simplifying assumption that the index of 
refraction is constant for these higher values of z is not valid, and that at these redshifts, 
and higher, the dark matter has not fully transformed into dark energy. Thus a future, 
more accurate model should assume that ( )n n z= , with the requirement that ( )n z
approach unity for sufficiently high z. As noted above, at 1.65 0.15z = ±  [10], the un-
iverse no longer seems to be accelerating, and in the present model, this should be the 
approximate redshift where the intergalactic dark matter began to make a phase transi-
tion into dark energy, and the index of refraction started to increase from unity. But 
one will need to know more about the properties of dark matter and dark energy to go 
further. Indeed, it will be noticed that in this work, no assumptions have been made 
about the particle nature of the dark matter, nor the dynamical nature of the phase 
transition into dark energy. At this stage of the investigation, the model is purely phe-
nomenological, and it may be possible to determine ( )n z  phenomenologically, which 
could then be helpful in probing the nature of the dark matter, and the proposed phase 
transition into dark energy. 

3. Age of the Universe 

In II it was found that for 1.46n = , the age of the Einstein de Sitter universe, with 
1 1

0 67.8 0.9 km s MpcH − −= ± ⋅ ⋅  [11], which was rounded to 68 km∙s−1∙Mpc−1, was 14.0 
Gyr, which was obtained in II, Section 5, (17), and is equivalent to (11) below. In this 
section, a range of ages for the Einstein de Sitter universe based on the range of values 
of n given in Section 2 will be presented here, and discussed. The above age of 14.0 Gyr, 
and those that will be obtained below, are obviously greater than the age of the accele-
rating universe of 13.8 ± 0.1 Gyr, given in [11], and hence it is of interest to present a 
qualitative argument to show why the age of the Einstein de Sitter universe in the al-
ternative model is necessarily greater than the age of the accelerating universe. To ac-
complish this, it is convenient to divide the expansion of the universe into three eras, 
based on the different speed of light in these three eras, as discussed below: the first era 
is the expansion from the big bang to the time when the universe started to accelerate. 
At that time, the expansion parameter would be somewhat larger for the accelerating 
universe than that for the Einstein de Sitter universe, since while both universes had  
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been decelerating, the former’s deceleration would have diminished more rapidly to 
zero. Call this value of the expansion parameter for the accelerating universe a′ . 
Therefore the time for the Einstein de Sitter universe to expand to a′  would be greater 
than that for the accelerating universe, call this time difference 1t∆ , with 1 0t∆ > . The 
second era is the interval of time in which the universe expanded from a′  to its size at 
redshift z = 0.5, call this value of the expansion parameter a′′ . It would require a longer 
amount of time for the Einstein de Sitter universe to expand from a′  to a′′  than for 
the accelerating universe, so that the former would require an additional time 2t∆  
with 2 0t∆ > . The third era would be the expansion from z = 0.5 to the present epoch 

0z = , and again the accelerating universe would reach the present value of the expan-
sion parameter 0a  in a shorter time than the decelerating universe which would re-
quire an additional time 3 0t∆ > . During this last era, the speed of light according to 
the alternative model is c/n, and hence the increased length of time the light takes to 
travel from the SNe Ia to earth, over what it would be if it traveled at speed c, leads to 
the increase in time needed for the decelerating Einstein de Sitter universe to expand 
the extra distance needed to explain the increase in apparent magnitude of the SNe Ia at 

0.5z = , over what it would have been if light had traveled with speed c. On the other 
hand, during the second epoch, the speed of light through the dark energy of interga-
lactic space is gradually changing from c to c/n; however, the details of this change, to-
gether with the postulated phase change of dark matter into the dark energy of interga-
lactic space is left to future studies. In any case, it is clear that the sum 1 2 3t t t∆ + ∆ + ∆  
leads to a greater total time back to the big bang for the Einstein de Sitter universe than 
for the accelerating universe, as was already found in the particular case considered 
above, for n 1.46; but, as demonstrated above, the result is quite general. 

Now, as was discussed in II, because the determination of the Hubble constant in-
volves the first order Doppler effect for the light that has traveled through intergalactic 
space, and since the distances involved are for z < 0.5 in which, according to the model, 
the speed of light is c/n, one has to correct the Doppler expression to allow for this, so 
that it becomes ( )( )0 1 nv cλ λ= + , where 0λ  is the wavelength observed at the 
present epoch, λ  is the wavelength in the rest frame of the receding galaxy, and v is 
the Hubble flow recession velocity of the galaxy. With the red shift ( )0z λ λ λ≡ − , one 
has for 1n = , cz v= , and the basic discovery of Hubble is that 0v H D= , where D is 
the proper distance to the galaxy at z, so that the standard expression is 0cz H D= , 
from which one determines the Hubble constant as 0H cz D= . But when one takes 
into account the reduced speed of light, the new corrected value of the Hubble constant, 
denoted by *

0H , is given by 
*
0 0 .H cz nD H n= =                        (10) 

Since the age of the Einstein de Sitter universe, taken to be from the big bang to the 
present epoch, and denoted by 0T , is given by ( )( ) 1

02 3 a a −
 , for n = 1, this becomes 

1
0 02 3T H −= . However, as remarked in II, for 1n ≠ , as is the case here, this has to be 

corrected to an age *
0T  given by 
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( ) 1* * 1
0 0 0

2 2
3 3

T H nH
− −= = .                     (11) 

Since (11) is indifferent to whether one works with ( )n ls , or ( )n sr , upon intro-
ducing the value of n in (9), and with 1

0 14.4 0.2 GyrH − = ±  based on H0 = 67.8 ± 0.9 
km∙s−1∙Mpc−1 [11] one has that 

*
0 14.3 0.3 Gyr.T = ±                        (12) 

This clearly exceeds the age of the accelerating universe of 13.8 0.1 Gyr± , as was 
expected on the basis of the qualitative analysis given above. In this case, Δt1 + Δt2 + Δt3 = 
0.5 ± 0.3 Gyr. 

With regard to this revision of the Hubble constant, it should be pointed out that 
since the light from, say, the Cepheid variables that is used in determining H0, passes 
through the host galaxy as well as our own Galaxy, where in both cases the speed of 
light is c, this has the consequence that the effective speed of light for the entire path is 
greater than c/n. However a rough estimate indicates that a correction for this effect 
would be less than 0.5 percent, and in view of the sizes of the other uncertainties, it can 
be ignored at this stage of the study.  

An interesting hint of possible support for the alternative model comes from the 
fairly recent study of the star HD 140283 by Bond et al. [12], who describe it as a sub-
giant with low metallicity in the solar neighborhood, at approximately 100 lyr from 
earth. They found that when all uncertainties are included the star’s age is 14.46 ± 0.8 
Gyr. They emphasized that this age was not in disagreement with the age of the un-
iverse when allowance was made for the uncertainty in the star’s age. At that time, 2013, 
no other age than that of the accelerating universe (which was then given as 13.77 ± 
0.06 Gyr) was available for comparison, but clearly the mean age they found for the star 
puts its age closer to *

0T  than to that of the accelerating universe. However, until the 
substantial uncertainty in the star’s age has been reduced, obviously no firm conclusion 
can be drawn. But it is noteworthy that, in addition to the divergent lensing possibility 
described in Section 4 of II, the difference in the ages of the universe for the two models 
is yet another avenue of approach for deciding between the two models. 

Quite recently there has appeared the latest finding of Riess et al. [13] that yields a 2.4% 
determination of the local value of the Hubble constant of 1 173.24 1.74 km s Mpc− −± ⋅ ⋅ . 
This leads to a Hubble time to three places given by 1

0 13.4 0.3 GyrH − = ± . Hence, ac-
cording to the alternative model, since the age of the universe, as given in (11) is 
( ) 1

02 3 nH − , upon introducing the largest value of n obtained from (9), i.e. 1.50n = , 
one obtains an age *

0T  for the Einstein de Sitter universe of 13.4 0.3 Gyr± . Since, as 
was pointed out earlier in this section, the age of the Einstein de Sitter universe has to 
be greater than that of the accelerating universe, hence greater than 13.8 0.1 Gyr± , 
their value for H0 is possibly in conflict with the alternative model. On the other hand, 
the possible conflict is less than with the 3.3% determination by Riess et al. [14] of 
2011,for which 1 1

0 73.8 2.4 km s MpcH − −= ± ⋅ ⋅ . Interestingly, Cheng and Huang [15], 
on the basis of their BAO studies, found that 1 1

0 68.11 0.86 km s MpcH − −= ± ⋅ ⋅  which 
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is in excellent agreement with the Planck [11] finding that H0 = 67.8 ± 0.9 km∙s−1∙Mpc−1, 
the value used here. They discussed their disagreement with the 2011 value of H0 found 
by Riess et al. [14]. Since the alternative model also disagrees with this value given in 
[14], and to a lesser degree with their more recent value [13], this could be a sign that 
the alternative model is possibly on the right track, and has predictive powers. However, 
as noted above, the large uncertainties surrounding the various values make it impossi-
ble to draw scientifically valid conclusions as to agreement or disagreement. 

It has undoubtedly been noticed that the value of n is very nearly—if not exactly— 
the reciprocal of the two-thirds factor relating the age of the Einstein de Sitter universe 
to the Hubble time. At this writing, there is no explanation for this unexpected relation, 
and it is left to future studies to find a possible solution. 

4. Comparison with a Closed Universe 

As mentioned in I, the expression that was derived therein Section 4, p.82, for the in-
creased apparent magnitude of the SNe Ia given by 

( ) ( )( )5log 1 1 ln 1m n zδ = + − + ,                   (13) 

does not just hold for the flat Einstein de Sitter universe, it is applicable to any isotropic 
universe for which the expansion parameter satisfies ( )0 1a a z= + , which is a generic 
relationship for FLRW expanding universes. In view of the long standing interest in 
closed universes, and the author’s work on a closed pulsating universe [16] [17], it is 
appropriate to determine what values of n emerge from comparison with a closed un-
iverse. As pointed out in [11], the equivalent cosmological density parameter for cur-
vature differs from zero by an amount given by 0.005.kΩ = ±  However, it should be 
emphasized that this value represents a measurement uncertainty, and the true value of 
the curvature parameter could be much smaller, and even zero, as predicted by the in-
flationary models of Guth [18] [19], Linde [20], and Albrecht and Steinhardt [21]. This 
possible curvature contribution to Ω in the author’s approach is written differently, and 
will now be derived. 

The standard line element for a general, homogeneous, isotropic, time-orthogonal, 
FLRW universe, in isotropic coordinates, can be written as 

( ) ( )( ) ( )
222 2 2 2d d 1 4 d d , , 1, 2,3i j

ijs c t a t kr x x i jδ
−

= − + =           (14) 

with 2 d di j
ijr x xδ= , and 1,0, 1k = −  for a closed, flat, and open universe, respectively. 

The Einstein field equation for the energy density 0 0
0 0G Tκ= − , in the absence of CMB 

radiation, neutrino background, and the cosmological term, reduces to 

( )2 2 28π 3a G a kcρ− = − .                      (15) 

For the Einstein de Sitter universe k = 0, while in this section k = 1. Hence this equa-
tion can be rewritten as 

2 2

2 2

8π1
3

c G a
a a

ρ
+ =
 

.                         (16) 
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Since 3 3
0 0a aρ ρ=  from the covariant conservation law, and since ( )0 1a a z= + , 

the above becomes 

( )3 22
0

2 2

8π 1
1

3
G z ac

a a
ρ +

+ =
 

.                     (17) 

Hence, at the present epoch, z = 0, with 0 0,a a a a= =  , and 0 0 0H a a≡  , one has 
2

0 0
2 2
0 0

8π1
3 c

c G
a H

ρ ρ
ρ

+ = =


,                       (18) 

where 2
03 8πc H Gρ ≡ . And since 0m cρ ρΩ ≡ , in contrast with the Einstein de Sitter 

universe, for which 1mΩ = , one has instead 
2

2
0

1m
c
a

Ω = +


.                           (19) 

One now proceeds as in I and II. From (17), and the relations leading to (19), one has 

( ) ( )3 22
0

2 2 2
0 0 0 0 0

8π 1 1
3

G z c zH a
H H a H a H

ρ + +
= = −



.               (20) 

Then from 2
0 0 08π 3m c G Hρ ρ ρΩ ≡ = , and the definition ( ) ( ) 0E z H z H≡ , upon 

simplification, (20), becomes 

( ) ( ) ( ) ( ) ( )1 2 2 2
01 1m mE z z z c a= Ω + + − Ω .                (21) 

Upon replacing mΩ  by ( )( )2 2
01 c a+   from (19), the above may be rewritten as 

( ) ( )( ) ( ) ( ) ( )( )( )1/22 2 2 2 2 2
0 0 01 1 1 1E z c a z z c a c a= + + + − +   .         (22) 

The proportional distance function X(z), as previously mentioned, is defined as 

( ) ( )
0

d
z

z z E z′ ′Χ ≡ ∫ .                       (23) 

Now ( )zΛΧ  will be the same as previously used in comparison with the flat un-
iverse, here, on the other hand, it will be compared with the new form for ( )m zΧ  
which, from (22), is given by 

( ) ( )( )
( ) ( ) ( )( )( )

1 22 2
0

2 2 2 20
0 0

d1
1 1 1

z

m
zz c a

z z c a c a

− ′
Χ = +

′ ′+ + − +
∫

 

.   (24) 

Upon denoting the ratio 2 2
0c a  by f, the above expression can be written as 

( ) ( )
( ) ( ) ( )

1 2

1
0

d1
1 1 1

z

m
zz f

z z f f

−

−

′
Χ = +

′+ + − +
∫ .           (25) 

After combining the factor ( )1 21 22 1f f− +  that emerges from the integral with the 
pre-factor in (25), the above integration yields 

( ) ( ) ( )
( )

1
1 2 1 1 1 2

1

1 1
2 tan tan

1
m

z f f
z f f

f f

−
− − − −

−

 + − + Χ = − 
+  

.        (26) 
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The following cosmological density parameters, 0.308, 0.692m ΛΩ = Ω = were cho-
sen for the accelerating universe to obtain XΛ for comparison with the closed universe. 
Thus, the results presented in Table 3 below will be similar to that of Table 1, except 
Xm will now be that for a closed universe. However, in Table 1, in comparison with the 
flat universe, ( ) 1.48n ls =  was used, and so, before making the comparison, it is ne-
cessary to determine ( )n ls  for the closed universe. For 2 2

0 0.005f c a≡ = , it was 
found ( )n ls  had the same value as for the flat universe, i.e., 1.48. In Table 3, the last 
column is taken from the fifth column in Table 1. 

 
Table 3. Comparison of ( ) ( )( )log mX z X zΛ , where ( )mX z  is for a closed universe, with the 

logarithmic distance correction ( ) ( )( )log 1 1 ln 1d n z= + − +  for 1.48n = , ( )log .md X XΛ∆ ≡ −  

For brevity, ( )log mR X XΛ≡ , and the arguments for , , , mR X XΛ∆  are omitted. 

z ( )log mX XΛ  d ∆  %R∆  ( )%R flat∆  

0.1 0.0208 0.0194 −0.0014 −6.7 −6.7 

0.2 0.0387 0.0364 −0.0023 −5.9 −5.9 

0.3 0.0540 0.0515 −0.0025 −4.6 −4.5 

0.4 0.0673 0.0650 −0.0023 −3.4 −3.1 

0.5 0.0787 0.0772 −0.0015 −1.9 −1.8 

0.6 0.0887 0.0883 −0.0004 −0.5 −0.2 

0.7 0.0974 0.0985 0.0011 1.1 1.3 

0.8 0.1050 0.1079 0.0029 2.8 3.0 

0.9 0.1118 0.1166 0.0048 4.3 4.6 

1.0 0.1178 0.1247 0.0069 5.9 6.1 

 
As can be seen from the table, the fit for the closed universe is very nearly the same as 

for the flat Einstein de Sitter universe. Moreover, as will be shown next, the age of the 
closed universe is very nearly the same as for the flat universe for this value of mΩ  that 
is so close to unity. 

It is convenient to rewrite (15) as 
2 2

2 2
a GM c

a
− = −



,                         (27) 

where ( ) 34π 3M aρ≡ , although, to be sure, for a closed, spherical universe, the actual 
mass is actually 2 32π aρ . However, in the following, one never has to make explicit use 
of the mass, and because of the obvious similarity to Newtonian mechanics, (27) is 
simpler to work with, since the solution to the differential equation is well known, and 
is given by the parametric equations for a cycloid 

( )( )2 1 cosa GM c ϕ= − ,                      (28) 
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( )( )3 sint GM c ϕ ϕ= − .                      (29) 

From these two equations one obtains an expression for a  given by 

( )sin 1 cosa c ϕ ϕ= − ,                      (30) 

from which, together with (28), one obtains the Hubble parameter H a a≡   in the 
form 

( )

3

2
sin

1 cos
cH

GM
ϕ
ϕ

=
−

.                      (31) 

For 1ϕ  , from (29), 3 36t GM cϕ= , and from (31), 3 34H c GMϕ= , hence 

2 3,tH =                             (32) 

which is the same relation that holds for the Einstein de Sitter universe. For the larger 
value of ϕ  that is needed here, one expands t and H to the next higher order terms. 
After combining (29) and (31), one has 

( )
( )2

sin sin
1 cos

tH
ϕ ϕ ϕ

ϕ

−
=

−
.                      (33) 

After setting 3 5sin 6 120ϕ ϕ ϕ ϕ= − + , and 3 5sin 6 120ϕ ϕ ϕ ϕ− = + , upon neg-
lecting higher order terms, and then taking the product, the numerator in (33) becomes 

( ) ( )( )4 26 1 13 60ϕ ϕ− , after further neglect of higher order terms. After approximating 
the denominator as ( ) ( )( )4 24 1 12ϕ ϕ− , and upon further neglect of higher order 
terms, one finds 

22 1
3 20

tH ϕ 
= − 

 
.                          (34) 

To determine ϕ  in terms of the departure ε  of mΩ  from its value for the flat 
Einstein de Sitter universe, one uses from (19) that 2 21m c aΩ = +  , so that 2 2c aε =  , 
and one will determine ϕ  in terms of ε . From (30), since ( )22 2 21 cos sinc a ϕ ϕ= − , 
one obtains 

2
1 cosm ϕ

Ω =
+

.                           (35) 

After substituting the approximation 2 4cos 1 2 24ϕ ϕ ϕ= − +  in (35) and expand-
ing upon further neglect of higher order terms, one obtains 

2 41 4 24m ϕ ϕΩ = + + .                       (36) 

Upon setting 1m εΩ = +  in (36), there results a quadratic equation for 2ϕ  given 
by 

4 26 24 0ϕ ϕ ε+ − = .                         (37) 

The positive root for 2ϕ  to first order in ε  is 2 4ϕ ε= . Hence, for this level of 
approximation, (34) becomes 

2 1
3 5

tH ε = − 
 

.                          (38) 
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With 0.005ε = , one has 10.666t H −= , and hence for this case, as well as for closed 
universes of even lesser curvature, the age difference between a closed universe and the 
Einstein de Sitter universe is negligible. Some further observations concerning the two 
models are of interest. 

Although for the closed universe, from (30), a c> , for π 2ϕ < , this does not vi-
olate c being the limiting speed, since a  is analogous to the Minkowski speed in spe-
cial relativity, which can be arbitrarily large, since the speed of light determined in this 
way is infinite. In other words, the coordinate time t in the FRLW line element is ana-
logous to a proper time; for further discussion, see that by the author in [22]. Also, it 
should be noted that the solution for ( )a t  for the Einstein de Sitter universe, i.e., 
( ) 2 3a t t∝ , which is usually described as having the time run 0 t≤ ≤ ∞ , also holds for 

0t < , so one may think of the time running for the complete solution as t−∞ ≤ ≤ ∞ . 
In the negative branch, for which the time runs 0t−∞ ≤ < , one has a universe col-
lapsing from infinity to a cusp at t = 0, the big bang, where ρ  becomes infinite. It is 
therefore appropriate to see the full Einstein de Sitter universe as a limiting case of a 
closed cyclic universe in which the amplitude of the cycle has become infinite as well as 
the period. Thus, instead of there being infinitely many finite cycles of finite amplitude, 
there is one infinitely long cycle of infinite amplitude. The infinite cycle is split into two 
halves of a cycle, the first half being the branch descending from infinity, and the 
second half, the traditional expanding branch rising to infinity. Since the amplitude of 
the cycle in the closed universe is proportional to the total mass of the universe as given 
in (28), the flat Einstein de Sitter universe may be thought of as a limiting case of a 
closed universe with infinite mass and infinite radius of curvature as discussed in Eins-
tein [23], Silberstein [24], and the author [25]. Also, because of the time-reversibility of 
the solution, it reads the same, whether one goes from the negative branch to the posi-
tive branch or vice-versa. Since, on physical grounds, it is unlikely that before the big 
bang the universe collapsed in from infinity, but rather collapsed in from a finite size, 
the cyclic, closed universe seems preferable. The problem of the cusp in ( )a t  and the 
singularity in ( )tρ  at t = 0 can be dealt with classically [26], but a discussion of this 
lies outside the scope of this work. 

Finally, in I it was pointed out that there is a fundamental difficulty with the cosmo-
logical term Λ , based on a generalization of Newton’s first law, that led to the conclu-
sion that Λ  vanishes. It is therefore of interest to briefly recapitulate and extend an 
argument based on a closed universe that sets an upper bound on Λ , assumed non- 
negative, which would make it too small to lead to the universe accelerating now, as is 
claimed. The finding arose, nearly a decade before the accelerating universe was pro-
posed, inresponse to work by Weinberg [27] [28], who found, using the weak anthropic 
principle [29], an upper bound on Λ  that was based on assuming that the universe is 
flat, and does not collapse back on itself, that proved to be sufficiently large as to in-
clude the current value of Λ . Following Weinberg’s work, the author was able to show 
that for a closed universe that does collapse back on itself, one obtains a much smaller 
bound [30]; this was further discussed and extended in [31] which was referenced in I. 
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To show this here, note that with a cosmological term present, the field Equation (15) 
for a closed universe becomes 

( ) ( )2 2 2 2 28π 3 3a G a c a cρ− − Λ = − .                (39) 

Either from the field equation for stress, or by differentiating the above equation, 
taking into account that 3aρ  is a constant, the equation of motion becomes, 

( ) ( )24π 3 3a G a c aρ= − + Λ .                   (40) 

Under the assumption that the universe does collapse back on itself after reaching the 
value of the expansion parameter when it stops increasing and starts to recoil denoted 
by ra , with 0ra = , and 0ra < , it follows from (40) that 2 4π rc GρΛ <  From the 
conservation of mass-energy from the contracted Bianchi identities, one has that 

3 3
0 0r ra aρ ρ= , and hence, upon introducing the cosmological term’s mass density (rather 

than energy density) defined as 2 8πc GρΛ ≡ Λ , the inequality becomes 

( )( )3
0 02 ra aρ ρΛ < .                      (41) 

After dividing both sides of the inequality by cρ , which was not done in [30] [31], 
one has 

( )( )3
02m ra aΛΩ < Ω .                     (42) 

Thus, under these circumstances, ΛΩ  would clearly be too small to account for the 
accelerating universe, for which mΛΩ > Ω . However, because of the above assump-
tions, for which there is as yet no empirical support, the result is obviously not conclu-
sive, although it is consistent with the rejection of the cosmological term in the pro-
posed alternative to the accelerating universe. 

5. Concluding Remarks 

It is clear from the work in the preceding sections, as well as that in I and II, that the 
proposed alternative model, based on the slowing down of light by the dark energy in 
intergalactic space, can explain the diminished brightness of the SNe Ia, and the in-
creased distance to the “standard ruler” of the BAO, as well as can the accelerating un-
iverse, that is based on attributing a negative pressure to the dark energy, such as dis-
played by the cosmological term. However, the crucial test for the alternative model will 
be for astronomers to determine through suitable observations, such as the one de-
scribed in Section 4 of II, whether in fact the speed of light in intergalactic space for, say, 
z ≤ 0.7 is c/n, with n ≈ 1.50. If eventual astronomical observation should show that this 
is indeed the case, it will then prove theoretically challenging to obtain a general ex-
pression for n as a function of redshift, and to show further that n does not exhibit any 
evidence of dispersion in the optical range, as found by the SNe Ia studies. 

Finally, it follows from the discussion in Section 3 that the alternative model is pre-
dicting a greater age for the universe than that predicted by the accelerating universe. 
As was further discussed there, this has bearing on the maximum age of stars, and the 
value of the Hubble constant, so that their more accurate determination should provide 
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two other areas to test the model astronomically. 
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