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Abstract 
In this article we apply and discuss El-Desouky technique to derive a generalization of the prob-
lem of selecting k balls from an n-line with no two adjacent balls being s-separation. We solve the 
problem in which the separation of the adjacent elements is not having odd and even separation. 
Also we enumerate the number of ways of selecting k objects from n-line objects with no two ad-
jacent being of separations m, m + 1, ···, pm, where p is positive integer. Moreover we discuss some 
applications on these problems. 

 
Keywords 
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1. Introduction 
Kaplansky [1] (see also Riordan ([2] p. 198, lemma) and Moser [3]) studied the problem of selecting k objects 
from n objects arranged in a line (called n-line) or a circle (called n-circle) with no two selected objects being 
consecutive. Let ( ),f x y  and ( ),g x y  denote the number of ways of such selections for n-line and n-circle 
respectively. Kaplansky proved that 

( )
1

, 0
,

0, otherwise,

n k
k n

f n k k
 − + 
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

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El-Desouky [4] studied another related problem with different techniques and proved that 

( ) 0

1 1
, min 1, ,  0

, 1 2
0, otherwise,
i

k n k i n kk k n
l n k i i

λ

λ
=

 − − + −    −  = − ≤ ≤      = +      



∑              (1.3) 

where ( ),l n k  is the number of ways of selecting k balls from n balls arranged in a line with no two adjacent 
balls being unit separation. 

In the following we adopt some conventions: ( )nx f x    denotes the coefficient of nx  in the formal power 
series ( )f x ; ( ),n mx y f x y    denotes the coefficient of n mx y  in the series ( ),f x y ; [ ]x  is the largest in-
teger less than or equal to x, { }0,1,N =   and { }1, 2,3, .nN =   

Also, El-Desouky [5] derived a generalization of the problem given in [4] as follows: let ( ),sl n k  denote the 
number of ways of selecting k balls from n balls arranged in a line with no two adjacent balls from the k selected 
balls being s-separation; two balls have separation s if they are separated by exactly s balls. Let ( ),sd n k  
denote the number of ways of selecting k balls from n balls arranged in a circle with no two adjacent balls from 
the k selected balls being s-separation 

Let ( ),sl n k  be as defined before. Then ( ),sl n k  is equal to the number of k-subsets of nN  where the dif-
ference 1s +  is not allowed, so 

( ) ( ) ( )
0

1 1
, 1

where min 1, ,  0 ,  and 0,1, , .

i
s

i

k n s i
l n k

i k i

n kk k n s n k
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ν
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=

− − +  
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 −  = − ≤ ≤ = −    
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

                (1.4) 

Let ( ),sd n k  be as defined before. Then the difference 1s +  is not allowed, so 

( ) ( ) ( )
0

1 1
, 1 ,

1

where min , ,  0 ,  and 0,1, , .

i
s

i

k n s ind n k
ik k i

n kk k n s n k
s

β

β

=

− + −  
= −    − −  
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∑



                  (1.5) 

Let ( ), ,sl n k m  be the number of ways of selecting k balls from n balls arranged in a line with exactly m 
adjacent balls being of separation s or ( )-successionss , which gives a generalization of (4.1) in El-Desouky [4]. 

Thus, 

( ) ( ) ( )1

0

1 1 1
, , 1 ,

where min 1, ,  0,1, , 1,  0,1, , .
1

k i i
s

i m j

k k i n s i sj
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i j k m

n k mk m k s n k
s

µ

µ

′ − −

= =

− − − − + −   
= −     −   

 − +  ′ = − = − = −  +  

∑ ∑

 

              (1.6) 

For more details on such problems, see [3] [6] [7]. 

2. Main Results 
We use El-Desouky technique to solve two problems in the linear case, with new restrictions. That is if the se-
paration of any two adjacent elements from the k selected elements being of odd separation and of even separa-
tion. Moreover, we enumerate ( ), ; ,sM n k m pm  which denotes the number of ways of selecting k objects from 
n objects arrayed in a line where any two adjacent objects from the k selected objects are not being of m, m + 
1, ···, pm separations, where p is positive integer. 

2.1. No Two Adjacent Being Odd Separation 
Let ( ),oy n k  denote the number of ways of selecting k balls from n balls arranged in a line, where the separa-
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tion of any two adjacent balls from the k selected balls being of odd separation. say s, i.e. 1,3,5,s =  . This 
means that no two adjacent being of 2, 4, 6, ··· differences, see Table 1. 

So, following Decomposition (2.3.14) see [8] (p. 55), ( ),oy n k  is equal to the number of k-subsets of nN  
where the differences 1s + , 1,3,5,s =   are not allowed, hence ( ) ( ), n

oy n k x f x =   , where 

( ) ( ) ( ) ( )

( )
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
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hence 
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Setting n i j k= + +  j n i k= − −  we have 

( ) ( ) ( )
0 0
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n k i n k i
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Therefore, the coefficient of nx  gives 

( ) ( )
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2
, 1 .

2

n k n i k
o

i

k i n i
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i k

−
− −

=

+ − −  
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∑  

A calculated table for the values of ( ),oy n k  is given in Table 1, where 1 n≤ , 10k ≤ . 
Remark 1. It is easy to conclude that ( ),oy n k  satisfies the following recurrence relation 

( ) ( ) ( ) ( ), 1, 1 2, ,     ,  2    , 0    o o o oy n k y n k y n k n k and y n k for k n= − − + − ≥ = >          (2.1) 

with the convention ( ),1oy n n= , 1.n ≥  
 

Table 1. A calculated table for the values of ( ),oy n k . 

k 
n 1 2 3 4 5 6 7 8 9 10 

1 1 0 0 0 0 0 0 0 0 0 

2 2 1 0 0 0 0 0 0 0 0 

3 3 2 1 0 0 0 0 0 0 0 

4 4 4 2 1 0 0 0 0 0 0 

5 5 6 5 2 1 0 0 0 0 0 

6 6 9 8 6 2 1 0 0 0 0 

7 7 12 14 10 7 2 1 0 0 0 

8 8 16 20 20 12 8 2 1 0 0 

9 9 20 30 30 27 14 9 2 1 0 

10 10 25 40 50 42 35 16 10 2 1 
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2.2. No Two Adjacent Being Even Separation 
Let ( ),ey n k  denote the number of ways of selecting k balls from n balls arranged in a line, where the separa-
tion of any two adjacent balls from the k selected balls are not being of even separation, say s i.e. 0, 2, 4,s =  . 
This means that no two adjacent being of 1, 3, 5,··· differences. 

So, following Decomposition (2.3.14) see [8] (p. 55) then ( ),ey n k  is equal to the number of k-subsets of 
nN  where the differences 1,s +  0, 2, 4,s =   are not allowed, hence ( ) ( ), n

ey n k x f x =   , where 

( ) ( ) ( ) ( )
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=
− +

= − +
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hence 
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Setting 2 1n k i j= − + + , 2 1j n k i= − + −  we get 
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Therefore, the coefficient of nx  gives 
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∑                        (2.2) 

Moreover in the next subsection, we use our technique to enumerate ( ), ; ,sM n k m pm  the number of ways of 
selecting k objects from n objects arrayed in a line such that no two adjacent elements have the differences m + 1, 
m + 2, ···, pm + 1 i.e. no two adjacent element being of m, m + 1, ···, pm separations, where p is positive 
integer. 

2.3. Explicit Formula for ( ), ; ,sM n k m pm  
Let ( ), ; ,sM n k m pm  be the number of ways of selecting k objects from n objects arrayed in a line where any 
two adjacent objects from the k selected objects are not being of m, m + 1, ···, pm separations, where p is posi-
tive integer, hence ( ) ( ), ; , n

sM n k m pm x f x =   , where 

( ) ( ) ( )

( )
( )

( ) ( ) ( )
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Setting ( )1n j pm m mi l k= − + + + +  it is easy to find the coefficient of nx  hence 

( ) ( ) ( )1

0 0

1 1
, ; , 1 .

k i i j
s

i j

k i n j pm m mi
M n k m pm

i j k

−
+

= =

− − − + −   
= −    

   
∑∑               (2.3) 

3. Some Applications 
Let n urns be set out along a line, that is, one-dimensional. 

Suppose we have m balls of which im  are of colour ic , 1, 2, ,i k=   and we assign these balls to urns so 
that, see Pease [9]: 

i) No urn contains more than one ball. 
ii) All im  balls of colour ic  are in consecutive urns, 1, 2, , .i k=   
El-Desouky proved that if the order of colours of the groups is specified, the number of arrangement is  

just .
n m k

k
− + 

 
 

 Hence if the total number of balls 
1

2 1,
k

i
i
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=
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k
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 as a special case of El-Desouky results [5]. 

It is of practical interest to find the asymptotic behavior of ( ),f n k  or the probability ( ) ( ), ,
n
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k
 
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for large n and k. 
Let X be a random variable having the probability function ( ),p n k  then 
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n
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where we used the first aproximation 
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( ) 2
lim e .t

n
P Y t −

→∞
= =  

Maosen [10] considered the following problem. Let t be any nonnegative integer. 
If we want to select k balls from an n-line or an n-circle under the restriction that any two adjacent selected 

balls are not t-separated, how many ways are there to do it? He solved these problems by means of a direct 
structural analysis. For the two kinds of problems, he used ( ),tF n k  to denote the number of ways of selecting 
k balls from n balls arranged in a line with no two adjacent selected balls being t-separation and ( ),tG n k  to 
denote the number of ways of selecting k balls from an n-circle with no two adjacent selected being t-separation. 
He proved that 

( ) ( ) ( )
0

1 1
, 1 ,

1
t

t
t

k n l t
F n k

l k≥

− − +  
= −    −  
∑                           (3.2) 

( ) ( ) ( ) ( ) ( )1 1
, 1 1 , 1 .

1
j k

t

k n j tnG n k n k t
jk k j

δ
 − + −   = − + − +      − −    

               (3.3) 

Remark 2. In fact El-Desouky [5] has proved (3.2) in 1988. 
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Abstract 
In this paper, we introduce the concept of a (weak) minimizer of order k for a nonsmooth vector 
optimization problem over cones. Generalized classes of higher-order cone-nonsmooth (F, ρ)- 
convex functions are introduced and sufficient optimality results are proved involving these 
classes. Also, a unified dual is associated with the considered primal problem, and weak and 
strong duality results are established. 

 
Keywords 
Nonsmooth Vector Optimization over Cones, (Weak) Minimizers of Order k, Nonsmooth  
(F, ρ)-Convex Function of Order k 

 
 

1. Introduction 
It is well known that the notion of convexity plays a key role in optimization theory [1] [2]. In the literature, 
various generalizations of convexity have been considered. One such generalization is that of a ρ -convex 
function introduced by Vial [3]. Hanson and Mond [4] defined the notion of an F-convex function. As an ex-
tended unification of the two concepts, Preda [5] introduced the concept of a ( ),F ρ -convex function. Antczak 
gave the notion of a locally Lipschitz ( ),F ρ -convex scalar function of order k [6] and a differentiable ( ),F ρ - 
convex vector function of order 2 [7]. 

L. Cromme [8] defined the concept of a strict local minimizer of order k for a scalar optimization problem. 
This concept plays a fundamental role in convergence analysis of iterative numerical methods [8] and in stability 
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results [9]. The definition of a strict local minimizer of order 2 is generalized to the vectorial case by Antczak 
[7]. 

Recently, Bhatia and Sahay [10] introduced the concept of a higher-order strict minimizer with respect to a 
nonlinear function for a differentiable multiobjective optimization problem. They proved various sufficient 
optimality and mixed duality results involving generalized higher-order strongly invex functions. 

The main purpose of this paper is to extend the concept of a higher-order minimizer to a nonsmooth vector 
optimization problem over cones. The paper is organized as follows. We begin in Section 2 by recalling some 
known concepts in the literature. We then define the notion of a (weak) minimizer of order k for a nonsmooth 
vector optimization problem over cones. Thereafter, we introduce various new generalized classes of cone- 
nonsmooth ( ),F ρ -convex functions of higher-order. In Section 3, we study several optimality conditions for 
higher-order minimizers via the introduced classes of functions. In Section 4, we associate a unified dual to the 
considered problem and establish weak and strong duality results. 

2. Preliminaries and Definitions 
Let nS ⊆ R  be a nonempty open subset of nR . Let mK ⊆ R  be a closed convex cone with nonempty inte-
rior and let intK  denote the interior of K. The dual cone K* of K is defined as 

{ }: , 0  for all  mK y y y y K∗ ∗ ∗= ∈ ≥ ∈R . 

The strict positive dual cone sK
∗

 of K is given by 

{ }{ }: , 0  for all  \ 0 .s mK y y y y K
∗ ∗ ∗= ∈ > ∈R  

A function : Sψ → R  is said to be locally Lipschitz at a point u S∈  if for some 0l > , 
( ) ( )x x l x xψ ψ− ≤ −  x∀ , x  within a neighbourhood of u. 

A function ψ  is said to be locally Lipschitz on S if it is locally Lipschitz at each point of S. 
Definition 2.1. [11] Let : Sψ → R  be a locally Lipschitz function, then ( )0 ;u vψ  denotes the Clarke’s ge-

neralized directional derivative of ψ  at u S∈  in the direction v  and is defined as 

( ) ( ) ( )0

0

; limsup
y u
t

y tv y
u v

t
ψ ψ

ψ
+

→
→

+ −
= . 

The Clarke’s generalized gradient of ψ  at u is denoted by ( )uψ∂  and is defined as 

( ) ( ){ }0: ; ,  for all  n nu u v v vψ ξ ψ ξ∂ = ∈ ≥ ∈R R . 

Let : mf S → R  be a vector valued function given by ( )1 2, , , t
mf f f f=   , :if S → R . Then f is said to 

be locally Lipschitz on S if each if  is locally Lipschitz on S. The generalized directional derivative of a locally 
Lipschitz function : mf S → R  at u S∈  in the direction v  is given by 

( ) ( ) ( ) ( )( )0 0 0 0
1 2; ; , ; , , ;

t

mf u v f u v f u v f u v=  . 

The generalized gradient of f at u is the set 

( ) ( ) ( )1 mf u f u f u∂ = ∂ × ×∂
, 

where ( )if u∂  is the generalized gradient of if  at u for 1, 2, ,i m= 
. 

Every element ( ) ( )1, , t
mA A A f u= ∈∂  is a continuous linear operator from nR  to mR  and 

( )1 , ,
tt t m

mAu A u A u= ∈R

 for all u S∈ . 

A functional : nF S S× × →R R  is sublinear with respect to the third variable if, for all ( ),x u S S∈ × , 
(i) ( ) ( ) ( )1 2 1 2, ; , ; , ;F x u A A F x u A F x u A+ ≤ +  for all 1 2,  nA A ∈R , and 
(ii) ( ) ( ), ; , ;F x u A F x u Aα α=  for all α +∈R . 
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(i) and (ii) together imply ( ), ;0 0F x u = .                                                    (1) 
We consider the following nonsmooth vector optimization problem 

(NVOP)   K-minimize ( )f x  

subject to ( )g x Q− ∈ , 

where ( )1, , t
mf f f=  : mS → R , ( )1, ,

t
pg g g=  : pS → R , K and Q are closed convex cones with nonempty 

interiors in Rm and Rp respectively. We assume that if  for each { }1, ,i m∈   and jg  for each { }1, ,j p∈   
are locally Lipschitz on S. 

Let ( ){ }0 :S x S g x Q= ∈ − ∈  denote the set of all feasible solutions of (NVOP). 
The following solution concepts are well known in the literature of vector optimization theory. 
Definition 2.2. A point 0x S∈ , is said to be 
(i) a weak minimizer (weakly efficient solution) of (NVOP) if for every 0x S∈ , 

( ) ( ) int ;f x f x K− ∉−  

(ii) a minimizer (efficient solution) of (NVOP) if for every 0x S∈ , 

( ) ( ) { }\ 0 .f x f x K− ∉−  

With the idea of analyzing the convergence and stability of iterative numerical methods, L. Cromme [8] in-
troduced the notion of a “strict local minimizer of order k”. As a recent advancement on this platform, Bhatia 
and Sahay [10] defined the concept of a higher-order strict minimizer with respect to a nonlinear function for a 
differentiable multiobjective optimization problem. We now generalize this concept and give the definition of a 
higher-order (weak) minimizer with respect to a function ω  for a nonsmooth vector optimization problem over 
cones. 

Definition 2.3. A point 0x S∈  is said to be 
(i) a weak minimizer of order 1k ≥  for (NVOP) with respect to ω , if there exists a vector intKβ ∈  such 

that, for every 0x S∈  

( ) ( ) ( ), int
k

f x f x x x Kβ ω− − ∉− ; 

(ii) a minimizer of order 1k ≥  for (NVOP) with respect to ω , if there exists a vector intKβ ∈  such that, 
for every 0x S∈  

( ) ( ) ( ) { }, \ 0 .
k

f x f x x x Kβ ω− − ∉−  

Remark 2.1. (1) If f is a scalar valued function, K += R  and ( ),x x x xω = − , the definition of a weak mi-
nimizer of order k reduces to the definition of a strict minimizer of order k (see [8] [9] [12] [13]). 

(2) If mK += R , 2k =  and ( ),x x x xω = − , the definition of a (weak) minimizer of order k becomes the 
definition of a vector strict global (weak) minimizer of order 2 given by Antczak [7]. 

(3) If mK += R  the definition of a weak minimizer of order k reduces to the definition of a strict minimizer of 
order k given by Bhatia and Sahay [10]. 

Remark 2.2. (1) Clearly a minimizer of order k for (NVOP) with respect to ω  is also a weak minimizer of 
order k for (NVOP) with respect to the same ω . 

(2) A direct implication of the fact that intKβ ∈  is that, a (weak) minimizer of order k for (NVOP) with re-
spect to ω  is a (weak) minimizer for (NVOP). 

(3) Note that if x  is a (weak) minimizer of order k for (NVOP) with respect to ω , then for all k> , it is 
also a (weak) minimizer of order   for (NVOP) with respect to the same ω . 

In the sequel, for a vector function : mf S → R  and ( ) ( )1, , t
mA A A f u= ∈∂ , ( ), ;F x u A  denotes the vec-

tor ( ) ( )( )1, ; , , , ;
t

mF x u A F x u A . 
We now define various classes of nonsmooth ( ),F ρ -convex functions of higher-order over cones. 
Definition 2.4. A locally Lipschitz function : mf S → R  is said to be K-nonsmooth ( ),F ρ -convex of order 

k with respect to ω  at u S∈  on S if there exist a sublinear (with respect to the third variable) functional 
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: nF S S× × →R R  and a vector ( )1 2, , , m
mρ ρ ρ ρ= ∈R  such that, for each ( )A f u∈∂  and all x S∈  

( ) ( ) ( ) ( ), ; ,
k

f x f u F x u A x u Kρ ω− − − ∈ . 

If the above relation holds for every u S∈  then f is said to be K-nonsmooth ( ),F ρ -convex of order k with 
respect to ω  on S. 

Remark 2.3. (1) If f is a scalar valued function and K += R , the above definition reduces to the definition of 
a (locally Lipschitz) ( ),F ρ -convex function of order k with respect to ω  given by Antczak [6]. 

(2) If f is a differentiable function, mK += R , 2k =  and ( ),x x x xω = −  the definition of a K-nonsmooth 
( ),F ρ -convex function of order k with respect to ω  becomes the definition of a vector ( ),F ρ -convex func-
tion of order 2 given in [7]. 

(3) If mK += R , ( ) ( ), ; ,F x u A A x uη=  for some function : nS Sη × → R and 2k = , K-nonsmooth ( ),F ρ - 
convexity of order k with respect to ω  reduces to ( ),ρ η θ− -invexity, where ( ) ( ), ,x x x xω θ= , introduced 
by Nahak and Mohapatra [14]. 

(4) If f  is a differentiable function, mK += R  and ( ) ( ), ; ,tF x u a a x uη= , na∈R , for some function 
: nS Sη × → R , the above definition becomes the definition of a higher-order strongly invex function given by 

Bhatia and Sahay [10]. 
Definition 2.5. A locally Lipschitz function : mf S → R  is said to be K-nonsmooth ( ),F ρ -pseudoconvex 

type I of order k with respect to ω  at u S∈  on S if there exist a sublinear (with respect to the third variable) 
functional : nF S S× × →R R  and a vector mρ ∈R  such that, for each ( )A f u∈∂  and all x S∈ , 

( ) ( ) ( ) ( ), ; int , int
k

F x u A K f x f u x u Kρ ω − ∉ ⇒ − − − ∉  
. 

Equivalently, 

( ) ( ) ( ) ( ), int , ; int
k

f x f u x u K F x u A Kρ ω− − ∈− ⇒ ∈− . 

If f is K-nonsmooth ( ),F ρ -pseudoconvex type I of order k with respect to ω  at every u S∈  then f is said 
to be K-nonsmooth ( ),F ρ -pseudoconvex type I of order k with respect to ω  on S. 

Clearly, if f is K-nonsmooth ( ),F ρ -convex of order k with respect to ω , then f is K-nonsmooth ( ),F ρ - 
pseudoconvex type I of order k with respect to the same ω , however the converse may not be true as shown by 
the following example. 

Example 2.1. Consider the following nonsmooth function 2:f S → R , ( )2, 2S = − ⊆ R, ( ) ( ) ( )( )1 2,f x f x f x=  
and ( ){ }, : 0,K x y x y x= ≥ ≤  

( )1 6

2 , 0
, 0

x x
f x

x x x
− <

= − − ≥
 ( )

3

2
2, 0

3, 0
x x x

f x
x x

 − <
= 

− ≥
 

Here ( ) [ ]1 0 2, 1f∂ = − −  and ( )2
1 10 ,
2 3

f  ∂ = − −  
. 

Define :F S S× × →R R  as 

( ) ( ), ;F x u a a x u= − . 

Let : S S Rω × →  be given by ( ) 2 2,x u x uω = − , 3k =  and ( )1,0ρ = − . 
Then, at 0u = . 

( ) ( ) ( ) ( ), int 0 , ; int
k

f x f u x u K x F x u A Kρ ω− − ∈− ⇒ > ⇒ ∈− , 

for every x S∈  and ( )0A f∈∂ . 
Hence, f is K-nonsmooth ( ),F ρ -pseudoconvex type I of order 3 with respect to ω  at u on S. 

However, for 1x =  and ( )1, 1 2A = − − . 

( ) ( ) ( ) ( ), ; ,
k

f x f u F x u A x u Kρ ω− − − ∉ , 
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so that f is not K-nonsmooth ( ),F ρ -convex of order 3 at u on S. 
Definition 2.6. A locally Lipschitz function : mf S → R  is said to be K-nonsmooth ( ),F ρ -pseudoconvex 

type II of order k with respect to ω  at u S∈  on S if there exist a sublinear (with respect to the third variable) 
functional : nF S S× × →R R  and a vector mρ ∈R  such that, for each ( )A f u∈∂  and all x S∈ , 

( ) ( ) ( ) ( ), ; , int int
k

F x u A x u K f x f u Kρ ω − + ∉ ⇒ − − ∉    
 

Equivalently, 

( ) ( ) ( ) ( )int , ; , int
k

f x f u K F x u A x u Kρ ω − ∈− ⇒ + ∈−  
. 

If the above relation holds for every u S∈ , then f is said to be K-nonsmooth ( ),F ρ -pseudoconvex type II 
of order k with respect to ω  on S. 

We now give an example to show that a K -nonsmooth ( ),F ρ -pseudoconvex type II function of order k with 
respect to ω  may fail to be a K -nonsmooth ( ),F ρ -convex function of order k with respect to ω . 

Example 2.2. Consider the following nonsmooth function 2:f S → R , ( )0,2S = ⊆ R , ( ) ( ) ( )( )1 2,f x f x f x=  
and ( ){ }, : 0,K x y x y x= ≤ ≥  

( )1 2

, 1
, 1

x x
f x

x x
− ≤

= − >
, ( )

( )2 2

4, 1

1 2 , 1

x x
f x

x x

≤= 
− >

 

Here ( ) [ ]1 1 2, 1f∂ = − −  and ( )2
11 ,1
4

f  ∂ =   
. 

Let :F S S× × →R R  be given by ( ) ( ), ; e ex uF x u a a= − . 

( ) 2 2 9,
16

x u x uω = − −  and ( )1, 1ρ = − . 

Then, at 1u = , 

( ) ( ) ( ) ( )int 1 , ; , int
k

f x f u K x F x u A x u Kρ ω− ∈− ⇒ ≤ ⇒ + ∈− , 

for every 1k ≥ , x S∈  and ( )1A f∈∂ . 
Therefore, f is K-nonsmooth ( ),F ρ -pseudoconvex type II of order 1k ≥  with respect to ω  at u on S. 
However, for 5 4x =  and ( )22,A α= − , [ ]2 1 4,1α ∈ , 

( ) ( ) ( ) ( ), ; ,
k

f x f u F x u A x u Kρ ω− − − ∉ . 

Thus, f is not K-nonsmooth ( ),F ρ -convex of any order k with respect to ω  at u on S. 
Definition 2.7. A locally Lipschitz function : mf S → R  is said to be K-nonsmooth ( ),F ρ -quasiconvex 

type I of order k with respect to ω  at u S∈  on S if there exist a sublinear (with respect to the third variable) 
functional : nF S S R R× × →  and a vector mRρ ∈  such that, for each ( )A f u∈∂  and all x S∈ , 

( ) ( ) ( ) ( )int , ; ,
k

f x f u K F x u A x u Kρ ω − ∉ ⇒ − + ∈     
. 

If the above relation holds at every u S∈ , then f is said to be K-nonsmooth ( ),F ρ -quasiconvex type I of 
order k with respect to ω  on S. 

Definition 2.8. A locally Lipschitz function : mf S → R  is said to be K-nonsmooth ( ),F ρ -quasiconvex 
type II of order k with respect to ω  at u S∈  on S if there exist a sublinear (with respect to the third variable) 
functional : nF S S× × →R R  and a vector mρ ∈R  such that, for each ( )A f u∈∂  and all x S∈ , 

( ) ( ) ( ) ( ), int , ;
k

f x f u x u K F x u A Kρ ω − − ∉ ⇒ − ∈  
. 

If f is K-nonsmooth ( ),F ρ -quasiconvex type II of order k with respect to ω  at every u S∈ , then f is said 
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to be K-nonsmooth ( ),F ρ -quasiconvex type II of order k with respect to ω  on S. 
Remark 2.4. When f is a differentiable function, mK += R  and ( ) ( ), ; ,tF x u a a x uη= , na∈R  for some 

function : nS Sη × → R , Definition 2.4 - 2.7 take the form of the corresponding definitions given by Bhatia and 
Sahay [10]. 

3. Optimality 
In this section, we obtain various nonsmooth Fritz John type and Karush-Kuhn-Tucker (KKT) type necessary 
and sufficient optimality conditions for a feasible solution to be a (weak) minimizer of order k for (NVOP). 

On the lines of Craven [15] we define Slater-type cone constraint qualification as follows: 
Definition 3.1. The problem (NVOP) is said to satisfy Slater-type cone constraint qualification at x  if, for 

all ( )B g x∈∂ , there exists a vector nRξ ∈  such that intB Qξ ∈− . 
Remark 3.1. The following inclusion relation is worth noticing. 
For ( )1, , t m

mλ λ λ= ∈R  and ( )1, ,
t p

pµ µ µ= ∈R , 

( )( ) ( )

( ) ( )

( ) ( )

( ) ( )( )

1 1

1 1

1 1

                           

                           

                           .

pm
t t

i i j j
i j

pm

i i j j
i j

pm

i i j j
i j

t t

f g x f g x

f x g x

f x g x

f x g x

λ µ λ µ

λ µ

λ µ

λ µ

= =

= =

= =

 
∂ + = ∂ + 

 
  ⊆ ∂ + ∂  

   

⊆ ∂ + ∂

= ∂ + ∂

∑ ∑

∑ ∑

∑ ∑

 

Thus, 

( )( ) ( ) ( )( )t tt tf g x f x g xλ µ λ µ∂ + ⊆ ∂ + ∂ .                         (2) 

Since a weak minimizer of order 1k ≥  for (NVOP) is a weak minimizer for (NVOP), the following non-
smooth Fritz John type necessary optimality conditions can be easily obtained from Craven [15]. 

Theorem 3.1. If a vector 0x S∈  is a weak minimizer of order k with respect to ω  for (NVOP) with 
nS = R , then there exist Lagrange multipliers Kλ ∗∈  and Qµ ∗∈  not both zero, such that 

( )( )0 t tf g xλ µ∈∂ +  

( ) 0t g xµ = . 

The necessary nonsmooth KKT type optimality conditions for (NVOP) can be given in the following form. 
Theorem 3.2. If a vector 0x S∈  is a weak minimizer of order k with respect to ω  for (NVOP) with 

nS = R  and if Slater-type cone constraint qualification holds at x , then there exist Lagrange multipliers 
{ }\ 0Kλ ∗∈  and Qµ ∗∈ , such that 

( )( )0 t tf g xλ µ∈∂ +                                   (3) 

( ) 0t g xµ = .                                      (4) 

Proof. Assume that 0x S∈  is a weak minimizer of order k with respect to ω  for (NVOP), then by Theo-
rem 3.1 there exist Kλ ∗∈  and Qµ ∗∈ , not both zero, such that (3) and (4) hold. 

If possible, suppose 0λ = . Then, 0µ ≠  and (3) reduces to 

( )( ) ( )0 tt g x g xµ µ∈∂ ⊆ ∂ . 

So there exists ( )B g x∈∂  such that 

0tB µ = .                                       (5) 
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Now, since Slater-type cone constraint qualification holds at x , we have for all ( )B g x∈∂ , there exists a 
vector nRξ ∈  such that intB Qξ ∈− . Since { }\ 0Qµ ∗∈ , we get 0t Bµ ξ < . In particular, 0t Bµ ξ < . On the 
contrary (5) implies 0t tBξ µ = . This contradiction justifies 0λ ≠ . 

Now, we give sufficient optimality conditions for a feasible solution to be a higher-order (weak) minimizer 
for (NVOP). 

Theorem 3.3. Let x  be a feasible solution for (NVOP) and suppose there exist vectors Kλ ∗∈ , 0λ >  
and Qµ ∗∈ , 0µ ≥  such that 

( ) ( )( )0 t tf x g xλ µ∈ ∂ + ∂                                 (6) 

( ) 0t g xµ = .                                      (7) 

Further, assume that f is K-nonsmooth ( ),F ρ -convex of order k with respect to ω  at x  on 0S  and g is 
Q-nonsmooth ( ),F σ -convex of order k with respect to the same ω  at x  on 0S . If intKρ ∈  and Qσ ∈ , 
then x  is a weak minimizer of order k with respect to ω  for (NVOP). 

Proof. Assume on the contrary that x  is not a weak minimizer of order k with respect to ω  for (NVOP). 
Then, for any intKβ ∈ , there exists a vector 0x̂ S∈  such that, 

( ) ( ) ( )ˆ ˆ, int
k

f x f x x x Kβ ω− − ∈− . 

As intKρ ∈ , the above relation holds in particular for β ρ= , so that we have 

( ) ( ) ( )ˆ ˆ, int
k

f x f x x x Kρ ω− − ∈− .                            (8) 

As (6) holds, there exist ( )A f x∈∂  and ( )B g x∈∂  such that 

0t tA Bλ µ+ = .                                   (9) 

Since f is K-nonsmooth ( ),F ρ -convex of order k with respect to ω  at x  on 0S , we have 

( ) ( ) ( ) ( )ˆ ˆ ˆ, ; ,
k

f x f x F x x A x x Kρ ω− − − ∈ .                      (10) 

Adding (8) and (10), we get 

( )ˆ, ; intF x x A K− ∈ . 

As { }\ 0Kλ ∗∈ , we obtain 

( )ˆ, ; 0t F x x Aλ < .                                   (11) 

Also, since g is Q-nonsmooth ( ),F σ  convex of order k with respect to ω  at x  on 0S  and Qµ ∗∈ , we 
have 

( ) ( ) ( ) ( )ˆ ˆ ˆ, ; , 0
kt g x g x F x x B x xµ σ ω − − − ≥  

. 

However, 0x̂ S∈ , Qµ ∗∈  and (7) together give 

( ) ( )ˆ ˆ, ; , 0
kt F x x B x xµ σ ω + ≤  

.                           (12) 

Adding (11) and (12), we get 

( ) ( ) ( )ˆ ˆ ˆ, ; , ; , 0
kt t tF x x A F x x B x xλ µ µ σ ω+ + < , 

which implies that 

( ) ( ) ( )ˆ ˆ ˆ, ; , ; , | 0t k
i i j j

i j
F x x A F x x B x xλ µ µ σ ω+ + <∑ ∑ . 
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Using sublinearity of F under the assumption 0λ >  and 0µ ≥ , we obtain 

( ) ( )ˆ ˆ, ; , 0
kt t tF x x A B x xλ µ µ σ ω+ + < , 

which on using (9) and (1), gives 

( )ˆ, 0
kt x xµ σ ω < . 

This is impossible as Qµ ∗∈ and Qσ ∈ , so that 0tµ σ ≥ , and norm is a non-negative function. Hence x  
is a weak minimizer of order k  with respect to ω  for (NVOP). 

Theorem 3.4. Suppose there exists a feasible solution x  for (NVOP) and vectors ,  0Kλ λ∗∈ >  and 
,  0Qµ µ∗∈ ≥  such that (6) and (7) hold. Moreover, assume that f is K-nonsmooth ( ),F ρ -pseudoconvex type 

I of order k with respect to ω  at x  on 0S  and g  is Q -nonsmooth ( ),F σ -quasiconvex type I of order k 
with respect to the same ω  at x  on 0S . If intKρ ∈  and Qσ ∈ , then x  is a weak minimizer of order k 
with respect to ω  for (NVOP). 

Proof: Let if possible, x  be not a weak minimizer of order k with respect to ω for (NVOP). Then, for any 
intKβ ∈ , there exists 0x̂ S∈  such that, 

( ) ( ) ( )ˆ ˆ, int
k

f x f x x x Kβ ω− − ∈− . 

Since intKρ ∈  taking, in particular, β ρ=  in the above relation, we obtain 

( ) ( ) ( )ˆ ˆ, int
k

f x f x x x Kρ ω− − ∈− .                           (13) 

As (6) holds, there exist ( )A f x∈∂  and ( )B g x∈∂  such that (9) holds. 
Since f is K-nonsmooth ( ),F ρ -pseudoconvex type I of order k with respect to ω at x  on 0S , (13) implies 

( )ˆ, ; intF x x A K∈− . 

As { }\ 0Kλ ∗∈ , we have 

( )ˆ, ; 0t F x x Aλ < .                                   (14) 

Now, 0x̂ S∈  means ( )ˆg x Q− ∈ , so that ( )ˆ 0t g xµ ≤ . This along with (7) gives 

( ) ( ){ }ˆ 0t g x g xµ − ≤ .                                (15) 

If 0µ ≠ , then (15) implies ( ) ( )ˆ intg x g x Q− ∉ . 
Since g is Q-nonsmooth ( ),F σ -quasiconvex type I of order k with respect to ω  at x  on 0S , therefore 

( ) ( )ˆ ˆ, ; ,
k

F x x B x x Qσ ω − + ∈  
, 

so that 

( ) ( )ˆ ˆ, ; , 0
kt F x x B x xµ σ ω + ≤  

.                            (16) 

If 0µ = , then also (16) holds. 
Now, proceeding as in Theorem 3.3, we get a contradiction. Hence, x  is a weak minimizer of order k with 

respect to ω  for (NVOP). 
Theorem 3.5. Assume that all the conditions of Theorem 3.3 (Theorem 3.4) hold with ,  0sKλ λ

∗
∈ > . Then 

x  is a minimizer of order k with respect to ω  for (NVOP). 
Proof: Let if possible, x  be not a minimizer of order k with respect to ω  for (NVOP), then for any 

intKβ ∈  there exists 0x̂ S∈  such that 

( ) ( ) ( ) { }ˆ ˆ, \ 0
k

f x f x x x Kβ ω − − − ∈  
.                        (17) 
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Proceeding on similar lines as in proof of Theorem 3.3 (Theorem3.4) and using (17) we have 

( ) { }ˆ, ; \ 0F x x A K− ∈ . 

As sKλ
∗

∈ , we get 

( )ˆ, ; 0t F x x Aλ < . 

This leads to a contradiction as in Theorem 3.3 (Theorem 3.4). Hence, x  is a minimizer of order k with re-
spect to ω  for (NVOP). 

4. Unified Duality 
On the lines of Cambini and Carosi [16], we associate with our primal problem (NVOP), the following unified 
dual problem (NVUD). 

(NVUD)        K-maximize ( ) ( ) ( )1 t
t

lf y g y
l

δ µ
λ

+ −  

subject to ( )( )0 ,t tf g yλ µ∈∂ +                                            (18) 

( ) 0,t g yδµ ≥                                                   (19) 

where y S∈ , intl K∈ , { }\ 0Kλ ∗∈ , Qµ ∗∈  and { }0,1δ ∈  is a 0 - 1 parameter. 
Note that Wolfe dual and Mond-Weir dual can be obtained from (NVUD) on taking 0δ =  and 1δ =  re-

spectively. 
Definition 4.1. Given the problem (NVOP) and given a vector int ,l K∈  we define the following Lagrange 

function: 

( ) ( ) ( ), , ,     ,   ,   t
t

lx f x g x x S K Q
l

λ µ µ λ µ
λ

∗ ∗= + ∀ ∈ ∈ ∈L . 

Theorem 4.1. (Weak Duality) Let x be feasible for (NVOP) and ( ), ,y λ µ  be feasible for (NVUD). If f is 
K-nonsmooth ( ),F ρ -convex of order k with respect to ω  at y on 0S  and g is Q-nonsmooth ( ),F σ -convex 
of order k with respect to the same ω  at y on 0S , with 0,  0λ µ> ≥  and 

0t tλ ρ µ σ+ ≥ ,                                     (20) 

then, 

( ) ( ) ( ) ( )1 intt
t

lf y g y f x K
l

δ µ
λ

+ − − ∉ . 

Proof: Assume on the contrary that 

( ) ( ) ( ) ( )1 intt
t

lf y g y f x K
l

δ µ
λ

+ − − ∈ .                         (21) 

Since ( ), ,y λ µ  is feasible for (NVUD), therefore by (2), there exist ( )A f y∈∂  and ( )B g y∈∂  such that 

0t tA Bλ µ+ = .                                   (22) 

Since f is K-nonsmooth ( ),F ρ -convex of order k with respect to ω  at y on 0S , we have 

( ) ( ) ( ) ( ), ; , .
k

f x f y F x y A x y Kρ ω− − − ∈                         (23) 

Adding (21) and (23), we obtain 

( ) ( ) ( ) ( )1 , ; , int
kt

t

l g y F x y A x y K
l

δ µ ρ ω
λ

− − − ∈ . 
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As { }\ 0Kλ ∗∈ , we get 

( ) ( ) ( ) ( )1 , ; , 0
kt t tg y F x y A x yδ µ λ λ ρ ω− − − > .                     (24) 

Also, since g is Q-nonsmooth ( ),F σ -convex of order k with respect to ω  at y on 0S  and Qµ ∗∈ , we 
have 

( ) ( ) ( ) ( ), ; , 0
kt g x g y F x y B x yµ σ ω − − − ≥  

.                      (25) 

Adding (24) and (25), we get 

( ) ( ) ( ) ( ) ( ) ( ), ; , ; ,
kt t t t t tg x g y F x y A F x y B x yµ δµ λ µ λ ρ µ σ ω− > + + +  

or, 

( ) ( ) ( ) ( ) ( ) ( )
1 1

, ; , ; , .
pm kt t t

i i j j
i j

g x g y F x y A F x y B x yµ δµ λ µ λ ρ µ σ ω
= =

′− > + + +∑ ∑  

Using sublinearity of F under the assumption that 0λ >  and 0µ ≥ , together with (22), (1) and (20), we 
obtain 

( ) ( )t tg y g xδµ µ< . 

As 0 ,  ( )x S g x Q∈ − ∈  and Qµ ∗∈ , so that ( ) 0t g xµ ≤  and we have ( ) 0t g yδµ < . 
This contradicts the feasibility of ( ), ,y λ µ , hence the result. 
Theorem 4.2. (Weak Duality) Let x be feasible for (NVOP) and ( ), ,y λ µ  be feasible for (NVUD) with 

0λ >  and 0µ ≥ . Suppose the following conditions hold: 
(i) If ( )0,  ,  ., ,Kδ ρ λ µ= ∈ L  is K-nonsmooth ( ),F ρ -pseudoconvex type II of order k with respect to ω  

at y on 0S , and 
(ii) If 1,  0t tδ λ ρ µ σ= + ≥ , f is K-nonsmooth ( ),F ρ -pseudoconvex type II of order k with respect to ω  at 

y on 0S  and g is Q-nonsmooth ( ),F σ -quasiconvex type I of order k with respect to ω  at y on 0S . 
Then, we have 

( ) ( ) ( ) ( )1 intt
t

lf y g y f x K
l

δ µ
λ

+ − − ∉ . 

Proof: Case (i): Let 0δ =  and on the contrary assume that, 

( ) ( ) ( ) intt
t

lf y g y f x K
l
µ

λ
+ − ∈ .                            (26) 

Since x is feasible for (NVOP) and Qµ ∗∈ , therefore ( ) 0t g xµ− ≥ . Further, intl K∈  so that 

( )t
t

l g x K
l
µ

λ
− ∈ .                                  (27) 

Adding (26) and (27), we get 

( ) ( ){ } ( ) ( ){ } intt t
t t

l lf y g y f x g x K
l l
µ µ

λ λ
 

+ − + ∈  
. 

That is, 

( ) ( ), , , , intx y Kλ µ λ µ− − ∈  L L . 

As ( )., ,λ µL  is K-nonsmooth ( ),F ρ -pseudoconvex type II of order k with respect to ω , we have for all 
( ) ( )1, , , ,t

mC C C y λ µ= ∈∂ L  
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( ) ( ), ; , int
k

F x y C x y Kρ ω+ ∈− . 

Since, { }\ 0Kλ ∗∈ , we get 

( ) ( ), ; , 0
kt tF x y C x yλ λ ρ ω+ < , 

or 

( ) ( )
1

, ; , 0
m kt

i i
i

F x y C x yλ λ ρ ω
=

+ <∑ , 

so that 

( ) ( ), ; , 0
kt tF x y C x yλ λ ρ ω+ < .                            (28) 

Now, since ( ), ,y λ µ  is feasible for (NVUD), 

( )( ) ( )

( )

( )

1 1

1

0

1                                 

                                 

                                 

t
t t t t

t

m m
t

i i i it
i i

m
ti

i i t
i

lf g y f g y
l

f l g y
l
l

f g y
l

λλ µ λ µ
λ

λ λ µ
λ

λ µ
λ

= =

=

 
∈∂ + = ∂ + 

 
 = ∂ + 
 
  = ∂ +  

  

∑ ∑

∑

( )

( )
1

                                 , , .

m
ti

i i t
i

t

l
f g y

l

y

λ µ
λ

λ µ λ
=

 ⊆ ∂ + 
 

= ∂

∑

L

 

Therefore, there exists ( )ˆ , ,C y λ µ∈∂L  such that ˆ 0tCλ = . Substituting in (28) and then using (1), we get 

( ), 0
kt x yλ ρ ω < , 

which is a contradiction, as { }\ 0 ,  K Kλ ρ∗∈ ∈  and norm is a non-negative function. 
Case (ii): Let 1δ = , then we have to prove that 

( ) ( ) intf y f x K− ∉ . 

Let if possible, 

( ) ( ) intf y f x K− ∈ . 

Since f is K-nonsmooth ( ),F ρ -pseudoconvex type II of order k with respect to ω  at y on 0S , we have 

( ) ( ){ }, ; , int
k

F x y A x y Kρ ω− + ∈ . 

As { }\ 0Kλ ∗∈ , we get 

( ) ( ), ; , 0
kt tF x y A x yλ λ ρ ω+ < .                            (29) 

Since x is feasible for (NVOP) and ( ), ,y λ µ  is feasible for (NVUD), we have 

( ) ( ){ } 0t g x g yµ − ≤ .                                 (30) 

If 0µ ≠ , (30) implies ( ) ( ) intg x g y Q− ∉ . 



S. K. Suneja et al. 
 

 
18 

As g is Q-nonsmooth ( ),F σ -quasiconvex type I of order k with respect to ω  at y on 0S , we get 

( ) ( ){ }, ; ,
k

F x y B x y Qσ ω− + ∈ . 

Since *Q , we have 

( ) ( ), ; , 0
kt tF x y B x yµ µ σ ω+ ≤ .                            (31) 

If 0µ = , then also (31) holds. 
Since ( ), ,y λ µ  is feasible for (NVUD), by Remark 3.1, there exist ( )A f y∈∂  and ( )B g y∈∂  such that 

(22) holds. 
Adding (29) and (31), we get 

( ) ( ) ( ) ( ), ; , ; , 0
kt t t tF x y A F x y B x yλ µ λ ρ µ σ ω+ + + < , 

or 

( ) ( ) ( ) ( )
1 1

, ; , ; , 0
pm kt t

i i j j
i j

F x y A F x y B x yλ µ λ ρ µ σ ω
= =

+ + + <∑ ∑ . 

Using sublinearity of F with the fact that 0λ >  and 0µ ≥  and then using (22) and (1), we obtain 

( ) ( ), 0
kt t x yλ ρ µ σ ω+ < . 

This contradicts the assumption that 0t tλ ρ µ σ+ ≥ , hence the result. 
Theorem 4.3. (Strong Duality) Let x  be a weak minimizer of order k with respect to ω  for (NVOP) with 

nS = R , at which Slater-type cone constraint qualification holds. Then there exist { }\ 0 ,  K Qλ µ∗ ∗∈ ∈  such 
that ( ), ,x λ µ  is feasible for (NVUD). Further, if the conditions of Weak Duality Theorem 4.1 (Theorem 4.2) 
hold for all feasible x for (NVOP) and all feasible ( ), ,y λ µ  for (NVUD), then x  is a weak maximizer of or-
der k with respect to ω  for (NVUD). 

Proof: As x  is a weak minimizer of order k with respect to ω  for (NVOP), by Theorem 3.2 there exist 
{ }\ 0 ,  K Qλ µ∗ ∗∈ ∈  such that 

( )( )0 t tf g xλ µ∈∂ + ,                                 (32) 

( ) 0t g xµ = .                                     (33) 

Since { }0,1δ ∈ , Equations (32) and (33) can be written as 

( )( )0 t tf g xλ µ∈∂ + , 

( ) 0t g xδµ = . 

Thus, ( ), ,x λ µ  is a feasible solution for (NVUD). Further, if ( ), ,x λ µ  is not a weak maximizer of order k 
with respect to ω  for (NVUD), then for any intKβ ∈ , there exists a feasible solution ( ), ,y λ µ  of (NVUD) 
such that 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 , int ,
kt t

t t

l lf y g y f x g x y x K
l l

δ µ δ µ β ω
λ λ

   + − − + − − ∈   
   

 

or, 

( ) ( ) ( ) ( ) ( )1 , int .
kt

t

lf y g y f x y x K
l

δ µ β ω
λ

+ − − − ∈  
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Since, ( )int ,  , int
k

K y x Kβ β ω∈ ∈ , so that we have 

( ) ( ) ( ) ( )1 int ,t
t

lf y g y f x K
l

δ µ
λ

+ − − ∈  

which contradicts Theorem 4.1 (Theorem 4.2). Hence ( ), ,x λ µ  is a weak maximizer of order k with respect to 
ω  for (NVUD). 

5. Conclusion  
In this paper, we introduced the concept of a higher-order (weak) minimizer for a nonsmooth vector optimiza-
tion problem over cones. Furthermore, to study the new solution concept, we defined new generalized classes of 
cone-nonsmooth (F, ρ)-convex functions and established several sufficient optimality and duality results using 
these classes. The results obtained in this paper will be helpful in studying the stability and convergence analysis 
of iterative procedures for various optimization problems. 
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Abstract 
Through a variable transformation, the Whitham-Broer-Kaup system is transformed into a para-
meter Levi system. Based on the Lax pair of the parameter Levi system, the N-fold Darboux trans-
formation with multi-parameters is constructed. Then some new explicit solutions for the Whi-
tham-Broer-Kaup system are obtained via the given Darboux transformation. 
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Soliton Solutions 

 
 

1. Introduction 
Studying of the nonlinear models in shallow water wave is very important, such as Korteweg-de Vries (KdV) 
equation [1] [2], Kadomtsev-Petviashvili (KP) equation [3] [4], Boussinesq equation [5] [6], etc. There are many 
methods to study these nonlinear models, such as the inverse scattering transformation [7], the Bäcklund trans-
formation (BT) [8], the Hirota bilinear method [9], the Darboux transformation (DT) [10], and so on. Among 
those various approaches, the DT is a useful method to get explicit solutions. 

In this paper, we investigate the Whitham-Broer-Kaup (WBK) system [11]-[13] for the dispersive long water 
in the shallow water 

( )
0,

0,
t x x xx

t xxx xxx

u uu v u
v uv u v

β
α β

+ + + =
 + + − =

                               (1) 

where ( ),u u x t=  is the field of the horizontal velocity, and ( ),v v x t=  is the height that deviates from equi-

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.61003
http://dx.doi.org/10.4236/am.2015.61003
http://www.scirp.org
mailto:xutiantian0197@163.com
http://creativecommons.org/licenses/by/4.0/
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librium position of the liquid. The constants α  and β  represent different diffusion powers. If 0α =  and 
0β ≠ , the WBK system (1) reduces to the classical long-wave system that describes the shallow water wave 

with diffusion [14]. If 1α =  and 0β = , the WBK system (1) becomes the modified Boussinesq-Burgers equ-
ation [7]. 

Many solutions have been obtained for the WBK system (1), such as the analytical solution, the soliton-like 
solution, the soliton solutions, the periodic solution, the rational solution, and so on [15]-[19]. 

In this paper, through a proper transformation 

( )

( ) ( ) ( )

2 2

2
2 2 2 2 2 2

ln 2 ,

2 ln 2
2

x x x

x x x x xxx

u c r q q r cr

c cv c r q q r r q q r c c rβ β

  = − + − − 
 −   = − − + − − − + − + − 

,

           (2) 

the WBK system (1) is transformed into the parameter Levi system 

( ) 0,
2

3 0.
2

t xxx

t xx x x

cq c qr r

cr q crr cqq

 − − =

 − − + =


                               (3) 

Based on the obtained Lax pair, we construct the N-fold DT of the parameter Levi system (3) and then get the 
N-fold DT of the WBK system (1). Resorting to the obtained DT, we get new multi-soliton solutions of the 
WBK system. 

The paper is organized as follows. In Section 2, we construct the N-fold DT of the Levi system and the WBK 
system. In Section 3, DT will be applied to generate explicit solutions of the WBK system (1). 

2. Darboux Transformation 
In this section, we first construct the N-fold DT of the parameter Levi system, and then get explicit solutions of 
the WBK system. 

We consider the following spectral problem corresponding to the Levi system (3) 

( ) ( )T
1 2

2
,     , ,     

1x
q r q

U U
q

λ λ
ϕ ϕ ϕ ϕ ϕ

λ
+ − 

= = =  − − 
                     (4) 

and its auxiliary problem 

( ) ( ) ( )

( )

2 2 2

2

2 2 2
2,     ,

2

x x x

t

x

cc c r q r crq c r q c r rq q r
V V

cc cr c c r q r crq

λ λ λ λ
ϕ ϕ

λ λ λ

 − + − + + − − + − + − 
= =  

 − + − − − − 
 

      (5) 

where λ  is a spectral parameter and ( )2 24c α β= + . The compatibility condition xt txϕ ϕ=  yields a zero 
curvature equation 0t xU V UV VU− + − =  which leads to the Levi system (3) by a direct computation. 

Now we introduce a transformation of (4) and (5) 

Tϕ ϕ= ,                                     (6) 

where T  is defined by 

,     .x tT TU UT T TV VT+ = + =                             (7) 

Then the Lax pair (4) and (5) are transformed into 

,x Uϕ ϕ=                                     (8) 

,t Vϕ ϕ=                                     (9) 
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where U , V  have the same form as U , V , except replacing q , r , xq , xr  with q , r , xq , xr , re-
spectively. 

In order to make the Lax pair (4) and (5) invariant under the transformation (6), it is necessary to find a matrix 
T . 

Let the matrix T  in (6) be in the form of 

( ) ( ) ( )
( ) ( )

A B
T T

C D
λ λ

λ α
λ λ

 
= =  

 
                          (10) 

with 

( ) ( ) ( ) ( )
1 1 1 1

1

0 0 0 0
,     ,     ,     ,

N N N N
k N k k k

k k k k
k k k k

A A B B C C D Dλ λ λ λ λ λ λ λ λ
− − − −

+

= = = =

= + = = =∑ ∑ ∑ ∑  

where ( ),  ,  ,  ,   0 1k k k kA B C D k Nα ≤ ≤ −  are functions of x  and t . 
Let ( ) ( ) ( )( )T

1 2,j j jϕ λ ϕ λ ϕ λ= , ( ) ( ) ( )( )T

1 2,j j jψ λ ψ λ ψ λ=  be two basic solutions of the spectral problem 
(4) and use them to define a linear algebraic system 

( )

( )

1

0
1

0

,

0

k

N
k N

k j j j j
k
N

k
k k j j

k

A B

C D

δ λ λ λ

δ λ

−

=

−

=

 + = −

 + =


∑

∑
                              (11) 

with 

( ) ( )
( ) ( )

2 2

1 1

,     1 2 1,j j j
j

j j j

r
j N

r

ϕ λ ψ λ
δ

ϕ λ ψ λ

−
= ≤ ≤ −

−
                         (12) 

where the constants jλ , ( ), ,j k j k jr r r k jλ λ≠ ≠ ≠  are suitably chosen such that the determinant of the coeffi-
cients of (11) are nonzero. If we take 

1 1
1,     ,
2N NB r q C− −= − =                               (13) 

then ( ),  ,  ,   0 1k k k kA B C D k N≤ ≤ −  are uniquely determined by (11). 
From (10), we have 

( ) ( ) ( ) ( ) ( )2det .j j j j jT A D B Cλ α λ λ λ λ = −                       (14) 

We note that (11) can be written as a linear algebraic system 

( ) ( ) ( ) ( ),     j j j j j jA B C Dλ δ λ λ δ λ= − = −                         (15) 

and 

( )det 0jT λ = , 

which implies that ( )1 2 1j j Nλ ≤ ≤ −  are 2 1N −  roots of ( )det 0T λ = , that is 

( ) ( )
2 1

1
det

N

j
j

T λ γ λ λ
−

=

= −∏ ,                                (16) 

where γ  is independent of λ . From the above facts, we can prove the following propositions. 
Proposition 1. Let α  satisfy the following first-order differential equation 

( ) ( ) 2 2
1 1 2 21

1

1ln 2 2 2 .
2 2 4 2 2x N N N x x NN

N

r q A D C r q A r q B r q
D r q

α − − − −−
−

 ∂ = − − + − − + − + − − − + − +
  (17) 
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Then the matrix U  determined by Equation (7) is the same form as U : 

( )2
1

q r q
U

q
λ λ

λ
+ − 

=  − − 
, 

where the transformations from the old potentials q , r  to q , r  are given by 

( ) ( )

( ) ( )

2 2
1 1 2 21

1

2 2
1 1 2 21

1

12 2 2 ,
2 4 2 2

12 2 2 .
2 4 2 2

N N N x x NN
N

N N N x x NN
N

r qq A D C r q A r q B r q
D r q

r qr A D C r q A r q B r q
D r q

− − − −−
−

− − − −−
−

−  = + − − − − + − − − +  − +
 −  = + − − + − + − − − +  − +

     (18) 

Proof: Let 1 detT T T− ∗=  and 

( ) ( ) ( )
( ) ( )

11 12

21 22
x

f f
T TU T

f f
λ λ
λ λ

∗  
+ =  

 
,                           (19) 

where T ∗  denotes the adjoint matrix of T . It is easy to see that ( )11f λ  and ( )22f λ  are 2N th-order 
polynomials in λ , while ( )1

12fλ λ− , ( )21f λ  are (2N − 1)th-order polynomials in λ . From (4) and (12), we 
get 

( ) ( ) 21 2 2 .jx j j j jq r qδ λ δ λ δ= − + − −                             (20) 

By using (16) and (20), we can prove that ( )1 2 1j j Nλ ≤ ≤ −  are the roots of ( )( ), 1, 2kjf k jλ = . From (15), 
we have 

( )det ,     , 1, 2.kjT f k jλ =  

Hence, together with (19), we have 

( ) ( ) ( )det ,xT TU T T P λ∗+ =                               (21) 

that is 

( )xT TU P Tλ+ =                                   (22) 

with 

( )
( ) ( ) ( )

( ) ( ) ( )

1 0 1
11 11 12

1 1 0
21 22 22

,
p p p

P
p p p

λ λ
λ

λ λ

 +
 =
 + 

 

where ( ) ( ), 1, 2, 0,1l
kjp k j l= =  are independent of λ . By comparing the coefficients of 1Nλ + , Nλ  and 1Nλ −  

in (22), we find 

( ) ( ) ( )1 1 0
11 22 211,     1,p p p= − = =                               (23) 

( ) ( )1 2 2
12 1 2

1

2 2 2 ,
2 x x N N

N

p r q A r q B r q
D r q − −

−

 = − + − − − + − +
               (24) 

( ) ( )0 1
11 12

1ln ,
2xp r pα= ∂ + −                               (25) 

( )0
22 2 1 1ln 4 2 2 .x N N Np C D A qα − − −= ∂ + + − +                        (26) 

Substituting (17) into (24)-(26) yields 

( ) ( ) ( ) ( )1 0 0
12 11 222 ,     ,     .p r q p q p q= − = = −                         (27) 
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From (7) and (22), we find that ( )U P λ= . The proof is completed.   
Remark. When 1N = , assuming that 1 1 1 1 0A B C D− − − −= = = = , the DT can be rewritten as 

( ) ( )

( ) ( )

2 2
0 0 0

0

2 2
0 0 0

0

1 2 ,
2 2 4 2 2

1 2 .
2 2 4 2 2

x x

x x

r qq A D r q A r q r q
D r q

r qr A D r q A r q r q
D r q

 = − + − − − + − − + − +

 = − + − + − + − − + − +

             (28) 

Let the basic solution ( )jϕ λ , ( )jψ λ  of (4) satisfy (5) as well. Through a similar way as Proposition 1, we 
can prove that V  has the same form as V  under the transformation (6) and (18). We get the following propo-
sition. 

Proposition 2. Suppose α  satisfy the following equation 

( )( ) ( ) ( ) 2 2
1 2 1 2

1 1ln 2 .
2 2t N N x x N x Nc r q A C q r A r q r r r Bα − − − −

 ∂ = − − + − − − + − − +  
        (29) 

Then the matrix V  defined by (9) has the same form as V , that is 

( ) ( ) ( )

( )

2 2 2

2

2 2 2
2 ,

2

x x x

x

cc c r q r crq c r q c r rq q r
V

cc cr c c r q r crq

λ λ λ λ

λ λ λ

 − + − + + − − + − + − 
=  
 − + − − − − 
 

 

where q  and r  are given by (18). 
The proof of Proposition 2 is similar with Proposition 1, but it is much more tedious and then we omit the 

proof for brevity. For the similar proof we can also refer to [20] [21]. 
According to Proposition 1 and 2, the Lax pair (4) and (5) is transformed into the Lax pair (8) and (9), then 

the transformation (6) and (18): ( ) ( ); , ; ,q r q rϕ ϕ→  is called the DT of the Lax pair (4) and (5). The Lax pair 
leads to the parameter Levi system (3) and then the transformation (6) and (18): ( ) ( ); , ; ,q r q rϕ ϕ→  is also 
called DT of the parameter Levi system (3). On the other hand, together with the transformation (2), the para-
meter Levi system (3) is transformed into the WBK system (1), then we get the solutions of the WBK system 
(1). 

Theorem 1. If ( ),q r  is a solution of the parameter Levi system (3), ( ),q r  with 

( ) ( )

( ) ( )

2 2
1 1 2 21

1

2 2
1 1 2 21

1

12 2 2 ,
2 4 2 2

12 2 2 .
2 4 2 2

N N N x x NN
N

N N N x x NN
N

r qq A D C r q A r q B r q
D r q

r qr A D C r q A r q B r q
D r q

− − − −−
−

− − − −−
−

−  = + − − − − + − − − +  − +
 −  = + − − + − + − − − +  − +

    (30) 

is another solution of the parameter Levi system (3), where 1NA − , 2NB − , 2NC − , 1ND −  are determined by (11) 
and (13). 

From the transformation (2), we find that 
Theorem 2. If ( ),u v  is a solution of the WBK system (1), ( ),u v  with 

( )

( ) ( ) ( )

2 2

2
2 2 2 2 2 2

ln 2 ,

2 ln 2 ,
2

x x x

x x x x xxx

u c r q q r cr

c cv c r q q r r q q r c c rβ β

  = − + − − 
 −   = − − + − − − + − + − 

          (31) 

is another solution of the WBK system (1), where ( ),q r  is determined by (30). Then the transformation 
( ) ( ); , ; ,q r q rϕ ϕ→  is also called the DT of the WBK system (1). 

3. New Solutions 
In this section, we take a trivial solution ( ) ( ), 0,1q r =  as the “seed” solution, to obtain multi-soliton solutions 
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of the WBK system (1). 
Substituting ( ) ( ), 0,1q r =  into the Lax pair (4) and (5), the two basic solutions are 

( ) ( )
            cosh             sinh

,     1 1cosh sinh sinh cosh
2 2 2 2

j j

j jj j
j j j j

j j

k k

ξ ξ

ϕ λ ψ λ
ξ ξ ξ ξ

λ λ

   
   

= =   − + − +   
   

             (32) 

with ( )1j j jk x c tξ λ = − −  , 2 2j j jk λ λ= +  ( )1 2 1j N≤ ≤ − . 

According to (12), we get 

tanh1 ,     1 2 1.
2 2 1 tanh

j j j
j

j j j

k r
j N

r
ξ

δ
λ ξ

 −
= − + ≤ ≤ −  − 

                       (33) 

For simplicity, we discuss the following two cases, i.e. 1N =  and 2N = . 
As 1N = , let 1λ λ= , solving the linear algebraic system (11) and (13), we have 

0 1 1 1 0
1

1,     ,
2

A Dλ δ λ
δ

= − − = −                                (34) 

according to (28), we get 

[ ] ( )
( ) [ ] ( ) ( )

( )

2 3 2
1 1 1 1 1 1 1 1 1 1

1 1 1 1

1 2 1 6 4 1 2 1 2 1
1 ,      1 .

2 1 2 1
q q r r

λ δ λ δ λ δ λ δ λ δ
δ δ δ δ

+ − − − + − + −
= =

+ +
 

       (35) 

Substituting (35) into (31), we obtain the solution of the WBK system (1) as 

[ ] [ ] [ ]

[ ] [ ]( ) [ ] ( ) [ ]
2

2 2

1 ln 1 2 1 ,

21 1 ln 1 2 1
2

x

xxx

u c w cr

c cv c w w c c rβ β

  = − 
 −

 = − − + −  

                 (36) 

with [ ] ( ) ( )
( )

2
1 1 1 1

2
1

2 1 1 2
1 .

1
w

λ δ λ δ

δ

+ + +
= −

+
 

By choosing proper parameters (such as 1 5r = , 1 7λ = , 1c = , 1 15β = ), we find that [ ]1u  is a bell-type- 
soliton and [ ]1v  is a M-type-soliton. 

As 2N = , let ( )1,2,3j jλ λ= = , together with (11) and (13), we have 

0 01 1
1 0 0 1

1 1 2 2

,     ,     ,     B CA DA B C D
∆ ∆∆ ∆

= = = =
∆ ∆ ∆ ∆

                      (37) 

with 

1 0

1 0

2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2
1 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3

1 1
1 1 1

2 2 2 2 2 2

3 3 3
3 3

1 1 1
1 ,     1 ,     1 ,
1 1 1

1 11
2 21
11 ,       1 ,       
2

1 11
2

A B

D C

δ λ λ δ λ λ δ λ λ δ λ λ
δ λ λ δ λ λ δ λ λ δ λ λ
δ λ λ δ λ λ δ λ λ δ λ λ

δ λ
δ δ λ
δ δ λ δ λ
δ δ λ

δ λ

− − − −
∆ = ∆ = − − ∆ = − −

− − − −

− −

∆ = ∆ = − ∆ =

−

1 1 1 1

2 2 2 2

3 3 3 3

1 .
2
1
2

λ δ δ λ

λ δ δ λ

λ δ δ λ

−

−

 

With the help of (30), we get 
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(a)                                                      (b) 

Figure 1. Plots of the three-soliton solution (39). 
 

[ ]

[ ]

1 0
1 1 0

1

1 0
1 1 0

1

2 2 112 2 ,
2 4 2

2 2 112 2 .
2 4 2

A B
q q A D C

D
A B

r r A D C
D

− −
= + − − −

−
− −

= + − − +
−





                       (38) 

Then we get another solution of the WBK system (1) by using of (31) 

[ ] [ ] [ ]

[ ] [ ] [ ] ( ) [ ]
2

2 2

2 ln 2 2 2 ,

2 2 ln 2 2 2
2

x

xxx

u c w cr

cv c w c w c c rβ β

  = − 
  

 = − − − + −    
  

                 (39) 

with [ ] [ ] [ ] [ ] [ ]2 22 2 2 2 2 .x xw r q q r= − + −  
When we take 1 5λ = − , 2 4λ = − , 3 3λ = , 1c = , 1 20β = , 1 3r = , 2 1 2r = , 3 2r = , [ ]2u  is a three- 

bell-type-soliton solution with two overtaking solitons and one head-on soliton (see Figure 1(a)) and [ ]2v  is a 
three-M-type-soliton solution with two overtaking solitons and one head-on soliton (see Figure 1(b)). We note 
that by the obtained DT, we can get ( )2 1N −  soliton solutions which are different from those in [19] which are 
2N -soliton solutions. 
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Abstract 
Based on Nehari manifold, Schwarz symmetric methods and critical point theory, we prove the ex-
istence of positive radial ground states for a class of Schrodinger-Poisson systems in 3

 , which 
doesn’t require any symmetry assumptions on all potentials. In particular, the positive potential is 
interesting in physical applications. 
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1. Introduction 
In this paper, we consider the following nonlinear Schrodinger-Poisson systems 

( ) ( ) ( )
( )

2 3

2 3

0, ,
, ,

pu V x u x u Q x u u x
x u x

λρ
ρ

−−∆ + − Φ + = ∈

−∆Φ = ∈





                   (1.1) 

where 0λ > , 2 4p< < ; ( )V x , ( )xρ  and ( )Q x  are positive potentials defined in 3
 . 

In recent years, such systems have been paid great attention by many authors concerning existence, non- 
existence, multiplicity and qualitative behavior. The systems are to describe the interaction of nonlinear Schro-
dinger field with an electromagnetic field. When 1λ = − , ( ) ( ) 1V x xρ= = , ( ) 1Q x = − , the existence of non- 
trivial solution for the problem (1.1) was proved as ( )4,6p∈  in [1], and non-existence result for ( ]0,2p∈  
or ( )6,p∈ +∞  was proved in [2]. When 0λ < , ( ) ( ) 1V x xρ= = , ( ) 1Q x = − , using critical point theory, 
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Ruiz [3] obtained some multiplicity results for ( )2,3p∈ , and existence results for [ )3,6p∈ . Later, Ambro-
setti and Ruiz [4], and Ambrosetti [5] generalized some existence results of Ruiz [3], and obtained the existence 
of infinitely solutions for the problem (1.1). 

In particular, Sanchel and Soler [6] considered the following Schrodinger-Poisson-Slater systems 

2
33

2 3

0, ,
, ,

u u u u u x
u x
ω−∆ + +Φ − = ∈

−∆Φ = ∈





                          (1.2) 

where ω∈ . The problem (1.2) was introduced as the model of the Hartree-Foch theory for a one-compo- 
nent plasma. The solution is obtained by using the minimization argument and ω  as a Lagrange multiplier. 
However, it is not known if the solution for the problem (1.2) is radial. Mugani [7] considered the following ge-
neralized Schrodinger-Poisson systems 

( ) 3

2 3

, 0, ,
, ,

uu u u W x u x
u x
ω λ−∆ + − Φ + = ∈


−∆Φ = ∈





                        (1.3) 

where ω∈ , 0λ >  and ( ) ( ), ,W x s W x s= , and proved the existence of radially symmetric solitary waves 
for the problem (1.3). 

In this paper, without requiring any symmetry assumptions on ( )V x , ( )xρ  and ( )Q x , we obtain the ex-
istence of positive radial ground state solution for the problem (1.1). In particular, the positive potential ( )Q x  
implies that we are dealing with systems of particles having positive mass. It is interesting in physical applica-
tions. 

The paper is organized as following. In Section 2, we collect some results and state our main result. In Section 
3, we prove some lemmas and consider the problem (1.1) at infinity. Section 4 is devoted to our main theorem. 

2. Preliminaries and Main Results 

Let ( )3sL  , 1 s≤ < +∞  denotes a Lebesgue space, the norm in ( )3sL   is 
3

1

d
s

s
su u x

 
 
  

=   
 
∫


, ( )1,2 3D    

is the completion of ( )3
0C∞
  with respect to the norm 

1,2
3

1
2

2dDu u x

 
 
  

= ∇  
 
∫


 

( )1 3H   be the usual Sobolev space with the usual norm 

( )1
3

1
2

2 2 dHu u u x

 
 
  

= ∇ +  
 
∫


. 

Assume that the potential ( )V x  satisfies 
H1) ( ) ( )1 3 ,V x C∈   , ( )3inf 1

x
V x

∈
=



, ( ) ( )lim xV x V V x∞ →∞≤ = < ∞ . 

Let ( )1 3
VH   be the Hilbert subspace of ( )1 3u H∈   such that 

( )( )1
3

1
2

2 2 d
VHu u V x u x

 
 
  

= ∇ +  
 
∫


                             (2.1) 

Then ( ) ( ) ( )1 3 1 3 3s
VH H L⊂ ⊂   , 2 6s≤ ≤  with the corresponding embeddings being continuous (see 

[8]). Furthermore, assume the potential ( )xρ  satisfies 
H2) ( ) 0xρ > , ( )lim 0x xρ ρ∞→+∞ = > , ( ) ( ) ( )2 3

0 x x Lρ ρ ρ∞= − ∈  . 
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It is easy to reduce the problem (1.1) to a single equation with a non-local term. Indeed, for every ( )1,2 3v D∈  , 
we have 

( ) ( )( )

( )

( )( ) ( ) ( ) ( )

3 3 3

3 3

3 3 3 3

2 2 2

2 2

6 1 6
6 65 6 5

6 62 25 5
0

d d d

                      d d

                      d d d

x u v x x u v x u v x

x u v x u v x

x u x v x u x v

ρ ρ ρ ρ

ρ ρ ρ

ρ ρ

∞ ∞

∞ ∞

     
             

      
∞

= − +

≤ − +

     
≤ +          
     

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

  

 

   

( ) ( ) ( )
3 3

1
6

1 6
63 532 2 5

06 2

d

                      d d .

x

v x u x u xρ ρ

 
 
 

   
       

 
 

∞

 
  
 

 
    ≤ +       
     

∫

∫ ∫
 

   (2.2) 

Since ( ) ( ) ( )2 3
0 x x Lρ ρ ρ∞= − ∈  , ( )1 3u H∈   and (2.1), by the Lax-Milgram theorem, there exists a  

unique [ ]uΦ  such that 

[ ] ( ) ( )
3 3

2 1,2 3d d ,    u v x x u v x v Dρ∇Φ ∇ = ∀ ∈∫ ∫
 

                     (2.3) 

It follows that [ ]uΦ  satisfies the Poisson equation 

[ ] ( ) 2u x uρ−∆Φ =  

and there holds 

[ ] ( ) ( ) ( )
3

2
21d

x u y
u y x u

x y x
ρ

ρ−Φ = = ∗
−∫



 

Because ( ) 0xρ > , we have [ ] 0uΦ >  when 0u ≠ , and [ ] 11,2
2

HD
u M uΦ = , M  is positive constant. 

Substituting [ ]uΦ  in to the problem (1.1), we are lead to the equation with a non-local term 

( ) ( ) [ ] ( ) 2 0pu V x u x u u Q x u uλρ −−∆ + − Φ + = .                      (2.4) 

In the following, we collect some properties of the functional [ ]uΦ , which are useful to study our problem. 
Lemma 2.1. [9] For any ( )1 3u H∈  , we have 
1) [ ] ( ) ( )1 3 1,2 3:u H DΦ →   is continuous, and maps bounded sets into bounded sets; 

2) if nu u→  weakly in ( )1 3H  , then [ ] [ ]nu uΦ →Φ  weakly in ( )1,2 3D  ; 

3) ( ) ( )2tu x t u xΦ = Φ        for all .t∈  
Now, we state our main theorem in this paper. 
Theorem 2.2. Assume that 0λ > , 2 4p< < , the potential ( )V x  satisfies condition H1), the potential 
( )xρ  satisfies condition H3) and ( )xρ ρ∞≥ , the potential ( )Q x  satisfies 

H3) ( ) 0Q x > , ( )lim 0x Q x Q∞→+∞ = > , ( ) ( ) ( )
6

36
0

pQ x Q x Q L −
∞= − ∈   

and ( )Q x Q∞≤ , ( ) 0Q x Q∞− <  on positive measure. Then there exists a positive radial ground state solution 
for the problem (1.1). 

Remark 2.3. If 0λ ≤ , ( )V x , ( )xρ  and ( )Q x  are positive potentials defined in 3
 , and 2 6p< < , 

( ) ( ) ( )1 3 1,2 3, Vu H DΦ ∈ ×   be a solution for the problem (1.1). Then ( ) ( ), 0,0u Φ = , Indeed, we have 

( )( ) ( ) [ ] ( )

( )( )
3 3 3

3

2 2 2

2 2

0 d d d

  d .

p
u V x u x x u u x Q x u x

u V x u x

λ ρ= ∇ + − Φ +

≥ ∇ +

∫ ∫ ∫

∫
  


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Since ( ) 0V x > , this implies 0u = . By Lemma 2.1, we have 0Φ = . 

3. Some Lemmas and the Problem (1.1) at Infinity 
Now, we consider the functional ( )1 3: VI Hλ →   given by 

( ) ( )( ) ( ) [ ] ( )

( ) [ ] ( )

3 3 3

1
3 3

2 2 2

2 2

1 1d d d
2 4

1 1         d d .
2 4V

p

p

H

I u u V x u x x u u x Q x u x
p

u x u u x Q x u x
p

λ
λ ρ

λ ρ

= ∇ + − Φ +

= − Φ +

∫ ∫ ∫

∫ ∫

  

 

 

Since ( )xρ  satisfies condition H2), by (2.2), the Holder inequality and Sobolev inequality, we have 

( ) [ ] 1 1,2
3

22 1 2 2
6 122

5

d
VH Dx u u x S S S u vρ ρ ρ− − −

∞  
 
 

 
Φ ≤ + 

  
∫


,                    (3.2) 

where ( ) { }

1,2

1,2 3 \ 0
6

inf D
u D

u
S

u∈
=



 and ( ) { }

1

1 3 \ 0
6

inf V

V

H

u H

u
S

u∈
=



. Since the potential ( )Q x  satisfies condition Q,  

2 4p< < , we have 

( ) ( )( )

( )

( ) ( )

3 3 3

3 3

3 3 3

0

6
6 6 6

66
0

d d d

                     d d

                     d d d .

p p p

p p

p p

pp

Q x u x Q x Q u x Q u x

Q x u x Q u x

Q x x u x Q u x

∞ ∞

∞

−   
        

 −  ∞

≤ − +

≤ +

   
≤ +      
   

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

  

 

  

 

By Sobolev inequality, we obtain that 

( ) 1
3

d
V

p p
HQ x u x M u≤∫



                               (3.3) 

Combining (3.2) and (3.3), we obtain that the functional Iλ  is a well defined 1C  functional, and if 
( )1 3

Vu H∈   is critical point of it, then the pair [ ]( ),u uΦ  is a weak solution of the problem (1.1). 
Now, we define the Nehari manifold ([10]) of the functional Iλ  

( ) { } ( ){ }1 3 \ 0 : 0VN u H H uλ λ= ∈ = , 

where 

( ) ( )[ ] ( ) [ ] ( )1
3 3

2 2d d
V

p

HH u I u u u x u u x Q x u xλ λ λ ρ′= = − Φ +∫ ∫
 

 

Hence, we have 

( ) ( )

( ) [ ]

( ) ( ) [ ]

1
3

1
3

3 3

2

2 2

2

1 1 1 d
4 4

1 1 1 1              d
2 4

1 1              d d .
2 4

V

V

p

HN

H

p

I u u Q x u x
p

u x u u x
p p

Q x u x x u u x
p

λ
λ

λ ρ

λ ρ

 ′ = + − 
 

   
= − + − Φ   
   

 
= − − Φ 
 

∫

∫

∫ ∫





 

                   (3.4) 



G. Q. Zhang, X. Chen 
 

 
32 

Lemma 3.1. 1) For any 0λ > , ( ) { }1 3 \ 0Vu H∈  , there exists a unique ( ) 0t u >  such that ( )t u u Nλ∈ . 
Moreover, we have ( )( ) ( )0max .tI t u u I tuλ λ≥=  

2) ( )I uλ  is bounded from below on Nλ  by a positive solution. 
Proof. 1) Taking any ( ) { }1 3 \ 0Vu H∈   and 1 1

VHu = , we obtain that there exists a unique ( ) 0t u >  such  

that ( )t u u Nλ∈ . Indeed, we define the function ( ) ( )g t I tuλ= . We note that ( ) ( )( ), 0g t I tu vλ′ ′= =  if only 
if tu Nλ∈ . Since ( ) 0g t′ =  is equivalent to 

( ) [ ] ( )1
3 3

22 4 2d d 0
V

pp
Ht u t x u u x t Q x u xλ ρ− Φ + =∫ ∫

 

. 

By ( )xρ , ( ) 0Q x >  and [ ] 0uΦ > , we have 

( ) [ ] ( )
3 3

2d 0,     d 0
p

b x u u x c Q x u xρ= Φ > = >∫ ∫
 

. 

By 0λ > , 2 4p< < , the equation 2 21 0pbt ctλ −− + =  has a unique ( ) 0t u >  and the corresponding point 
( )t u u Nλ∈  and ( )( ) ( )0maxtI t u u I tuλ λ≥= . 
2) Let u Nλ∈ , by (3.4) and 2 4p< < , we have 

( ) ( ) [ ]1
3

1

2 2

2

1 1 1 1 d
2 4

1 1         0.
2

V

V

H

H

I u u x u u x
p p

u C
p

λ λ ρ
   

= − + − Φ   
   

 
≥ − > > 
 

∫
  

By the definition of Nehari manifold Nλ  of the functional Iλ , we obtain that  
u  is a critical point of Iλ  if and only if u  is a critical point of Iλ  constrained on .Nλ            (3.5) 
Now, we set 

( ){ }inf :m I u u Nλ λ λ= ∈  

By 2) of Lemma 3.1, we have 0.mλ >  
Since ( )lim x V x V∞→∞ = , ( )lim x xρ ρ∞→+∞ = , ( )lim x Q x Q∞→+∞ = , we consider the problem (1.1) at infin-

ity 
2 3

2 3

0, ,
, .

pu V u u Q u u x
u x
λρ

ρ

−
∞ ∞ ∞

∞

−∆ + − Φ + = ∈

−∆Φ = ∈





                      (3.6) 

Similar to (2.2), we obtain that there exists a unique [ ]uΦ  such that 

[ ] ( )
3 3

2 1,2 3d d ,    u v x u v x v Dρ∞∇Φ ∇ = ∀ ∈∫ ∫
 



 . 

It follows that [ ]uΦ  satisfies the Poisson equation 

[ ] 2u uρ∞−∆Φ =                                   (3.7) 

Hence substituting [ ]uΦ  into the first equation of (3.6) we have to study the equivalent problem 

[ ] 2 0pu V u u u Q u uλρ −
∞ ∞ ∞−∆ + − Φ + =                          (3.8) 

The weak solution of the problem (3.8) is the critical point of the functional 

( ) ( ) [ ]

[ ]

3 3 3

1
3 3

2 2 2

2 2

1 1d d d
2 4

1 1         d d ,
2 4V

p

p

H

I u u V u x u u x Q u x
p

u u u x Q u x
p

λ
λ ρ

λ ρ
∞

∞
∞ ∞ ∞

∞ ∞

= ∇ + − Φ +

= − Φ +

∫ ∫ ∫

∫ ∫

  

 




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where ( ) ( )1 3 1 3
VH H
∞

=   is endowed with the norm 

( )1
3

1
2

2 2 d
VHu u V u x
∞

∞

 
= ∇ +  
 
∫


 

Define the Nehari manifold of the functional Iλ
∞  

( ) { } ( ){ }1 3 \ 0 : 0VN u H H uλ λ∞

∞ ∞= ∈ = , 

where 

( ) ( )[ ] [ ]1
3 3

2 2d d
V

p

HH u I u u u u u x Q u xλ λ λ ρ
∞

∞ ∞
∞ ∞′= = − Φ +∫ ∫

 

  

and 

( ){ }inf : 0m I u u Nλ λ λ
∞ ∞ ∞= ∈ >  

The Nehari manifold Nλ
∞  has properties similar to those of .Nλ  

Lemma 3.2. The problem (3.8) has a positive radial ground state solution Nλω ∞
∞ ∈  such that 

( )I mλ λω∞ ∞
∞ =  

For the proof of Lemma 3.2, we make use of Schwarz symmetric method. We begin by recalling some basic 
properties. 

Let ( )3sf L∈   such that 0f ≥ , then there is a unique nonnegative function ( )3sf L∗ ∈  , called the 
Schwarz symmetric of f , such that it depends only on x , whose level sets 

( ){ } ( ){ }3 3: :x f x t x f x t∗∈ > = ∈ >  . 

We consider the following Poisson equation 

    and   f v fφ ∗−∆ = − ∆ =  

From Theorem 1 of [11], we have 

3 3

d d ,    0 2
s s

v x x sφ∇ ≥ ∇ ∀ < ≤∫ ∫
 

. 

Hence, let [ ]uφ = Φ , 2f uρ∞=  and v u∗ = Φ  
 , ( )2

f uρ∗ ∗
∞= , we have 

[ ] ( )
3 3

22d du u x u u xρ ρ ∗ ∗
∞ ∞  Φ ≤ Φ  ∫ ∫

 

  .                          (3.9) 

The Proof of Lemma 3.2. Let nu Nλ
∞∈  be such that ( ) .nI u mλ λ

∞ ∞→  Let 0nt >  such that n nt u Nλ
∞∈  

then we have 

( )( ) [ ]( )
3 3 3

2 22 d d d 0
p

n n n n nu V u x u u x Q u xλ ρ∞ ∞ ∞∇ + − Φ + =∫ ∫ ∫
  

 , 

and 

( ) ( )( ) ( ) [ ]( ) ( )
3 3 3

2 2 4 22 d d d 0
pp

n n n n n n n nt u V u x t u u x t Q u xλ ρ∞ ∞ ∞∇ + − Φ + =∫ ∫ ∫
  

 . 

Hence, we obtain that 

( ) ( )( ) ( )( ) ( ) ( )( )
3 3

2 4 2 42 d d 0
pp

n n n n n n nt t u V u x t t Q u x∞ ∞− ∇ + + − =∫ ∫
 

.            (3.10) 
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Since 0nt >  and 2 4p< < , (3.10) implies that 1nt = . Therefore, we can assume that 0nu ≥ . 
On the other hand, let ( )nu ∗  be the Schwartz symmetric function associated to nu , then we have 

( ) ( )
3 3 3 3

22
d d ,    and   d d

pp
n n n nu x u x u x u x∗ ∗= ∇ ≥ ∇∫ ∫ ∫ ∫

   

                (3.11) 

Let ( ) 0nt
∗ >  be such that ( ) ( )n nt u Nλ

∗ ∗ ∞∈ , and nu Nλ
∞∈ , by (3.9) and (3.11), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) [ ]( ) ( )

( ) ( ){ } ( )( ) ( )

3 3 3

3 3 3

3

2 2 2 4 2

2 42 22

2 4 22

0 d d d

  d d d

  d

p p

n n n n n n n n

p p
n n n n n n n n

n n n n n

t u V u x t u u x t Q u x

t u V u x t u u x t Q u x

t t u V u x t

λ ρ

λ ρ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∞ ∞ ∞

∗ ∗ ∗
∞ ∞ ∞

∗ ∗ ∗
∞

            = ∇ + − Φ +             

     ≤ ∇ + − Φ +     

    = − ∇ + +   

∫ ∫ ∫

∫ ∫ ∫

∫

  

  







( ){ }
3

4
d .

p p
n nt Q u x∗

∞
  −    ∫



 

This implies that ( ) 1nt
∗ ≤ . Therefore, we have [ ]( ) ( )  n nI u I uλ λ

∗∞ ∞≤ , and we can suppose that nu  is radial  

in ( )1 3
VH
∞
 . Since ( )1 3

,V rH
∞

  is compactly embedded into ( )3pL   for 2 4p< < , we obtain that mλ
∞  is 

achieved at some Nλω ∞
∞ ∈  which is positive and radial. Therefore, Lemma 3.2 is proved. 

4. The Proof of Main Theorem 
In this section, we prove Theorem 2.2. Firstly, we consider a compactness result and obtain the behavior of the 
(PS) sequence of the functional Iλ . 

Lemma 4.1. Let nu  be a (PS)d sequence of the functional Iλ  constrained on Nλ , that is 

( ) ( ),      and   0,   as  n n n N
u N I u d I u n

λ
λ λ λ′∈ → → →∞                   (4.1) 

Then there exists a solution u  of the problem (2.4), a number { }0k ∈ ∪ , k  functions 1 2, , , ku u u⋅ ⋅ ⋅  of 
( )1 3

VH   and k  sequences of points j
ny , 0 j k≤ ≤  such that 

1) j
ny → +∞ , j i

n ny y− → +∞ , if i j≠ , n →∞ ; 

2) ( )
1

k
j j

n n
j

u u y u
=

− ⋅− →∑ ; 

3) ( ) ( ) ( )
1

k
j

n
j

I u I u I uλ λ λ
∞

=

→ +∑ ; 

4) ju  are non-trivial weak solution of the problem (3.8). 
Proof. The proof is similar to that of Lemma 4.1 in [9]. 
By Lemma 4.1, taking into account that ( )jI u mλ λ

∞ ≥  for all j  and ( )0,d mλ∈ , we obtain that 0k =   

and nu u→  in ( )1 3
VH   (strongly), i.e. nu  is relatively compact for all ( )0,d mλ∈ . Hence we only need to 

prove that the energy of a solution of the problem (2.4) cannot overcome the energy of a ground state solution of 
the problem (3.8). 

The proof of Theorem 2.2. By Lemma 4.1, we only prove that m mλ λ
∞< . Indeed, let Nλω ∞

∞ ∈  such that 
( )I mλ λω∞ ∞

∞ = , and let 0t >  such that t Nλω∞ ∈ . Since ( )V x V∞≤ , ( )xρ ρ∞≥  and ( )Q x Q∞≤ , we have 

( ) ( )( ) ( ) [ ] ( )

( ) [ ]

3 3 3

3 3 3

2 4
2 2 2

2 4
2 2 2

d d d
2 4

                      d d d .
2 4

p p

p p

t t tm I t V x x x x Q x x
p

t t tV x x Q x
p

λ λ
λω ω ω ρ ω ω ω

λω ω ρ ω ω ω

∞ ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

≤ = ∇ + − Φ +

≤ ∇ + − Φ +

∫ ∫ ∫

∫ ∫ ∫

  

  



       (4.2) 

Since Nλω ∞
∞ ∈  and t Nλω∞ ∈ , we have 
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( ) [ ]

( ) [ ]
3 3 3

3

24 2 4 4 2

4 2

2

d d d

                                                                 d

                                                                 

p
t V x t Q x t x

t x x

t

ω ω ω λ ρ ω ω

λ ρ ω ω

ω

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞

∇ + + = Φ

≤ Φ

= ∇

∫ ∫ ∫

∫
  





( )( ) ( )

( )
3 3

3 3

2 2

22 2

d d

                                                                 d d .

pp

pp

V x x t Q x x

t V x t Q u x

ω ω

ω ω ω

∞ ∞ ∞

∞ ∞ ∞ ∞ ∞

+ +

≤ ∇ + +

∫ ∫

∫ ∫
 

 

 

Therefore, we have 

( ) ( ) ( )
3 3

24 2 2 4d d 0
ppt t V x t t Q u xω ω ω∞ ∞ ∞ ∞ ∞− ∇ + + − ≤∫ ∫

 

 

By 2 4p< < , we have 1t ≤ . If 1t = , we have Nλω ∞
∞ ∈  and Nλω∞ ∈ . Hence, by Nλω ∞

∞ ∈ , we have 

( ) [ ]
3 3 3

2 2 2d d d
p

V x Q x xω ω ω λ ρ ω ω∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞∇ + + = Φ∫ ∫ ∫
  

                   (4.3) 

and by Nλω∞ ∈ , we have 

( )( ) ( ) ( ) [ ]
3 3 3

2 2 2d d d
p

V x x Q x x x xω ω ω λ ρ ω ω∞ ∞ ∞ ∞ ∞∇ + + = Φ∫ ∫ ∫
  

.             (4.4) 

Combining (4.3) and (4.4), we have 

( )( ) ( )( ) [ ] ( ) [ ]
3 3 3 3

2 2 2d d d d 0
p

V V x x Q Q x x x x xω ω λ ρ ω ω λ ρ ω ω∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞− + − − Φ + Φ =∫ ∫ ∫ ∫
   

  

Since ( )V x V∞≤ , ( )xρ ρ∞≥ , ( )Q x Q∞≤ , and ( ) 0Q x Q∞− <  on a positive measure, we have  

( )( )
3

d
p

Q Q x xω∞ ∞−∫


 

which is not identically zero, and is contradiction. Hence, we have 1t < . By (4.2), we have 

( ) [ ]

( )
3 3 3

2 2 21 1d d d
2 4

    .

p
m V x x Q x

p

I m

λ

λ λ

λω ω ρ ω ω ω

ω

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

∞ ∞
∞

< ∇ + − Φ +

= =

∫ ∫ ∫
  



 

Then there exists a positive radial ground state solution for the problem (1.1). 
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Abstract 
We consider the real three-dimensional Euclidean Jordan algebra associated to a strongly regular 
graph. Then, the Krein parameters of a strongly regular graph are generalized and some genera-
lized Krein admissibility conditions are deduced. Furthermore, we establish some relations be-
tween the classical Krein parameters and the generalized Krein parameters. 
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1. Introduction 
In this paper we explore the close and interesting relationship of a three-dimensional Euclidean Jordan algebra 
  to the adjacency matrix of a strongly regular graph X . According to [1], the Jordan algebras were formally 
introduced in 1934 by Pascual Jordan, John von Neumann and Eugene Wigner in [2]. There, the authors at-
tempted to deduce some of the Hermitian matrix properties and they came across a structure lately called a Jor-
dan algebra. Euclidean Jordan algebras were born by adding an inner product with a certain property to a Jordan 
algebra. It is remarkable that Euclidean Jordan algebras turned out to have such a wide range of applications. 
For instance, we may cite the application of this theory to statistics [3], interior point methods [4] [5] and com-
binatorics [6]. More detailed literature on Euclidean Jordan algebras can be found in Koecher’s lecture notes [7] 
and in the monograph by Faraut and Korányi [8]. 

Along this paper, we consider only simple graphs, i.e., graphs without loops and parallel edges, herein called 
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graphs. Considering a graph X, we denote its vertex set by ( )V X  and its edge set by ( )E X —an edge whose 
endpoints are the vertices x and y is denoted by xy. In such case, the vertices x and y are adjacent or neighbors. 
The number of vertices of X, ( )V X , is called the order of X. 

A graph in which all pairs of vertices are adjacent (non-adjacent) is called a complete (null) graph. The num-
ber of neighbors of a vertex v in ( )V X  is called the degree of v. If all vertices of a graph X have degree k, for 
some natural number k, then X is k-regular. 

We associate to X an n by n matrix ijA a =   , where each 1ija = , if ( )i jv v E X∈ , otherwise 0ija = , 
called the adjacency matrix of X. The eigenvalues of A are simply called the eigenvalues of X. 

A non-null and not complete graph X is ( ), , ,n k a c -strongly regular; if it is k-regular, each pair of adjacent 
vertices has a common neighbors and each pair of non-adjacent vertices has c common neighbors. The parame-
ters of a ( ), , ,n k a c -strongly regular graph are not independent and are related by the equality 

( ) ( )1 1 .k k a n k c− − = − −                                  (1) 

It is also well known (see, for instance, [9]) that the eigenvalues of a ( ), , ,n k a c -strongly regular graph X are 
k, θ  and τ , where θ  and τ  are given by 

( ) ( )( )2 4 2,a c a c k cθ = − + − + −                             (2) 

( ) ( )( )2 4 2.a c a c k cτ = − − − + −                             (3) 

Therefore, the usually called restricted eigenvalues θ  and τ  are such that the former is positive and the 
latter is negative. Their multiplicities can be obtained as follows (see, for instance, [10]): 

( )( )
1

1 21 1 ,
2

n k
n

θ τ
µ

θ τ
+ − + 

= − − 
− 

                            (4) 

( )( )
2

1 21 1 .
2

n k
n

θ τ
µ

θ τ
+ − + 

= − + 
− 

                            (5) 

Taking into account the above eigenvalues and their multiplicities, the following additional conditions are widely 
used as feasible conditions for parameters sets ( ), , ,n k a c  of strongly regular graphs; that is, if ( ), , ,n k a c  is a 
parameter set of a strongly regular graph, then the equality (1) and each one of the following inequalities holds: 
• The nontrivial Krein conditions obtained in [11]: 

( )( ) ( )( )21 2 1 ,k kθ θ θτ θ τ+ + + ≤ + +                           (6) 

( )( ) ( )( )21 2 1 .k kτ τ θτ τ θ+ + + ≤ + +                           (7) 

• The Seidel’s absolute bounds qre (see [12]): 

( ) ( )1 1 2 23 3
   and   .

2 2
n n

µ µ µ µ+ +
≤ ≤                           (8) 

With these conditions, many of the parameter sets are discarded as possible parameters sets of strongly regu-
lar graphs. To decide whether a set of parameters is the parameter set of a strongly regular graph is one of the 
main problems on the study of strongly regular graphs. It is worth noticing that these Krein conditions and the 
Seidel’s absolute bounds are special cases of general inequalities obtained for association schemes. 

An association scheme with d  classes is a finite set S together with 1d +  relations iR  defined on S satis-
fying the following conditions. 

1) The set of relations { }0 1, , , dR R R  is a partition of the Cartesian product of S S× . 
2) ( ){ }0 , :R x x x S= ∈ . 

3) If ( ), ix y R∈ , then also ( ), iy x R∈ , ,  x y S∀ ∈  and for 0, ,i d=  . 
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4) For each ( ), ,kx y R∈  the number k
ijp  of elements z S∈  such that ( ), ix z R∈  and ( ), jz y R∈  de-

pends only from i , j  and k . 
The numbers k

ijp  are called the intersection numbers of the association scheme. Some authors call this type 
of association schemes symmetric association schemes. The relations iR  of the association scheme can be re-  

presented by their adjacency matrices iA  of order n S=  defined by ( ) ( )1, if  , ,
0, otherwise.

i
i xy

x y R
A

∈
= 


 We may  

say that iA  is the adjacency matrix of the graph iG , with ( )iV G S=  and ( )i iE G R= . The Bose-Mesner 
algebra of the association scheme (introduced in [13]) is defined, using these matrices, by the following condi-
tions, which are equivalent to the conditions 1) - 4) of the association scheme: 

1) 0
d

i ni A J
=

=∑ , 
2) 0 nA I= , 
3) { }T ,     0, ,i iA A i d= ∀ ∈  , 
4) { }0 ,    ,  0, ,d k

i j ij kkA A p A i j d
=

= ∀ ∈∑  , 
where nJ  is the matrix of order n whose entries are equal to one and nI  is the identity matrix of order n . 
From 1) we may conclude that the matrices iA  are linearly independent, and from 2) - 4) it follows that they 
generate a commutative ( )1d + -dimensional algebra   of symmetric matrices with constant diagonal. The 
matrices iA  commute and then, they can be diagonalized simultaneously, i.e., there exists a matrix B  such that 

A∀ ∈ , 1B AB−  is a diagonal matrix. Thus, the algebra   is semisimple and has a unique complete system of  

orthogonal idempotents 0 , , dE E . Therefore, 0
d

i ni E I
=

=∑  and i j ij iE E Eδ= , where 
1, if  ,
0, otherwise.ij

i j
δ

=
= 


 

This paper is organized as follows. In Section 2, a short introduction on Euclidean Jordan algebras with the 
fundamental concepts is presented. In order to obtain new feasible conditions for the existence of a strongly reg-
ular graph, in Section 3, we define the generalized Krein parameters of a strongly regular graph. In Section 4, we 
establish some relations between the Krein parameters and the generalized Krein parameters, and present some 
properties of the generalized Krein parameters. Finally, since the generalized Krein parameters are nonnegative 
we establish new admissibility conditions, for the parameters of a strongly regular graph that give different in-
formation from that given by the Krein conditions 6) - 7). 

2. Euclidean Jordan Algebras and Strongly Regular Graphs 
In this section the main concepts of Euclidean Jordan Algebras that can be seen for instance in [8], are shortly 
surveyed. 

Let   be a real vector space with finite dimension and a bilinear mapping ( ),u v u v   from ×   to 
 , that satisfies ( ) ( )u u u u u u=    , u∀ ∈ . Then,   is called a real power associative algebra. If   
contains an element, e, such that for all u in  , e u u e u= =  , then e is called the unit element of  . Con-
sidering a bilinear mapping ( ),u v u v  , if for all u  and v  in   we have ( )1J u v v u=    and ( )2J  

( ) ( )2 2u u v u u v=    , with 2u u u=  , then   is called a Jordan algebra. If   is a Jordan algebra with 
unit element, then   is power associative (cf. [8]). Given a Jordan algebra   with unit element e , if there 
is an inner product ,⋅ ⋅  that verifies the equality , ,u v w v u w=  , for any u, v, w in  , then   is 
called an Euclidean Jordan algebra. An element c  in an Euclidean Jordan algebra  , with unit element e , is 
an idempotent if 2c c= . Two idempotents c  and d  are orthogonal if 0c d = . We call the set 
{ }1 2, , , kc c c  a complete system of orthogonal idempotents if (i) 2

i ic c= , { }1, ,i k∀ ∈  ; (ii) 0i jc c = , 
i j∀ ≠  and (iii) 1 2 kc c c e+ + + = . 
Let   be an Euclidean Jordan algebra with unit element e. Then, for every u in  , there are unique distinct 

real numbers 1 2, , , kλ λ λ , and an unique complete system of orthogonal idempotents { }1 2, , , kc c c  such that 

1 1 2 2 ,k ku c c cλ λ λ= + + +                               (9) 

with [ ]jc u∈ , 1, ,j k=   (see [8], Theorem III 1.1). These jλ ’s are the eigenvalues of u and (9) is called 
the first spectral decomposition of u. 

The rank of an element u in   is the least natural number k, such that the set { }, , , ke u u  is linear depen-
dent (where 1k ku u u −=  ), and we write ( )rank u k= . This concept is expanded by defining the rank of the 
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algebra   as the natural number ( ) ( ){ }rank max rank :u u= ∈  . The elements of   with rank equal to the 
rank of   are the regular elements of  . This set of regular elements is open and dense in  . If u is a regular 
element of  , with ( )rankr u= , then the set { }2, , , , re u u u  is linearly dependent and the set { }2 1, , , , re u u u −

  
is linearly independent. Thus we may conclude that there exist unique real numbers ( ) ( )1 , , ra u a u , such that 

( ) ( ) ( )1
1 1 0rr r

ru a u u a u e−− + + − = , where 0 is the null vector of  . Therefore, with the necessary adjust-
ments, we obtain the following polynomial in λ : ( ) ( ) ( ) ( )1

1, 1 .rr r
rp u a u a uλ λ λ −= − + + −  This polynomial 

is called the characteristic polynomial of u, where each coefficient ia  is a homogeneous polynomial of degree 
i  in the coordinates of u  in a fixed basis of  . Although we defined the characteristic polynomial for a 
regular element of  , we can extend this definition to all the elements in  , because each polynomial ia  is 
homogeneous and, as above referred, the set of regular elements of   is dense in  . The roots of the charac-
teristic polynomial of u , 1 2, , , rλ λ λ  are called the eigenvalues of u . Furthermore, the coefficients ( )1a u  
and ( )ra u  in the characteristic polynomial of u, are called the trace and the determinant of u , respectively. 

From now on, we consider the Euclidean Jordan algebra of real symmetric matrices of order n ,  , such 
that ,  A B∀ ∈ , ( ) 2A B AB BA= + , where AB  is the usual product of matrices. Furthermore, the inner 
product of   is defined as ( ), trA B AB= , where tr  is the classical trace of matrices, that is the sum of its 
eigenvalues. 

Let X  be a ( ), , ,n k a c -strongly regular graph such that 0 1c k n< < < − , and let A  be the adjacency ma-
trix of X . Then A  has three distinct eigenvalues, namely the degree of regularity k , and the restricted ei-
genvalues θ  and τ , given in (2) and (3). Now we consider the Euclidean Jordan subalgebra of  , ′ , 
spanned by the identity matrix of order n , nI , and the powers of A . Since A  has three distinct eigenvalues, 
then ′  is a three dimensional Euclidean Jordan algebra with ( )rank 3′ =  and { }2, ,nB I A A=  is a basis of 
′. 
Let { }0 1 2, ,S E E E=  be the unique complete system of orthogonal idempotents of ′  associated to A . 

Then 

( )
( )( )
( )

( )( )
( )

( )( )

2

0

2

1

2

2

,

,

,

n n

n

n

A A I J
E

k k n

A k A k I
E

k

A k A k I
E

k

θ τ θτ
θ τ

τ τ
θ τ θ

θ θ
τ θ τ

− + +
= =

− −

− + +
=

− −

− + +
=

− −

                          (10) 

where nJ  is the matrix whose entries are all equal to 1. Since ′  is an Euclidean Jordan algebra that is 
closed for the Hadamard product of matrices, denoted by •  and S  is a basis of ′ , then there exist real 
numbers 2

pqα  and 11
pqαβ , 1 α≤ , 3β ≤ , α β≠ , such that 

2 2

2 11
0 0

,     .p p
p p

p p
E E q E E E q Eα α α α β αβ

= =

= =∑ ∑                        (11) 

The real numbers, defined in (11), (whose notation will be clarified later) 2
pqα  and 11

pqαβ , 1 α≤ , 3β ≤ , 
α β≠ , are called the “classical” Krein parameters of the graph X  (cf. [10]). Since 1

12 0q ≥  and 2
22 0q ≥ , the 

“classical” Krein admissibility conditions 2 2 2 22 2 0k k kθτ θ τ θ θ τ τ− − − + + ≥ , and 
2 2 2 22 2 0k k kθ τ θτ τ τ θ θ− − − + + ≥  (presented in [9], Theorem 21.3) can be deduced. 

3. A Generalization of the Krein Parameters 
Herein the generalized Krein parameters of a ( ), , ,n k a c -strongly regular graph are defined and then, necessary 
conditions for the existence of a ( ), , ,n k a c -strongly regular graph are deduced. These conditions are generali-
zations of the Krein conditions (see Theorem 21.3 in [9]). Throughout this paper we use a slight different notation 
from classical books like [9] [14], because, in this way, the connections between the “classical’’ and the genera-
lized parameters are better understood. Now we generalize the Krein parameters in order to obtain new genera-
lized admissibility conditions on the parameters of strongly regular graphs. Firstly, considering { }0 1 2, ,S E E E=  
defined like in (10) in the Basis B , and rewriting the idempotents under the new basis { }, ,n n nI A J A I− −  of 
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′  we obtain 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

1

2

,

,

.

n n n

n n n

n n n

E I A J A I
n n n

n k n k kE I A J A I
n n n

n k n k kE I A J A I
n n n

θ τ θ τ θ τ
θ τ θ τ θ τ

τ τ τ τ
θ τ θ τ θ τ

θ θ θ θ
θ τ θ τ θ τ

− − −
= + + − −

− − −

+ − + − −
= + + − −

− − −

+ − − + − −
= + + − −

− − −

                  (12) 

Consider the natural number p  and denote by ( )nM   the set of square matrices of order n  with real en-
tries. Then for ( )nB M∈  , we denote by pB•  and pB⊗  the Hadamard power of order p  of B and the 
Kronecker power of order p  of B , respectively, with •1B B=  and 1B B⊗ = . 

Now, we introduce the following compact notation for the Hadamard and the Kronecker powers of the ele-
ments of S. Let x, y, z, α , β  and γ  be natural numbers such that 1 ,  ,  3α β γ≤ ≤ , 2x ≥  and α β< . 
Then we define 

( )
( ) ( )

( )
( ) ( )

     and     ,

•      and     ,

x xx x

z zy yyz yz

E E E E

E E E E E E
α α α α

αβ α β αβ α β

⊗⊗

⊗⊗⊗

= =

= = ⊗











 

Again, since the Euclidean Jordan algebra ′  is closed under the Hadamard product and S  is a basis of 
′ , then there exist real numbers i

xqα , i
yzqαβ , ( )

i
xq α β⊕  and ( )

i
yzqγ α β⊕ , such that 

2 2

0 0
,    x i yz i

x i yz i
i i

E q E E q Eα α αβ αβ
= =

= =∑ ∑                              (13) 

We call the parameters i
xqα  and i

yzqαβ  defined in (13) the generalized Krein parameters of the strongly re- 
gular graph X . Notice that 2

iqα  and 11
iqαβ  are precisely the Krein parameters of X  already presented. With 

this notation, the Greek letters are used as idempotent indices and the Latin letters are used as exponents of Ha-
damard (Kronecker) powers. 

4. Relations between the Krein Parameters and the Generalized Krein Parameters 
In this section we prove that the generalized Krein parameters can be expressed in function of the Krein para-
meters. Before that, it is worth to mention that the previously introduced generalizations are straightforward ex-
tended to the Krein parameters of symmetric association schemes with d ( )3d ≥  classes, see [9]. Notice that 
the algebra spanned by the matrices of a symmetric association scheme with d classes is an Euclidean Jordan  

Algebra with rank 1d +  and with the Jordan product 
2

AB BAA B +
=  where AB  is the usual product of  

matrices. Furthermore, the inner product of   is defined as ( ), trA B AB=  where ( )tr .  is the classical 
trace of matrices, that is, the sum of its eigenvalues. Let us consider the matrices P  and Q  of the Bose-Mesner 
algebra of an association scheme with d  classes as defined in [14]. However, for convenience, we denote this  

matrix Q  such as defined in [14] by Q∗ . Therefore, we can say that 
1Q Q
n

∗= , see [14]. Hence, we can say  

that the matrices P  and Q  satisfy, 
2

0

l
ij ik jk il

l
Q Q q Q

=

= ∑                                      (14) 

j
ijQ

n
µ

≤                                         (15) 

ij jP n≤                                          (16) 
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( )
2

0
,j

i ij ik
i

u
n Q Q j k

n
δ

=

≤∑                                   (17) 

The matrices P  and Q  are usually called the eigenmatrix and the dual eigenmatrix of the association 
scheme, respectively. 

Theorem 1. Let G  be a ( ), , ,n k a c -strongly regular graph such that 0 1c k n< ≤ < −  whose adjacency 
matrix is A  and has the eigenvalues ,  k θ  and τ  and whose eigenmatrix and dual eigenmatrix matrix are 
respectively P  and Q  If ,  j k  and l  are natural numbers such that 0 ,  ,  2,j k l< ≤  then 

2

11
0

.l
jk ij ik li

i
q Q Q P

=

= ∑                                  (18) 

Proof. Consider that { }0 1 2, ,E E E  is the of idempotents defined in (12) and the following notation 0 nA I= , 
1A A=  and 2 .n nA J A I= − −  
For { },  ,  0,1, 2j k l∈  since 2

0j ij iiE Q A
=

= ∑  and 2
0k ik iiE Q A

=
= ∑ , it follows that 2

0 .j k ij ik iiE E Q Q A
=

= ∑   
Therefore 2

0j k l ij ik i liE E E Q Q A E
=

= ∑  and since 2
0j tj ttA P E

=
= ∑  implies i l li lA E P E=  we obtain 

2

0
.j k l ij ik li l

i
E E E Q Q P E

=

= ∑                                (19) 

Finally, from (19) the result follows. 
Theorem 2. Let G  be a ( ), , ,n k a c -strongly regular graph such that 0 1c k n< ≤ < −  whose adjacency 

matrix is A  and has the eigenvalues ,  k θ  and τ  and whose eigenmatrix and dual eigenmatrix matrix are 
respectively P  and .Q  Let ,  j m  and s  be natural numbers such that 0 ,  2.j s≤ ≤  Then 

( )
2

0
.

ms
jm ij si

i
q Q P

=

= ∑                                   (20) 

Proof. Taking into account that 2
0

m i
j jm iiQ q E

=
= ∑  and by the equalities (21) and (22) 

2

0
,j ij i

i
E Q A

=

= ∑                                     (21) 

2

0
,i ji j

j
A P E

=

= ∑                                     (22) 

we conclude that ( )2
0

mm
j ij iiE Q A

=
= ∑  Therefore ( )2

0

ms m
jm s j s ij i siq E E E Q A E

=
= = ∑  and since by (22) 

i s si sA E P E=  we obtain ( )2
0

ms
jm s ij si siq E Q P E

=
= ∑ . Hence ( )2

0 .
ms

jm ij siiq Q P
=

= ∑  
As an application of the Theorem 2 we may conclude that considering a strongly regular graph G  the gene-

ralized Krein parameters l
jmq  can be expressed in function of the classical Krein parameters as follows: 

( )
221

21
1 2 2

2 2 2

2 1111 3 11
0 0 0

.m
m

m

llls s
jm j l jl j m j

l l l
q q q q q−

−
−

−
= = =

= ∑∑ ∑                          (23) 

The expression (23) is obtained using (14) and (20). Summarizing, we have the following corollary. 
Corollary 1. Let G  be a ( ), , ,n k a c -strongly regular graph such that 0 1.c k n< ≤ < −  Then for all natural 

numbers ,  j m  and s  such that 0 ,  2j s≤ ≤  

( )
21
1 1

1 2

2 2 2

2 1111 112
0 0 0

.m
mm

m

llls s
j l jl j l jj m

l l l
q q q q q

−+
= = =

= ∑∑ ∑                           (24) 

Theorem 3. Let G  be a ( ), , ,n k a c -strongly regular graph such that 0 1.c k n< ≤ < −  Then for all 
natural numbers ,  ,  ,  i j m n  and s  such that 0 ,  ,  2,i j s≤ ≤  

( ) ( )
2

0
.

nms
ijmn li lj sl

l
q Q Q P

=

= ∑                                (25) 
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Proof. We have 2
0 .m n l

i j ijmn llE E q E
=

= ∑ 

  Since from (21) ( ) ( )2 2
0 0

n mn m
i j li l li ll lE E Q A Q A

= =
= ∑ ∑

   then  
2

0
n m l

i j ijmn llE E q E
=

= ∑ 

 . Hence we obtain 

( ) ( )
2

0
.

mnn m
i j s li lj sl s

l
E E E Q Q P E

=

= ∑

  

Therefore, the equality (25) follows.                                                           
Recurring to (14) and (25), we may conclude the Corollary 2. 
Corollary 2. Let G  be a ( ), , ,n k a c -strongly regular graph such that 0 1.c k n< ≤ < −  Then for all natural 

numbers 1 2,  ,  ,  i i m n  and s  such that 1 20 ,  ,  2i i s≤ ≤ , 

1 1 21 2
1 2 2 21 1 1 2 1 1 2 2 3 2

1 1 2

2 2 2 2

112 11 11 11 11 11
0 0 0 0

.n n n n m
n mn n n n m

n n n m

l l l ll ls s
i i nm l ii l i l i l i l i l i

l l l l
q q q q q q q q− + + −

+ −− − + −
+ + −= = = =

= ∑ ∑ ∑ ∑     

Theorem 4. Let G  be a ( ), , ,n k a c -strongly regular graph such that 0 1.c k n< ≤ < −  Then n∀ ∈  and 
{ }1 1, , 0,1, 2 ,ni i +∀ ∈  

1 1

2

=0
0.

nri ri sr
r

Q Q P
+

≥∑                                   (26) 

Proof. We prove by induction on n. For 1n =  the inequality (26) holds, since the classical Krein parameters 
1 211
s
i iq  are nonnegative and 

1 2 1 2

2
110 .s

ri ri sr i ir Q Q P q
=

=∑  Now assuming that the inequality (26) holds for 1n k= ≥ , 
we prove that (26) also holds for 1.n k= +  Consider the sum 

1 2

2
0 .

kri ri srr Q Q P
+=∑   Then from (14), we obtain 

1 2 1 2 3 2

1 2 3 2

2 2 2

11
0 0 0

2 2

11
0 0

                          .

k k

k

l
ri ri sr i i rl ri ri sr

r r l

l
i i rl ri ri sr

l r

Q Q P q Q Q Q P

q Q Q Q P

+ +

+

= = =

= =

=

=

∑ ∑∑

∑ ∑

 



 

Since for n k=  the inequality (26) is verified and the summands 
3 2

2
0 krl ri ri srr Q Q Q P

+=∑   are nonnegative, 
we may conclude that 

1 1

2
0 0.

nri ri srr Q Q P
+=

≥∑ 

                                                  
  

Recurring to the Theorem 4 we are conducted to the Corollaries 3 and 4. 
Corollary 3. Let G be a ( ), , ,n k a c -strongly regular graph such that 0 1.c k n< ≤ < −  Then for all natural 

numbers ,  ,  i m s  and s  such that 0 ,  2i s≤ ≤  the generalized Krein parameters s
imq  are nonnegative. 

Corollary 4. Let G  be a ( ), , ,n k a c -strongly regular graph such that 0 1.c k n< ≤ < −  Then for all natural 
numbers ,  ,  ,  i j m n  and s such that 0 ,  ,  2i j s≤ ≤  the generalized Krein parameters l

ijmnq  are nonnegative. 
Theorem 5. Let G be a strongly regular graph and let i, s and m be natural numbers such that 0 ,  2.i s≤ ≤  

Then 1.s
imq ≤  

Proof. Recurring to the inequalities (14)-(17) we have: 

( )( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( ) ( )( )

( )( )

2 2 2 2

0 0

22 22 2 2

0 0

2 22

0

, , , , ,

     , , , ,

     1 , 1.

m ms
im

t t

m
m i

t
t t

m i
t

t

q Q t i P s t Q t i Q t i P s t

Q t i Q t i P s t Q t i n
n

Q t i n
n

µ

µ

−

= =

−
−

= =

−

=

= =

 ≤ ≤  
 

≤ ≤ ≤

∑ ∑

∑ ∑

∑

 

Theorem 6. Let G be a ( ), , ,n k a c -strongly regular graph such that 0 1c k n< ≤ < − . Let ,  ,  ,  i j m n  and s 
be natural numbers such that 0 ,  ,  2i j s≤ ≤  and 3.m n+ ≥  Then the generalized Krein parameter s

ijmnq  
satisfy 1.s

ijmnq ≤  
Proof. Similar to the Proof done in Theorem 5.                                                  
Let G be a ( ), , ,n k a c -strongly regular graph such that 0 1.c k n< ≤ < −  Since the generalized Krein para-

meters 
1 2

s
i i mnq  and 

1

s
i mq  are nonnegative then we can establish new admissibility conditions distinct from the 

Krein conditions (6) and (7). For instance, the generalized Krein condition 0
13 0q ≥  allows us to establish a new 
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theorem on strongly regular graphs after some algebraic manipulation of its expressions. Analyzing the genera-
lized Krein parameter 0

13q  of a strongly regular graph with one in its spectra we deduce the following theorem 
(7). 

Theorem 7. Let G  be a ( ), , ,n k a c -strongly regular graph such that 0 1c k n< ≤ < −  whose adjacency 
matrix is A  and has the eigenvalues ,  1k θ =  and τ  If 9k ≥  then 

3 53 .
2 20

n k≤ +                                      (27) 

Proof. Since 0
13 0q ≥  then we have 

( ) ( ) ( ) ( )
3 3 3

1 0.n k n k kk n k
n n n
θ θ θ θ

θ τ θ τ θ τ
     + − − + − −

+ + − − ≥          − − −     
               (28) 

From the inequality (28) and after some simplifications we conclude that  

( ) ( ) ( )2 3 3 2 2 3 3 2 23 3 3 3 2 2 6 6 0.n k n k k k k k kθ θ θ θ θ θ θ− + − + + − + − + − ≥  

Therefore if 1θ =  then 

( ) ( ) ( )2 2 3 21 3 3 3 3 2 2 6 6 0n k n k k k k k k− + − + + − + − + − ≥  

Finally we have 

( ) ( ) ( )2 2 3 21 3 3 2 1 3 3 0n k n k k k k− + − + + − + − ≥                       (29) 

Dividing both members of (29) by 1 k−  we are supposing that 1k >  we obtain 

( ) ( )2 23 1 2 2 1 0.n n k k k− + + − + ≤                             (30) 

Now from the inequality (30) we conclude that if G  is a ( ), , ,n p a c -strongly regular graph with one in his  

spectra1 then 9k ≥  implies that 
3 53 .
2 20

n k≤ +  

We now present in Table 1 some examples of parameter sets ( ), , ,n k a c  that do not verify the inequality (27) 
of Theorem 7. We consider the parameter sets ( )1 28,9,0,4P = , ( )2 64,21,0,10P = , ( )3 1225,456,39,247P = , 

( )4 1296,481.0,40.0,260P =  and ( )5 1024,385,36,210P = . For each example we present the respective eigen-  

values θ , τ  and the value of knq  defined by 
53 3 .
20 2knq k n= + −  

5. Some Conclusions 
In this paper, we have generalized the Krein parameters of a strongly regular graph and obtained some relations  
 
Table 1. Numerical results when 9k ≥ . 

 P1 P2 P3 P4 P5 
θ 1 1 1 1 1 
τ −5 −11 −209 −221 −175 
1

knqθτ  −2.65 −6.85 −15.1 −19.85 −2.5 

 

 

1We must note that the equation ( ) ( )2 23 1 2 1 2 0x x k k k− + + − + =  as the roots ( ) 2

1

3 1 34 1
2

k k k
x

+ − + +
=  and the root 

( ) 2

2

3 1 34 1
.

2
k k k

x
+ + + +

=  Since 8k >  implies that 2 234 1 5k k k+ + ≤  and finally this implies that ( )
2

3 1 5
2

k k
x

+ +
≤  therefore 

2

3 53 .
2 20

kx ≤ +  
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between the classical Krein parameters and the generalized Krein parameters (see Corollaries 1 and 2). We also 
establish that these generalize Krein parameters are always positive and less than one (see Corollaries 3 and 4, 
and Theorems 5 and 6). Let ,  ,  ,  i j m n  and s be natural numbers such that 0 ,  ,  2.i j s≤ ≤  The generalized 
Krein admissibility conditions 0s

ijmnq ≥  with 3m n+ ≥  and 0s
imq ≥  with 3m ≥  allow us to establish new 

admissibility conditions; they permit us to establish new inequalities on the parameters of a strongly regular 
graph. For instance the generalized Krein parameter condition 0

23 0q ≥  after some algebraic manipulation al-
lows us to establish the inequality (27) in Theorem 7. Finally, we conclude that we can extend the definition of 
generalized Krein parameters to a symmetric association scheme with d  classes. 
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Abstract 
We present an alternative sixteen-component hypercomplex scalar-vector values named “space- 
time sedenions”, generating associative noncommutative space-time Clifford algebra. The gener-
alization of relativistic quantum mechanics and field theory equations based on sedenionic wave 
function and space-time operators is discussed. 
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1. Introduction 
The multicomponent hypercomplex numbers such as quaternions and octonions are widely used for the refor-
mulation of quantum mechanics and field theory equations. The first generalization of quantum mechanics and 
electrodynamics was made on the basis of four-component quaternions, which were interpreted as scalar-vector 
structures [1]-[5]. The next step was taken on the basis of eight-component octonions, which were interpreted as 
the sum of scalar, pseudoscalar, polar vector and axial vector [6]-[11]. Scalars and axial vectors are not trans-
formed under spatial inversion, while pseudoscalars and polar vectors change their sign under spatial inversion. 
Therefore, this interpretation takes only the symmetry with respect to the spatial inversion into account. How-
ever, a consistent relativistic approach requires taking full time and space symmetries into consideration that 
leads to the sixteen-component space-time algebras.  

The well-known sixteen-component hypercomplex numbers, sedenions, are obtained from octonions by the 
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Cayley-Dickson extension procedure [12] [13]. In this case the sedenion is defined as  

1 2S O O= + e ,                                      (1) 

where Oi is an octonion and the parameter of duplication e is similar to imaginary unit 2 1= −e . The algebra of 
sedenions has the specific rules of multiplication. The product of two sedenions 

1 11 12S O O= + e , 

2 21 22S O O= + e , 

is defined as  

( )( ) ( ) ( )1 2 11 12 21 22 11 21 22 12 22 11 12 21S S O O O O O O O O O O O O= + + = − + +e e e ,              (2) 

where ijO  is conjugated octonion. The sedenionic multiplication (2) allows one to introduce a well-defined 
norm of sedenion. However, such procedure of constructing the higher hypercomplex numbers leads to the fact 
that the sedenions as well as octonions generate normed but nonassociative algebra [14]-[16]. It complicates the 
use of the Cayley-Dickson sedenions in the physical applications. 

Recently we have developed an alternative approach to constructing the multicomponent values based on our 
scalar-vector conception realized in associative eight-component octons [17]-[19] and sixteen-component sede-
ons [20]-[24]. In particular, we have demonstrated the method, which allows one to reformulate the equations of 
relativistic quantum mechanics and field theory on the basis of sedeonic space-time operators and scalar-vector 
wave functions. In this paper we present an alternative version of the sixteen-component associative space-time 
hypercomplex algebra and demonstrate some of its application to the generalization of relativistic quantum me-
chanics and field theory equations.  

2. Sedenionic Space-Time Algebra 
It is known, the quaternion is a four-component object 

0 1 2 3q q q q q= + + +0 1 2 3a a a a ,                                (3) 

where components qν  (Greek indexes 0,1,2,3ν = ) are numbers (complex in general), 1≡0a  is scalar units 
and values am (Latin indexes m = 1, 2, 3) are quaternionic units, which are interpreted as unit vectors. The rules 
of multiplication and commutation for am are presented in Table 1. We introduce also the space-time basis et, er, 
etr, which is responsible for the space-time inversions. The indexes t and r indicate the transformations (t for 
time inversion and r for spatial inversion), which change the corresponding values. The value 1≡0e  is a scalar 
unit. For convenience we introduce numerical designations ≡1 te e  (time scalar unit); ≡2 re e  (space scalar 
unit) and ≡3 tre e  (space-time scalar unit). The rules of multiplication and commutation for this basis we 
choose similar to the rules for quaternionic units (see Table 2). 
 

Table 1. Multiplication rules for unit vectors am. 

 a1 a2 a3 

a1 −1 a3 −a2 

a2 −a2 −1 a1 

a3 a2 −a1 −1 

 
Table 2. Multiplication rules for space-time units. 

 e1 e2 e3 

e1 −1 e3 −e2 

e2 −e2 −1 e1 

e3 e2 −e1 −1 
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Note that the unit vectors a1, a2, a3 and the space-time units e1, e2, e3 generate the anticommutative algebras: 
,
,

= −
= −

n m m n

n m m n

a a a a
e e e e

                                     (4) 

for ≠n m , but e1, e2, e3 commute with a1, a2, a3: 
=n m m ne a a e ,                                     (5) 

for any n and m. Besides, we assume the associativity of e1, e2, e3, a1, a2, a3 multiplication.  
Then we can introduce the sixteen-component space-time sedenion V  in the following form: 

( ) ( )
( ) ( )
00 01 02 03 10 11 12 13

20 21 22 23 30 31 32 33 .

V V V V V V V V

V V V V V V V V

= + + + + + + +

+ + + + + + + +
0 0 1 2 3 1 0 1 2 3

2 0 1 2 3 3 0 1 2 3

e a a a a e a a a a

e a a a a e a a a a

V
              (6) 

The sedenionic components Vνµ  are numbers (complex in general). Introducing designation of scalar and vec-
tor values in accordance with the following relations 

( )

( )

( )

( )

00

01 02 03

10

11 12 13

20

21 22 23

30

31 32 33

,

,
,

,
,

,
,

.

V V

V V V V
V V V

V V V V V
V V V

V V V V V
V V V

V V V V V

=

= + +

≡ =

≡ = + +

≡ =

≡ = + +

≡ =

≡ = + +



 

 

 

0 0

0 1 2 3

t 1 1 0

t 1 1 1 2 3

r 2 2 0

r 2 2 1 2 3

tr 3 3 0

tr 3 3 1 2 3

e a

e a a a
e a

e a a a
e a

e a a a
e a

e a a a

                             (7) 

we can represent the sedenion in the following scalar-vector form: 
V V V V V V V V= + + + + + + +V

   



t t r r tr tr .                            (8) 
Thus, the sedenionic algebra encloses four groups of values, which are differed with respect to spatial and time 
inversion.  

1) Absolute scalars ( )V  and absolute vectors ( )V


 are not transformed under spatial and time inversion.  
2) Time scalars ( )Vt  and time vectors ( )V



t  are changed (in sign) under time inversion and are not trans-
formed under spatial inversion.  

3) Space scalars ( )Vr  and space vectors ( )V


r  are changed under spatial inversion and are not transformed 
under time inversion.  

4) Space-time scalars ( )Vtr  and space-time vectors ( )V


tr  are changed under spatial and time inversion. 
Further we will use the symbol 1 instead units a0 and e0 for simplicity. Introducing the designations of scalar- 

vector values 
0 00 01 03

1 10 11 12 13

2 20 21 22 23

3 30 31 32 33

,
,
,
.

V V V V
V V V V
V V V V
V V V V

= + + +

= + + +

= + + +

= + + +

1 2 3

1 2 3

1 2 3

1 2 3

a a a
a a a
a a a
a a a

02V
V
V
V

                                (9) 

we can write the sedenion (6) in the following compact form: 
0 1 2 3+ +1 2 3e e eV = V + V V V .                                (10) 

On the other hand, introducing designations of space-time sedenion-scalars 

( )
( )
( )
( )

0 00 10 20 30

1 01 11 21 31

2 02 12 22 32

3 03 13 23 33

,

,

,

.

V V V V

V V V V

V V V V

V V V V

= + + +

= + + +

= + + +

= + + +

1 2 3

1 2 3

1 2 3

1 2 3

e e e

e e e

e e e

e e e

V

V

V

V

                              (11) 

we can write the sedenion (6) as 
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0 1 2 3= + + +1 2 3a a aV V V V V ,                                (12) 

or introducing the sedenion-vector  

1 2 3V V V V+ + + + +V = = V V V
    

t r tr 1 2 3a a a ,                          (13) 

we can rewrite the sedenion in following compact form: 

0= +V V V


 .                                      (14) 

Further we will indicate sedenion-scalars and sedenion-vectors with the bold capital letters. 
Let us consider the sedenionic multiplication in detail. The sedenionic product of two sedenions A  and B

can be represented in the following form  

( ) ( ) ( )0 0 0 0 0 0  = + + = + + + ⋅ + × AB A A B B A B A B AB A B A B
      

  .                (15) 

Here we denoted the sedenionic scalar multiplication of two sedenion-vectors (internal product) by symbol “∙” 
and round brackets 

( ) 1 1 2 2 3 3⋅ = − − −A B A B A B A B
 

,                              (16) 

and sedenionic vector multiplication (external product) by symbol “×” and square brackets, 

( ) ( ) ( )2 3 3 2 3 1 1 3 1 2 2 1 × = − − − A B A B A B + A B A B + A B A B
 

1 2 3a a a .                (17) 

In (16) and (17) the multiplication of sedenionic components is performed in accordance with (11) and Table 2. 
Thus the sedenionic product  

0=F = AB F + F


  ,                                  (18) 

has the following components:  

( )
( )
( )

0 0 0 1 1 2 2 3 3

1 1 0 0 2 3 3 2

2 2 0 0 2 3 1 1 3

3 3 0 0 3 1 2 2 1

,
,

,

.

− − −

−

+ −

+ −

1

F = A B A B A B A B
F = A B + A B + A B A B

F = A B + A B A B A B

F = A B + A B A B A B

                            (19) 

Note that in the sedenionic algebra the square of vector is defined as  

( )2 2 2 2
1 2 3A A A A A A= ⋅ = − − −

  

,                              (20) 

and the square of modulus of vector is  

( )2 2 2 2
1 2 3A A A A + A + A= − ⋅ =

  

.                              (21) 

3. Spatial Rotation and Space-Time Inversion 
The rotation of sedenion V  on the angle θ  around the absolute unit vector n  is realized by sedenion 

( ) ( )cos 2 sin 2nθ θ= +U 

 ,                              (22) 

and by conjugated sedenion ∗
U : 

( ) ( )cos 2 sin 2nθ θ∗ = −U 

 ,                              (23) 

with 

1∗ ∗= =   UU U U .                                   (24) 
The transformed sedenion ′V  is defined as sedenionic product  

∗′ =   V U VU ,                                     (25) 
Thus, the transformed sedenion ′V  can be written as 
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( ) ( ) ( ) ( ) ( )

( ) ( )
0

0

cos 2 sin 2 cos 2 sin 2

 cos 1 cos sin .

n n

n n n

θ θ θ θ

θ θ θ

′ = − + +      

 = + − ⋅ − − × 

V V V

V V V V



 



  

  

                 (26) 

It is clearly seen that rotation does not transform the sedenion-scalar part, but the sedenionic vector V


 is ro-
tated on the angle θ  around n . 

The operations of time inversion ( )R̂t , space inversion ( )R̂r  and space-time inversion ( )R̂tr  are con-
nected with transformations in e1, e2, e3 basis and can be presented as  

ˆ ,
ˆ ,
ˆ .

R

R

R

= − = − + −

= − = + − −

= − = − − +

V V V V V V

V V V V V V

V V V V V V

 

 

 

t 2 2 0 1 1 2 2 3 3

r 1 1 0 1 1 2 2 3 3

tr 3 3 0 1 1 2 2 3 3

e e e e e

e e e e e

e e e e e

                           (27) 

4. Sedenionic Lorentz Transformations  
The relativistic event four-vector can be represented in the follow sedenionic form: 

+ct r=S 



1 2e e .                                     (28) 
The square of this valueis the Lorentzinvariant 

2 2 2 2 2c t + x + y + z= − SS .                                (29) 
The Lorentz transformation of event four-vector is realized by sedenions 

ch sh ,

ch sh ,

m

m

ϑ ϑ

ϑ ϑ∗

= +

= −

L

L









3

3

e

e
                                  (30) 

where th2 v cϑ = , v  is velocity of motion along the absolute unit vector m . Note that 
1∗ ∗= =   L L LL .                                    (31) 

The transformed event four-vector ′S  is written as 

( ) ( ) ( )
( ) ( ) ( )

ch sh + ch sh

ch2 sh2 sh2 1 ch2 .

m ct r m

ct m r r ctm m r m

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

∗′ = = − +

= + ⋅ − + ⋅ −

S L  S L   

  

      

3 1 2 3

1 1 2 2 2

e e e e

e e + e e e
            (32) 

Separating the values with e1 and e2 we get the well known formulas for time and coordinates transformation 
[25]: 

2

2 2 2 2
, , ,

1 1
t xv c x tvt x y y z z

v c v c
− −′ ′ ′ ′= = = =
− −

,                     (33) 

where x is the coordinate along the m  vector. 
Let us also consider the Lorentz transformation of the full sedenion V . The transformed sedenion ′V  can 

be written as sedenionic product 
∗′ =   V L  VL .                                    (34) 

( ) ( ) ( )
( )

( )

0

2 2 2
0 0 0 0

2

ch sh ch sh

ch sh ch sh ch

sh ch sh .

m m

m

m m m m

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ

′ = − + +

= + − − +

− − −

V V V

V V V V V

V V V



 







  

   

tr tr

tr rt tr tr

tr tr tr tr

e e

e e e e

e e e e

                 (35) 

Rewriting the expression (35) with scalar (16) and vector (17) products we get 

( ) ( )
( ) ( )( ) ( )

2 2 2 2 2ch sh ch sh ch sh 2 sh

ch sh ch sh .

0 0 0 0 m m m

m m m m

ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

′ = + − − + − − ⋅

   − ⋅ − ⋅ − × − ×   

V V V V V V V V

V V V V

  

  



   

   

tr tr tr tr tr tr tr tr

tr tr tr tr

e e e e e e e e

e e e e
   (36) 

Thus, the transformed sedenion has the following components:  
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( )
( )

( ) ( )

( ) ( )

( ) ( )

,
,

ch 2 sh 2 ,

ch 2 sh 2 ,

ch 2 1 ch2 sh2 ,

ch 2 1 ch2 sh2 ,

1 ch2 sh 2 ,

V V
V V

V V m V

V V m V

V V m V m m V

V V m V m m V

V V m V m V m

V V

ϑ ϑ

ϑ ϑ

ϑ ϑ ϑ

ϑ ϑ ϑ

ϑ ϑ

′ =
′ =

′ = − ⋅

′ = − ⋅

 ′ = − ⋅ − − × 
 ′ = − ⋅ − − × 

′ = + ⋅ − −

′=









   

  

   

  

  

  

 

tr tr

r r tr t

t t tr r

tr rt

tr tr tr tr

r r r tr t

t t

e

e

e

e

e

( ) ( )1 ch2 sh 2 .m V m V mϑ ϑ+ ⋅ − −


  

t tr re

                    (37) 

5. Subalgebras of Space-Time Complex Numbers, Quaternions and Octonions 
The sedenionic basis introduced above enables constructing different types of low-dimensional hypercomplex 
numbers. For example, one can introduce space-time complex numbers  

1 2

1 2

1 2

,
,
,

Z z z
Z z z
Z z z

= +

= +
= +

t t

r r

tr tr

e
e
e

                                    (38) 

where z1 and z2 real numbers. These values are transformed under space and time conjugation and Lorentz 
transformations. Moreover, we can consider the space-time quaternions, which differ in their properties with re-
spect to the operations of the spatial and time inversion and Lorentz transformations: 

( )0 1 2 3q q q q q= + + +0 0 1 2 3a e a a a ,                            (39) 

( )0 1 2 3q q q q q= + + +t 0 t 1 2 3a e a a a ,                            (40) 

( )0 1 2 3q q q q q= + + +r 0 r 1 2 3a e a a a ,                            (41) 

( )0 1 2 3q q q q q= + + +tr 0 tr 1 2 3a e a a a .                           (42) 

The absolute quaternion (39) is the sum of the absolute scalar and absolute vector. It remains constant under 
the transformations of space and time inversion (27). Time quaternion qt

 , space quaternion qr
  and space-time 

quaternion qtr
  are transformed under inversions in accordance with the commutation rules for the basis ele-

ments et, er, etr. For example, performing the operation of time inversion (see (27)) with the quaternion qt
  we 

obtain the conjugated quaternion  

( )0 1 2 3R̂ q q q q q q− = − + +t t r t r 0 t 1 2 3= e e a e a a a  .                       (43) 

In addition, the sedenionic basis allows one to construct various types of space-time eight-component oc-
tonions: 

( )00 01 02 03 10 11 12 13G G G G G G G G G= + + + + + + +t 1 2 3 t t 1 2 3a a a e e a a a


,               (44) 

( )00 01 02 03 20 21 22 23G G G G G G G G G= + + + + + + +r 1 2 3 r r 1 2 3a a a e e a a a


,              (45) 

( )00 01 02 03 30 31 32 33G G G G G G G G G= + + + + + + +tr 1 2 3 tr tr 1 2 3a a a e e a a a


.             (46) 

6. Generalized Sedenionic Equations of Relativistic Quantum Mechanics 
The wave function of free quantum particle should satisfy an equation, which is obtained from the Einstein rela-
tion for energy and momentum  

2 2 2 2 4
0E c p m c− = ,                                  (47) 
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by means of changing classical energy E and momentum p  on corresponding quantum-mechanical operators: 

ˆ ˆ  and  E i p i
t
∂

= = − ∇
∂




  .                                (48) 

Here c is the speed of light, m0 is the particle rest mass,   is the Planck constant. In sedenion algebra the Ein-
stein relation (47) can be written as 

( ) ( )2 2
0 0 0E cp i m c E cp i m c+ + + + =

 

t r tr t r tre e e e e e .                       (49) 

Let us consider the wave function in the form of space-time sedenion 

( ) ( ) ( )0, , ,t r t r t r= +W W W


  

 .                               (50) 

Then the generalized sedenionic wave equation for free particle can be written in the following symmetric form: 

0 01 1 0m c m c
c t c t
∂ ∂  − ∇+ − ∇+ =  ∂ ∂  

W
 



 

t r tr t r tre e e e e e .                     (51) 

Note that for electrically charged particle in an external electromagnetic field we have the following sedenionic 
wave equation: 

0 01 1 0m c m cie ie ie ieA A
c t c c c t c c

ϕ ϕ∂ ∂  + − ∇+ + + − ∇+ + =  ∂ ∂  
W

   



     

t t r r tr t t r r tre e e e e e e e e e .      (52) 

This equation describes the particles with spin 1/2 in an external electromagnetic field [18] [21]. 
There is a special class of particles described by the first-order wave equation [26]. For these particles the 

sedenionic Dirac-like wave equation has the following form: 

01 0m c
c t
∂ − ∇+ = ∂ 

W






t r tre e e .                              (53) 

In fact, this equation describes the special quantum field with zero field strengths [19]. Analogously the electri-
cally charged particle interacting with external electromagnetic field is described by the following sedenionic 
first-order wave equation: 

01 0m cie ie A
c t c c

ϕ∂ + − ∇+ + = ∂ 
W

 



  

t t r r tre e e e e .                      (54) 

This equation also describes particles with spin 1/2 in an external electromagnetic field [19]. 

7. Generalized Sedenionic Equations for Massive Field 
The generalized sedenionic wave equation 

0 01 1 0m c m c
c t c t
∂ ∂  − ∇+ − ∇+ =  ∂ ∂  

W
 



 

t r tr t r tre e e e e e ,                    (55) 

enables another interpretation. It can be considered as the equation for the force massive field [27]. In this case 
the parameter m0 is the mass of quantum of field and W  is field potential. Considering the phenomenological 
source of field J  we can propose the following nonhomogeneous wave equation for the field potential: 

0 01 1m c m c
c t c t
∂ ∂  − ∇+ − ∇+ =  ∂ ∂  

W J
 

 

 

t r tr t r tre e e e e e .                    (56) 

Seemingly this equation describes the baryon (strong) field [23] [24] and J  is baryon current. On the other 
hand, corresponding nonhomogeneous first-order equation  

01 m c
c t
∂ − ∇+ = ∂ 

W I


 



t r tre e e ,                             (57) 

describes the lepton (weak) field, where I  is a lepton current [23] [24]. 
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8. Generalized Sedenionic Equations for Massless Field 
In the special case, when the mass of quantum m0 is equal to zero, the Equation (56) coincides with the equation 
for electromagnetic field. Indeed, choosing the potential as 

Aϕ= +W




t re e ,                                     (58) 
and the source of field as 

4π4π j
c

ρ= − −J




t re e ,                                  (59) 

we obtain the following wave equation: 

( )1 1 4π4πA j
c t c t c

ϕ ρ∂ ∂  − ∇ − ∇ + = − −  ∂ ∂  

   

t r t r t r t re e e e e e e e .                   (60) 

After the action of the first operator in the left-hand side of Equation (60) we obtain 

( ) ( )1 1 1 AA A A
c t c t c t

ϕϕ ϕ∂ ∂ ∂   − ∇ + = − ∇ + ∇⋅ + ∇×   ∂ ∂ ∂ 



      

t r t r tr tre e e e + e + e .              (61) 

In sedenionic algebra the electric and magnetic fields are defined as 
1 ,

.

AE
c t

H A

ϕ∂
= − −∇

∂
 = ∇× 





 

                                    (62) 

Besides we can define the scalar field  

( )1f A
c t

ϕ∂
= − + ∇⋅

∂

 

.                                  (63) 

Assuming electric charge conservation the scalar field f can be chosen equal to zero, that coincides with Lorentz 
gauge condition [22]. In Lorentz gauge we can rewrite the expression (61) as 

( )1 A E H
c t

ϕ∂ − ∇ + = − + ∂ 

   

t r t r tre e e e e .                          (64) 

Then the wave Equation (60) can be represented in the following form: 

( )1 4π4πE H j
c t c

ρ∂ − ∇ − + = − − ∂ 

   

t r tr t re e e e e .                       (65) 

Performing sedenionic multiplication in the left-hand side of Equation (65) we get 

( ) ( )1 1 4π4πE HE E H H j
c t c t c

ρ∂ ∂   + ∇⋅ + ∇× + − ∇⋅ − ∇× = − −   ∂ ∂

 

       

r t t t r r t re e e e e e e e .        (66) 

Separating space-time values we obtain the system of equations in the following form: 

( ) ( )

( )

( )

( ) ( )

4π , time scalar part

1 4π , space vector part

1 , time vector part

0. space scalar part

E

EE j
c t c

HE
c t

H

ρ∇⋅ = −

∂ ∇× = +  ∂
∂ ∇× = −  ∂

∇⋅ =

 



  



 

 

t t

r r r

t t

r

e e

e e e

e e

e

                      (67) 

The system (67) coincides with the Maxwell equations. 
Among the solutions of the homogeneous sedeonic wave equation of electromagnetic field (60) there is a spe-

cial class that satisfies the sedeonic first-order equation of the following form [22]: 

1 0
c t ν
∂ − ∇ = ∂ 

W




t re e .                                   (68) 
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This equation describes the free neutrino field. On the other hand, let us consider the nonhomogeneous equation 
of neutrino field  

t r
1

vc t ν
∂ − ∇ = ∂ 

W I


 e e ,                                  (69) 

where v
I  is phenomenological source. We choose the scalar source in the form 

4πv vσ=I ,                                       (70) 

where vσ  is the density of neutrino charge. Choosing the potential ν
W  in the form (58): 

t ri Aν ν νϕ= +W


 e e ,                                   (71) 

we obtain following nonhomogeneous equation for the neutrino field: 

( )t r t r
1 4π vA
c t ν νϕ σ∂ − ∇ + = ∂ 

 

e e e e .                            (72) 

It follows that in this case only scalar field strength vf  (see (63)) is nonzero: 

4πv vf σ= .                                      (73) 

The density of neutrino charge for point source is equal  

( )v vq rσ δ=
 ,                                     (74) 

where qv is point neutrino charge. Then the interaction energy of two point neutrino charges can be represented 
as follows: 

1 2 1 2
1 d

8πv v v vW f f V= ∫ .                                 (75) 

Substituting (73) and (74), we obtain 

( )1 2 1 22πv v v vW q q Rδ=


,                                (76) 

where R


 is the vector of distance between first and second charges. 

9. Discussion 
The algebra of sedenions proposed in this article is the anticommutative associative space-time Clifford algebra. 
The sedenionic basis elements an are responsible for the spatial rotation, while the elements en are responsible 
for the space-time inversions. Mathematically, these two bases are equivalent, and the different physical proper-
ties attributed to them are an important physical essence of our sedenionic hypothesis.  

In contrast to the previously discussed sedeonic algebra [20]-[23], which uses the multiplication rules of basic 
elements ′na  and ′ne  proposed by A. Macfarlane [28], the multiplication rules for sedenionic basis elements an 
and en coincide with the rules for quaternion units introduced by W. R. Hamilton [29]. There is a close connec-
tion between these two basses. The transition from the sedeonic basis to sedenionic basis is performed by fol-
lowing replacement: 

i′ =n na a , 

i′ =n ne e . 

There is one disadvantage of sedenions connected with the fact that the square of the vector is a negative value. 
However, on the other side the sedenionic rules of cross-multiplying do not contain the imaginary unit and this 
leads to the some simplifications in the calculations. But of course, the physical results do not depend on the 
choice of algebra, so these two algebras are equivalent. 

10. Conclusion 
Thus, in this paper we presented the sixteen-component hypercomplex values sedenions, generating associative 
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noncommutative space-time algebra. We considered the generalization of the relativistic quantum mechanics 
and theory of massive and massless fields based on hypercomplex scalar-vector wave functions and sedenionic 
space-time operators.  
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Abstract 
In the present paper we derived, with direct method, the exact expressions for the sampling proba-
bility density function of the Gini concentration ratio for samples from a uniform population of 
size n = 6, 7, 8, 9 and 10. Moreover, we found some regularities of such distributions valid for any 
sample size. 
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1. Introduction 
In 1914 Corrado Gini [1] introduced the concentration ratio R for the measure of inequality among values of a 
frequency distribution. The Gini index is widely used in fields as diverse as sociology, health science, engineer-
ing, and in particular, economics to measure the inequality of income distribution. 

Various aspects of the Gini index have been taken into account. One of the most interesting topics regards the 
estimation of the concentration ratio (Hoeffding, 1948 [2]; Glasser, 1962 [3]; Cucconi, 1965 [4]; Dall’Aglio, 
1965 [5]). More recently, Deltas (2003) [6] discussed the sources of bias of the Gini coefficient for small sam-
ples. This has implications for the comparison of inequality among subsamples, some of which may be small, 
and the use of the Gini index in measuring firm size inequality in markets with a small number of firms. Barret 
and Donald (2009) [7] considered statistical inference for consistent estimators of generalized Gini indices. The 
empirical indices are shown to be asymptotically normally distributed using functional limit theory. Moreover, 
asymptotic variance expressions are obtained using influence functions. Davidson (2009) [8] derived an ap-
proximation for the estimator of the Gini index by which it is expressed as a sum of IID random variables. This 
approximation allows developing a reliable standard error that is simple to compute. Fakoor, Ghalibaf and 
Azarnoosh (2011) [9] considered nonparametric estimators of the Gini index based on a sample from length-bi- 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.61007
http://dx.doi.org/10.4236/am.2015.61007
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ased distributions. They showed that these estimators are strongly consistent for the Gini index. Also, they ob-
tained an asymptotic normality for the corresponding Gini index. 

Girone (1968) [10] focused on the study of the sampling distribution of the Gini index and in 1971 [11] de-
rived the exact expression for samples drawn from an exponential population. In 1971 Girone [12] obtained, 
with direct method, the sampling distribution function of the Gini ratio for samples of size n ≤ 5 drawn from a 
uniform population. 

In the present note (Section 2), we calculate the joint probability density function (p.d.f.) of the random sam-
ple of size n and, then, the joint p.d.f. of the n order statistics. Hence, we transform one of the order statistics in 
their average and the remaining n ‒ 1 order statistics are divided by the same average. We calculate the joint 
p.d.f. of the new n variables and integrating with respect to the average we obtain the joint p.d.f. of the other n ‒ 
1 variables. One of these variables is transformed in the concentration ratio. We calculate the joint p.d.f. of the 
concentration ratio and of the other n ‒ 2 variables and at last we integrate this p.d.f. with respect to the n – 2 va-
riables obtaining the marginal p.d.f. of the concentration ratio. The main difficulty of this procedure consists in 
the identification of the region of integration of the n ‒ 2 variables, for two reasons: firstly the need to decom-
pose this region into subregions which allow identifying directly the limits of integration and secondly the 
growing number of such subregions that makes the derivation heavy. 

In Sections 3-7, using the software Mathematica, we derive the exact distributions of the concentration ratio 
for samples from a uniform distribution of size n = 6, 7, 8, 9 and 10. Moreover (Section 8), we find some regu-
larities of such distributions valid for any sample size. 

2. The Procedure to Derive the Distribution of the Concentration Ratio 
Let random variables 1 2, , , nX X X  from a uniform population have p.d.f. 

( )
1, 0 1,
0, elsewhere.

x
f x

< <
= 


                                  (1) 

The joint p.d.f. of the variables is 

( )1 2

1, 0 1, for 1,2, , ,
, , ,

0, elsewhere.
i

n

x i n
h x x x

< < =
= 




                        (2) 

The joint p.d.f. of the order statistics ( ) ( ) ( )1 2, , , nX X X  is 

( ) ( ) ( )( ) ( ) ( ) ( )1 2
1 2

!, 0 1,
, , ,

0, elsewhere.
n

n

n x x x
h x x x

< < < < <= 





                   (3) 

By transforming the variables 

( ) ( ) ( )1 2 ,nS X X X= + + +  

( )
( ) , for 1, 2, , 1,i

i

X
D i n

S
= = −  

whose Jacobian is 
1,nJ S −=  

we obtain the joint p.d.f. of the variables S and ( ) ( ) ( )1 2 1, , , nD D D −  that can be written as 

( ) ( ) ( )( ) ( ) 1
1 2 1, , , , 1 ! ,n

ng s d d d n s −
− = −                             (4) 

( ) ( ) ( ) ( ) ( ) ( )( )1 2 1 1 2 1for 0 1 1.n nsd sd sd s d d d− −< < < < < − − − − <   

We integrate expression [4] with respect to the variable S and obtain the joint p.d.f. of the variables
( ) ( ) ( )1 2 1, , , nD D D −  that can be written as 
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( ) ( ) ( )( ) ( )

( ) ( ) ( )( )1 2 1

1 2 1

1 !
, , , ,

1
n n

n

n
f d d d

d d d
−

−

−
=

− − − −




                     (5) 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 1 2 1for 0 1 .n nd d d d d d− −< < < < < − − − −   

By transforming the variable ( )1nD −  in the variable R i.e. the concentration ratio  

( ) ( )

1

1

21 ,
1

n

i
i

R n i D
n

−

=

= − −
− ∑  

from which we get 

( )
( )( ) ( ) ( )

2

1
1

1 1
,

2

n

n i
i

n R
D n i D

−

−
=

− −
= − −∑  

the Jacobian of the transformation is 

1
2

nJ −
=  

and the joint p.d.f. of the variable R and ( ) ( ) ( )1 2 2, , , nD D D −  is 

( ) ( ) ( )( ) ( )

( )( ) ( ) ( )

1 2 2 2

1

2 1 !
, , , , ,

2 1 1 2 1

n

n nn

i
i

n
h d d d R

n R n i d
− −

=

−
=
 − − − + − − 
 

∑


                (6) 

for 

( ) ( ) ( )
( )( ) ( ) ( )

( )( ) ( ) ( )

2 2

1 2 2
1 1

1 1 1 1
0  1 1 .

2 2

n n

n i i
i i

n R n R
d d d n i d n i d

− −

−
= =

− − − −
< < < < < − − < − + − −∑ ∑       (7) 

By integrating expression [6] with respect to the variables ( ) ( ) ( )1 2 2, , , nD D D −  over the regions determined 
by inequalities [7], we get the marginal p.d.f. of the concentration ratio R. 

3. The Distribution of the Concentration Ratio for n = 6 
The procedure indicated in Section 2 is used to obtain the following p.d.f. (Figure 1) of the concentration ratio 
R  for random samples of size n = 6: 

( )
( )2 2 2 22

3375 , for
2 1

27 1728 19683 55296 10 ,
51 2 3 450 25 25 25

5 5 5 5

R
R R R

g
R

R
R

− + − + < <
       + + + +       
   

+
  

=



 

( ) 2 2 2 2 2

125 7853 449523 677147 55296 1 2, ,
5 5144 1 2 3 475 400

for
225 25

5 5 5 5

R
R

R R
g

R
R

R
− + − + − < <

       + + + +       
       

=  

( ) 2 2 2 2 2

32 11131 33773 449523 19683 2 3, ,
5 52401 1 2 375 75

for
400 25

5 5 5 5

R
R

R R R R
g R − + − + < <

       − + + + +       
      

=



 

( ) 2 2 2 2 2

27 437 11131 7853 1728 3 4, ,
5 52402 1 1 2400 75 75 25

5 5 5 5

for R
R

R R
g

R
R

R
− + − + − < <

       − + − + + +       
   

=

   
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Figure 1. Probability density function of the concentration ratio R for random 
samples of size n = 6 from a uniform population. 
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Characteristic values of the distribution are: 

mean ( ) 11696log 2 243log3 1250log53 0.35222,
15 2 3

E R = − + + − =
 

second moment ( )2 69056log 2 24219log3 18125log516 0.13716,
25 50 12

E R = − − + =
 

third moment ( )3 1368 678688log 2 156006log3 12625log5 0.05785,
25 125 125 4

E R = − + + − =
 

fourth moment ( )4 89237 25434496log 2 7691436log3 15290log5 0.02606,
625 3125 3125 3

E R = − − + =
 

standard deviation ( ) 0.11444,Rσ =  
index of skewness ( )1 0.20793,Rγ =  

index of kurtosis ( )2 0.16767.Rγ = −  
The distribution of the concentration ratio R for samples of size n = 6 from a uniform population shows a 

slight positive skewness and platykurtosis. 

4. The Distribution of the Concentration Ratio for n = 7 
The procedure indicated in Section 2 is used to obtain the following p.d.f. (Figure 2) of the concentration ratio R 
for random samples of size n = 7: 

( )

( )

2 2 2 2

2 2

117649 117649 1058841 3764768
1 2 3 4518400 1620 640 405
6 6 6 6

367653125 105 f8841 1, 0 ,
6100 1520736

6

or

R R R R

R
R

R

R

g − + − +
       + + + +       
       

− + < <
+ + 

 

=

 



G. Girone, A. Nannavecchia 
 

 
61 

 
Figure 2. Probability density function of the concentration ratio R for random samples 
of size n = 7 from a uniform population. 
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Characteristic values of the distribution are: 

mean ( ) 7 35072log 2 21797 log3 359375log5 823543log 7 0.34951,
2 15 160 288 1440

E R = − + − + + =
 

second moment ( )2 763 3806128log 2 451251log3 359375log5 15647317 log 7 0.13291,
36 405 80 72 6480

E R = + + − − =  

third moment 

( )3 18179 2771144log 2 4266351log3 18546875log5 5764801log 7 0.05417,
216 135 320 1728 960

E R = − − − + + =  

fourth moment 

( )4 165193 40601588log 2 7638867 log3 263234375log5 895191241log 7 0.02342,
648 1215 320 15552 77760

E R = + + + − =  

standard deviation ( ) 0.10367,Rσ =  
index of skewness ( )1 0.18545,Rγ =  
index of kurtosis ( )2 0.14535.Rγ = −  
The distribution of the concentration ratio R for samples of size n = 7 from a uniform population shows slight 

positive skewness and platykurtosis, both lower than those obtained for samples of size n = 6. 

5. The Distribution of the Concentration Ratio for n = 8 
The procedure indicated in Section 2 is used to obtain the following p.d.f. (Figure 3) of the concentration ratio R 
for random samples of size n = 8: 
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Figure 3. Probability density function of the concentration ratio R for random samples 
of size n = 8 from a uniform population. 
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Characteristic values of the distribution are: 
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mean ( ) 3475456log 2 2775303log3 2421875log5 3411821log 74 0.34747,
315 560 1008 720

E R = − + + − − =  

second moment ( )2 190 3184576log 2 8776431log3 4140625log5 7882483log 7 0.12985,
7 63 392 392 360

E R = − − + + =  

third moment 

( )3 6016 658405376log 2 1492752159log3 129921875log5 13596863log 7 0.05160,
49 5145 27440 5488 240

E R = − + + − − =  

fourth moment 

( )4 145475 3729880384log 2 2307400911log3 533984375log5 9851303log 7 0.02162,
343 15435 24010 14406 90

E R = − − + + =  

 standard deviation ( ) 0.09544,Rσ =  
index of skewness ( )1 0.16867,Rγ =  
index of kurtosis ( )2 0.12824.Rγ = −  
The distribution of the concentration ratio R for samples of size 8n =  from a uniform population shows 

slight positive skewness and platykurtosis, both lower than those obtained for samples of size 6n =  and 7. 

6. The Distribution of the Concentration Ratio for n = 9 
The procedure indicated in Section 2 is used to obtain the following p.d.f. (Figure 4) of the concentration ratio R 
for random samples of size n = 9: 
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Figure 4. Probability density function of the concentration ratio R for random samples 
of size n = 9 from a uniform population. 
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Characteristic values of the distribution are: 

mean ( ) 9 18425272log 2 1948617 log3 1953125log5 109531219log 7 0.34589,
2 315 1120 576 5760

E R = − − − + + =  

second moment 

( )2 1083 31176874log 2 209048769log3 150390625log5 1101076991log 7 0.12754,
32 105 35840 9216 11520

E R = + + − − =  

third moment 

( )3 43983 69161579log 2 394860663log3 947265625log5 31654522291log 7 0.04969,
256 84 57344 24576 122880

E R = − − + + + =  

fourth moment 

( )4 2732815 58613649log 2 36660941253log3 36018359375log5 739122430613log 7 0.02032,
4096 35 458752 589824 1474560

E R = + − − − =  

standard deviation ( ) 0.08889,Rσ =  

index of skewness ( )1 0.15559,Rγ =  

index of kurtosis ( )2 0.11467.Rγ = −  
The distribution of the concentration ratio R for samples of size n = 9 from a uniform population shows slight 

positive skewness and platykurtosis, both lower than those obtained for samples of size n = 6, 7 and 8. 

7. The Distribution of the Concentration Ratio for n = 10 
The procedure indicated in Section 2 is used to obtain the following p.d.f. (Figure 5) of the concentration ratio R 
for random samples of size n = 10: 
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Figure 5. Probability density function of the concentration ratio R for random 
samples of size n = 10 from a uniform population. 
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Characteristic values of the distribution are: 

mean ( ) 686419424log 2 88683579log3 60546875log5 40353607 log 75 0.34462,
2835 1120 6048 810

E R = − + − + − =  

second moment 

( )2 4977475650505 5506009449897293log 2 3870789417061723log3
1666598976 57868020 115736040

23520914453125log5 155338805614063log 7 0.12574,
5143824 8266860

E R = − + −

+ − =
 

third moment 

( )3 56500 302665066912log 2 1609375311log3
243 76545 1120

99482421875log5 133852914419log 7 0.04823,
489888 174960

E R = − + −

+ − =
 

fourth moment 
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( )4 6581554 10398297681152log 2 1892901777 log3 10382748828125log5
6561 1240029 560 19840464

1189583980753log 7 0.01933,
787320

E R = − + −

+ =
 

standard deviation ( ) 0.08352,Rσ =  
index of skewness ( )1 0.14505,Rγ =  
index of kurtosis ( )2 0.10366.Rγ = −  
The distribution of the concentration ratio R for samples of size n = 10 from a uniform population shows 

slight positive skewness and platykurtosis, both lower than those obtained for samples of size 6,7,8 and 9n = . 

8. Some Regularities of the Distributions 
The analysis of the p.d.f. for 2,3, ,10n =   shows some regularities: 
● The p.d.f. of the concentration ratio R, for 0 1R n< <  and for samples of size n, can be expressed by 

( )
( ) ( )
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∑  

● Furthermore, the p.d.f. of the concentration ratio R, for ( )1 1n n R− < <  and for samples of size n, can be 
expressed by 
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● The density of the concentration ratio R, for 0 1R n< <  and for samples of size n, is given by 

( )
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n
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ng R R
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∫  

● The density of the concentration ratio R, for ( )1 1n n R− < <  and for samples of size n, is given by 

( )
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1
1 2

1d ;
1 !

n
n

g R R
n

− =
−  

∫  

● The jth term of the density of the concentration ratio R, denoted as , ,i ja  verifies the following symmetry 

, , .i j j ia a=  

The coefficients of the ,i ia  terms of the p.d.f. of the concentration ratio R for samples of size 1n −  multip-
lied by ( )1n n−  become the coefficients of the 1, 1i ia + +  terms of the same p.d.f. for sample of size n. 

These results are valid for every sample size and may allow reducing the heavy calculation to determine the 
p.d.f. of the concentration ratio R. 

9. Concluding Remarks 
In the present paper we obtain the distributions of the Gini concentration ratio R for samples of size

6,7,8,9 and 10n =  drawn from a uniform population. We use the same method used by Girone [12] to derive 
the same distributions for samples of size 5n ≤ . We obtain the p.d.f. of the concentration ratio R calculating a 
multiple integral in 1n −  dimensions for each region from ( ) ( )1 1k n− −  to ( )1k n −  for 1, 2, , 1k n= − . 
The limits of integration are defined by solving the inequalities of the order statistics divided by the sample 
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mean and expressed in terms of the concentration ratio R for the values assumed in each of such regions. The 
calculation of the limits of integration is particularly heavy and requires a very long processing time. 

The obtained results show that the p.d.f. of the concentration ratio R is given by hyperbolic splines with de-
gree 2 and with nodes in ( )1k n −  for 1, 2, , 1k n= − . Such distributions are unimodal with mean tending to
1 3 , which is the value of the concentration ratio R for the population, and have decreasing standard deviation. 
Moreover, the distributions show a slight positive skewness and platykurtosis that tend to decrease as n increas-
es. 

Beyond the possibility to obtain similar results for samples of larger size, open problems are the derivation of 
the exact expression for the mean and the other features of the distribution of the concentration ratio R for ran-
dom samples of size n drawn from a uniform population. 
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Abstract 
Asymptotic stability of linear systems is closely related to Hurwitz stability of the system matrices. 
For uncertain linear systems we consider stability problem through common quadratic Lyapunov 
functions (CQLF) and problem of stabilization by linear feedback. 
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1. Introduction 
Let linear uncertain system 

{ }1 2,     conv , , , Nx Ax A A A A= ∈ 
                           (1) 

be given where ( ) nx x t= ∈ , iA  ( )1, 2, ,i N=   are n n×  real matrices. Consider the following matrix in-
equalities 

( )T 0    1, 2, ,i iA P PA i N+ < =                             (2) 

where 0P >  and the symbol “ > ” stands for positive definiteness. The matrix P is called a common solution to 
(2). 

If the system (2) has a common 0P >  solution, then this system is uniformly asymptotically stable [1]. 
The problem of existence of common positive definite solution P of (2) has been studied in a lot of works (see 

[1]-[7] and references therein). Numerical solution for common P via nondifferentiable convex optimization has 
been discussed in [8]. 
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In the first part of the paper we treat the problem (2) as a nonconvex optimization problem (minimization of a 
convex function under nonconvex constraints) and apply a modified gradient method. The comparison with [8] 
shows that our approach gives better result in some cases. 

In the second part we consider the stabilization problem, i.e. the following question: for the affine family 

( ){ }:A q q R∈  

where lR ⊂   is a box, is there a stable member? We consider a sufficient condition which follows from the 
Bendixson theorem [9]. 

2. Gradient Method 
According to [2], let   be the set (subspace) of ( ) ( )n N n N⋅ × ⋅  dimensional symmetric block-diagonal ma-
trices of the form R R R⊕ ⊕ ⊕  where R  is symmetric. 

Let 1 2, , , rZ Z Z  be a basis of  , ( )1 2r n n= + , 

( ) ( ) ( )T T
1 1i i i i N i i NQ Z A Z Z A A Z Z A= − ⊕ + ⊕ ⊕ +

 

( ) ( )1 2 max
1

, , ,
r

r i i
i

x x x x x Qφ φ λ
=

 
= =  

 
∑                                (3) 

Then { }1 2, , , NA A A  has CQLF ⇔  there exists rx∗ ∈  such that ( ) 0xφ ∗ < . In this case the matrix 
( )P x∗  is a common solution to (2) where 

( )

1 2

2 1 2 1

2 1

.

n

n n

n n r

x x x
x x x

P x

x x x

+ −

−

 
 
 =
 
 
 





   



 

The function ( )xφ  is positive homogenous ( ) ( )( ) for all 0x xφ α αφ α= ≥ . Therefore the vector x  can be 
restricted to the condition 1x = . The advantage of the restriction 1x =  shows the following proposition. 

Proposition 1. Let { }: 1rS x x= ∈ =  be the unit sphere, let the function : rf →   be positive homo-  

geneous ( ) ( )( ) for all 0f x f xλ λ λ= >  and be differentiable at a S∈ . Assume that ( ) 0f a > . Then , 0g a <   

where ( ) x a
g f x

=
= −∇ , ∇  denotes the gradient and ,⋅ ⋅  denotes the scalar product. 

Proof: Since f  is positive homogeneous, it increases in the direction of the vector a: for 1λ > , 

( ) ( ) ( )f a f a f aλ λ= > . 

Therefore the directional derivative of f at a in the direction of a is positive ( ) 0.aD f a >  
On the other hand 

( ) ,aD f a f a= ∇  

and 

            , 0   or   , 0   or   , 0.f a f a g a∇ > −∇ < <                          □ 

Proposition 1 shows that under its assumption the minus gradient vector at the point a is directed into the unit 
ball (Figure 1). 

Consider the following optimization problem 

( ) minimize
subject to 1.

x
x

φ →
=
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a 

g 

 
Figure 1. The direction ( )g  of the minus gradient. 

 
Since the matrix 1

r
i ii x Q

=∑  is symmetric, the function ( )xφ  (3) can be written as 

( ) T

1 1
max .

r

i iu i
x u x Q uφ

= =

 
=  

 
∑  

The gradient vector of ( )xφ  at a point a is: 

( ) ( )T T T
1 2, , , rx a

x u Q u u Q u u Q uφ
=

∇ =                             (4) 

where u  is the unit eigenvector of 1
r

i ii a Q
=∑  corresponding to the simple maximum eigenvalue [2]. 

Well-known gradient algorithm in combination with Proposition 1 gives the following. 
Algorithm 1. 
Step 1. Take an initial point 0x S= . Compute ( )0xφ . If ( )0 0xφ ≥ , find t such that the line  

( ) ( ) 0
0

x x
l t x t xφ

=
= − ⋅∇  

intersects the unit sphere S  (Figure 2). 
Step 2. Take ( ) 0

1 0
x x

x x t xφ∗ =
= − ⋅∇  where t∗  satisfies the condition ( ) 1l t∗ = . If ( )1 0xφ < , 1x  is re-  

quired point. Otherwise find t such that the line ( ) ( ) 1
1

x x
l t x t xφ

=
= − ⋅∇  intersects the unit sphere and repeat 

the procedure. 
Example 1. Consider the switched system 

{ }1 2,x A A x∈  
where 

1 2

4 1 3 8 3 1
3 2 2 ,     9 2 0

3 0 3 6 3 6
A A

− − − −   
   = − − =   
   − −   

 

are Hurwitz stable matrices. Let 

1 2 3

1 0 0 0 1 0 0 0 1
0 0 0 ,    1 0 0 ,    0 0 0 ,
0 0 0 0 0 0 1 0 0

Z Z Z
     
     = = =     
     
       
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x0 

x1 

x2 

 
Figure 2. Searching on the unit sphere. 

 

4 5 6

0 0 0 0 0 0 0 0 0
0 1 0 ,    0 0 1    and   0 0 0 .
0 0 0 0 1 0 0 0 1

Z Z Z
     
     = = =     
     
     

 

For 1, 2, ,6i =   

( ) ( ) ( )T T
1 1 2 2 .i i i i i iQ Z A Z Z A A Z Z A= − ⊕ + ⊕ +  

Take the initial point ( )T0 1 3 ,0,0,1 3 ,0,1 3x = , then 

( )0

1 3 0 0

0 1 3 0

0 0 1 3

P x

 
 
 =
 
 
 

 

is positive definite. Eigenvalues of the matrix 
6

0
1 2 3 4 5 6

1

1 1 10 0 0
3 3 3i i

i
x Q Q Q Q Q Q Q

=

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅∑  

are 12.507,  5.364,  4.015,  0.224,  0.577,  8.566,  1.601.− − − − − −  
Maximum eigenvalue 4.015 is simple and the corresponding unit eigenvector is 

( )T0,0,0,0,0,0, 0.317, 0.911, 0.2 .61v = − − −  

Gradient of the function φ  at 0x  is 

( ) ( )0
T3.189,6.162,0.671, 8.537, 8.049, 1.60 .7

x x
xφ

=
∇ = − − −  

The vector ( ) 0
1 0

x x
x x t xφ

=
= − ⋅∇  should be on the six dimensional unit sphere. Therefore 0.0425t =  and 

( )T1 0.7129,0.2620,0.0285,0.2143, 0.3422,0. 0 .509x = −  

After 9 steps, we get ( )9 0xφ <  where 

( )T9 0.7950,0.2183, 0.0623,0.2185, 0.1254,0.50 ,28x = − −  
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( )9

0.7950 0.2183 0.0623
0.2183 0.2185 0.1254 .
0.0623 0.1254 0.5028

P x
− 

 = − 
 − − 

 

( )9P x  is a common positive definite solution for ( ) ( )T 9 9
1 1 0A P x P x A+ <  and ( ) ( )T 9 9

2 2 0A P x P x A+ < . 
The same problem solved by the algorithm from [8] gives answer only after 70 steps. We have solved a num-

ber of examples using the above gradient algorithm and by the algorithm from [8]. These examples show that 
this algorithm is faster than the algorithm from [8] in some cases. 

As the comparison with the algorithm from [8] is concerned, the algorithm from [8] at each step uses the gra-
dient only one maximum eigenvalue function, i.e. at 1 step it uses the gradient of ( )T

max 1 1P A P PAλ→ + , at 2 
step the gradient of ( )T

max 2 2P A P PAλ→ +  and so on. This procedure delays the convergence. In our algorithm 
we use the function ( )( )T

maxmaxi i iP A P PAλ→ +  and the corresponding gradient direction decreases the 
greates maximum eigenvalue. 

On the other hand an obviously advantage of the method from [8] is the choose of the step size, which is giv-
en by an exact formula, whereas our step size is determined by the intersection of the corresponding rays with 
the unit sphere. 

3. Sufficient Condition for a Stable Member 
In this section we consider a sufficient condition for a stable member which is obtained by using Bendixson’s 
theorem. 

If a matrix is symmetric then it is stable if and only if it is negative definite. Therefore if a family consists of 
symmetric matrices then searching for stable element is equivalent to the searching for negative definite one. 

On the other hand every real n n×  matrix A can be decomposed 

( )

( )

T

T

,
1 ,
2
1 .
2

A B C

B A A

C A A

= +

= +

= +

 

where B is symmetric and C is skew-symmetric. Bendixson’s theorem gives important inequalities for the ei-
genvalues of A, B and C. 

Theorem 1. ([9], p. 40) If A is an n n×  matrix, ( )T1
2

B A A= +  and 1 2, , , nλ λ λ  ( )1 2 nλ λ λ≥ ≥ ≥ ,  

1 2 nµ µ µ≥ ≥ ≥  are the eigenvalues of A, B then 

( ) ( )1    Re 1,2, . ,n i i nµ λ µ≤ ≤ =   

Bendixson’s theorem leads to the following. 
Proposition 2. Let the family ( ){ }:A q q R∈  be given and ( )B q  is the symmetric part of ( )A q . Then 
1) If there exists q R∗ ∈  such that ( )B q∗  is Hurwitz stable then ( )A q∗  is also Hurwitz stable, 
2) If there exists q R∗ ∈  such that ( )B q∗  is positive stable (all eigenvalues lie in the open right half plane) 

then ( )A q∗  is also positive stable. 
Proposition 2 gives a sufficient condition for the existence of a stable element. 
In the case of affine family 

( ) 0 1 1 2 2 l lA q A q A q A q A= + + + +  

where ( )T
1 2, , , lq q q q R= ∈ , R  is a box or lR =  , the searching procedure for stable element in ( )B q  

can be effectively solved by powerful tools of Linear Matrix Inequalities (Matlab’s LMI Toolbox). 
In the non-affine case of the family ( )A q  the gradient algorithm for a stable element in ( )B q  is applica-

ble. 
Example 2. Consider affine family 
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( )
1 2 3 1 3 1 2 3

1 2 3 1 2 3 1 3

1 2 3 1 2 3 1 2

6 3 2 4 2 5
5 3 8 2 2 2 3 3

5 5 2 4 5 2

q q q q q q q q
A q q q q q q q q q

q q q q q q q q

− − − + − − − − − 
 = + + − − − + + − 
 + − + − − + − − 

 

[ ]10,10iq ∈ −  ( )1,2,3i = . Then 

( )
( ) ( )

( ) ( )
( ) ( )

1 2 3 1 2 3 2 3

1 2 3 1 2 3 1 2 3

2 3 1 2 3 1 2

6 3 7 2 3 5 2 3 2 2
7 2 3 5 2 8 2 2 2 3 3 5 2 2 .

3 2 2 3 3 5 2 2 2

q q q q q q q q
B q q q q q q q q q q

q q q q q q q

 − − − + + − − +
 = + + − − − + − − − 
 − + − − − − − 

 

LMI method applied to the matrix inequality problem ( ) 0B q <  gives the value within a few seconds 

( )T9.4591, 3.5180, 0.0354q∗ = − −  

and ( )B q∗ , and consequently ( )A q∗  is stable. 
LMI method applied to the inequality ( ) 0B q >  gives also 

( )T2.6549,1.3609,0.9393q = −  

so the family ( )A q  contains positive stable matrix ( )A q . 
We have investigated Example 2 by the algorithm from [10] and positive answer is obtained after about 100 

seconds. 
Example 3. Consider non-affine family 

( )
1 2 2 1 3 1 3 2 3 2 3

1 3 1 2

1 1 2

2 9 3 3 3 10
17 4 4

5 11 6

q q q q q q q q q q q
A q q q q q

q q q

+ − − + − − − + + − 
 = − − + − − − 
 + + − 

 

[ ]10,10iq ∈ −  ( )1,2,3i = . Here 

( )

( )

( )

1 2 3 31 3
1 2 2

1 3 1 2
1

1 2 3 3 1 2
2

3 1 3 5
2 13

2 2
7

13 4 .
2 2

3 1 3 5 7
6

2 2

q q q qq q
q q q

q q q qB q q

q q q q q q q

 − − + −
+ − − − 

 
 + +

= − − − − 
 

− − + − + +
− 

 

 

Consider the function 

( ) ( )( ) ( )T
max 1

max .
v

G q B q v B q vλ
=

= =  

We are looking for q  satisfying ( ) 0G q < . If for some q  the maximal eigenvalue ( )( )max B qλ  is simple 
then ( )G q  is differentiable at q  and its gradient can be easily calculated (by the analogy with (4)). 

For this example, gradient method gives solution after 7 steps: 

( ) ( )T T0 70,0,0 ,  ,  5.270, 6.252,0.959q q= = −  

(see Table 1). The step size t is chosen from the decreasing condition of the function ( )G q : t must be chosen 
such that 

( ) ( ) ( )1 .k
k k k

qG q G q t G G q+ = − ∇ <  

This example has been solved by the algorithm from [10] as well. Positive answer has been obtained only after  
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Table 1. Gradient algorithm for example 3.                                                                     

k  kq  maxλ  multiplicity kq
G∇  

0 ( )0,0,0  11.079 1 ( )0.452,0.208, 0.508− −  

1 ( )0.411, 0.189,0.462−  10.632 1 ( )0.332,0.655, 0.355− −  

2 ( )0.714, 0.785,0.786−  9.910 1 ( )0.482,0.930, 0.383− −  

3 ( )1.153, 1.632,1.135−  8.634 1 ( )0.719,1.173, 0.184− −  

4 ( )1.808, 2.700,1.303−  6.712 1 ( )1.061,1.303,0.291−  

5 ( )2.774, 3.886,1.038−  3.840 1 ( )1.391,1.360,0.060−  

6 ( )4.040, 5.123,0.983−  0.444 1 ( )1.352,1.240,0.267−  

7 ( )5.270, 6.252,0.959−  −2.404   

 
55 steps. We start with ( )0 0,0,0q =  and the algorithm from [10] gives another stabilizing point 

( )T55 3.2721, 2.3853,2.3818q = − . 

The eigenvalues of ( )55A q  are 1 27.8402λ = − , 2,3 0.004 0.2326jλ = − ± . 

4. Conclusion 
In the first part of the paper, we consider the stability problem of a matrix polytope through common quadratic 
Lyapunov functions. We suggest a modified gradient algorithm. In the second part by using Bendixson’s theo-
rem a sufficient condition for a stable member is given. 
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Abstract 
This work deals with the boundary layer flow and heat transfer of an electrically conducting visc-
ous fluid over a stretching sheet. Lie-group method is applied for determining the symmetry re-
ductions for the governing equations by reducing the number of independent variables in the giv-
en system of partial differential equations by one, leading to a system of non-linear ordinary dif-
ferential equation. The resulting system is then solved numerically using shooting method coupled 
with Runge-Kutta scheme. Effects of various values of physical parameters on the horizontal and 
vertical velocities, temperature profiles, wall heat transfer and the wall shear stress (skin friction), 
have been studied and the results are plotted. Furthermore, a comparison between the present 
results with existing numerical and homotopy methods has been reported and we found that they 
are in a good agreement. 

 
Keywords 
MHD Flow, Viscous Flow, Stretching Sheet, Lie-Group, Similarity Solution 

 
 

1. Introduction 
The boundary layer flow and heat transfer of an incompressible viscous fluid over a stretching sheet appear in 
several manufacturing processes of industry such as the aerodynamic extrusion of plastic sheets, the extrusion of 
polymers, hot rolling, the cooling of metallic plates, glass-fiber production, etc., [1]. 

Sakiadis [2] presented the pioneering work in this field. He investigated the flow induced by a semi-infinite 
horizontally moving wall in an ambient fluid. 

Crane [3] studied the flow over a linearly stretching sheet in an ambient fluid and gave a similarity solution in 
closed analytical form for the steady two-dimensional problem. He presented a closed form exponential solution 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.61009
http://dx.doi.org/10.4236/am.2015.61009
http://www.scirp.org
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for the planar viscous flow of linear stretching case. 
Gupta and Gupta [4] investigated the effect of mass transfer on the Crane flow. They analyzed the viscous 

flow and heat transfer by an isothermal stretching sheet with suction/injection. 
Chiam [5] studied the boundary layer flow due to a plate stretching with a power-low velocity distribution in 

presence of a magnetic field. To yield similarity equations, a special form of the magnetic field is chosen. He 
presented linearized solutions for the case of large magnetic parameters and derived an expression for the skin 
friction coefficient using Crocco’s transformation and compared it numerically using Runge-Kutta shooting al-
gorithm with Newton iteration. 

Vajravelu [6] studied flow and heat transfer in a viscous fluid over a non-linear stretching sheet. In his study, 
the heat transfer is analyzed when the sheet is maintained at a constant temperature and the viscous dissipation is 
neglected. He used a fourth-order Runge-Kutta integration scheme to solve the resulting nonlinear differential 
equations. 

Cortell [7] presented a numerical analysis for the flow and heat transfer in a viscous fluid over a nonlinear 
stretching sheet by employing a novel numerical procedure. In his work, he studied two cases for the nonlinear 
stretching sheet, with constant surface temperature and with prescribed surface temperature. The resulting non-
linear ordinary differential equations after converting the governing partial differential equations by a similarity 
transformation are solved using Runge-Kutta scheme. 

Abbas and Hayat [8] studied the radiation effects on the magnetohydrodynamic (MHD) flow of an incom-
pressible viscous fluid in a porous space. In their study, they extended the analysis of Cortell [7] by considering 
a MHD flow, analyzed the flow in a porous medium, included the radiation effects and provided analytic solu-
tion namely homotopy analysis method (HAM) instead of numerical technique applied in [7]. Hayat et al. [9] 
investigated the magnetohydrodynamic (MHD) boundary layer flow by employing the modified Adomian de-
composition method and the Padé approximation and developed the series solution of the governing non-linear 
problem. 

Ghotbi [10] considered the problem of the boundary layer flow of an incompressible viscous fluid over a non- 
linear stretching sheet. In order to obtain analytical solution of the governing nonlinear differential equations, 
HAM is applied. 

Mehmood et al. [11] reported the corrections to HAM results presented in [10]. A comparison between their 
HAM solution and the exact solution obtained by Pavlov [12] was made and it was in a good agreement. 

Javed et al. [13] investigated the boundary layer flow and heat transfer analysis of electrically conducting 
viscous fluid over a nonlinearly shrinking sheet. They used a similarity transformation to reduce the governing 
partial differential equations to a set of nonlinear ordinary differential equations. The resulting system of equa-
tions is then solved numerically using an implicit finite difference scheme known as Keller-box method. 

Fathizadeh et al. [14] employed the modification of the homotopy perturbation method to solve the MHD 
boundary-layer equations. In their work, the viscous fluid is electrically conducting in the presence of a uniform 
applied magnetic field and the induced magnetic field is neglected for small magnetic Reynolds number. They 
obtained the similarity solutions of ordinary differential equation resulting from the momentum equation. Some 
numerical comparisons among the new modified homotopy perturbation method, the standard homotopy per-
turbation, the exact solution and the shooting method are obtained. 

In this paper, we shall investigate the solution of the MHD boundary layer flow for an incompressible viscous 
fluid over a sheet stretching according to a power-law velocity. Lie-group theory is applied to the equations of 
motion for determining symmetry reductions of partial differential equations [15]-[30]. The resulting system of 
nonlinear differential equations is then solved numerically using shooting method coupled with Runge-Kutta 
scheme. Our results are compared with the work of [5]-[14]. 

2. Mathematical Formulation of the Problem 
We consider the MHD flow over a flat plate coinciding with the plane 0y = , of an incompressible viscous 
fluid with heat transfer. The wall is stretched horizontally by applying on both sides two equal and opposite 
forces along the x -axis to keep the origin fixed. The fluid is electrically conducting under the influence of an 
applied magnetic field ( )B x  in the y -direction normally to the stretching sheet, Figure 1. 

The induced magnetic field is neglected. Under these assumptions, the continuity, momentum and energy eq-
uations become 
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Figure 1. Physical model and coordinate system. 

 

The continuity equation : 0,u v
x y
∂ ∂

+ =
∂ ∂

                                   (2.1) 

( )22

2The momentum equation : ,
B xu u uu v u

x y y
σ

ν
ρ

∂ ∂ ∂
+ = −

∂ ∂ ∂
                 (2.2) 

2

2The energy equation : ,p
T T Tc u v
x y y

ρ α
 ∂ ∂ ∂

+ = ∂ ∂ ∂ 
                         (2.3) 

where u  and v , are the velocity components in the x  and y  directions, respectively, ν  is the kinematic 
viscosity, ρ  is the fluid density, σ  is the electrical conductivity of the fluid, pc  is the specific heat of the 
fluid at constant pressure, α  is the thermal conductivity of the fluid, and T  is the temperature. 

The magnetic field is defined by 

( )
1

2
0

n

B x B x
−

= ,                                 (2.4) 

where 0B  and n  are constants. 
The boundary conditions are 

( )
( )
i   ,   0,     at  0,

ii   0,     as  ,

n
wu cx v T T y

u T T y∞

= = = =

→ → →∞
                       (2.5) 

where c  is a constant, wT  is the uniform temperature of the stretching sheet and T∞  is the temperature at 
large distance from the wall, where wT T∞> . 

The variables in Equations (2.1)-(2.5) are dimensionless according to 

( ) ( )
1 1

1 1
,     ,     ,     ,     

2 2 w

n c n T Tcx ux y y u v v T
U U c T Tν ν

∞

∞

+ + −
= = = = =

−
,          (2.6) 

where 1U  is the characteristic velocity. 
Substitution from Equation (2.6) into Equations (2.1)-(2.3) gives 

0,u v
x y
∂ ∂

+ =
∂ ∂

                                        (2.7) 

2
1

2

1
2

nu u n uu v Kx u
x y y

−∂ ∂ + ∂ + = − ∂ ∂ ∂ 
,                      (2.8) 

2

2

1 1
2 Pr

T T n Tu v
x y y

∂ ∂ + ∂ + =  ∂ ∂ ∂ 
,                          (2.9) 
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where, 
2
0B

K
c

σ
ρ

=  is a constant, Pr pcµ
α

=  is the Prandtl number, and µ νρ=  is the dynamic viscosity. 

Without losing of generality, let, 
1

1 1
nU

c

−
  = 
 

. 

The boundary conditions Equation (2.5) will be 

( )
( )
i   ,   0,   1  at  0,

ii   0,   0  as  .

nu x v T y

u T y

= = = =

→ → →∞
                      (2.10) 

From the continuity Equation (2.7) there exist stream function ( ),x yΨ  such that, 

( ) ( ), ,     , ,u x y v x y
y x

∂Ψ ∂Ψ
= = −
∂ ∂

                        (2.11) 

which satisfies Equation (2.7) identically. 
Substituting from Equation (2.11) into Equations (2.8)-(2.9), yields 

11
2

n
y xy x yy yyy y

n Kx −+ Ψ Ψ −Ψ Ψ = Ψ − Ψ 
 

,                    (2.12) 

1 1
2 Pry x x y yy

nT T T+ Ψ −Ψ =  
 

,                         (2.13) 

where subscripts denote partial derivatives. 
The boundary conditions Equation (2.8) will be 

( )
( )
i   ,   0,   1  at  0,

ii   0,   0  as  .

n
y x

y

x T y

T y

Ψ = Ψ = = =

Ψ → → →∞
                    (2.14) 

3. Solution of the Problem 
Firstly, we derive the similarity solutions using Lie-group method under which Equations (2.12)-(2.13) and the 
boundary conditions Equation (2.14) are invariant, and then we use these symmetries to determine the similarity 
variables. 

Consider the one-parameter ( )ε  Lie group of infinitesimal transformations in ( ), ; ,x y TΨ  given by 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

2

2

2

2

, ; , ,

, ; , ,

, ; , ,

, ; , ,

x x X x y T O

y y Y x y T O

x y T O

T T x y T O

ε ε

ε ε

εη ε

εζ ε

∗

∗

∗

∗

= + Ψ +

= + Ψ +

Ψ = Ψ + Ψ +

= + Ψ +

                       (3.1) 

where “ ε ” is the group parameter. 
A system of partial differential Equations (2.12)-(2.13) is said to admit a symmetry generated by the vector 

field 

X Y
x y T

η ζ∂ ∂ ∂ ∂
Γ ≡ + + +

∂ ∂ ∂Ψ ∂
,                       (3.2) 

if it is left invariant by the transformation ( ) ( ), ; , , ; ,x y T x y T∗ ∗ ∗ ∗Ψ → Ψ . 
The solutions ( ),x yΨ = Ψ  and ( ),T T x y= , are invariant under the symmetry Equation (3.2) if 

( )( ) ( ), 0,    when   ,x y x yΨΦ = Γ Ψ −Ψ = Ψ = Ψ ,               (3.3) 
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and 

( )( ) ( ), 0,    when   ,T T T x y T T x yΦ = Γ − = = .                   (3.4) 

Assume, 

1
1

1
2

n
y xy x yy yyy y

n Kx −+ ∆ = Ψ Ψ −Ψ Ψ − Ψ + Ψ 
 

,                   (3.5) 

2
1 1

2 Pry x x y yy
nT T T+ ∆ = Ψ −Ψ − 

 
.                             (3.6) 

A vector Γ  given by Equation (3.2), is said to be a Lie point symmetry vector field for Equations (2.12)- 
(2.13) if 

[ ] ( )3

0
0,    1, 2,

j
j j

∆ =
Γ ∆ = =                              (3.7) 

where, 

[ ]3  

 ,

x y x y

x y x y

xy yy yy yyy

xy yy yy yyy

X Y
x y T T T

T

η ζ η η ζ ζ

η η ζ η

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
Γ ≡ + + + + + + +

∂ ∂ ∂Ψ ∂ ∂Ψ ∂Ψ ∂ ∂

∂ ∂ ∂ ∂
+ + + +

∂Ψ ∂Ψ ∂ ∂Ψ

           (3.8) 

is the third prolongation of Γ . 
To calculate the prolongation of the given transformation, we need to differentiate Equation (3.1) with respect 

to each of the variables, x  and y . To do this, we introduce the following total derivatives 

,

,
x x y

y y x

x x x x T xx xx T xy

y y y y T yy yy T xy

D T T

D T T
Ψ Ψ Ψ

Ψ Ψ Ψ

≡ ∂ +Ψ ∂ + ∂ +Ψ ∂ + ∂ +Ψ ∂ +

≡ ∂ +Ψ ∂ + ∂ +Ψ ∂ + ∂ +Ψ ∂ +





                  (3.9) 

Equation (3.7) gives the following linear partial differential equation 

( ) 2 1 11 0
2

n x y n xy yy yyy
y yy xy y x

nn KXx Kxη η η η η− − +  − Ψ − Ψ + Ψ + + Ψ − Ψ − =    
,       (3.10) 

1 1 0.
2 Pr

x y x y yy
y x y x

nT Tη η ζ ζ ζ+ − + + Ψ − Ψ − = 
 

                                (3.11) 

The components xη , yη , xζ , yζ , xyη , yyη , yyζ , yyyη  can be determined from the following expres-
sions 

,

,

,

,

S
S x S y S

S
S x S y S

JS J
S Jx S Jy S

JS J
S Jx S Jy S

D D X D Y

D T D X T D Y

D D D

D T D X T D Y

η η

ζ ζ

η η φ ζ

ζ ζ

= −Ψ −Ψ

= − −

= −Ψ −Ψ

= − −

                         (3.12) 

where S  and J  are stand for x  and y . 
Invariance of the boundary conditions Equation (2.14i), yields 

0ζ = .                                    (3.13) 

Substitution from Equations (3.12)-(3.13) into Equation (3.11) will lead to a large expression, then, equating 
to zero the coefficients of xyT , y xyTΨ , y xyT T , y x yT TΨ , x y yTΨ Ψ  and xT , gives 



H. S. Hassan 
 

 
83 

0y T T yX X X Y Y ηΨ Ψ= = = = = = .                        (3.14) 

Substitution from Equation (3.14) into Equation (3.11) will remove many terms. Then, equating to zero the 
coefficients of yT  and x yTΨ , leads to the following system of determining equations: 

1 1 0,
2 Prx yy

n Yη + − = 
 

                             (3.15) 

0x yX Y ηΨ− − = .                                 (3.16) 

Again, substitution from Equations (3.12)-(3.16) into Equation (3.10) will remove many terms. Then, equat-
ing to zero the coefficients of yT , x yΨ Ψ , yyΨ , ( )2

yΨ , ( )2
x yΨ Ψ  and yΨ , gives 

0T yy x xyY Yη η ηΨΨ= = = = = ,                          (3.17) 

and 

2 0
1 yX xY

n
 − = − 

.                              (3.18) 

Solving the system of Equations (3.14)-(3.18) in view of the invariance of the boundary conditions Equation 
(2.14), yields 

1
1 2 1 3

2 1,     ,     ,     0.
1 1

c x nX Y c y c c c
n n

η ζ+ = = + = Ψ + = − − 
             (3.19) 

The system of nonlinear Equations (2.12)-(2.13) has the three-parameter Lie group of point symmetries gen-
erated by 

1 2 3
2 1 ,        and    .

1 1
x ny
n x y n y
∂ ∂ + ∂ ∂ ∂

Γ ≡ + + Ψ Γ ≡ Γ ≡
− ∂ ∂ − ∂Ψ ∂ ∂Ψ

           (3.20) 

The one-parameter group generated by 1Γ  consists of scaling, whereas 2Γ  and 3Γ  consists of translation. 
The commutator table of the symmetries is given in Table 1, where the entry in the i-th row and j-th column is 
defined as ,i j i j j i Γ Γ = Γ Γ −Γ Γ  . 

The finite transformations corresponding to the symmetries 1Γ , 2Γ  and 3Γ  are respectively 

1 11

2 1
*1 1

1

2 2

3 3

: e ,     e ,        e ,       

: ,             ,     ,               

: ,             ,             ,       

n
n nx x y y T T

x x y y T T

x x y y T T

ε εε

ε

ε

+
∗ ∗ ∗− −

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗


Γ = = Ψ = Ψ = 

Γ = = + Ψ = Ψ = 
Γ = = Ψ = Ψ + = 


,                  (3.21) 

where 1ε , 2ε  and 3ε  are the group parameters. 
We look for solutions that invariant under the linear combination of the operators given by Equation (3.20). 

By determine the one-dimensional optimal system of subalgebras of the given partial differential equation, all of 
these solutions can be obtained. Olver’s approach given in [17] starts out by computing the commutators of the 
 

Table 1. Table of commutators of the basis operators. 

 1Γ  2Γ  3Γ  

1Γ  0 2−Γ  3

1
1

n
n

+
− Γ

−
 

2Γ  2Γ  0 0 

3Γ  3

1
1

n
n

+
Γ

−
 0 0 
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symmetry Lie algebra Equation (3.20) and then obtaining the adjoint representations. The adjoint action on Lie 
algebras is defined by the adjoint operator given by 

( )expAd e ei i
i

a a
j ja

− Γ Γ
Γ Γ = Γ ,                              (3.22) 

where, a  is a small parameter. 
In terms of Lie brackets using Campbell-Baker-Hausdorff theorem [31], this operator can be rewritten as 

( )

2

expAd , , ,
2!i j j i j i i ja
aaΓ

    Γ = Γ − Γ Γ + Γ Γ Γ −      .                  (3.23) 

In our problem, 1 2 3, ,Ω = Γ Γ Γ  is the Lie algebra associated with the symmetry group. The calculations of 
the adjoint action are summarized in Table 2. 

To construct the one-dimensional optimal system of Ω , consider a general element of Ω  given by 

1 1 2 2 3 3G a a a= Γ + Γ + Γ ,                                (3.24) 

for some constants 1a , 2a  and 3a , and probe whether G  can be transformed to a new element G′  under 
the general adjoint action, where G′  takes a simpler form than G , [32]. 

Let, 

( ) 1 1 2 2 3 3expAd
iaG G a a aΓ

′ ′ ′ ′= = Γ + Γ + Γ .                         (3.25) 

We make appropriate choice of a  such that the ia′ ’s can be made 0 or 1. We end up with simpler forms of 
G  that will constitute the one-dimensional optimal system. 

By substitution 2iΓ = Γ  in Equation (3.25) and dropping the primes, we get 

( )1 1 2 1 2 3 3G a a aa a′ = Γ + − Γ + Γ .                            (3.26) 

Now, Equation (3.26) prompts the consideration of the cases 1 0a ≠  and 1 0a = . 
Case (1): 1 0a ≠  
By choosing ( )2 1a a a=  and scaling the resulting operator by 1a , Equation (3.26) will be 

1 3 3G a′ = Γ + Γ .                                    (3.27) 

We can further consider the subcases 3 0a ≠  and 3 0a = . Therefore, an optimal system of one-dimensional 
subalgebra for this case is given by { }1 1 3, δΓ Γ + Γ , where, Rδ ∈ . 

Case (2): 1 0a =  
Using repeatedly the adjoint operation to simplify G , an optimal system of one-dimensional subalgebra for 

this case is given by { }2 2 3, γΓ Γ + Γ , where, Rγ ∈ . 
In summary, the optimal system of one-dimensional subalgebras of the symmetry Lie algebra is 

{ }1 2 1 3 2 3, , ,δ γΘ = Γ Γ Γ + Γ Γ + Γ .                            (3.28) 

Table 3 shows the solution of the invariant surface conditions associated with the optimal system. 
(i) Solutions invariant under 1Γ : 
The characteristic 

 
Table 2. Table of adjoint representations. 

Ad 1Γ  2Γ  3Γ  

1Γ  1Γ  2eaΓ  
1
1

3e
n a
n

+
− Γ  

2Γ  1 2aΓ − Γ  2Γ  3Γ  

3Γ  
1 3

1
1

n a
n

+
Γ − Γ

−
 2Γ  3Γ  
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Table 3. Solutions of the invariant surface conditions associated with the optimal system. 

Generator Characteristic ( ), TΨΦ = Φ Φ  Solutions of the invariant surface conditions 

1Γ  1 2
1 1 x y

n x y
n nΨ

+
Φ = Ψ − Ψ − Ψ

− −
, 2

1T x y

x T yT
n

Φ = − −
−

 ( )
1

2
n

x F λ
+

Ψ = , ( )T θ λ= , 
1

2
n

yxλ
−

=  

2Γ  yΨΦ = −Ψ , T yTΦ = −  ( )xΨ = Ψ , ( )T T x=  

1 3δΓ + Γ  1 2
1 1 x y

n x y
n n

δΨ

+
Φ = Ψ + − Ψ − Ψ

− −
, 2

1T x y

x T yT
n

Φ = − −
−

 ( )
1

2 1
1

n nx F
n

λ δ
+ −

Ψ = −
+

, ( )T θ λ= , 
1

2
n

yxλ
−

=  

2 3γΓ + Γ  yγΨΦ = −Ψ , T yTΦ = −  ( )y g xγΨ = + , ( )T T x=  

 
( ), TΨΦ = Φ Φ ,                                 (3.29) 

has the components 

1 2 2,     .
1 1 1x y T x y

n x xy T yT
n n nΨ

+
Φ = Ψ − Ψ − Ψ Φ = − −

− − −
                 (3.30) 

Therefore, the general solutions of the invariant surface conditions Equations (3.3)-(3.4) are 

( ) ( )
1

2 ,     ,
n

x F Tλ θ λ
+

Ψ = =                             (3.31) 

where 
1

2
n

yxλ
−

=  is the similarity variable. 
Substitution from Equation (3.31) into Equations (2.12)-(2.13), yields 

23 2

3 2

d d d d 0
d dd d

F F F FF Mβ
λ λλ λ

 + − − = 
 

,                        (3.32) 

2

2

d dPr 0
dd

Fθ θ
λλ

+ = ,                                       (3.33) 

where, 
2

1
n

n
β =

+
 and 

2
1

KM
n

=
+

 is the magnetic parameter, where M  is the Hartmann number. 

The boundary conditions Equation (2.14) will be 

( )

( )

di   1,   0,   1  at  0,
d
dii   0,   0  as  .
d

F F

F

θ λ
λ

θ λ
λ

= = = =

→ → →∞
                        (3.34) 

(ii) Solutions invariant under 2Γ : 
The characteristic Equation (3.29) has the components 

,     .y T yTΨΦ = −Ψ Φ = −                               (3.35) 

Therefore, the general solutions of the invariant surface conditions Equations (3.3)-(3.4) are 

( ) ( ),     .x T T xΨ = Ψ =                               (3.36) 

Practically, Equation (3.36) is a solution of Equations (2.12)-(2.13), even though it is not a particularly inter-
esting one which contradicts the boundary conditions Equation (2.14). So, no solutions are invariant under the 
group generated by 2Γ . 

(iii) Solutions invariant under δ1 3Γ + Γ : 
The characteristic Equation (3.29) has the components 
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1 2 2,     .
1 1 1x y T x y

n x xy T yT
n n n

δΨ
+

Φ = Ψ + − Ψ − Ψ Φ = − −
− − −

                 (3.37) 

Therefore, the general solutions of the invariant surface conditions Equations (3.3)-(3.4) are 

( ) ( )
1

2 1 ,     ,
1

n nx F T
n

λ δ θ λ
+ −

Ψ = − =
+

                           (3.38) 

where 
1

2
n

yxλ
−

=  is the similarity variable, which gives the same solutions invariant under 1Γ . 
(iv) Solutions invariant under γ2 3Γ + Γ : 
The characteristic Equation (3.29) has the components 

,     .y T yTγΨΦ = −Ψ Φ = −                                (3.39) 

Therefore, the general solutions of the invariant surface conditions Equations (3.3)-(3.4) are 

( ) ( ),     .y g x T T xγΨ = + =                               (3.40) 

This contradicts the boundary conditions Equation (2.14). So, no solutions are invariant under the group gen-
erated by 2 3γΓ + Γ . 

4. Results and Discussion 
The system of non-linear differential Equations (3.32)-(3.33) with the boundary conditions Equation (3.34) is 
solved numerically using the shooting method, coupled with Runge-Kutta scheme. From Equations (2.11) and 
(3.31), we get 

1
2

d 1 1 d,     
d 2 1 dn n

u F v n n FU V F
nx

x
λ

λ λ−

+  −  = = = = − +   +  
.                   (4.1) 

The effects of the parameter β  which is a function of the power-index n , the Hartmann number M , 
and the Prandtl number Pr  on the horizontal and vertical velocities, and temperature profiles are illustrated in 
Figures 2-8. Moreover, the numerical values of the skin friction ( )0f ′′  (wall shear stress) and rate of heat 
transfer ( )0θ ′−  are tabulated in Tables 4-11, for different values of parameters of interest. 

4.1. The Horizontal Velocity 
Figure 2 illustrates the effect of β  on the profile of the horizontal velocity U . It is noted that, the horizontal 
velocity decreases as β  increases both for 0M =  (hydrodynamic fluid) and 1M =  (hydromagnetic fluid) 
but this decreasing is smaller with 1M =  compared with the case 0M = , that is because the magnetic force 
acts as a resistance to the flow, [13]. Also, the boundary layer thickness decreases by increasing β  and the 
flow makes the stretching surface rougher. 

Figure 3 describes the effect of M  on the behavior of the horizontal velocity U . As seen, by increasing the 
magnetic field, the horizontal velocity and the thickness of the boundary layer decrease. From Figure 3(a) we 
can conclude that, for 1.5β = −  with small values of M  less than 0.4 near the surface, the behavior of the ho-
rizontal velocity is differ from the well-known cases, that is because the horizontal velocity increases to a max-
imum values before it starts to decrease. 

4.2. The Vertical Velocity 
Figure 4 shows the behaviour of the vertical velocity V  for 1.5β = , over a range of the magnetic parameter 
M . As seen, the absolute value of the vertical velocity increases with the decrease of M . 

Figure 5 illustrates the behaviour of the vertical velocity V  for 1M =  over a range of the parameter β . 
As seen, the absolute value of the vertical velocity increases with the increase of β . 
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   (a)                                                   (b) 

Figure 2. Horizontal velocity profiles over a range of β  with Pr 0.7=  for: (a) 0M = ; (b) 1M = . 
 

         
   (a)                                                   (b) 

Figure 3. Horizontal velocity profiles over a range of M  with Pr 0.7=  for: (a) 1.5β = − ; (b) 1.5β = . 

4.3. The Temperature 
Figure 6 illustrates the variation of the temperature profiles θ  for 1.5β = with Prandtl number Pr 0.7= , 
over a range of M . We notice that, the temperature profiles increases as M  increases. 

Figure 7 describes the distribution of the temperature θ  for 0M =  with Pr 1.0= , over a range of the 
nonlinear stretching parameter n . As seen, with an increase in n , the temperature increases. 

Figure 8 shows the variation of the temperature profiles θ  for 1.5β =  with 0.0M = , over a range of the 
Prandtl number Pr . As seen, the temperature decreases as the Prandtl number increases which consistent with 
the fact that the thermal boundary layer thickness decreases as the Prandtl number Pr  increases. 

4.4. Wall Shear Stress 
The dimensionless wall shear stress ( )0F ′′  (skin friction) is computed for different values of the Hartmann 
number M  and the parameter β . Table 4 shows the numerical values of the skin friction ( )0F ′′  for dif-
ferent values of the nonlinear stretching parameter n  with 0.0M = . As seen, the absolute value of the dimen-
sionless wall shear stress ( )0F ′′  increases with increasing n , that is because by increasing the values of n   
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Figure 4. Vertical velocity profiles over a range of M  with 

1.5β =  and Pr 0.7= . 
 

 
Figure 5. Vertical velocity profiles over a range of β  with 

1M =  and Pr 0.7= . 
 
the layer thickness decreases with an increase in the skin friction at the wall which may cause to lose the 
smoothness of the stretching wall. So, by increasing the value of n , the flow makes the stretching surface 
rougher. An excellent agreement between our work and other works is absorbed. 

Tables 5-8 show the numerical values of ( )0F ′′  over a range of M  with at 1,  1.5,  5,  1β = −  and 
1.5β = − , respectively. As M  increases, the absolute value of the dimensionless wall shear stress ( )0F ′′  

increases and the thickness of the boundary layer decreases. From Table 8, we noticed that, for small values of 
M  less than 0.4, ( )0F ′′  decreases as M  increases which is consistent with Figure 3(a). Again, an excel-
lent agreement is achieved between our work and other works. No convergent value for ( )0F ′′  is obtained by 
Hayat et al. [9] when 1.5β = −  at 0.0M = , see Table 8. 
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Figure 6. Temperature profiles over a range of M  with 1.5β =  and Pr 0.7= . 

 

 
Figure 7. Temperature profiles over a range of n  with 0.0M =  and Pr 1.0= . 

 

 
Figure 8. Temperature profiles over a range of Pr  with 1.5β =  and 0.0M = . 
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Table 4. Comparison between the values of ( )0F ′′  for different n  with 0.0M = . 

Present work Javed et al. [13] Abbas & Hayat [8] Cortell [7] Vajravelu [6] n  

−0.6275556 −0.627554 −0.627547 −0.627547 −1.0000 0.00 

−0.7668370 −0.766837 −0.766837 −0.766758  0.20 

−0.8895435 −0.889543 −0.889544 −0.889477  0.50 

−0.9539564 −0.953956 −0.953956 −0.953786  0.75 

−1.0000000 −1.000000 −1.000000 −1.000000  1.00 

−1.0616011 −1.061601 −1.061601 −1.061587  1.50 

−1.1485931 −1.148593 −1.148593 −1.148588  3.00 

−1.1944906    −1.1945 5.00 

−1.2168503 −1.216850 −1.216851 −1.216847  7.00 

−1.2348750 −1.234875 −1.234874 −1.234875 −1.2348 10.00 

−1.2574230 −1.257423 −1.257423 −1.257418  20.00 

−1.2767731 −1.276773 −1.276773 −1.276768  100.00 

 
Table 5. Comparison between the values of ( )0F ′′  for different M  at 1.0β = . 

Present work Fathizadeh et al. [14] Hayat et al. [9] Mehmood et al. [11] Ghotbi [10] Pavlov [12] M  

−1.0000000 −1.00000 −1.00000   −1.00000 0 

−1.4142136 −1.41421 −1.41421 −1.41421 −1.41421 −1.41421 1 

−1.7320508   −1.73205  −1.73205 2 

−2.0000000   −2.00000  −2.00000 3 

−2.2360680   −2.23607  −2.23607 4 

−2.4494897 −2.44948 −2.44948 −2.44948 −2.44948 −2.44948 5 

−3.3166248 −3.31662 −3.31662 −3.31606 −3.31662 −3.31662 10 

−4.0000000   −4.00100  −4.00000 15 

−7.1414284 −7.14142 −7.14142   −7.14142 50 

−10.0498756 −10.0499 −10.04987   −10.04987 100 

−22.3830293 −22.383 −22.38302   −22.38302 500 

−31.6385840 −31.6386 −31.63858   −31.63858 1000 

 
Table 6. Comparison between the values of ( )0F ′′  for different M  at 1.5β = . 

Present work Fathizadeh et al. [14] Hayat et al. [9] Ghotbi [10] Chiam [5] M  

−1.1486025 −1.1547 −1.1547  −1.14860 0 

−1.5252751 −1.5252 −1.5252 −1.5252 −1.52527 1 

−2.5161550 −2.5161 −2.5161 −2.5161 −2.51615 5 

−3.3663151 −3.3663 −3.3663 −3.3663 −3.36631 10 

−7.1647100 −7.1647 −7.1647  −7.16471 50 

−10.0664392 −10.0776 −10.0776  −10.0664 100 

−22.3904733 −22.3904 −22.3904   500 

−31.6438511 −31.6438 −31.6438   1000 
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Table 7. Comparison between the values of ( )0F ′′  for different M  at 5β = . 

Present work Fathizadeh et al. [14] Hayat et al. [9] Chiam [5] M  

−1.9025302 −1.9098 −1.9098 −1.90253 0 

−2.1529005 −2.1528 −2.1528 −2.15290 1 

−2.9414400 −2.9414 −2.9414 −2.94144 5 

−3.6956600 −3.6956 −3.6956 −3.69566 10 

−7.3256104 −7.3256 −7.3256 −7.32561 50 

−10.1816304 −10.1816 −10.1816 −10.1816 100 

−22.4425144 −22.4425 −22.4425  500 

−31.6806970 −31.6806 −31.6806  1000 

 
Table 8. Comparison between the values of ( )0F ′′  for different M  at 1.0β = −  and 1.5β = − . 

1.5β = −  1.0β = −  
M  

Present work Hayat et al. [9] Chiam [5] Present work Hayat et al. [9] Chiam [5] 

0.7272522  0.72725 −0.0000010 0 0 0 

0.4510704  0.45107 −0.1321503  −0.13215 0.1 

0.2303800  0.23038 −0.2478346  −0.24783 0.2 

0.0520301  0.05203 −0.3500590  −0.35006 0.3 

−0.0950601  −0.09506 −0.4414001  −0.44140 0.4 

−0.2192231  −0.21922 −0.5239522  −0.52395 0.5 

−0.6529817 −0.6532 −0.65298 −0.8511102 −0.8511 −0.85111 1 

−2.0852400 −2.0852 −2.08524 −2.1628674 −2.1628 −2.16287 5 

−3.0562320 −3.0562 −3.05623 −3.1100280 −3.1100 −3.11003 10 

−7.0238680 −7.0238  −7.0475366 −7.0475  50 

−9.9666500 −9.9666 −9.96665 −9.9833469 −9.9833 −9.98335 100 

−22.3457703 −22.3457  −22.3532277 −22.3532  500 

−31.6122354 −31.6122  −31.6175069 −31.6175  1000 

 
Table 9. Comparison between the values of ( )( )0θ′−  for different values of Pr  and n  with 0.0M = . 

n  

Pr 1.0=  Pr 5.0=  

Cortell 
[7] 

Abbas & Hayat  
[8] 

Javed et al. 
[13] Present work Cortell 

[7] 
Abbas & Hayat 

[8] 
Javed et al. 

[13] Present work 

0.2 0.610262 0.610217 0.610202 0.6102172 1.607175 1.607925 1.607788 1.6077882 

0.5 0.595277 0.595201 0.595201 0.5952010 1.586744 1.586833 1.586783 1.5867823 

1.5 0.574537 0.574729 0.574730 0.5747321 1.557463 1.557672 1.557696 1.5576960 

3 0.564472 0.564661 0.564662 0.5646656 1.542337 1.542145 1.543182 1.5431820 

10 0.554960 0.554878 0.554879 0.5548930 1.528573 1.528857 1.528930 1.5289301 
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Table 10. Comparison between the values of ( )( )0θ′−  at 0.0M =  for different values of Pr  and n . 

Pr 7.0=  Pr 0.71=  
n  

Present work Vajravelu [6] Present work Vajravelu [6] 

1.8953002 1.8953 0.4590330 0.4590 1.00 

1.8610243 1.8610 0.4394328 0.4394 5.00 

1.8541054 1.8541 0.4357003 0.4357 10.00 

 
Table 11. Numerical values of ( )( )0θ′−  for different M  at 1.0β = −  and Pr 0.7= . 

( )0θ ′−  M  

0.5644206 0.0 

0.5454137 0.1 

0.5280396 0.2 

0.5124372 0.3 

0.4983892 0.4 

0.4856431 0.5 

0.4416029 1.0 

0.4039894 5.0 

4.5. Wall Shear Stress 
Table 9 illustrates the numerical values of the surface heat flux ( )( )0θ ′−  for different values of the Prandtl 
number Pr  and nonlinear stretching parameter n  with 0.0M = . The thickness of thermal boundary layer 
becomes thinner when Pr  increases and this causes an increase in the gradient of the temperature, so, the sur-
face heat flux ( )( )0θ ′−  increases as Pr  increases. As seen, the results of the present work are in very good 
agreement with other works, Table 9. 

Also, from Table 9, it is noticed that, for fixed value of Pr , the surface heat flux ( )( )0θ ′−  decreases as 
nonlinear stretching parameter n  increases. Also, the value of ( )( )0θ ′−  is positive which is consistent with 
the fact that the heat flows from the sheet surface to the fluid as long as wT T∞> . 

Another comparison between the present work with the work of Vajravelu [6] is made, see Table 10. 
Table 11 illustrates the numerical values of the surface heat flux ( )( )0θ ′−  for different values of the M

with 1.0β = −  and Pr 0.7= . As seen, the surface heat flux ( )( )0θ ′−  decreases as M  increases. 

5. Conclusion 
We have used Lie-group method to obtain the similarity reductions of the MHD boundary-layer equations. By 
determining the transformation group under which the given system of partial differential equations and its 
boundary conditions are invariant, we obtained the invariants and the symmetries of these equations. In turn, we 
used these invariants and symmetries to determine the similarity variables that reduced the number of indepen-
dent variables. The resulting system of ordinary differential equations was solved numerically using shooting 
method coupled with Runge-Kutta scheme and the results were plotted. The numerical values of the wall shear 
stress (skin friction) and surface heat flux were compared with those obtained by other works and they were 
found in a good agreement. 
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Abstract 
The inverse problem of magnetoencephalography (MEG) seeks the neuronal current within the 
conductive brain that generates a measured magnetic flux in the exterior of the brain-head system. 
This problem does not have a unique solution, and in particular, it is not even possible to identify 
the support of the current if it extends over a three-dimensional set. However, a localized current 
supported on a zero-, one- or two-dimensional set can in principle be identified. In the present 
work, we demonstrate an analytic algorithm that is able to recover a one-dimensional distribution 
of current from the knowledge of the exterior magnetic flux field. In particular, we consider a 
neuronal current that is supported on a small line segment of arbitrary location and orientation in 
space, and we reduce the identification of its characteristics to a nonlinear algebraic system. A se-
ries of numerical tests show that this system has a unique real solution. A special case is easily 
solved via the use of trivial algebraic operations. 

 
Keywords 
Magnetoencephalography, Current Identification 

 
 

1. Introduction 
The brain is a conducting material and therefore, every generated neuronal current is accompanied by an induc-
tion current. Consequently, when we measure the magnetic flux density outside the head we actually measure 
the effects of both the neuronal as well as the induction current. This is the main problem with the inverse prob-
lem of magnetoencephalography, the fact that the induction current “hides” somehow the primary neuronal ex-
citation. An excellent review of the electromagnetic activity of the human brain can be found in [1], as well as in 
the book by Malmivuo and Plonsey [2]. 

Exactly a hundred and sixty years ago Helmholtz [3] showed that it is not possible to recover an electric cur-
rent within a conductor from knowledge of the magnetic flux generated outside the conductor. However, a com-
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plete quantitative characterization of what part of the current is possible to be identified was a topic of intense 
investigation during the last two decades and the main results can be found in [4]. Fokas proved that, indepen-
dently of the geometry of the conductor, we cannot recover more than one out of the three functions that define 
the current, in the case of electroencephalography, and no more than two such functions in the case of magne-
toencephalography. Even in the case that we have complete data from both modalities, still one out of the three 
functions is not recoverable. Another related question concerns localized neuronal currents. If the current is re-
stricted to a small subset of the conducting brain tissue, is it possible to identify the characteristics of this current 
and especially its extent and its location? Albanese and Monk [5] proved that such localization is not possible. 
More precisely they showed that it is impossible to find the support of the current if the current occupies a three- 
dimensional subset of the brain. However, if the current is distributed over a surface, which is a two-dimensional 
subset, a curve, which is a one-dimension subset, or on isolated points, which form zero-dimensional subsets, 
then it is possible to identify it. It is the purpose of the present work to demonstrate that this is true for a one- 
dimensional current distribution. In particular, we consider a dipolar current distribution over a small line seg-
ment, and we develop an algorithm that reduces the identification of the position, the length and the orientation 
of the line segment, as well as the average dipolar moment of the current, to the solution of a nonlinear algebraic 
system. The solution of this system can be handled numerically. 

2. The MEG Problem for a Single Dipole 
Within the Quasi-Static Theory of Electromagnetism Magnetoencephalography [6]-[8] the magnetic field, gen-
erated by a dipolar current at the point 0r  having the moment Q , is given by the Geselowitz formula [9] 

( ) ( ) ( ) ( )0 0 0
0 03 3

0

ˆ; ; d ,    
4π 4π

c
S
u s

µ µ σ ′− −′ ′ ′= × − × ∈Ω
′−−

∫
r r r rB r r Q r r n r r r

r rr r
              (1) 

where u is the electric potential on the boundary S of the conducting medium Ω  representing the brain-head 
system. In Formula (1), CΩ  denotes the exterior domain, σ  is the constant conductivity of the brain tissue, 

0µ  is the magnetic permeability both inside and outside Ω  and n stands for the outward unit normal on the 
boundary S. 

When Ω  is a sphere of radius a we know from the solution of the corresponding electroencephalography 
problem that the electric potential on the boundary of the sphere is given by [10] [11] 

( ) ( ) ( ) ( ) ( ) ( )
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where m
nY  stands for the normalized complex spherical harmonics 
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and m
nP  denotes the Legendre functions of the first kind. 

Inserting expression (2) in the Formula (1) and performing the indicated integration we can obtain the mag-
netic field outside the sphere. However, since the magnetic field B  in the exterior to the sphere is both sole-
noidal and irrotational it follows that there exists a scalar magnetic potential U , which is also harmonic, such 
that [8] 

( ) ( )0 0; ; ,     U r a= ∇ >B r r r r                               (4) 

Then, a series of calculations lead to the following expression for the magnetic potential [10] [11], 
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The above expression provides the magnetic potential in the exterior of the sphere due to a single current di-
pole { }0 ,r Q . Therefore, it can be considered as the fundamental solution of the MEG problem for the spherical 
geometry [12]. Consequently, any discrete, or continuous, current distribution can be obtained through summa-
tion, or integration, respectively, of the above fundamental solution [13]. 

3. The Field of a Linearly Distributed Current 
We consider here the special case where the neuronal current is supported on a small segment of a smooth curve 
which is parametrically centered at the point 0r . Let this curve be represented by the equation 

( ) [ ] ( ) 0,     , ,     0t t L L= ∈ − =r r r r                            (6) 

The neuronal current is then described by the function ( )( )p tJ r , [ ],t L L∈ − . Since the support curve is 
taken to be small we can approximate the current ( )( )p tJ r  by the linear part of its Taylor expansion, that is 

( )( ) ( ) ( ) ( ) ( )2
0 0

d 0
d

p p pt t O t
t

 = + ⋅ ∇⊗ + 
r

J r J r J r                     (7) 

where the symbol ⊗  denotes tensor product. 
In particular, if the curve is a small line segment of length 2L , centered at 0r  and oriented along the direc-

tion ( )1 2 3ˆ , ,α α α=α , that is 

( ) [ ]0 ˆ ,     ,t t t L L= + ∈ −r r α                             (8) 

then representation (7) is written as 

( )( )p t t≈ +J r Q l                                 (9) 

where ( ) ( )1 2 3 0, , pQ Q Q= =Q J r  provides an average moment, and ( ) ( )1 2 3 0ˆ, , pl l l= = ⋅∇⊗l J rα  provides an 
average directional derivative of the current along the direction α̂ . 

Next we calculate the total potential which is generated by the approximate current (9). We recall that our ul-
timate goal is to invert the MEG data in order to identify the quantities Q , 0r , α̂  and L, which are nine par-
ticular numbers, considering that the direction α̂  has two independent components. Therefore, we should be 
able to obtain these nine numbers from a few initial terms of the expansion (5). 

Formula (5), for the excitation dipole ( ){ },′ ′r J r , is written as 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )2 3 50
1 2 32 3 4
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r r rr r J r r r r r r r r  (10) 

Using the standard expressions of the Legendre polynomials [14] and performing the indicated calculation we 
obtain the following relations, which are written in dyadic form [15] in order to isolate the factors that are going 
to be integrated 
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The symbol I  denotes the identity dyadic, “:” defines the double contraction [15] 

( ) ( ) ( )( ):⊗ ⊗ = ⋅ ⋅a b c d b c a d                              (14) 

and similarly the triple contraction is defined as 
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( ) ( ) ( )( )( )⊗ ⊗ ⊗ ⊗ = ⋅ ⋅ ⋅a b c d e f c d b e a f                       (15) 

The exterior potential, given in (10), can be written in its Cartesian form [11] [13] as follows 

( ) ( ) ( ) ( ) ( )1 2 3 50
3 5 7;

4π
H H H

U O r
r r r
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where the coefficients 
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1
2
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( ) ( )( )2 : pH ′ ′ ′= ⊗ ⊗ ×r r r r J r r                                     (18) 
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are homogeneous harmonic functions [13]. 
In what follows we insert the expressions (8) and (9) in (17), (18) and (19) and integrate the resulting equa-

tions with respect to t  from L−  to L . Performing these calculations we arrive at the expressions 
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Finally, we replace the above expressions of the harmonic functions 1 2 3,  ,  H H H  in the expansion (16) and 
obtain the Cartesian representation of the exterior potential U  up to the terms of order 5r− . That solves the 
relative forward MEG problem for a neuronal excitation that is supported on a small line segment. 

4. Determination of the Current 
The harmonic functions H1, H2 and H3 are homogeneous polynomials of degrees 1, 2 and 3, respectively, that is 

( )1 1 1 2 2 3 3H A x A x A x= + +r                                         (23) 

( ) 2 2 2
2 1 1 2 2 3 3 12 1 2 23 2 3 31 3 1H B x B x B x B x x B x x B x x= + + + + +r                  (24) 

where, because of harmonicity, we should have the constrain 

1 2 3 0B B B+ + =                                    (25) 
and 

( ) 3 3 3 2 2 2 2 2 2
3 1 1 2 2 3 3 12 1 2 21 2 1 23 2 3 32 3 2 31 3 1 13 1 3 123 1 2 3H C x C x C x C x x C x x C x x C x x C x x C x x C x x x= + + + + + + + + +r   (26) 

together with the constrains 

1 21 313 0C C C+ + =                                   (27) 
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12 2 323 0C C C+ + =                                   (28) 

13 23 33 0C C C+ + =                                   (29) 

In the idealized case where the exterior magnetic potential U  is known, the expansion (16) is known and 
therefore the coefficients A , B  and C  are also known. Hence, if we rewrite the polynomials 1H , 2H  and 

3H  in terms of the Cartesian monomials that appear in (23), (24) and (26), then we can utilize their linear in-
dependence to equate each monomial with the corresponding known coefficients A , B  or C . 

Equations (20) and (23) imply immediately that 

( ) ( ) ( )3
1 2 3 0

1 ˆ, ,
3

A A A L L= = × + ×A Q r l α                           (30) 

Then, from Equations (30) and (33) we obtain the six relations 

( ) ( ) ( ) ( )3
1 01 2 3 3 2 1 2 03 3 02 1 2 3 3 2 01 2 03 3 02

2 2
3

B L x l l l x l x Q Q Lx Q x Q xα α α α α α = − + − + − + −        (31) 

( ) ( ) ( ) ( )3
2 02 3 1 1 3 2 3 01 1 03 2 3 1 1 3 02 3 01 1 03

2 2
3

B L x l l l x l x Q Q Lx Q x Q xα α α α α α = − + − + − + −        (32) 

( ) ( ) ( ) ( )3
3 03 1 2 2 1 3 1 02 2 01 3 1 2 2 1 03 1 02 2 01

2 2
3

B L x l l l x l x Q Q Lx Q x Q xα α α α α α = − + − + − + −        (33) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

3
12 01 3 1 1 3 1 3 01 1 03 1 3 1 1 3

3
02 2 3 3 2 2 2 03 3 02 2 2 3 3 2

01 3 01 1 03 02 2 03 3 02

2
3

2        
3

        2 2 ,

B L x l l l x l x Q Q

L x l l l x l x Q Q

Lx Q x Q x Lx Q x Q x

α α α α α α

α α α α α α

 = − + − + − 

 + − + − + − 

+ − + −

                       (34) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

3
23 02 1 2 2 1 2 1 02 2 01 2 1 2 2 1

3
03 3 1 1 3 3 3 01 1 03 3 3 1 1 3

02 1 02 2 01 03 3 01 1 03

2
3

2        
3

        2 2 ,

B L x l l l x l x Q Q

L x l l l x l x Q Q

Lx Q x Q x Lx Q x Q x

α α α α α α

α α α α α α

 = − + − + − 

 + − + − + − 

+ − + −

                        (35) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

3
31 03 2 3 3 2 3 2 03 3 02 3 2 3 3 2

3
01 1 2 2 1 1 1 02 2 01 1 1 2 2 1

03 2 03 3 02 01 1 02 2 01

2
3

2        
3

        2 2 .

B L x l l l x l x Q Q

L x l l l x l x Q Q

Lx Q x Q x Lx Q x Q x

α α α α α α

α α α α α α

 = − + − + − 

 + − + − + − 

+ − + −

                        (36) 

where it is easily shown that condition (25) holds. 
Similarly, from Equations (22) and (26) we obtain 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 3 2 3 2 2 5 2
1 01 0 1 2 03 3 02 01 0 1 2 3 3 2

3
01 1 0 2 3 3 2 2 03 3 02

1 13 5 5 1 5 5 3 5 1
4 20

1 ˆ      5 ,
2

C L x r L Q x Q x L x r L l l

L x Q Q l x l x

α α α α

α α α

   = − + − − + − + − −   

 + − ⋅ − + − r a
  (37) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 3 2 3 2 2 5 2
2 02 0 2 3 01 1 03 02 0 2 3 1 1 3

3
02 2 0 3 1 1 3 3 01 1 03

1 13 5 5 1 5 5 3 5 1
4 20
1 ˆ      5 ,
2

C L x r L Q x Q x L x r L l l

L x Q Q l x l x

α α α α

α α α

   = − + − − + − + − −   

 + − ⋅ − + − r a
  (38) 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 3 2 3 2 2 5 2
3 03 0 3 1 02 2 01 03 0 3 1 2 2 1

3
03 3 0 1 2 2 1 1 02 2 01

1 13 5 5 1 5 5 3 5 1
4 20

1 ˆ       5 .
2

C L x r L Q x Q x L x r L l l

L x Q Q l x l x

α α α α

α α α

   = − + − − + − + − −   

 + − ⋅ − + − r a
   (39) 

for the cubic terms 3
1x , 3

2x  and 3
3x , respectively. For the cross-terms 2

1 2x x  and 2
1 2x x  we obtain the expres-

sions 

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

( )( )

2 2 3 2 3 2 2 5 2
12 01 0 1 3 01 1 03 01 0 1 3 1 1 3

3 3 5
01 02 1 2 2 03 3 02 01 02 1 2 2 3 3 2

3 3
1 02 2 01 2 3 3 2 2 03 3 02 1

1 13 5 5 1 5 5 3 5 1
4 20

5 1        3 5 3
2 2
5 1        5
2 2

C L x r L Q x Q x L x r L l l

Lx x L Q x Q x L x x L l l

L x x Q Q l x l x L x

α α α α

α α α α α α

α α α α α

   = − + − − + − + − −   

+ + − + + −

+ + − + − + ( )( )01 0 3 1 1 3 3 01 1 03ˆ ,Q Q l x l xα α− ⋅ − + −r a

 (40) 

and 

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

( )( )

2 2 3 2 3 2 2 5 2
21 02 0 2 2 03 3 02 02 0 2 2 3 3 2

3 3 5
01 02 1 2 3 01 1 03 01 02 1 2 3 1 1 3

3 3
1 02 2 01 3 1 1 3 3 01 1 03 2

1 13 5 5 1 5 5 3 5 1
4 20

5 1        3 5 3
2 2
5 1        5
2 2

C L x r L Q x Q x L x r L l l

Lx x L Q x Q x L x x L l l

L x x Q Q l x l x L x

α α α α

α α α α α α

α α α α α

   = − + − − + − + − −   

+ + − + + −

+ + − + − + ( )( )02 0 2 3 3 2 2 03 3 02ˆ ,Q Q l x l xα α− ⋅ − + −r a

 (41) 

Similarly, for the cross-terms 2
2 3x x  and 2

2 3x x  we obtain 

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

( )( )

2 2 3 2 3 2 2 5 2
23 02 0 2 1 02 2 01 02 0 2 1 2 2 1

3 3 5
02 03 2 3 3 01 1 03 02 03 2 3 3 1 1 3

3 3
3 02 2 03 3 1 1 3 3 01 1 03 2

1 13 5 5 1 5 5 3 5 1
4 20

5 1        3 5 3
2 2
5 1        5
2 2

C L x r L Q x Q x L x r L l l

Lx x L Q x Q x L x x L l l

L x x Q Q l x l x L x

α α α α

α α α α α α

α α α α α

   = − + − − + − + − −   

+ + − + + −

+ + − + − + ( )( )02 0 1 2 2 1 1 02 2 01ˆ ,Q Q l x l xα α− ⋅ − + −r a

 (42)  

and 

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

( )( )

2 2 3 2 3 2 2 5 2
32 03 0 3 3 01 1 03 03 0 3 3 1 1 3

3 3 5
02 03 2 3 1 02 2 01 02 03 2 3 1 2 2 1

3 3
3 02 2 03 1 2 2 1 1 02 2 01 3

1 13 5 5 1 5 5 3 5 1
4 20

5 1        3 5 3
2 2
5 1        5
2 2

C L x r L Q x Q x L x r L l l

Lx x L Q x Q x L x x L l l

L x x Q Q l x l x L x

α α α α

α α α α α α

α α α α α

   = − + − − + − + − −   

+ + − + + −

+ + − + − + ( )( )03 0 3 1 1 3 3 01 1 03ˆ ,Q Q l x l xα α− ⋅ − + −r a

 (43) 

while, for the cross-terms 2
3 1x x  and 2

3 1x x  we obtain 

( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

( )( )

2 2 3 2 3 2 2 5 2
31 03 0 3 2 03 3 02 03 0 3 2 3 3 2

3 3 5
01 03 1 3 1 02 2 01 01 03 1 3 1 2 2 1

3 3
1 03 3 01 1 2 2 1 1 02 2 01 3

1 13 5 5 1 5 5 3 5 1
4 20

5 1        3 5 3
2 2
5 1        5
2 2

C L x r L Q x Q x L x r L l l

Lx x L Q x Q x L x x L l l

L x x Q Q l x l x L x

α α α α

α α α α α α

α α α α α

   = − + − − + − + − −   

+ + − + + −

+ + − + − + ( )( )03 0 2 3 3 2 2 03 3 02ˆ ,Q Q l x l xα α− ⋅ − + −r a

 (44) 

and 
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( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

( )( )

2 2 3 2 3 2 2 5 2
13 01 0 1 1 02 2 01 01 0 1 1 2 2 1

3 3 5
01 03 1 3 2 03 3 02 01 03 1 3 2 3 3 2

3 3
1 03 3 01 2 3 3 2 2 03 3 02 1

1 13 5 5 1 5 5 3 5 1
4 20

5 1        3 5 3
2 2
5 1        5
2 2

C L x r L Q x Q x L x r L l l

Lx x L Q x Q x L x x L l l

L x x Q Q l x l x L x

α α α α

α α α α α α

α α α α α

   = − + − − + − + − −   

+ + − + + −

+ + − + − + ( )( )01 0 1 2 2 1 1 02 2 01ˆ ,Q Q l x l xα α− ⋅ − + −r a

 (45) 

Finally for the product term 1 2 3x x x  we obtain 

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

3 3
123 02 03 2 3 2 03 3 02 01 03 1 3 3 01 1 03

3 3 5
01 02 1 2 1 02 2 01 02 03 2 3 2 3 3 2

3 5 3 5
01 03 1 3 3 1 1 3 01 02 1 2 1 2 2 1

5 53 3
2 2

5 1        3 5 3
2 2
1 1        5 3 5 3
2 2

      

C Lx x L Q x Q x Lx x L Q x Q x

Lx x L Q x Q x L x x L l l

L x x L l l L x x L l l

α α α α

α α α α α α

α α α α α α α α

= + − + + −

+ + − + + −

+ + − + + −

( )( )

( )( )

( )( )

3
2 03 3 02 2 3 3 2 2 03 3 02

3
1 03 3 01 3 1 1 3 3 01 1 03

3
1 02 2 01 1 2 2 1 1 02 2 01

5  
2
5        
2
5        .
2

L x x Q Q l x l x

L x x Q Q l x l x

L x x Q Q l x l x

α α α α

α α α α

α α α α

+ + − + −

+ + − + −

+ + − + −

         (46) 

It is straightforward to verify that the three constrains (27)-(29) are satisfied. 
The set of the 16 equations, which are the 20 scalar equations appearing in (30)-(46) minus the four constrains 

(25) and (27)-(29), defines a nonlinear system for the determination of the 12 independent variables 0r , â , l , 
Q  and L , three components for each one of the vectors 0r , l , Q , two components for the direction vector 
â  and one for the length L . In fact, we can simplify this system as follows. In view of Equation (30) the three 
components of the exterior product 0×Q r  provide the relations 

( )
2

1
2 03 3 02 2 3 3 23

A LQ x Q x l l
L

α α− = − −                           (47) 

( )
2

2
3 01 1 03 3 1 1 33

A LQ x Q x l l
L

α α− = − −                           (48) 

( )
2

3
1 02 2 01 1 2 2 13

A LQ x Q x l l
L

α α− = − −                           (49) 

and these relations reduce the Equations (31)-(36) to 

( )3
1 1 01 1 2 03 3 02 2 3 3 2

22
3

B A x L l x l x Q Qα α α= + − + −                                         (50) 

( )3
2 2 02 2 3 01 1 03 3 1 1 3

22
3

B A x L l x l x Q Qα α α= + − + −                                         (51) 

( )3
3 3 03 3 1 02 2 01 1 2 2 1

22
3

B A x L l x l x Q Qα α α= + − + −                                         (52) 

( ) ( ) ( )3 3
12 1 02 2 01 1 3 01 1 03 3 1 1 3 2 2 03 3 02 2 3 3 2

2 22
3 3

B A x A x L l x l x Q Q L l x l x Q Qα α α α α α= + + − + − + − + −    (53) 

( ) ( ) ( )3 3
23 2 03 3 02 3 3 01 1 03 3 1 1 3 2 1 02 2 01 1 2 2 1

2 22
3 3

B A x A x L l x l x Q Q L l x l x Q Qα α α α α α= + + − + − + − + −    (54) 
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( ) ( ) ( )3 3
31 3 01 1 03 1 1 02 2 01 1 2 2 1 3 2 03 3 02 2 3 3 2

2 22
3 3

B A x A x L l x l x Q Q L l x l x Q Qα α α α α α= + + − + − + − + −    (55) 

Furthermore, utilizing the Equations (50)-(52) we arrive at the relations 

( )01 02 2 1
1 2 2 1 12 1 2

1 2 1 2

2
x x

A A B B Bα α
α α

α α α α
 

− − = − − 
 

                     (56) 

( )02 03 32
2 3 3 2 23 3 2

2 3 3 2

2
x x

A A B B B
αα

α α
α α α α

 
− − = − − 

 
                     (57) 

( )03 01 31
3 1 1 3 31 3 1

3 1 3 1

2
x x

A A B B B
αα

α α
α α α α

 
− − = − − 

 
                      (58) 

which allow rewriting Equations (37)-(46) as follows 

( ) ( )( ) ( ) ( ) ( )
5 2

2 2 2 2 011 1
1 01 1 0 1 2 3 3 2 1 01 0 0

1 1

3 3ˆ ˆ5 5 1 5 1 5 2
4 15 4 3

xB AL LC x l l x rα α α α α
α α

 
= − ⋅ + − − + − − + + ⋅ 

 
r a r a      (59) 

( ) ( )( ) ( ) ( ) ( )
5 2

2 2 2 2 022 2
2 02 2 0 2 3 1 1 3 2 02 0 0

2 2

3 3ˆ ˆ5 5 1 5 1 5 2
4 15 4 3

xB AL LC x l l x rα α α α α
α α

 
= − ⋅ + − − + − − + + ⋅ 

 
r a r a     (60) 

( ) ( )( ) ( ) ( ) ( )
5 2

2 2 2 23 3 03
3 03 3 0 3 1 2 2 1 3 03 0 0

3 3

3 3ˆ ˆ5 5 1 5 1 5 2
4 15 4 3

B A xL LC x l l x rα α α α α
α α

 
= − ⋅ + − − + − − + + ⋅ 

 
r a r a     (61) 

( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( )

2 2 2 2 2
12 1 01 02 1 2 2 01 0 1 1 1 01 1 02 2 01

1

5 5 2
2 2 02 1 01 0 1 2 2 3 3 2 1 3 1 1 3

2

5 1 153 3 5 5 1 2
2 4 4

3 2 1ˆ2 5 5 1 ,
4 3 15

C A x x L A x r L B A x x x

B A x x L l l L l l

α α α α α
α

α α α α α α α α
α

 = + + − + − + − + 

+ − − ⋅ + − + − −r a
      (62) 

( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( )

2 2 2 2 2
21 2 01 02 1 2 1 02 0 2 2 2 02 1 02 2 01

2

5 5 2
1 1 01 2 02 0 1 2 3 1 1 3 2 2 3 3 2

1

5 1 153 3 5 5 1 2
2 4 4

3 2 1ˆ        2 5 5 1 ,
4 3 15

C A x x L A x r L B A x x x

B A x x L l l L l l

α α α α α
α

α α α α α α α α
α

 = + + − + − + − + 

+ − − ⋅ + − + − −r a
     (63) 

( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( )

2 2 2 2 2
23 2 02 03 2 3 3 02 0 2 2 2 02 2 03 3 02

2

5 5 2
3 3 03 2 02 0 2 3 3 1 1 3 2 1 2 2 1

3

5 1 153 3 5 5 1 2
2 4 4

3 2 1ˆ        2 5 5 1 ,
4 3 15

C A x x L A x r L B A x x x

B A x x L l l L l l

α α α α α
α

α α α α α α α α
α

 = + + − + − + − + 

+ − − ⋅ + − + − −r a
    (64) 

( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( )

2 2 2 2 2
32 3 02 03 2 3 2 03 0 3 3 3 03 2 03 3 02

3

5 5 2
2 2 02 3 03 0 2 3 1 2 2 1 3 3 1 1 3

2

5 1 153 3 5 5 1 2
2 4 4

3 2 1ˆ        2 5 5 1 ,
4 3 15

C A x x L A x r L B A x x x

B A x x L l l L l l

α α α α α
α

α α α α α α α α
α

 = + + − + − + − + 

+ − − ⋅ + − + − −r a
    (65) 

( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( )

2 2 2 2 2
31 3 01 03 1 3 1 03 0 3 3 3 03 1 03 3 01

3

5 5 2
1 1 01 3 03 0 1 3 1 2 2 1 3 2 3 3 2

1

5 1 153 3 5 5 1 2
2 4 4

3 2 1ˆ       2 5 5 1 ,
4 3 15

C A x x L A x r L B A x x x

B A x x L l l L l l

α α α α α
α

α α α α α α α α
α

 = + + − + − + − + 

+ − − ⋅ + − + − −r a
     (66) 
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( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( )

2 2 2 2 2
13 1 01 03 1 3 3 01 0 1 1 1 01 1 03 3 01

1

5 5 2
3 3 03 1 01 0 1 3 2 3 3 2 1 1 2 2 1

3

5 1 153 3 5 5 1 2
2 4 4

3 2 1ˆ        2 5 5 1 .
4 3 15

C A x x L A x r L B A x x x

B A x x L l l L l l

α α α α α
α

α α α α α α α α
α

 = + + − + − + − + 

+ − − ⋅ + − + − −r a
     (67) 

and 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( )( ) ( )( )

2 2 2 5
123 1 02 03 2 3 2 01 03 1 3 3 01 02 1 2 2 3 2 3 3 2

5 5
1 3 3 1 1 3 1 2 1 2 2 1 1 1 01 2 03 3 02

1

2 2 02 1 03 3 01 3 3 03 1 02 2 01
2 3

5 5 5 23 3 3
2 2 2 3
2 2 15 2
3 3 4
15 152 2 .
4 4

C A x x L A x x L A x x L L l l

L l l L l l B A x x x

B A x x x B A x x x

α α α α α α α α α α

α α α α α α α α α α
α

α α α α
α α

= + + + + + + −

+ − + − + − +

+ − + + − +

  (68) 

Because of the constrains (27)-(29), only 7 out of the 10 equations (59)-(68) are independent. Then, the re-
duced set of these 7 independent equations, plus the 6 equations (47)-(49) and (53)-(55) provides a nonlinear 
system for the determination of the unknown quantities 0r , â , Q , l  and L . However, since some of these 
quantities enter the system through the components of exterior products, it follows that the above quantities 
cannot be completely specified. For example, from Equations (47)-(49) it follows that it is not possible to iden-
tify the three components of Q  from the exterior product of Q  with the position vector 0r , since the com-
ponent of Q  that is parallel to 0r  gives a vanishing term. Hence, this component of Q  forms a “silent” 
source [8]. The solution of this system can easily be obtained with the use of classical computational methods. 

To illustrate the inversion algorithm we consider the following special case. 
Special Case. Let us assume that we have the a-priori information that the line segment is oriented along the 

1x -axis and that its middle point is ( )0 00,0, r=r . This choice leads to 

1 2 0A LQ r=                                               (69) 

3
3 2

1
3

A L l= −                                              (70) 

3 2
1 2 0 0

3
4

C Q r L Lr = − 
 

                                    (71) 

( )3 2 3 2 5
2 1 0 0 3 0

1 1 33
4 4 5

C Q r L Lr l L r L = + − + 
 

                     (72) 

3 3 5 3 2
12 1 0 0 3 0

3 3 1
4 5 4

C Q Lr L r l L L r   = − + −   
   

                     (73) 

( )2 3
31 2 0 0

1 12 11
4

C Q r Lr L= −                                  (74) 

Inserting the expression of 1A  in the equations for 1C  and 31C  we obtain the following 2 2×  system for 
the determination of 2L  and 2

0r  
2 2

1 1 0 14 3 4A L A r C− =                                (75) 

2 2
1 1 0 3111 12 4A L A r C− + =                              (76) 

which immediately gives the values of L  and 0r  

1 31

1

4
2

5
C C

L
A
+

=                                 (77) 
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1 31
0

1

11 4
2

15
C C

r
A
+

=                                (78) 

Then from (69) we obtain 

1
2

0

AQ
Lr

=                                    (79) 

and from (70) we obtain 
3 2

1
2 3

1 31

53
8 4

Al A
C C

 
= −  + 

                            (80) 

Finally, from (72) and (73) we obtain a 2 2×  system for the unknowns 1Q  and 3l , from which we obtain 

( ) ( )2 2 2 2
0 2 0 12

1 3 3
0

12 5 3 5

5

L r C L r C
Q

L r

− + +
=                        (81) 

( ) ( )2 2 2 2
0 2 0 12

3 5 2
0

4 3 3L r C L r C
l

L r

− + +
=                          (82) 

with L  and 0r  given by (77) and (78), respectively. Note that the only constants that remain unspecified are 
1l  and 3Q , but the constant 1l  is not needed, and the constant 3Q  can not be determined since the component 

3 3ˆQ x  is parallel to the position vector 0r , and therefore their exterior product vanishes. 
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Abstract 
In this paper an attempt has been made to study the unsteady incompressible flow of a genera-
lized Oldroyd-B fluid between two oscillating parallel plates in presence of a transverse magnetic 
field. An exact solution for the velocity field has been obtained by means of Laplace and finite 
Fourier sine transformations in series form in terms of Mittage-Leffler function. The dependence 
of the velocity field on fractional as well as material parameters has been illustrated graphically. 
The velocity fields for the classical Newtonian, generalized Maxwell, generalized second grade and 
ordinary Oldroyd-B fluids are recovered as limiting cases of the flow considered for the genera-
lized Oldroyd-B fluid. 

 
Keywords 
Oldroyd-B Fluid, Exact Solution, Mittage-Lefller Function, Fractional Derivative, Transverse 
Magnetic Field 

 
 

1. Introduction 
The magneto hydrodynamic flow problem between two parallel plates has shown immense attention during the 
last several decades. The study has significant applications in the field of hydrodynamical machines and appara-
tus, magnetic storage devices, computer storage devices, lubrication, crystal growth processes, radial diffusers, 
MHD pumps, MHD power generators, purification of crude oil, petroleum industries etc. Bandelli et al. [1] dis-
cussed start-up flows of second grade fluids in domains with one finite dimension. Fetecau et al. [2] investigated 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.61011
http://dx.doi.org/10.4236/am.2015.61011
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exact solutions for the flow of a generalized Oldroyd-B fluid induced by a constantly accelerating plate between 
two side walls perpendicular to the plate. Hayat et al. [3] made homotopy analysis of MHD boundary layer flow 
of an upper-convected Maxwell fluid. Jamil and Khan [4] studied slip effects on fractional viscoelastic fluids. 
Shen et al. [5] studied the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional 
derivative model. Vieru et al. [6] discussed the flow of a generalized Oldroyd-B fluid due to a constantly acce-
lerating plate. Wenchang et al. [7] investigated unsteady flows of a viscoelastic fluid with the fractional Max-
well model between two parallel plates. Vieru et al. [8] studied the unsteady flow of a generalized Oldroyd-B 
fluid due to an infinite plate subject to a time-dependent shear stress. 

In the present paper we consider the flow of a generalized Oldroyd-B fluid between two oscillating infinite 
parallel plates in presence of transverse magnetic field. We have formulated the expression for the velocity field 
for the said flow in terms of Mittage-Leffler function. In the constitutive equation of the fluid model, the time 
derivative of integral order has been replaced by Riemann-Liouville fractional calculus operator. The exact solu-
tion for the velocity field is obtained by using the method of integral transformations and the dependence of the 
said field on the material as well as fractional calculus parameters is illustrated graphically. 

2. Mathematical Formulation and Basic Equation 
Let us consider an incompressible generalized Oldroyd-B fluid bounded by two infinite parallel plates as shown 
in Figure 1. The plates are initially at rest and at 0t +→  the plates start to oscillate in its plane with the veloc-
ity ( )1cosV tω  and ( )2cosV tω  where V  is the fluid velocity. Due to the shear, the fluid is moved gradually. 
We have taken Cartesian coordinate system. x- and y-coordinates are taken along and perpendicular to the pa-
rallel plates respectively. Accordingly, the initial condition is given by ( ),0 0u y = , 0 1y≤ ≤  and the boun-
dary conditions are given by ( ) ( )10, cosu t V tω= , ( ) ( )2, cosu d t V tω= . 

We take the velocity and stress of the form 

( ) ( )ˆ, ,     ,V u y t S S y t= =i                                 (1) 

where ( ),u y t  is the velocity component in the x-direction. 
The constitutive relationship for the fluid associated with the present problem is given by, 

( ) ( ) ( ),
1 1t xy r t

u y t
D S D

t
α α β βλ µ λ

∂
+ = +

∂
                           (2) 

In the relation (2), tDα  and tDβ  are Caputo operators defined by 

( ) ( ) ( ) ( )
0

1 d ,     0 1
1

t
pp

tD g t t g p
p

τ τ τ− ′= − ≤ <
Γ − ∫                    (3) 
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Figure 1. Geometry of the problem. 
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According to our problem, 

0,     xx yy zz xz yz xy yxS S S S S S S= = = = = =  

We consider a generalized Oldroyd-B fluid between two infinite parallel disks in presence of an imposed 
magnetic field 0B  that acts in the direction of the positive y-axis. Then in the presence of the body force 

2
0B uσ , the momentum equation is given by 

2
0xy

u S B u
t y

ρ σ∂ ∂
= −

∂ ∂
                                 (4) 

where “σ ” is constant and “ ρ ” is the density of the fluid. 
Eliminating xyS  between the Equations (2) and (4) we have the governing equation 

( ) ( ) ( ) ( ) ( ) ( )
2

2

, ,
1 1 1 ,t r t t

u y t u y t
D D M D u y t

t y
α α β β α αλ ν λ λ

∂ ∂
+ = + − +

∂ ∂
               (5) 

where 
µν
ρ

=  is the kinematic viscosity and 
2
0 .

B
M

σ
ρ

=  

Introducing the non-dimensional quantities, 

2 2,    ,    ,    u y tu y t
V d d d

α
α αµ νλ λ

ρ
∗ ∗ ∗ ∗  = = = =  

 
 

2

2 ,    ,    r r
dM M

d

α
β β ν µλ λ ν

ρ ν
∗ ∗ = = = 

 
 

we get the governing equation in non-dimensional quantities as 

( ) ( ) ( ) ( ) ( ) ( )
2

2

, ,
1 1 1 ,t r t t

u y t u y t
D D M D u y t

t y
α α β β α αλ λ λ

∂ ∂
+ = + − +

∂ ∂
              (6) 

(Omitting the dimensionless mark “*”) 

( )subject to initial condition ,0 0u y =                            (7) 

and the boundary conditions ( ) ( )10, cosu t tω= , for 0t >  

( ) ( )21, cos   for  0u t t tω= >                                (8) 

Taking finite Fourier sine transformation we get from Equation (6) 

( ) ( ) ( ) ( ) ( ) ( )
21

20

d1 , 1 sin π d 1 ,
dt s r t t s

uD U n t D n y y M D U n t
t y

α α β β α αλ λ λ∂
+ = + − +

∂∫          (9) 

where ( ) ( ) ( )1

0
, , sin π dsU n t u y t n y y= ∫  is the finite Fourier sine transformation of ( ),u y t . 

Using the boundary conditions (8) the Equation (9) can be rewritten as 

( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( )

( ) ( )

1 2
2 1

d1 , 1 π 1 cos cos π ,
d

                                       1 ,

n
t s r t s

t s

D U n t D n t t n U n t
t

M D U n t

α α β β

α α

λ λ ω ω

λ

+ + = + − + −  

− +
     (10) 

Taking Laplace transformation and using ( ),0 0sU n =  we get from the above equation 
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( ) ( )
( )( ) ( ) ( )

( )( ) ( ) ( )
( )

( )( ) ( ) ( )

1
2 2 2

2

2 2 2
1

1

2

1π, 1
1 π 1

1π                 
1 π 1

π 1 1
                

1 π 1

n r
s

r

r

r

n
r

r

pn pU n p
p p M p n p

pn p
p p M p n p

n

p M p n p

β β

α α β β

β β

α α β β

β

α α β β

λ
ω λ λ

λ
ω λ λ

λ

λ λ

+

+

+
= −

+ + + + +

+
+

+ + + + +

 − + −
+ + + +

                 (11) 

Now in order to avoid the lengthy procedure of residues and contour integrals, we rewrite the Equation (11) 
into series form as 

( ) ( ) ( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )

1 11

1

11

1

1 1

2 2 12 1 1
0 , 0 , 0 12

1

2 2 2 1
0 , 0 , 0 11

1 1 1 ! ! 1, 1
π ! ! ! !π

1 1 !1 !     1
π ! ! ! !π

n k n n ln w km l k
m

s kk k
k m l n w r r

k nn w km l k
m

k
k m l n w

kp k p pU n p M
n m l n wp n p

kp kM
n m l n wp n

α α α α

β β β

α

λ λ
ω λ λ

λ
ω

+ ++ =∞ + = +

++ + −= ≥ ≥

+ =∞ + = +

+
= ≥ ≥

 − − + + = −
 + +  

− +
+ −

+

∑ ∑ ∑

∑ ∑ ∑ ( ) ( )

( ) ( )
( ) ( )

( )

( )

1

1

1

11

1
1

2 11
0 , 0 , 0 1

1

1 ! !     1 1
π ! ! ! !π

n l

kk
r r

k k mkn w km l k
n mr

k kk
k m l n wr r

p p

p

k k pM
n m l n wn p

α α α

β β β

αβ α

β β β

λ
λ λ

λ λ
λ λ

+

++ −

+ −+ =∞ + =
+

++ −= ≥ ≥

 
+ 

 +  

− − − +  +
∑ ∑ ∑

   (12) 

Now we have an important Laplace transformation of the nth order derivative of Mittage-Leffler function 
( ),E zα λ  given by 

( ) ( )
( )

1
, 10

!e dnpt n
n

n pt E at t
p a

α λ
α λ α

α λ
α

−
∞ − + −

+− =
+

∫                         (13) 

where 

( ) ( ) ( ) ( )
( ), , 0

!d
!d

jn
n

n j

j n z
E z E z

j j nzα λ α λ α α λ
∞

=

+
= =

Γ + +∑                      (14) 

Taking Laplace Inverse transformation we get from the Equation (12) 

( ) ( ) ( ) ( ) ( )
( ) ( )

( )
( )

( )( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )

11

1

1 1
1 1

1 1 1

2 2 1 1
0 , 0 , 0 1

1 1 1 1 1
2 , , 10

1
0

1 1 1 1 ! 1, cos
π π ! ! ! !π

cos d

11 1cos
π π

n n k nn w km l k
m

s k k
k m l n w r

t k kk n l k n l
r rn l n l

k

k

k
U n t t M

n n m l n wn

t E E

t
n n

α

β

β α β αβ β β β
β β α β β α

λω
λ

ω τ τ λ τ τ λ τ τ

ω

+ + + =∞ + = +

+ +
= ≥ ≥

+ − − − + − + − −− −
− − − + −

∞

=

− − − +
= −

 × − − + − 

−
+ −

∑ ∑ ∑

∫

∑
( ) ( )

( )
( )

( )( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( )
( ) ( )

11

1

1 1
1 1

1

2 1 1
, 0 , 0 1

1 1 1 1 1
1 , , 10

1
2 1

0 , 0

1 ! 1
! ! ! !π

cos d

1 !1 1
! !π

nn w km l k
m

k k
m l n w r

t k kk n l k n l
r rn l n l

k m l k
n mr

k k
k m l nr

k
M

m l n wn

t E E

k M
n m ln

α

β

β α β αβ β α β β
β β α β β α

β

β

λ
λ

ω τ τ λ τ λ τ λ τ τ

λ
π λ

+ =+ = +

+ +
≥ ≥

+ − − − + − + − −− −
− − − + −

∞ + =
+

+
= ≥

+

 × − − + − 

− − − + 

∑ ∑

∫

∑ ∑ ( ) ( )
( )

( ) ( )
1

1

1 1 1
, 1

, 0 1

1
! !

n w k
kk k mk

rk m
w

t E t
n w

β αα β β
β β αλ λ

+ =
+ − + + − −

− + +
≥

−∑

  (15) 

Taking inverse finite Fourier sine transformation we get the velocity profile from the Equation (18) as 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( )
( )

( )( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )

11

1

1 1
1 1

1

2 1 2 1 1
1 0 , 0 , 0 1

1 1 1 1 1
2 , , 10

1 1 1 ! 1, cos 1 cos 2 sin π
π ! ! ! !π

      cos d

n k nn w km l k
m

k k
n k m l n w r

t k kk n l k n l
r rn l n l

k
u y t y t y t n y M

n m l n wn

t E E

α

β

β α β αβ β α β β
β β α β β α

λω ω
λ

ω τ τ λ τ λ τ λ τ τ

+ =∞ ∞ + = +

+ +
= = ≥ ≥

+ − − − + − + − −− −
− − − + −

− − +
= + − +

 × − × − + − 

∑ ∑ ∑ ∑

∫

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( )

( )
( )

( )( ) ( ) ( )

1

11

1

1
1

, 12 1
1 0

1

2 1 1
1 0 , 0 , 0 1

1 1
1 ,

11      2 sin π
π π

1 1 !1 1             2 sin π
π ! ! ! !π

      co

d

s

k
k

rn lk
n k

k nn w km l k
m

k k
n k m l n w r

kk n l
rn l

n y E
n n

k
n y M

n m l n wn

t E

β β
β β α

α

β

β α β
β β α

λ τ

λ
λ

τ

ω τ τ λ τ

∞ ∞
−

− + −+
= =

+ =∞ ∞ + = +

+ +
= = ≥ ≥

+ − − − −
− −

−
− −

− +
−

× −




−

∑ ∑

∑ ∑ ∑ ∑

( ) ( ) ( )
( )

( ) ( )

( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

1
1

1

1

1 1 1
, 10

1

1

1 1 1
, 12 1

0 , 0 , 0 1

d

sin π
      2 1 1

π

( 1) ! 1      .
! ! ! !π

t kk n l
rn l

n
r

n

k n w km l k
kk k mm k

rk mk k
k m l n wr

E

n y
n

k M t E t
m l n wn

β αβ α β β
β β α

β

β αα β β
β β αβ

λ τ λ τ τ

λ

λ λ
λ

+ − + − − −
− + −

∞
+

=

+ =∞ + =
+ − + + − −

− + ++
= ≥ ≥

 + − 

 − − + 

−
× −

∫

∑

∑ ∑ ∑

(16) 

3. Limiting Cases 
Case-I If 0.0α → , 0.0rλ →  then the equation of motion is given by 

( ) ( ) ( ) ( ) ( )
2

2

, ,
1 1 ,

u y t u y t
M u y t

t y
α αλ λ

∂ ∂
+ = − +

∂ ∂
                        (17)

 
subject to the initial and boundary conditions given by the Equations (7) and (8) respectively.

 The Equation (17) represents the governing equation of a classical Newtonian fluid and the corresponding 
velocity field is given by 

( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

2 1

1 1
0 2 2

2,1 22 1
1 0 , 0 , 0

1 1

2 1
1 0 , 0 , 0

cos 1 cos

1 1 1 ! 1 !
     2 sin π

π ! ! ! !π

1 1 ! 1 !1     2 sin π
π ! ! ! !π

n k m l k s i k
l s m

mk
n k m l s i

k m l k s i k
l

k
n k m l s i

u y t y t

k k
n y M t E t

n m l s in

k k
n y M

n m l s in

α

α

ω ω

λ ω

λ

∞ ∞ + = + + = +
−

−+
= = ≥ ≥

∞ ∞ + = + + = +

+
= = ≥ ≥

= + −

− − + +
+ −

− + +
−

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ( ) ( )0 2 2
2,1 1 .s m

mt E tω−
− −

   (18) 

Case-II If 0.0β ≠ , 0.0rλ →  then the equation is given by 

( ) ( ) ( ) ( ) ( )
2

2

, ,
1 1 ,t t

u y t u y t
D M D u y t

t y
α α α αλ λ

∂ ∂
+ = − +

∂ ∂
                    (19) 

subject to the initial and boundary conditions given by the Equations (7) and (8). 
The Equation (19) represents the governing equation of a generalized Maxwell fluid and the corresponding 

velocity field is given by 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

2 1

1 1
0 2 2

2,1 22 1
1 0 , 0 , 0

1 1

2 1
1 0 , 0 , 0

cos 1 cos

1 1 1 ! 1 !
     2 sin π

π ! ! ! !π

1 1 ! 1 !1     2 sin π
π ! !π

n k m l k s i k
s ml s

s mk
n k m l s i

k m l k s i k
l

k
n k m l s i

u y t y t

k k
n y M t E t

n m l s in

k k
n y M

n m ln

αα
α

ω ω

λ ω
∞ ∞ + = + + = +

− +
− −+

= = ≥ ≥

∞ ∞ + = + + = +

+
= = ≥ ≥

= + −

− − + +
+ −

− + +
−

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ( ) ( ) ( )0 2 2
2,1 1 .

! !
s ms

s mt E t
s i

αα
αλ ω− +
− − −

  (20) 
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Case-III If 0.0α ≠ , 0.0λ →  then the equation of motion is given by 

( ) ( ) ( ) ( )
2

2

, ,
1 ,r t

u y t u y t
D Mu y t

t y
β βλ

∂ ∂
= + −

∂ ∂
                        (21) 

subject to the initial and boundary conditions given by the Equations (7) and (8) respectively. 
The Equation (21) is the governing equation for a generalized second grade fluid and the velocity field is 

given by 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( )

( ) ( )( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )( ) ( )

2 1

1
1 2

2 , 12 1 1 0
1 0 , 0

1
1 2

12 1 1
1 0 , 0

cos 1 cos

1 1 1 !
2 sin π cos d

π ! !π

1 1 !12 sin π cos
π ! !π

n k mm l k t k m k k
m k rk k

n k m l r

k mm l k
k m k

k k
n k m l r

u y t y t

k Mn y t E
n m ln

k Mn y t
n m ln

β β β
β ββ

β
β

ω ω

ω τ τ λ τ τ
λ

ω τ τ
λ

∞ ∞ + = +
+ + − − −

+ − −+ +
= = ≥

∞ ∞ + = +
+ + − −

+ +
= = ≥

= + −

− − +
+ − −

− +
− −

∑ ∑ ∑ ∫

∑ ∑ ∑ ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

, 10

1 1 1
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 (22) 

Case-IV If 1.0α → , 0.0rλ →  then the equation of motion is given by 

( ) ( ) ( )
2

2

, ,
1 1 ,

u y t u y t
M u y t

t t ty
α αλ λ

∂ ∂∂ ∂   + = − +   ∂ ∂ ∂∂   
                    (23) 

subject to the initial and boundary conditions given by the Equations (7) and (8) respectively. 
The Equation (23) represents the governing equation of an ordinary Oldroyd-B fluid and the corresponding 

velocity field is given by 
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

2 1

1 1
0 2 2

2,1 22 1
1 0 , 0 , 0

1 1

2 1
1 0 , 0 , 0

cos 1 cos

1 1 1 ! 1 !
     2 sin π

π ! ! ! !π

1 1 ! 11     2 sin π
π ! !π

n k m l k l w k
m l m k l

m k lk
n k m l l w

k m l k l w k
m

k
n k m l l w

u y t y t

k k
n y M t E t

n m l l wn

k k
n y M

n m ln

α

ω ω

λ ω
∞ ∞ + = + + = +

− −
+ − −+

= = ≥ ≥

∞ ∞ + = + + = +

+
= = ≥ ≥

= + −

− − + +
+ −

− + +
−

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ( ) ( )0 2 2
2,1 2

!
.

! !
l m k l

m k lt E t
l w

αλ ω− −
+ − − −

  (27) 

4. Conclusions and Numerical Results  
In this paper we have presented the flow of a generalized Oldroyd-B fluid between two oscillating infinite pa-
rallel plates. The velocity field has been determined by means of Laplace and finite Fourier sine transformations 
in series form in terms of Mittage-Leffler function. The dependence of the velocity field on the fractional calcu-
lus parameters and material parameters has been illustrated graphically. The solutions for the four limiting cases 
have been discussed from the solution of the flow problems of a generalized Oldroyd-B fluid. 

In Figure 2 the velocity is depicted against the distance from the lower plate for different values of the frac-
tional calculus parameter α . As α  increases, the fluid velocity increases and there are points of local mini-
mum and local maximum in the velocity curves which are oscillatory in nature. Negative velocity can be ob-
served near the upper plate for values of α  near zero in Figure 2. The velocity is depicted against the distance 
from the lower plate for different values of fractional calculus parameter β  in Figure 3. As β  increases, the 
fluid velocity decreases, which is opposite to the case in Figure 2 and the points of local minimum and maxi-
mum can be observed in the velocity curves. The flow patterns are oscillatory in nature. In Figure 4 the velocity 
is plotted against the distance from the lower plate for different values of the parameter M. As the parameter M 
takes increasing values, the fluid velocity increases and the velocity curves are oscillatory in nature. The velocity 
profile is plotted against the distance from the lower plate for different values of the frequency of oscillation 1ω  
of the lower plate in Figure 5. It is evident from the figure that the fluid velocity decreases for higher values of 
the parameter 1ω . The initial points of the velocity curves near the lower plate are different in domain of spatial  
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Figure 2. The velocity profile is depicted against the distance from the lower plate for different values of the fractional cal-
culus parameter α . 1 1.2ω = , 2 1.5ω = , 10M = , 6λ = , 3rλ = , 0.8β = , π 4t = , 0.1α = _______, 0.2α =

________, 0.3α = _______. 
 

 
Figure 3. The velocity profile is depicted against the distance from the lower plate for different values of the fractional cal-
culus parameter β . 1 1.2ω = , 2 1.5ω = , 10M = , 6λ = , 3rλ = , 0.2α = , π 4t = , 0.6β = ________, 0.7β =

_______, 0.8β = _______. 
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Figure 4. The velocity is depicted against the distance from the lower plate for different values of parameter M . 1 1.2ω = , 

2 1.5ω = , 6λ = , 3rλ = , 0.2α = , 0.8β = , π 4t = , 10M = _______, 11M = _______, 12M = ________. 
 

 
Figure 5. The velocity is depicted against the distance from the lower plate for different values of the parameter 1ω . 

2 1.5ω = , 10M = , 6λ = , 3rλ = , 0.2α = , 0.8β = , π 4t = , 1 1.2ω = _______, 1 1.5ω = _______, 1 1.8ω = _______. 
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Figure 6. The velocity profile is depicted against the distance from the lower plate for different values of the parameter 2ω . 

1 1.2ω = , 10M = , 6λ = , 3rλ = , 0.2α = , 0.8β = , π 4t = , 2 1.5ω = _______, 2 1.8ω = _______, 2 2.1ω =
_______. 
 

 
Figure 7. The velocity profile is depicted against the distance from the lower plate for different values of the fractional cal-
culus parameter α  and for equal values of 1ω  and 2ω , 1 2 1.2ω ω= = , 10M = , 6λ = , 3rλ = , 0.8β = , π 4t = , 

0.1α = _______, 0.2α = ________, 0.3α = _______. 
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variable Y for different values of frequency of oscillation 1ω  of the lower plate. There is negative velocity in 
Figure 5 near the lower plate for values for higher frequency of oscillation of the lower plate. In Figure 6 as the 
frequency of the oscillation 2ω  of the upper plate changes, the terminal points of the velocity curves near the 
upper plate differ. The fluid velocity decreases with the increase of the frequency of oscillation 2ω  of the upper 
plate near that one. It can be noticed that there are points of local minimum and maximum for velocity curves 
for all the three cases. Negative velocity can be observed near the upper plate in Figure 6 for higher values of 
the frequency of oscillation of the upper plate. In Figure 7 the velocity profile is depicted against the distance 
from the lower plate for different values of the parameter α  in which the frequencies of oscillations of the 
plates are equal i.e. 1 2ω ω= . The fluid velocity increases with increasing values of α  and the velocity curves 
are oscillatory in nature. It can be noticed that for equal frequency of oscillations of the two plates, the heights of 
the initial and terminal points on the velocity curve in the domain of spatial variable are equal. 
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Abstract 
In this paper we introduce the concept of neutrosophic soft expert set (NSES). We also define its 
basic operations, namely complement, union, intersection, AND and OR, and study some of their 
properties. We give examples for these concepts. We give an application of this concept in a deci-
sion-making problem. 
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1. Introduction 
In some real-life problems in expert system, belief system, information fusion and so on, we must consider the 
truth-membership as well as the falsity-membership for proper description of an object in uncertain, ambiguous 
environment. Intuitionistic fuzzy sets were introduced by Atanassov [1]. After Atanassov’s work, Smarandache 
[2] [3] introduced the concept of neutrosophic set which is a mathematical tool for handling problems involving 
imprecise, indeterminacy and inconsistent data. In 1999, Molodtsov [4] initiated a novel concept of soft set 
theory as a new mathematical tool for dealing with uncertainties. After Molodtsov’s work, some different opera-
tions and applications of soft sets were studied by Chen et al. [5] and Maji et al. [6]. Later, Maji [7] firstly pro-
posed neutrosophic soft sets with operations. Alkhazaleh et al. generalized the concept of fuzzy soft expert sets 
which include that possibility of each element in the universe is attached with the parameterization of fuzzy sets 
while defining a fuzzy soft expert set [8]. Alkhazaleh et al. [9] generalized the concept of parameterized interval- 
valued fuzzy soft sets, where the mapping in which the approximate function are defined from fuzzy parameters 
set, and they gave an application of this concept in decision making. In the other study, Alkhazaleh and Salleh 
[10] introduced the concept soft expert sets where user can know the opinion of all expert sets. Alkhazaleh and 
Salleh [11] generalized the concept of a soft expert set to fuzzy soft expert set, which is a more effective and 
useful. They also defined its basic operations, namely complement, union, intersection, AND and OR, and gave 
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an application of this concept in decision-making problem. They also studied a mapping on fuzzy soft expert 
classes and its properties. Our objective is to introduce the concept of neutrosophic soft expert set. In Section 1, 
we introduce from intuitionistic fuzzy sets to soft expert sets. In Section 2, preliminaries are given. In Section 3, 
we also define the concept of neutrosophic soft expert set and its basic operations, namely complement, union, 
intersection AND and OR. In Section 4, we give an application of this concept in a decision-making problem. In 
Section 5 conclusions are given. 

2. Preliminaries 
In this section we recall some related definitions. 

2.1. Definition: [3] Let U be a space of points (objects), with a generic element in U denoted by u. A neutro-
sophic set (N-sets) A in U is characterized by a truth-membership function TA, a indeterminacy-membership 
function IA and a falsity-membership function FA. ( )AT u ; ( )AI u  and ( )AF u  are real standard or nonstan-
dard subsets of [ ]0,1 . It can be written as 

( ) ( ) ( )( ) ( ) ( ) ( ) [ ]{ }, , , : , , , 0,1 .A A A A A AA u T u I u F u u U T u I u F u= ∈ ∈  

There is no restriction on the sum of ( )AT u ; ( )AI u  and ( )AF u , so 

( ) ( ) ( )0 sup sup sup 3A A AT u I u F u≤ + + ≤ . 

2.2. Definition: [7] Let U be an initial universe set and E be a set of parameters. Consider A E⊆ . Let 
( )P U  denotes the set of all neutrosophic sets of U. The collection ( ),F A  is termed to be the soft neutrosoph-

ic set over U, where F is a mapping given by ( ):F A P U→ . 
2.3. Definition: [6] A neutrosophic set A is contained in another neutrosophic set B i.e. A B⊆  if x X∀ ∈ , 
( ) ( )A BT x T x≤ , ( ) ( )A BI x I x≤ , ( ) ( )A BF x F x≥ . 

Let U be a universe, E a set of parameters, and X a soft experts (agents). Let O be a set of opinion, 
Z E X O= × ×  and A Z⊆ . 

2.4. Definition: [9] A pair (F, A) is called a soft expert set over U, where F is mapping given by ( ):F A P U→  
where ( )P U  denotes the power set of U. 

2.5. Definition: [11] A pair ( ),F A  is called a fuzzy soft expert set over U, where F is mapping given by 
: UF A I→  where UI  denotes the set of all fuzzy subsets of U. 
2.6. Definition: [11] For two fuzzy soft expert sets ( ),F A  and ( ),G B  over U, ( ),F A  is called a fuzzy 

soft expert subset of ( ),G B  if 
1) ,B A⊆  
2) Aε∀ ∈ , ( )F ε  is fuzzy subset of ( ).G ε  
This relationship is denoted by ( ) ( ), ,F A G B⊆ . In this case ( ),G B  is called a fuzzy soft expert superset of 

( ),F A . 
2.7. Definition: [11] Two fuzzy soft expert sets ( ),F A  and ( ),G B  over U are said to be equal. 
If ( ),F A  is a fuzzy soft expert subset of ( ),G B  and ( ),G B  is a fuzzy soft expert subset of ( ),F A . 
2.8. Definition: [11] An agree-fuzzy soft expert set ( )1,F A  over U is a fuzzy soft expert subset of ( ),F A

defined as follow  

( ) ( ) { }{ }11, : 1F A F E Xα α= ∈ × × . 

2.9. Definition: [11] A disagree-fuzzy soft expert set ( )0,F A  over U is a fuzzy soft expert subset of ( ),F A  
defined as follow 

( ) ( ) { }{ }00, : 0F A F E Xα α= ∈ × × . 

2.10. Definition: [11] Complement of a fuzzy soft expert set. The complement of a fuzzy soft expert set 
( ),F A  denoted by ( ), cF A  and is defined as ( ) ( ), ,c cF A F A= ￢  where c UF A I= →￢  is mapping given 
by 

( ) ( )( )    ,cF c F Aα α α= ∀ ∈  
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where c  is a fuzzy complement. 
2.11. Definition: [11] The intersection of fuzzy soft expert sets ( ),F A  and ( ),G B  over U, denoted by 

( ) ( ), ,F A G B∩ , is the fuzzy soft expert set ( ),H C  where C A B= ∪  and Cε∀ ∈ , 

( )
( )
( )
( ) ( )( )

, if  
, if  

, , if  

F A B
H G B A

t F G A B

ε ε
ε ε ε

ε ε ε

 ∈ −


= ∈ −
 ∈ ∩

 

where t is a t-norm. 
2.12. Definition: [11] The intersection of fuzzy soft expert sets ( ),F A  and ( ),G B  over U, denoted by 

( ) ( ), ,F A G B∪ , is the fuzzy soft expert set ( ),H C  where C A B= ∪  and Cε∀ ∈ , 

( )
( )
( )
( ) ( )( )

, if  
, if  

, , if  

F A B
H G B A

s F G A B

ε ε
ε ε ε

ε ε ε

 ∈ −


= ∈ −
 ∈ ∩

 

where s is an s-norm. 
2.13. Definition: [11] If ( ),F A  and ( ),G B  are two fuzzy soft expert sets over U then “ ( ),F A  AND 

( ),G B ” denoted by ( ) ( ), ,F A G B∧  is defined by 

( ) ( ) ( ), , ,F A G B H A B∧ = ×  

such that ( ) ( ) ( )( ), ,H t F Gα β α β= , ( ), A Bα β∀ ∈ ×  where t is a t-norm. 
2.14. Definition: [11] If ( ),F A  and ( ),G B  are two fuzzy soft expert sets over U then “ ( ),F A  OR ( ),G B ” 

denoted by ( ) ( ), ,F A G B∨  is defined by  

( ) ( ) ( ), , ,F A G B H A B∨ = ×  

such that ( ) ( ) ( )( ), ,H s F Gα β α β= , ( ), A Bα β∀ ∈ ×  where s is an s-norm. 
Using the concept of neutrosophic set now we introduce the concept of neutrosophic soft expert set. 

3. Neutrosophic Soft Expert Set 
In this section, we introduce the definition of a neutrosophic soft expert set and give basic properties of this 
concept. 

Let U be a universe, E a set of parameters, X a set of experts (agents), and { }1 agree,0 disagreeO = = =  a set 
of opinions. Let Z E X O= × ×  and A Z⊆ . 

3.1. Definition: A pair ( ),F A  is called a neutrosophic soft expert set over U, where F is mapping given by 

( ):F A P U→  

where ( )P U  denotes the power neutrosophic set of U. For definition we consider an example. 
3.1. Example: Suppose the following U is the set of car under consideration E is the set of parameters. Each 

parameter is a neutrosophic word or sentence involving neutrosophic words. 

{ }1 2 3, ,U u u u=  

{ } { }1 2easy to use; quality ,E e e= =  

{ }, ,X p q r=  

be a set of experts. Suppose that 

( ) { }1 1 3, ,1 ,0.3,0.5,0.7 , ,0.5,0.6,0.3F e p u u=  

( ) { }1 2 3, ,1 ,0.8,0.2,0.3 , ,0.9,0.5,0.7F e q u u=  
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( ) { }1 1, ,1 ,0.4,0.7,0.6F e r u=  

( ) { }2 1 2, ,1 ,0.4,0.2,0.3 , ,0.7,0.1,0.3F e p u u=  

( ) { }2 3, ,1 ,0.3,0.4,0.2F e q u=  

( ) { }2 2, ,1 ,0.3,0.4,0.9F e r u=  

( ) { }1 2, ,0 ,0.5,0.2,0.3F e p u=  

( ) { }1 1, ,0 ,0.6,0.3,0.5F e q u=  

( ) { }1 2 3, ,0 ,0.7,0.6,0.4 , ,0.9,0.5,0.7F e r u u=  

( ) { }2 3, ,0 ,0.7,0.9,0.6F e p u=  

( ) { }2 1 2, ,0 ,0.7,0.3,0.6 , ,0.6,0.2,0.5F e q u u=  

( ) { }2 1 3, ,0 ,0.6,0.2,0.5 , ,0.7,0.2,0.8F e r u u=  

The neutrosophic soft expert set ( ),F Z  is a parameterized family ( ){ }, 1, 2,3,iF e i =   of all neutrosophic 
sets of U and describes a collection of approximation of an object. 

3.1. Definition: Let ( ),F A  and ( ),G B  be two neutrosophic soft expert sets over the common universe U. 
( ),F A  is said to be neutrosophic soft expert subset of ( ),G B , if A B⊂  and ( ) ( ) ( ) ( )F e G eT x T x≤ , 

( ) ( ) ( ) ( )F e G eI x I x≤ , ( ) ( ) ( ) ( )F e G eF x F x≥  e A∀ ∈ , .x U∈  We denote it by ( ) ( ), ,F A G B⊆ . 
( ),F A  is said to be neutrosophic soft expert superset of ( ),G B  if ( ),G B  is a neutrosophic soft expert 

subset of ( ),F A . We denote by ( ) ( ), ,F A G B⊇ . 
3.2. Example: Suppose that a company produced new types of its products and wishes to take the opinion of 

some experts about concerning these products. Let { }1 2 3, ,U u u u=  be a set of product, { }1 2,E e e=  a set of 
decision parameters where ( )1,2ie i =  denotes the decision “easy to use”, “quality” respectively and let 

{ }, ,X p q r=  be a set of experts. Suppose 

( ) ( ) ( ) ( ) ( ){ }1 2 1 1 2, ,1 , , ,0 , , ,1 , , ,0 , , ,1A e p e p e q e r e r=  

( ) ( ) ( ){ }1 2 1, ,1 , , ,0 , , ,1B e p e p e q=  

Clearly B A⊂ . Let ( ),F A  and ( ),G B  be defined as follows: 

( ) ( ){ ( )
( ) ( )
( )

1 1 2 2 2

1 1 2 1 1

2 2 3

, , ,1 , ,0.3,0.5,0.7 , ,0.5,0.2,0.3 , , ,0 , ,0.2,0.4,0.7 ,

               , ,1 , ,0.6,0.3,0.5 , ,0.6,0.2,0.3 , , ,0 , ,0.2,0.7,0.3 ,

               , ,1 , ,0.3,0.4,0.9 , ,0.7,0.2

F A e p u u e p u

e q u u e r u

e r u u

=       

      

}
( ) ( ){ ( )

( ) }
1 1 2 2 2

1 1 2

,0.8 ,

, , ,1 , ,0.3,0.5,0.7 , ,0.5,0.2,0.3 , , ,0 , ,0.2,0.4,0.7 ,

               , ,1 , ,0.6,0.3,0.5 , ,0.6,0.2,0.3 .

G B e p u u e p u

e q u u

  

=       

  

 

Therefore 

( ) ( ), ,F A G B⊇ . 

3.3. Definition: Equality of two neutrosophic soft expert sets. Two (NSES), ( ),F A  and ( ),G B  over the 
common universe U are said to be equal if ( ),F A  is neutrosophic soft expert subset of ( ),G B  and ( ),G B  is 
neutrosophic soft expert subset of ( ),F A .We denote it by 
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( ) ( ), ,F A G B= . 

3.4. Definition: NOT set of set parameters. Let { }1 2, , , nE e e e=   be a set of parameters. The NOT set of E 
is denoted by { }1 2, , , ne eE e= ￢ ￢ ￢ ￢  where ie =￢  not ie , i∀ . 

3.3. Example: Consider 3.2.example. Here { }not easy to use,not quality .E =￢  
3.5. Definition: Complement of a neutrosophic soft expert set. The complement of a neutrosophic soft expert 

set ( ),F A  denoted by ( ), cF A  and is defined as ( ) ( ), , Ac cF A F= ￢  where ( )cF A P U= →￢  is map-  
ping given by ( )cF x =neutrosophic soft expert complement with 

( ) ( )c F xF x
T F= , 

( ) ( )c F xF x
I I= , 

( ) ( )c F xF x
F T= . 

3.4. Example: Consider the 3.1 Example. Then ( ), cF Z  describes the “not easy to use of the car” we have 

( ) ( ){ ( )

( )

( )

( )

1 2 1 1

1 2 3

2 3

2 1

, , ,1 , ,0.3,0.2,0.5 , ,1 , ,0.5,0.3,0.6 ,

                  , ,1 , ,0.4,0.6,0.7 , ,0.7,0.5,0.9 ,

                  , ,1 , ,0.6,0.9,0.7 ,

                  , ,1 , ,0.6,0.3,

cF Z e p u e q u

e r u u

e p u

e q u

=       

  

  

￢ ￢

￢

￢

￢

( )

( )

( )

2

2 1 3

1 1 3

1 2 3

0.7 , ,0.5,0.2,0.6 ,

                  , ,1 , ,0.5,0.2,0.6 , ,0.8,0.2,0.7 ,

                  , ,0 , ,0.7,0.5,0.3 , ,0.3,0.6,0.5 ,

                  , ,0 , ,03,0.2,0.8 , ,0.9,0.5,0.7

u

e r u u

e p u u

e q u u

  

  

  

 

￢

￢

￢

( )

( )

( )

( ) }

1 1

2 1 2

2 3

2 2

,

                  , ,0 , ,0.6,0.7,0.4 ,

                  , ,0 , ,0.3,0.2,0.4 , ,0.3,0.1,0.7 ,

                  , ,0 , ,0.2,0.4,0.3 ,

                  , ,0 , ,0.9,0.4,0.3 .

e r u

e p u u

e q u

e r u



  

  

  

  

￢

￢

￢

￢

 

3.6. Definition: Empty or null neutrosophic soft expert set with respect to parameter. A neutrosophic soft ex-
pert set ( ),H A  over the universe U is termed to be empty or null neutrosophic soft expert set with respect to 
the parameter A if 

( ) ( ) ( ) ( ) ( ) ( )0,    0,    0,    ,   H e H e H eT m F m I m m U e A= = = ∀ ∈ ∀ ∈ . 

In this case the null neutrosophic soft expert set (NNSES) is denoted by 
A
∨Φ . 

3.5. Example: Let { }1 2 3, ,U u u u=  the set of three cars be considered as universal set { } { }1goodE e= =  be 
the set of parameters that characterizes the car and let { },X p q=  be a set of experts. 

( )

( ){ ( ) ( )

( ) }
1 1 2 1 1 2 1 3

1 3

NNSES

     , ,1 , ,0,0,0 , ,0,0,0 , , ,1 , ,0,0,0 , ,0,0,0 , , ,0 , ,0,0,0 ,

          , ,0 , ,0,0,0 .

A

e p u u e q u u e p u

e q u

∨ =

 =         

  

Φ

 

Here the (NNSES) ( ),H A  is the null neutrosophic soft expert sets. 
3.7. Definition: An agree-neutrosophic soft expert set ( )1,F A  over U is a neutrosophic soft expert subset of 

( ),F A  defined as follow  

( ) ( ) { }{ }11, : 1F A F m m E X= ∈ × × . 

3.6. Example: Consider 3.1. Example. Then the agree-neutrosophic soft expert set ( )1,F A  over U is 
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( ) ( ){ ( )

( ) ( )

( )

1 1 3 1 2 31

1 1 2 1 2

2 3

, , ,1 , ,0.3,0.5,0.7 , ,0.5,0.6,0.3 , , ,1 , ,0.8,0.2,0.3 , ,0.9,0.5,0.7 ,

                , ,1 , ,0.4,0.7,0.6 , , ,1 , ,0.4,0.2,0.3 , ,0.7,0.1,0.3 ,

                , ,1 , ,0.3,

F A e p u u e q u u

e r u e p u u

e q u

   =    

      

( ) }2 20.4,0.2 , , ,1 , ,0.3,0.4,0.9 .e r u     

 

3.8. Definition: A disagree-neutrosophic soft expert set ( )0,F A  over U is a neutrosophic soft expert subset 
of ( ),F A  defined as follow  

( ) ( ) { }{ }00, : 0F A F m m E X= ∈ × × . 

3.7. Example: Consider 3.1. Example. Then the disagree-neutrosophic soft expert set ( )0,F A  over U is 

( ) ( ) ( ){
( ) ( )

( )

1 2 1 10

1 2 3 2 3

2 1 2

, , ,0 , ,0.5,0.2,0.3 , , ,0 , ,0.6,0.3,0.5 ,

                 , ,0 , ,0.7,0.6,0.4 , ,0.9,0.5,0.7 , , ,0 , ,0.7,0.9,0.6 ,

                 , ,0 , ,0.7,0.3,0.6 , ,0.6,0.2,0.5 ,

F A e p u e q u

e r u u e p u

e q u u e

=       

      

   ( ) }2 1 3, ,0 , ,0.6,0.2,0.5 , ,0.7,0.2,0.8 .r u u  

 

3.9. Definition: Union of two neutrosophic soft expert sets. 
Let ( ),H A  and ( ),G B  be two NSESs over the common universe U. Then the union of ( ),H A  and ( ),G B  

is denoted by “ ( ) ( ), ,H A G B∪ ” and is defined by ( ) ( ) ( ), , ,H A G B K C∪ = , where C A B= ∪  and the truth- 
membership, indeterminacy-membership and falsity-membership of ( ),K C  are as follows: 

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )

, if  ,

, if  ,

max , , if  .

, if  ,

, if  ,

, ,
if  .

2

, if  ,

, if  ,

min , , if  .

H e

H e G e

H e G e

H e

K e G e

H e G e

H e

H e G e

H e G e

T m e A B

T m T m e B A

T m T m e A B

I m e A B

I m I m e B A

I m I m
e A B

F m e A B

F m F m e B A

F m F m e A B

 ∈ −
= ∈ −

 ∈ ∩




∈ −


= ∈ −


 ∈ ∩


 ∈ −
= ∈ −

 ∈ ∩

 

3.8. Example: Let ( ),H A  and ( ),G B  be two NSESs over the common universe U 

( ) ( ) ( ){ }
( ) ( ){ }

1 1 3 1 1 2

1 1 2

, , ,1 , ,0.3,0.5,0.7 , ,0.5,0.6,0.2 , , ,1 , ,0.6,0.3,0.5 , ,0.8,0.2,0.3 ,

, , ,1 , ,0.4,0.6,0.2 , ,0.7,0.5,0.8 .

H A e p u u e q u u

G B e p u u

 =    

=  

Therefore ( ) ( ) ( ), , ,H A G B K C∪ =  

( ) ( ){
( ) }

1 1 2 3

1 1 2

, , ,1 , ,0.4,0.55,0.2 , ,0.7,0.5,0.8 , ,0.5,0.6,0.2 ,

               , ,1 , ,0.6,0.3,0.5 , ,0.8,0.2,0.3 .

K C e p u u u

e q u u

 =  

  
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3.10. Definition: Intersection of two neutrosophic soft expert sets. Let ( ),H A  and ( ),G B  be two NSESs over 
the common universe U. Then the intersection of ( ),H A  and ( ),G B  is denoted by “( ) ( ), ,H A G B∩ ” and is 
defined by ( ) ( ) ( ), , ,H A G B K C∩ = , where C A B= ∩  and the truth-membership, indeterminacy-membership 
and falsity-membership of ( ),K C  are as follows: 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

min , ,

,
2

max , ,    if  .

H e H e G e

H e G e
K e

H e H e G e

T m T m T m

I m I m
I m

F m F m F m e A B

=

+
=

= ∈ ∩

 

3.9. Example: Let ( ),H A  and ( ),G B  be two NSESs over the common universe U 

( ) ( ) ( ){ }
( ) ( ){ }

1 1 3 1 1 2

1 1 2

, , ,1 , ,0.3,0.5,0.7 , ,0.5,0.6,0.2 , , ,1 , ,0.6,0.3,0.5 , ,0.8,0.2,0.3 ,

, , ,1 , ,0.4,0.6,0.2 , ,0.7,0.5,0.8 .

H A e p u u e q u u

G B e p u u

 =    

=
 

Therefore ( ) ( ) ( ), , ,H A G B K C∩ =  

( ) ( ){ }1 1, , ,1 , ,0.3,0.55,0.7K C e p u= . 

3.1. Proposition: If ( ),H A  and ( ),G B  are neutrosophic soft expert sets over U. Then 
1) ( ) ( ) ( ) ( ), , , ,H A G B G B H A∪ = ∪   
2) ( ) ( ) ( ) ( ), , , ,H A G B G B H A∩ = ∩   

3) ( )( ) ( ), ,
ccH A H A=  

4) ( ) ( ), ,H A H A∪Φ =  
5) ( ),H A ∩Φ = Φ  
Proof: 1) We want to prove that ( ) ( ) ( ) ( ), , , ,H A G B G B H A∪ = ∪   by using 3.9 definition and we consider 

the case when if e A B∈ ∩  as the other cases are trivial, then we have 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )

, , , max , , ,min , :
2

                        , max , , ,min , :
2

                        , , .

H e G e
H e G e H e G e

G e H e
G e H e G e H e

I m I m
H A G B u T m T m F m F m u U

I m I m
u T m T m F m F m u U

G B H A

 + ∪ = ∈ 
  

 + = ∈ 
  

= ∪





 

The proof of the propositions 2) to 5) are obvious. 
3.2. Proposition: If ( ),H A , ( ),G B  and ( ),K D  are three neutrosophic soft expert sets over U. Then  
1) ( ) ( )( ) ( ) ( ) ( ) ( )( ), , , , , ,H A G B M D H A G B M D∪ ∪ = ∪ ∪     

2) ( ) ( )( ) ( ) ( ) ( ) ( )( ), , , , , ,H A G B M D H A G B M D∩ ∩ = ∩ ∩     

Proof: 1) We want to prove that ( ) ( )( ) ( ) ( ) ( ) ( )( ), , , , , ,H A G B M D H A G B M D∪ ∪ = ∪ ∪     by using 3.9 de-
finition and we consider the case when if e A B∈ ∩  as the other cases are trivial, then we have 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ), , , max , , ,min , :

2
H e G e

H e G e H e G e

I m I m
H A G B u T m T m F m F m u U

 + ∪ = ∈ 
  

  

We also consider her the case when e D∈  as the other cases are trivial, then we have 
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( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( )

, , ,

  ,max , , ,min , ,
2

, , :

  , , ,

            ,max , , ,min , ,:
2

  , ,

     

H e G e
H e G e H e G e

M e M e M e

H e H e H e

G e M e
G e M e G e M e

H A G B M D

I m I m
u T m T m F m F m

T m I m F m u U

T m I m F m

I m I m
u T m T m F m F m u U

H A G B

∪ ∪

 + =   

∈ 


= 


 +   ∈     

= ∪ ∪

 

  ( )( ), .M D

 

2) The proof is straightforward. 
3.3. Proposition: If ( ),H A , ( ),G B  and ( ),M D  are three neutrosophic soft expert sets over U. Then  
1) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ), , , , , , ,H A G B M D H A M D G B M D∪ ∩ = ∩ ∪ ∩      

2) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ), , , , , , ,H A G B M D H A M D G B M D∩ ∪ = ∪ ∩ ∪      

Proof: We use the same method as in the previous proof. 
3.11. Definition: AND operation on two neutrosophic soft expert sets. Let ( ),H A  and ( ),G B  be two NSESs 

over the common universe U. Then “AND” operation on them is denoted by “ ( ) ( ), ,H A G B∧ ” and is defined 
by ( ) ( ) ( ), , ,H A G B K A B∧ = ×  where the truth-membership, indeterminacy-membership and falsity-member- 
ship of ( ),K A B×  are as follows: 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

,

,

,

min , ,

,
2

max , ,    i ,f   .

H H G

H G
K

H H G

T m T m T m

I m I m
I m

F Am F m m BF

α β α β

α β
α β

α β α β α β

=

= ∀ ∈ ∀ ∈

+
=  

3.10. Example: Let ( ),H A  and ( ),G B  be two NSESs over the common universe U. Then ( ),H A  and 
( ),G B  is a follows: 

( ) ( ) ( ){ }
( ) ( ){ }

1 1 3 1 1 2

1 1 2

, , ,1 , ,0.3,0.5,0.7 , ,0.5,0.6,0.2 , , ,1 , ,0.6,0.3,0.5 , ,0.8,0.2,0.3 ,

, , ,1 , ,0.4,0.6,0.2 , ,0.7,0.5,0.8 .

H A e p u u e q u u

G B e p u u

 =    

=  

Therefore ( ) ( ) ( ), , ,H A G B K A B∧ = ×  

( ) ( ) ( ){
( ) ( ) }

1 1 1 2 3

1 1 1 2

, , ,1 , , ,1 ,0.3,0.55,0.7 , ,0.7,0.5,0.8 , ,0.5,0.6,0.2 ,

                     , ,1 , , ,1 ,0.4,0.45,0.5 , ,0.7,0.35,0.8 ,

K A B e p e p u u u

e q e p u u

 × =  

  

 

3.12. Definition: OR operation on two neutrosophic soft expert sets. Let ( ),H A  and ( ),G B  be two 
NSESs over the common universe U. Then “OR” operation on them is denoted by “ ( ) ( ), ,H A G B∨ ” and is de-
fined by ( ) ( ) ( ), , ,H A G B O A B∨ = ×  where the truth-membership, indeterminacy-membership and falsi-
ty-membership of ( ),O A B×  are as follows: 
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( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

,

,

,

max , ,

,
2

min , ,   if ,   . 

O H G

H G
O

O H G

T m T m T m

I m I m
I m

F Am F m F m B

α β α β

α β
α β

α β α β α β

=

=

∀ ∈ ∀ ∈

+

=

 

3.11. Example: Let ( ),H A  and ( ),G B  be two NSESs over the common universe U. Then ( ),H A  OR 
( ),G B  is a follows: 

( ) ( ) ( ){ }
( ) ( ){ }

1 1 3 1 1 2

1 1 2

, , ,1 , ,0.3,0.5,0.7 , ,0.5,0.6,0.2 , , ,1 , ,0.6,0.3,0.5 ,0.8,0.2,0.3 ,

, , ,1 , ,0.4,0.6,0.2 , ,0.7,0.5,0.8 .

H A e p u u e q u u

G B e p u u

 =    

=
 

Therefore ( ) ( ) ( ), , ,H A G B O A B∨ = ×  

( ) ( ) ( ){
( ) ( ) }

1 1 1 2 3

1 1 1 2 3

, , ,1 , , ,1 ,0.4,0.55,0.2 , ,0.8,0.2,0.3 , ,0.5,0.6,0.2 ,

                     , ,1 , , ,1 ,0.6,0.45,0.2 , ,0.8,0.35,0.2 , ,0.5,0.6,0.2 .

O A B e p e p u u u

e q e p u u u

 × =  

  
 

3.4. Proposition: If ( ),H A  and ( ),G B  are neutrosophic soft expert sets over U. Then 
1) ( ) ( )( ) ( ) ( ), , , ,

c c cH A G B H A G B= ∨∧   

2) ( ) ( )( ) ( ) ( ), , , ,
c c cH A G B H A G B= ∧∨   

Proof: 1) Let ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }, , , , :H x H x H xH A u T m I m F m u U= ∈  and 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }, , , , :G x G x G xG B u T m I m F m u U= ∈  

be two NSESs over the common universe U . Also let ( ) ( ) ( ), , ,H A G B K A B∧ = × , where  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ), ,min , , ,max , :

2
H G

H G H G

I m I m
K A B u T m T m F m F m u Uα β

α β α β

 + × = ∈ 
  

 

Therefore 

( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

, , ,

                             ,max , , ,min , : ,
2

c c

H G
H G H G

H A G B K A B

I m I m
u F m F m T m T m u Uα β

α β α β

∧ = ×

 + = ∈ 
  



 

Again 

( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

, ,

  ,max , , , min , :
2

  ,min , , , max , :
2

  ,max , , , min , : .
2

c c

c c c c

c c

H G

H G H G

c

H G
H G H G

H G
H G H G

H A G B

I m I m
u F m F m T m T m u U

I m I m
u T m T m F m F m u U

I m I m
u F m F m T m T m u U

α β

α β α β

α β
α β α β

α β
α β α β

 + = ∈ 
  

 + 

∨

= ∈ 
  
 + = ∈ 
  


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Hence the result is proved. 
3.5. Proposition: If ( ),H A , ( ),G B  and ( ),M D  are three neutrosophic soft expert sets over U. Then 
1) ( ) ( )( ) ( ) ( ) ( ) ( )( ), , , , , ,H A G B M D H A G B M D∨ ∨ = ∨ ∨     

2) ( ) ( )( ) ( ) ( ) ( ) ( )( ), , , , , ,H A G B M D H A G B M D∧ ∧ = ∧ ∧     
3) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ), , , , , , ,H A G B M D H A M D G B M D∨ ∧ = ∧ ∨ ∧      

4) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( ), , , , , , ,H A G B M D H A M D G B M D∧ ∨ = ∨ ∧ ∨      
Proof: We use the same method as in the previous proof. 

4. An Application of Neutrosophic Soft Expert Set 
In this section, we present an application of neutrosophic soft expert set theory in a decision-making problem. 
The problem we consider is as below: 

Suppose that a hospital to buy abed. Seven alternatives are as follows: 

{ }1 2 3 4 5 6 7, , , , , ,U u u u u u u u= , 

suppose there are five parameters { }1 2 3 4 5, , , ,E e e e e e=  where the parameters ( )1, 2,3, 4,5ie i =  stand for 
“medical bed”, “soft bed”, “orthopedic bed”, “moving bed”, “air bed”, respectively. Let { }, ,X p q r=  be a set 
of experts. Suppose: 

( ) ( ) { }( ) ( ) { }( ){
( ) { }( ) ( ) { }( )
( ) { }( ) ( ) { }( )
( ) { }( ) ( )

1 1 3 6 1 1 3 4 7

1 1 2 4 5 7 2 3 5 6 7

2 1 3 4 6 2 1 3 4 5

3 1 2 6 7 3 1 2 4

, , ,1 , , , , , ,1 , , , , ,

                , ,1 , , , , , , , ,1 , , , , ,
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In Table 1 and Table 2 we present the agree-neutrosophic soft expert set and disagree-neutrosophic soft ex-
pert set, respectively, such that if ( )1iju F ε∈  then 1iju =  otherwise 0iju = , and if ( )0iju F ε∈  then 1iju =  
otherwise 0iju =  where iju  are the entries in Table 1 and Table 2. 

The following algorithm may be followed by the hospital wants to buy a bed. 
1) input the neutrosophic soft expert set ( ),F Z , 
2) find an agree-neutrosophic soft expert set and a disagree-soft expert set, 
3) find j ijic u= ∑  for agree-neutrosophic soft expert set, 

4) find j ijik u= ∑  for disagree-neutrosophic soft expert set, 
5) find ,j j js c k= −  
6) find m, for which ma .xm js s=  
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Table 1. Agree-neutrosophic soft expert set. 

U  1u  2u  3u  4u  5u  6u  7u  

( )1,e p  1 0 1 0 0 1 0 

( )2 ,e p  0 0 1 0 1 1 1 

( )3 ,e p  1 1 0 0 0 1 1 

( )4 ,e p  1 1 0 0 1 1 0 

( )5 ,e p  1 0 1 1 1 1 1 

( )1,e q  1 0 1 1 0 0 1 

( )2 ,e q  1 0 1 1 0 1 0 

( )3 ,e q  1 1 0 1 1 0 1 

( )4 ,e q  0 1 1 1 0 1 1 

( )5 ,e q  0 0 1 1 1 0 0 

( )1,e r  1 1 0 1 1 0 1 

( )2 ,e r  1 0 1 1 1 0 0 

( )3 ,e r  1 1 1 1 0 1 1 

( )4 ,e r  1 1 1 0 1 1 0 

( )5 ,e r  1 0 1 1 0 0 1 

j ij
i

c u=∑  
1 12c =  2 7c =  3 11c =  4 10c =  5 7c =  6 9c =  7 9c =  

 
Table 2. Disagree-neutrosophic soft expert set. 

U  1u  2u  3u  4u  5u  6u  7u  

( )1,e p  0 1 0 1 1 0 1 

( )2 ,e p  1 1 0 1 0 0 0 

( )3 ,e p  0 0 1 1 1 0 0 

( )4 ,e p  0 0 1 1 0 0 1 

( )5 ,e p  0 1 0 0 0 0 0 

( )1,e q  0 1 0 0 1 1 0 

( )2 ,e q  0 1 0 0 1 0 1 

( )3 ,e q  0 0 1 0 0 1 0 

( )4 ,e q  1 0 0 0 1 0 0 

( )5 ,e q  1 1 0 0 0 1 1 

( )1,e r  0 0 1 0 0 1 0 

( )2 ,e r  0 1 0 0 0 1 1 

( )3 ,e r  0 0 0 0 1 0 0 

( )4 ,e r  0 0 0 1 0 0 1 

( )5 ,e r  0 1 0 0 1 1 0 

j ij
i

k u=∑  
1 3k =  2 8k =  3 4k =  4 5k =  5 7k =  6 6k =  7 6k =  
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Table 3. j j js c k= − . 

j ij
i

c u=∑  j ij
i

k u=∑  
j j js c k= −  

1 12c =  1 3k =  1 9s =  

2 7c =  2 8k =  2 1s = −  

3 11c =  3 4k =  3 7s =  

4 10c =  4 5k =  4 5s =  

5 7c =  5 7k =  5 0s =  

6 9c =  6 6k =  6 3s =  

7 9c =  7 6k =  7 3s =  

 
Then ms  is the optimal choice object. If m has more than one value, then any one of them could be chosen 

by hospital using its option. Now we use this algorithm to find the best choices for to get to the hospital bed. 
From Table 1 and Table 2 we have Table 3. 

Then 1max js s= , so the hospital will select the bed 1u . In any case if they do not want to choose 1u  due to 
some reasons they second choice will be 3u . 

5. Conclusion 
In this paper, we have introduced the concept of neutrosophic soft expert set which is more effective and useful 
and studied some of its properties. Also the basic operations on neutrosophic soft expert set namely complement, 
union, intersection, AND and OR have been defined. Finally, we have presented an application of NSES in a 
decision-making problem. 
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Abstract 
A ghostbursting model is a mathematical model (a system of coupled nonlinear ordinary differen-
tial equations) that is based on the Hodgkin-Huxley formalism. The ghostbursting model describes 
bursting similar to the in vitro bursting of electrosensory neurons of weakly electric fish. Doiron 
and coworkers have focused on two system parameters of the model: maximal conductance of the 
dendritic potassium current ( ),Dr dg  and the current injected into the somatic compartment ( )sI . 

They performed bifurcation analysis and revealed that the ( ), ,Dr d sg I -parameter space was di-
vided into three dynamical states: quiescence, periodic tonic spiking, and bursting. The present 
study focused on a third system parameter: the time constant of dendritic potassium current inac-
tivation ( )pdτ . A computer simulation of the model revealed how the dynamical states of the 

( ), ,Dr d sg I -parameter space changed in response to variations of pdτ . 
 

Keywords 
Mathematical Model, Bifurcation, Ghostbursting, Time Constant 

 
 

1. Introduction 
Hodgkin and Huxley [1] proposed a mathematical model that is composed of a system of four-coupled nonlinear 
ordinary differential equations (page 518 in [1]) and that describes the action potential regeneration of the squid 
giant axon and the biophysical mechanisms underlying the action potential generation. Various types of mathe-
matical models describing the electrical excitability of neurons and endocrine cells have been developed on the 
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basis of the concepts proposed by Hodgkin and Huxley [1], and analyses of these models, including the RPeD1 
neuron model in [2], various bursting models in Chapter 5 of [3], and pituitary lactotroph bursting model in [4], 
are important research areas in the field of applied mathematics. The concepts proposed by Hodgkin and Huxley 
[1] are also important in the fields of theoretical physics [5] and mathematical physics [6]. The Hodgkin-Huxley 
model is also used in drug-disease modeling (see Chapter 5.2.2 in [7]). 

A ghostbursting model [8], which is a mathematical model based on the concepts proposed by Hodgkin and 
Huxley [1], describes a system of six-coupled nonlinear ordinary differential equations [see Equations (1) to (6) 
in Section 2]. This model exhibits bursting similar to that observed in in vitro recordings of pyramidal cells in 
the electrosensory lateral line lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus. This model 
consists of two compartments: the somatic compartment [see Equations (1) and (2) in Section 2] and the den-
dritic compartment [see Equations (3) to (6) in Section 2]. Doiron et al. have focused on two system parameters 
of the model: maximal conductance of the delayed-rectifying potassium current in the dendritic compartment 
( ),Dr dg  [see Equation (3)] and the current injected into the somatic compartment ( )sI  [see Equation (1)]. 
They performed ( ), ,Dr d sg I -parameter bifurcation analysis of the model (see Figure 6 in [8]). This figure indi-
cates that the organizing center of the ( ), ,Dr d sg I -parameter bifurcation diagram is a codimension-two bifurca-
tion point and that unfolding the codimension-two bifurcation point yields two types of bifurcation manifolds: a 
curve for a saddle-node bifurcation of fixed points (SNFP curve) and a curve for a saddle-node bifurcation of 
limit cycles (SNLC curve). The SNFP and SNLC curves divide the ( ), ,Dr d sg I -parameter space into three dy-
namical states: quiescence, periodic tonic spiking, and bursting. When crossing the SNFP curve with an increase 
in sI  under a condition in which ,Dr dg  is fixed to a certain value smaller than the ,Dr dg  value at the codi-
mension-two bifurcation point, the dynamical state changes from quiescence to bursting. When crossing the 
SNFP curve with an increase in sI  under a condition in which ,Dr dg  is fixed to a certain value larger than the 

,Dr dg  value at the codimension-two bifurcation point, the dynamical state changes from quiescence to periodic 
tonic spiking. The periodic tonic spiking further changes into bursting when the SNLC curve is crossed with an 
increase in sI . In addition, various bursting patterns are shown in Figure 13 in [8] and Figure 3 in [9]. 

Vo et al. have indicated that it is important to investigate the kinetic properties of ionic conductance for un-
derstanding the dynamics of pituitary cell models [10]. In other words, variations in the time constant values of 
ionic conductance can change the dynamical states of the cell model (Figure 4 in [10]). Doiron et al. have also 
suggested that the appropriate setting of the time constant value in dendritic potassium current inactivation is 
important for bursting dynamics (see the last paragraph of Section 3.3 in [8]). However, how variations in the 
time constant values affect the ( ), ,Dr d sg I -parameter space was not revealed in their study. Therefore, to con-
tribute to an in-depth understanding of the kinetic properties of dendritic potassium current inactivation, in the 
present study, we performed numerical analysis and clarified the influence of time constant variations on the 
( ), ,Dr d sg I -parameter space. 

2. Materials and Methods 
The ghostbursting model [Equations (1)-(6)] contains the following six state variables: the somatic membrane 
potential ( )mVsV   , activating variable of the somatic delayed-rectifying potassium current ( )sn , dendritic 
membrane potential ( )mVdV   , inactivating variable of the dendritic sodium current ( )dh , activating variable 
of the dendritic delayed-rectifying potassium current ( )dn , and inactivating variable of the dendritic delayed- 
rectifying potassium current ( )dp . The time evolution of these variables is described with the following equa-
tions: 

( ) ( ) ( ) ( ) ( ) ( )
2

2
, ,

d 1 1
d 1 e s ms ms

s c
m s Na s s s Na Dr s s s K L s L s dV V k

V g
C I g n V E g n V E g V E V V

t κ− −

 = − − − − − − − − − 
+ 

 (1) 

( )
d 1 1
d 1 e s ns ns

s
sV V k

ns

n
n

t τ − −

 = − 
+ 

                                                           (2) 

( ) ( ) ( ) ( ) ( )
2

2
, ,

d 1
d 11 e d md md

d c
m Na d d d Na Dr d d d d K L d L d sV V k

V g
C g h V E g n p V E g V E V V

t κ− −

 = − − − − − − − −  −+ 
  (3) 
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( )
d 1 1
d 1 e d hd hd

d
dV V k

hd

h
h

t τ − −

 = − 
+ 

                              (4) 

( )
d 1 1
d 1 e d nd nd

d
dV V k

nd

n
n

t τ − −

 = − 
+ 

                              (5) 

( )
d 1 1
d 1 e d pd pd

d
dV V k

pd

p
p

t τ − −

 
= −  + 

                             (6) 

where the definitions and values of the above-mentioned parameters are listed in Table 1. Equation (1) indicates 
that the time evolution of the somatic membrane potential ( )sV  is regulated by the fast inward sodium current  

 
Table 1. Values of the parameters in Equations (1)-(6) from [8].                                                   

Parameter Value Unit Definition 

mC  1 μF/cm2 Membrane capacitance 

sI  5.6 - 6.6 mA/cm2 Current injected into somatic compartment 

,Na sg  55 mS/cm2 Maximal conductance of the somatic sodium current 

,Dr sg  20 mS/cm2 Maximal conductance of the somatic potassium current 

,Na dg  5 mS/cm2 Maximal conductance of the dendritic sodium current 

,Dr dg  11.2 - 14.0 mS/cm2 Maximal conductance of the dendritic potassium current 

Lg  0.18 mS/cm2 Leak conductance 

cg  1 mS/cm2 Coupling coefficient 

κ  0.4  Ratio of the somatic-to-total surface area 

NaE  40 mV Reversal potential for the sodium ion 

KE  −88.5 mV Reversal potential for the potassium ion 

LE  −70 mV Reversal potential of the leak current 

msV  −40 mV Voltage at the midpoint of the steady-state function of the somatic 
sodium current activating variable 

msk  3 mV Slope factor of the steady-state function of the somatic sodium current activating variable 

mdV  −40 mV Voltage at the midpoint of the steady-state function of the dendritic  
sodium current activating variable 

mdk  5 mV Slope factor of the steady-state function of the dendritic sodium current activating variable 

nsV  −40 mV Voltage at the midpoint of the steady-state function of ns 

nsk  3 mV Slope factor of the steady-state function of ns 

hdV  −52 mV Voltage at the midpoint of the steady-state function of hd 

hdk  −5 mV Slope factor of the steady-state function of hd 

ndV  −40 mV Voltage at the midpoint of the steady-state function of nd 

ndk  5 mV Slope factor of the steady-state function of nd 

pdV  −65 mV Voltage at the midpoint of the steady-state function of pd 

pdk  −6 mV Slope factor of the steady-state function of pd 

nsτ  0.39 ms Time constant of ns 

hdτ  1 ms Time constant of hd 

ndτ  0.9 ms Time constant of nd 

pdτ  4.2, 5.0, 5.8 ms Time constant of pd 
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(the 2nd term), outward delayed-rectifying potassium current (the 3rd term), leak current (the 4th term), and elec-
trotonic diffusive current between the somatic and dendritic compartments (the 5th term). Similarly, Equation (3) 
indicates that the time evolution of the dendritic membrane potential ( )dV  is regulated by the fast inward so-
dium current (the 1st term), outward delayed-rectifying potassium current (the 2nd term), leak current (the 3rd 
term), and electrotonic diffusive current between the somatic and dendritic compartments (the 4th term). Equa-
tions (2), (4), (5), and (6) indicate that the activating or inactivating variables approach the steady-state function 

( )
1

1 e x y yV V k− −
+

 ( ), . , , , .x s d y ns hd nd pd= =  at a rate that depends on the time constant yτ  ( ),  ,  ,  .y ns hd nd pd= . 

For detailed explanations of the model, see [8]. 
The free and open source software Scilab (http://www.scilab.org/) was used to numerically solve equations 

(1)-(6) under the following initial conditions: 70 mVsV = − , 0.00005sn = , 70 mVdV = − , 0.973dh = , 
0.002dn = , and 0.697dp = . The response of the model to various ( ), ,Dr d sg I  values was investigated under 

different values of pdτ . The total simulation time was 1.2 s, and the constant depolarizing current pulse ( )sI  
was injected between 0.1 s and 1.1 s. Otherwise, the injected current was zero. 

3. Results 
3.1. Reproduction of Previous Results 
The ghostbursting model can show the three dynamical states: quiescence (Figure 1(a)), periodic tonic spik-
ing (Figure 1(b)), and bursting (Figure 1(c)). The present study shows that the regions of these dynamical states 
in the ( ), ,Dr d sg I -parameter space change in response to pdτ  variations (Figure 2). The results at low pdτ  
are shown in Figure 2(a), those at intermediate pdτ  are shown in Figure 2(b), and those at high pdτ  are 
shown in Figure 2(c). First, in the present study, we performed a simulation of the model with ( ), ,Dr d sg I  va-
riable values set at 5.0 mspdτ =  (Figure 2(b)), which was the same condition as that used in Figure 6 in [8]. 
At a low sI  value (5.6 μA/cm2), the dynamical state of the model was that of quiescence, irrespective of the 

,Dr dg  value (× in Figure 2(b)). An example of the time course of the somatic membrane potential during the 
quiescent state is shown in Figure 1(a). At high sI  values (≥5.8 μA/cm2), the dynamical state was that of pe-
riodic tonic spiking (○ in Figure 2(b)) or bursting (● in Figure 2(b)). In other words, when the ,Dr dg  value 
was small (≤12.0 mS/cm2), the dynamical state was that of bursting. In contrast, when the ,Dr dg  value was 
large (≥12.2 mS/cm2), the dynamical state was that of periodic tonic spiking at smaller sI  values and that of 
bursting at larger sI  values, and the sI  threshold between periodic tonic spiking and bursting increased as the 

,Dr dg  value was increased. Examples of the time courses of the somatic membrane potential during periodic 
tonic spiking and bursting are shown in Figure 1(b) and Figure 1(c), respectively. When the above-mentioned 
results were compared with previous findings (Figure 6 in [8]), the present numerical analysis could reproduce 
the previous results. 

Based on the previous results (Figure 6 in [8]), SNFP was thought to occur at certain sI  values between × 
and ● in Figure 2(b). In addition, SNFP was thought to occur at certain sI  values between × and ○ in Figure 
2(b). SNLC was thought to occur at certain sI  values between ○ and ● in Figure 2(b). Codimension-two bi-
furcation was thought to occur at a certain ( ), ,Dr d sg I  value that is surrounded by ×, ○, and ● in Figure 2(b). 

3.2. Effects of Changes in pdτ  on the ( ), ,Dr d sg I -Parameter Space 
The simulation results under conditions in which the pdτ  value was decreased and increased are shown in 
Figure 2(a) and Figure 2(c), respectively. At a low Is value (5.6 μA/cm2), the dynamical state was that of 
quiescence, irrespective of the ,Dr dg  value (× in Figure 2(a) or Figure 2(c)), which is the same as that shown 
in Figure 2(b). The sI  threshold between quiescence and bursting, which is the boundary between × and ● in 
Figure 2(a) and Figure 2(c), is the same as that shown in Figure 2(b). The sI  threshold between quiescence 
and periodic tonic spiking, which is the boundary between × and ○ in Figure 2(a) and Figure 2(c), is also the 
same as that shown in Figure 2(b). These results suggested that changes in the pdτ  values did not affect SNFP. 

At high sI  values (≥5.8 μA/cm2), patterns similar to Figure 2(b) were observed. In other words, when the 
,Dr dg  value was small (≤12.8 mS/cm2 in Figure 2(a) and ≤11.6 mS/cm2 in Figure 2(c)), the dynamical state 

was that of bursting only (● in Figure 2(a) and Figure 2(c)). In contrast, when the ,Dr dg  value was large 
(≥13.0 mS/cm2 in Figure 2(a) and ≥11.8 mS/cm2 in Figure 2(c)), the dynamical state was that of periodic tonic  

http://www.scilab.org/
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Figure 1. Examples of the time courses of the simulated somatic membrane 
potential ( )sV  at different ,Dr dg  and Is values at 5.0pdτ =  ms. (a) Quiescent 

state at ( ) ( ), , 12.6,5.6Dr d sg I = ; (b) Periodic tonic spiking state at 

( ) ( ), , 13.6,6.2Dr d sg I = ; (c) Bursting state at ( ) ( ), , 11.8,6.2Dr d sg I = . 

 
spiking (○ in Figure 2(a) and Figure 2(c)) at smaller sI  values and that of bursting at larger sI  values. The 

sI  threshold between periodic tonic spiking and bursting increased as the ,Dr dg  value increased, as illustrated 
in Figure 2(a) and Figure 2(c). However, the sI  threshold between periodic tonic spiking and bursting dif-
fered among Figure 2(a), Figure 2(b), and Figure 2(c). In other words, an increase in the pdτ  value with fixed 

,Dr dg  values increased the sI  threshold between periodic tonic spiking and bursting. These results suggested 
that changes in the pdτ  values had a great impact on SNLC and changes in the pdτ  values had no influence 
on the sI  value of the codimension-two bifurcation point but had a great impact on the ,Dr dg  value of the co-
dimension-two bifurcation point. 

4. Discussion 
In the field of dynamical systems, it is important to investigate the dependence of the solutions of ordinary dif-
ferential equations on system parameters. The present study illustrates the dependence of the qualitative nature 
of the solutions of ordinary differential equations on the following system parameters: ,Dr dg , sI , and pdτ . In 
the ghost bursting model, there were three qualitatively different dynamical states: quiescence, spiking, and 
bursting. In particular, the present results revealed how the dynamical states of the two-dimensional ( ), ,Dr d sg I - 
parameter space changed in response to variations in the third parameter pdτ . These results are important in 
that they imply a relationship between pdτ  and bifurcation manifolds in the ( ), ,Dr d sg I -parameter space. In 
other words, these findings suggested that an increase in the pdτ  value did not shift the SNFP curve in the 
( ), ,Dr d sg I -parameter space but rather shifted the SNLC curve upward. A very interesting finding in the present  
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Figure 2. The effects of variations in the pdτ  value on the dynamical states in the two-dimensional 

( ), ,Dr d sg I -parameter space (a) 4.2 mspdτ = ; (b) 5.0 mspdτ = ; (c) 5.8 mspdτ = . The symbols are ×: 
quiescence, ○: periodic tonic spiking, and ●: bursting. 

 
study, which was not reported in the previous study [8], is that there was a nonlinear relationship between pdτ  
and the area of the bursting state. In other words, although the amount of pdτ  decrease was the same (−0.8 ms) 
between the changes from Figure 2(c) to Figure 2(b) and the changes from Figure 2(b) to Figure 2(a), the 
amount of increase in the area of the bursting state in the latter case was much larger than that in the former 
case. 

Other examples that illustrate how the dynamical states of two-dimensional parameter space change in re-
sponse to variations in the third parameter are (1) a model of CA1 pyramidal neuron spiking dynamics (Figure 
12 in [11]) and (2) a compartmental model of Cheyne-Stokes respiration (Figure 5 in [12]). In analysis of the 
CA1 model, Bianchi et al. have focused on the following three parameters: the injected current ( )injI , half-ac- 
tivation voltage of the transient sodium current ( )( )1 2 mNaTV , and half-activation voltage of the delay-rectifier 
potassium current ( )( )1 2 mKDRV . Their findings revealed that the dynamical states of the two-dimensional 

( )( )1 2 mNaT , injV I -parameter space hardly changed in response to variations in ( )1 2 mKDRV , while the dynamical 
states of the two-dimensional ( )( )1 2 mKDR , injV I -parameter space drastically changed in response to variations in 

( )1 2 mNaTV . In analysis of the Cheyne-Stokes respiration model, Atamanyk and Langford focused on the following 
three parameters: the partial pressure of CO2 in the inspired air ( )Ix , ventilation-perfusion ratio ( )AV F , and 
slope of the Hill function ( )µ . Their findings revealed that the two-dimensional ( ),AV F µ -parameter space 
was divided into stable equilibria and unstable equilibria regions by a Hopf bifurcation curve and that an in-
crease in Ix  shifted the Hopf bifurcation curve upward, resulting in an expansion of the stable equilibria re-
gion. 
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Study [13] proposed an algorithm for the visualization of the bifurcation manifolds in the three-dimensional 
parameter space. In the three-dimensional parameter space, the parameter sets at which codimension one-bifur- 
cation occurs are visualized as bifurcation surfaces. Higher codimension bifurcations are located at intersections 
of the bifurcation surfaces. For example, analyses of a socioeconomic model have revealed codimension-one 
bifurcation surfaces: a Hopf bifurcation surface and a saddle-node bifurcation surface (Figure 5 in [13]). In addi-
tion, the following codimension-two bifurcation curves were visualized: a Gavrilov-Guckenheimer bifurcation 
curve and a Takens-Bogdanov bifurcation curve. In contrast to the findings of the previous study [13], in the 
present study, we did not visualize bifurcation manifolds in the three-dimensional ( ), , ,Dr d s pdg I τ -parameter 
space. However, when considering the changes in the dynamical states of the two-dimensional ( ), ,Dr d sg I -para- 
meter space in response to variations in pdτ  (Figure 2), one can roughly imagine the bifurcation manifold in 
the three-dimensional ( ), , ,Dr d s pdg I τ -parameter space. In other words, in the three-dimensional parameter 
space that is defined as a three-dimensional orthogonal coordinate system with axis lines ,Dr dg , sI  and pdτ , 
the parameter sets at which SNFP occurs are thought to form the surface of SNFP that is orthogonal to the 
( ), ,Dr d sg I  plane, while the parameter sets at which SNLC occurs are thought to form the surface of SNLC that 
is not orthogonal to the ( ), ,Dr d sg I  plane. The parameter sets at which codimension-two bifurcation occurs are 
thought to form a bifurcation curve at the intersection of the surfaces of SNFP and SNLC. 

5. Conclusion 
In conclusion, the novelty of this paper is that it reveals in detail the influence of pdτ  variations on the dynam-
ical states in the ( ), ,Dr d sg I -parameter space of the ghostbursting model. 
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Abstract 
In this paper, the homotopy perturbation Sumudu transform method (HPSTM) is extended to 
solve linear and nonlinear fractional Klein-Gordon equations. To illustrate the reliability of the 
method, some examples are presented. The convergence of the HPSTM solutions to the exact solu-
tions is shown. As a novel application of homotopy perturbation Sumudu transform method, the 
presented work shows some essential differences with existing similar application, and also four 
classical examples highlight the significance of this work. 
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Mittag-Leffler Functions, Caputo Derivative, Sumudu Transform, Homotopy Perturbation Method, 
Klein-Gordon Equation 

 
 

1. Introduction 
Nonlinear phenomena that appear in many areas of scientific fields such as solid state physics, plasma physics, 
fluid dynamics, mathematical biology and chemical kinetics are modeled in terms of nonlinear partial differen-
tial equations and in many scientific and engineering applications; one of the corner stones of modeling is partial 
differential equations. For example, the Klein-Gordon equation of the form 

( ) ( ) ( )( ) ( ), , , , ,ttw x t bw x t g w x t f x t+ + =                            (1) 

with initial conditions 
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( ) ( ) ( ) ( ),0 , ,0 ,tw x h x w x k x= =                               (2) 

appears in modeling of problems in quantum field theory, relativistic physics, dispersive wave phenomena, 
plasma physic, nonlinear optics and applied physical sciences. The complexity of the equations though requires 
the use of numerical and analytical methods in most cases. Numerous analytical and numerical methods have 
been presented in recent years. Some of these analytical methods are the Fourier transform method [1], the frac-
tional Green function method [2], the popular Laplace transform method [3] [4], the Sumudu transform method 
[5], the iteration method [4], the Mellin transform method and the method of orthogonal polynomials [3]. 

Some numerical methods are also popular, such as the homotopy perturbation method (HPM) [6]-[8], the 
modified homotopy perturbation method (MHPM) [9], the differential transform method (DTM) [10], the varia-
tional iteration method (VIM) [11] [12], the homotopy analysis method (HAM) [13] [14], the Sumudu decom-
position method [15] and the Adomian decomposition method [16] [17]. 

Among these methods, the HPM is a universal approach which can be used to solve FODEs and FPDEs; on 
the other hand, various methods are combined with the homotopy perturbation method, such as the variational 
homotopy perturbation method, which is a combination of the variational iteration method and the homotopy 
perturbation method [18]. Another such combination is the homotopy perturbation transformation method which 
is constructed by combining two powerful methods, namely, the homotopy perturbation method and the Laplace 
transform method [19]. 

The Sumudu transformation method is one of the most important transform methods introduced in the early 
1990s by Gamage K. Watugala. It is a powerful tool for solving many kinds of PDEs in various fields of science 
and engineering [20] [21]. And also various methods are combined with the Sumudu transformation method, 
such as the homotopy analysis Sumudu transform method (HASTD) [22], which is a combination of the homo-
topy analysis method and the Sumudu transformation method. Another example is the Sumudu decomposition 
method (SDM) [23], which is a combination of the Sumudu transform method and the Adomian decomposition 
method. 

In this paper, an efficient approach is proposed to use the homotopy perturbation Sumudu transform method 
(HPSTM) to derive the exact solution of various types, which is a combination of the homotopy perturbation 
method and the Sumudu transform method. However, Singh [24] used the homotopy perturbation Sumudu 
transform method to obtain the exact solution of linear and nonlinear equations which are PDEs of integer order. 
In this paper we consider the fractional Klein-Gordon equation 

( ) ( ) ( )( ) ( ), , , , ,w x t bw x t g w x t f x t
t

α

α

∂
+ + =

∂
                         (3) 

and try to show the convergence of the homotopy perturbation Sumudu transform method in solving this equation. 
The paper is structured in six sections. In Section 2, we begin with an introduction to some necessary defini-

tions of fractional calculus theory. In Section 3, we describe the basic ideal of the homotopy perturbation me-
thod. In Section 4, we describe the homotopy perturbation Sumudu transform method. In Section 5, we present 
four examples to show the efficiency of using HPSTM to solve FPDEs and also to compare our results with 
those obtained by other existing methods. Finally, relevant conclusions are drawn in Section 6. 

2. Basic Definitions of Fractional Calculus 
In this section, we present the basic definitions and properties of the fractional calculus theory, which are used 
further in this paper. 

Definition 1. A real function ( ) , 0,f t t >  is said to be in the space , ,Cσ σ ∈  if there exists a real number 
p σ>  such that ( ) ( )1

pf t t f t=  where ( ) [ )1 0, ,f t C∈ ∞  and it is said to be in the space mCσ  if ( ) ,mf Cσ∈  
.m∈  

Definition 2. The left sided Riemann-Liouville fractional integral of order 0,α ≥  of a function ,f Cσ∈  
1σ ≥ −  is defined as: 

( ) ( ) ( ) ( )1

0

1= d ,
t

J f t t fαα ζ ζ ζ
α

−−
Γ ∫                             (4) 

where 0,α >  0t >  and ( )αΓ  is the Gamma function. 
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Definition 3. Let ,nf Cµ∈  { }0 .n∈   The Caputo fractional derivative of f  is defined in [18] as fol-
lows: 

( ) ( ) ( ) ( ) ( )

( )

1

0

1 d , 1 ,

, .

t n n

t
n
t

t f n n
nD f t

D f t n

α

α
ζ ζ ζ α

α

α

− − − − < ≤Γ −= 
 =

∫
                   (5) 

Note that according to [13], Equations (4) and (5) become 

( ) ( ) ( ) ( )1

0

1, , d , for 0, 0,
t

tJ f x t t f x tαα ζ ζ ζ α
α

−= − > >
Γ ∫                      (6) 

and 

( ) ( ) ( ) ( ) ( )1

0

1, d , 1 .
t n n

tD f x t t f n n
n

αα ζ ζ ζ α
α

− −= − − < ≤
Γ − ∫                    (7) 

Definition 4. The single parameter and the two parameters variants of the Mittag-Leffler functions are denoted 
by ( )E tα  and ( ), ,E tα β  respectively, which are relevant for their connection with fractional calculus, and are 
defined as: 

( ) ( )0
, 0, ,

1

j

j

tE t t
jα α

α

∞

=

= > ∈
Γ +∑                                 (8) 

( ) ( ),
0

, , 0, .
j

j

tE t t
jα β α β

α β

∞

=

= > ∈
Γ +∑                             (9) 

Some special cases of the Mittag-Leffler function are as follows: 
1) ( )1 e ;tE t =  

2) ( ) ( ),1 ;E t E tα α=  

3) ( ) ( )1 1
, ,

d .
d

k
k

kk t E at t E at
t

β α β α
α β α β

− − −
−

  =   

Other properties of the Mittag-Leffler functions can be found in [25]. These functions are generalizations of 
the exponential function, because, most linear differential equations of fractional order have solutions that are 
expressed in terms of these functions. 

Definition 5. Sumudu transform over the following set of functions, 

( ) ( ) ( ) [ )1 2, , 0, e if 1 0, ,j

t
jA f t M f t M tττ τ

  = ∃ > < ∈ − × ∞ 
  

                 (10) 

is defined by 

( ) ( ) ( )
0

e d ,tf t G u f ut t
∞ −= =   ∫S                             (11) 

where ( )1 2, .u τ τ∈  
Some special properties of the Sumudu transform are as follows: 
1) [ ]1 1;S =  

2) 
( )

, 0;
1

m
mtS u m

m
 

= > 
Γ +  

 

3) 1e ;
1

atS
au

  =  −
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4) ( ) ( ) ( ) ( ) .S f t g t S f t S g tα β α β+ = +            

Other properties of the Sumudu transform can be found in [26]. 
Definition 6. ( )G u  is the Sumudu transform of ( ).f t  And according to ref. [26] we have: 
1) ( )1 ,G s s  is a meromorphic function, with singularities having ( )Re ,s γ<  and 
2) there exists a circular region Γ  with radius R  and positive constants, M  and ,k  with 

( )1
,kG s

MR
s

−<  

then the function ( )f t  is given by 

( ) ( )1 11 1 de residuse e
2π

i st st
i

G ssG s G
i s s s

γ

γ

+ ∞−

− ∞

  = =         
∑∫S                    (12) 

Definition 7. The Sumudu transform, ( ) ,S f t    of the Caputo fractional integral is defined as [5] 

( ) ( ) ( ) ( )1

0

0
,

kn

t k
k

G u f
D f t

u u
α

α α

−

−
=

  = −  ∑S                             (13) 

then it can be easily understood that 

( )
( ) ( ) ( )1

0

, ,0
, , 1 .

kn

t k
k

f x t f x
D f x t n n

u u
α

α α α
−

−
=

    = − − < ≤  ∑
S

S                   (14) 

3. The Basic Idea of the Homotopy Perturbation Method 
In this section, we will briefly present the algorithm of this method. At first, the following nonlinear differential 
equation is considered: 

( ) ( ) 0, ,A u f x x− = ∈Ω                                (15) 

with the boundary conditions 

( ), 0, ,B u u n x∂ ∂ = ∈Γ                                 (16) 

where ,A  ,B  ( )f x  and Γ  are a general differential function operator, a boundary operator, a known an 
analytical function and the boundary of the domain ,Ω  respectively. 

The operator A  can be decomposed into a linear operator, denoted by L , and a nonlinear operator, 
denoted by N . Therefore, Equation (15) can be written as follows 

( ) ( ) ( ) 0.u u f x+ − =L N                                 (17) 

Now we construct a homotopy ( ) [ ], : 0,1v x p Ω× →   with satisfies: 

( ) ( ) ( ) ( ) ( ) ( )0, 1 0, 0 1,v p p v u p A u f x p = − − + − = ≤ ≤   H L L               (18) 

which is equivalent to 

( ) ( ) ( ) ( ) ( ) ( )0 0, 0, 0 1,v p v u p u p v f x p= − + + − = ≤ ≤  H L L L N              (19) 

where 0u  is the initial approximation of Equation (15) that satisfies the boundary condition and p  is an em-
bedding parameter. 

When the value of p  is changed from zero to unity, we can easily see that 

( ) ( ) ( )0,0 0,v v u= − =H L L                                       (20) 

( ) ( ) ( ) ( ) ( ) ( ),1 0,v v v f x A u f x= − − = − =H L N                      (21) 
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in topology, this changing process is called deformation, and Equations (20) and (21) are called homotopic. 
If the p -parameter is considered as small, then the solution of Equations (17) and (18) can be expressed as a 

power series in p  as follows 
2 3

0 1 2 3v v pv p v p v= + + + +                                (22) 

The best approximation for the solution of Equation (15) is 

0 1 2 31
lim .
p

u v v v v v
→

= = + + + +                               (23) 

4. The Homotopy Perturbation Sumudu Transform Method 
In order to elucidate the solution procedure of this method, we consider a general fractional nonlinear partial 
differential equation of the form: 

( ) ( ) ( ) ( ), , , , ,tD w x t w x t w x t q x tα = + +L N                           (24) 

with 1 ,n nα− < ≤  and subject to the initial condition 
( ) ( ) ( ) ( ) ( )

,0
,0 , 0,1, , 1,

r
r

rr

w x
w x f x r n

t
∂

= = = −
∂

                        (25) 

where ( ),tD w x tα  is the Caputo fractional derivative, ( ),q x t  is the source term, L  is the linear operator and 
N  is the general nonlinear operator. 

Taking the Sumudu transform (denoted throughout this paper by S ) on both sides of Equation (24), we have 

( ) ( ) ( ) ( ), , , , .tD w x t w x t w x t q x tα  = + +   S S L N                       (26) 

Using the property of the Sumudu transform and the initial conditions in Equation (25), we have 

( ) ( ) ( ) ( ) ( ) ( )
1

0
, ,0 , , , ,

n
k k

k
u w x t u w x w x t w x t q x tαα

−
− −−

=

− = + +      ∑S S L N              (27) 

and 

( ) ( ) ( ) ( ) ( )
1

0
, , , , .

n
k

k
k

w x t u f x u w x t w x t q x tα
−

=

= + + +      ∑S S L N                 (28) 

Operating with the Sumudu inverse on both sides of Equation (28) we get 

( ) ( ) ( ) ( ) ( )
1

1 1

0
, , , , .

n
k

k
k

w x t u f x u w x t w x t q x tα
−

− −

=

   = + + +      
∑S S S L N              (29) 

Now, pplying the classical perturbation technique. And assuming that the solution of Equation (29) is in the 
form 

( ) ( )
0

, , ,n
n

n
w x t p w x t

∞

=

= ∑                                (30) 

where [ ]0,1p∈  is the homotopy parameter. The nonlinear term of Equation (29) can be decomposed as 

( ) ( )
=0

, ,n
n

n
w x t p H w

∞

= ∑N                               (31) 

where iH  are He’s polynomials, which can be calculated with the formula [27] 

( )0 1 2
0 0

1, , , , , 0,1, 2,
!

n
i

n n in
i p

H w w w w p w n
n p

∞

= =

 ∂  = =  ∂   
∑ N               (32) 
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Substituting Equation (30) and (31) in Equation (29), we get 

( ) ( ) ( ) ( ) ( )
1

1 1

0 0 0 0
, , , .

n
n k n n

n k m n
n k n n

p w x t u f x p u p w x t p H w q x tα
∞ − ∞ ∞

− −

= = = =

     = + + +         
∑ ∑ ∑ ∑S S S L    (33) 

Equating the terms with identical powers of p , we can obtain a series of equations as the follows: 

( ) ( )

( ) ( ) ( ) ( )

1
0 1

0
=0

1

0 0

: , ,

: , , , .

n
k

k
k

n n n
n n n

n n

p w x t u f x

p w x t u p w x t p H w q x tα

−
−

∞ ∞
−

= =

 =   

   = + +   
   

∑

∑ ∑



S

S S L

             (34) 

By utilizing the results in Equation (34), and substituting them into Equation (30) then the solution of Equa-
tion (24) can be expressed as a power series in p . The best approximation for the solution of Equation (24) is: 

( ) ( ) 0 1 21 0
, lim , .n

np n
w x t p w x t w w w

∞

→ =

= = + + +∑                        (35) 

5. Applications 
In this section, in order to assess the applicability and the accuracy of the fractional homotopy Sumudu trans-
form method the following four examples. 

Example 1. Consider the time-fractional partial differential Klein-Gordon equation 

( ) ( ) ( )
2

2

,
, , , 1 2t

w x t
D w x t w x t

x
α α

∂
= − < ≤

∂
                        (36) 

subject to the initial conditions 

( ) ( ),0 0, ,0 .tw x w x x= =                               (37) 

Taking the Sumudu transform on both sides of Equation (36), thus we get 

( ) ( ) ( )2, , , ,t xD w x t D w x t w x tα   = −   S S  

and 

( ) ( ) ( ) ( ) ( )1 2,0
, ,0 , , .x

w x
u w x t u w x u D w x t w x t

t
α α α− − − ∂ 

 − + = −      ∂ 
S S  

Using the property of the Sumudu transform and the initial condition in Equation (37), we have 

( ) ( ) ( )2, , , .xw x t xt u D w x t w x tα  = + −    S S                        (38) 

Operating with the Sumudu inverse on both sides of Equation (38) we get 

( ) ( ) ( )1 2, , , .xw x t xt u D w x t w x tα−   = + −     S S                      (39) 

By applying the homotopy perturbation method, and substituting Equation (30) in Equation(39) we have 

( ) ( ) ( )1 2

0 0
, 1 , .n n

n x m
n n

p w x t xt p u D p w x tα
∞ ∞

−

= =

   = + −   
   

∑ ∑S S                 (40) 

Equating the terms with identical powers of , p , we get 
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( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )
( )

0
0

1
1

1

2 1
2

2

3 1
3

3

1

: , ,

: , ,
2

: , ,
2 2

: , ,
3 2

1
: , .

2

n n
n

n

p w x t xt

xtp w x t

xtp w x t

xtp w x t

xt
p w x t

n

α

α

α

α

α

α

α

α

+

+

+

+

=

−
=
Γ +

=
Γ +

−
=
Γ +

−
=

Γ +



 

Thus the solution of Equation (36) is given by 

( ) ( )

( ) ( ) ( )
( )
( ) ( )

1 0

1 2 1 3 1

1

,2
0

, lim ,

2 2 2 3 2

1
2

n
np n

n n

n

w x t p w x t

t t tx t

xt
x xtE t

n

α α α

α
α

α

α α α

α

∞

→ =

+ + +

+∞

=

=

 
= − + − +  Γ + Γ + Γ + 

−
= = −

Γ +

∑

∑



                   (41) 

If we put 2α →  in Equation (41) or solve Equation (36) and (37) with 2,α =  we obtain the exact solution 

( ) ( )
( )

1

0

1
, sin .

2

n n

n

xt
w x t x x t

n

α

α

+∞

=

−
= =

Γ +∑  

which is in full agreement with the result in Ref. [28]. 
Example 2. Consider the inhomogeneous linear time-fractional partial differential Klein-Gordon equation 

( ) ( ) ( )
2

2

,
, , 2sin , 1 2t

w x t
D w x t w x t x

x
α α

∂
= − + < ≤

∂
                     (42) 

subject to the initial conditions 

( ) ( ) ( ),0 sin , ,0 1.tw x x w x= =                             (43) 

Taking the Sumudu transform on both sides of Equation (42), thus we get 

( ) ( ) ( ) ( )2, , , 2sin ,t xD w x t D w x t w x t xα   = − +   S S  

and 

( ) ( ) ( ) ( ) ( ) ( )1 2,0
, ,0 , , 2sin .x

w x
u w x t u w x u D w x t w x t x

t
α α α− − − ∂ 

 − + = − +      ∂ 
S S  

Using the property of the Sumudu transform and the initial condition in Equation (43), we have 

( ) ( ) ( ) ( ) ( )2, sin , , 2sin .xw x t x t u D w x t w x t xα  = + + − +    S S                   (44) 

Operating with the Sumudu inverse on both sides of Equation (44) we get 

( ) ( ) ( ) ( ) ( )1 2, sin , , 2sin .xw x t x t u D w x t w x t xα−   = + + − +     S S                  (45) 
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By applying the homotopy perturbation method, and substituting Equation (30) in Equation (45) we have 

( ) ( ) ( ) ( ) ( )1 2

0 0
, sin 1 , 2sin .n n

n x m
n n

p w x t x t p u D p w x t xα
∞ ∞

−

= =

   = + + − +   
   

∑ ∑S S              (46) 

Equating the terms with identical powers of ,p  we get 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )
( )

0
0

1
1

1

2 1
2

2

3 1
3

3

1

: , = sin ,

: , ,
2

: , ,
2 2

: , ,
3 2

1
: , .

2

n n
n

n

p w x t x t

tp w x t

tp w x t

tp w x t

t
p w x t

n

α

α

α

α

α

α

α

α

+

+

+

+

+

−
=
Γ +

=
Γ +

−
=
Γ +

−
=
Γ +



 

Thus the solution of Equation (42) is given by 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

1 0
1 2 1 3 1

1

,2
0

, lim ,

sin
2 2 2 3 2

1
sin sin

2

n
np n

n n

n

w x t p w x t

t t tx t

xt
x x tE t

n

α α α

α
α

α

α α α

α

∞

→ =

+ + +

+∞

=

=

= + − + − +
Γ + Γ + Γ +

−
= + = + −

Γ +

∑

∑

                  (47) 

If we put 2α →  in Equation (47) or solve Equation (42) and (43) with 2,α =  we obtain the exact solution 

( ) ( ) ( )
( ) ( )

1

0

1
, sin sin sin .

2

n n

n

xt
w x t x x t

n

α

α

+∞

=

−
= + = +

Γ +∑  

which is in full agreement with the result in Ref. [28]. 
Example 3. Consider the non-linear time-fractional partial differential Klein-Gordon equation 

( ) ( ) ( )
2

2 2 2 4 4
2

,
, , 2 2 , 1 2t

w x t
D w x t w x t x t x t

x
α α

∂
= − + − + < ≤

∂
                 (48) 

subject to the initial conditions 

( ) ( ),0 0, ,0 0.tw x w x= =                                (49) 

Taking the Sumudu transform on both sides of Equation (48), thus we get 

( ) ( ) ( )2 2 2 2 4 4, , , 2 2 ,t xD w x t D w x t w x t x t x tα   = − + − +   S S  

and 

( ) ( ) ( ) ( ) ( )1 2 2 2 2 4 4,0
, ,0 , , 2 2 .x

w x
u w x t u w x u D w x t w x t x t x t

t
α α α− − − ∂ 

 − + = − + − +      ∂ 
S S  

Using the property of the Sumudu transform and the initial condition in Equation (49), we have 
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( ) ( ) ( )2 2 2 2 4 4, , , 2 2 .xw x t u D w x t w x t x t x tα  = − + − +    S S                    (50) 

Operating with the Sumudu inverse on both sides of Equation (50) we get 

( ) ( ) ( )1 2 2 2 2 4 4, , , 2 2 .xw x t u D w x t w x t x t x tα−   = − + − +     S S                  (51) 

By applying the homotopy perturbation method, and substituting Equation (30) in Equation (51) we have 

( ) ( ) ( )
2

1 2 2 2 4 4

0 0 0
, , , 2 2 .n n n

n x m m
n n n

p w x t p u D p w x t p w x t x t x tα
∞ ∞ ∞

−

= = =

      = − + − +    
       

∑ ∑ ∑S S        (52) 

Equating the terms with identical powers of ,p  we get 

( )

( ) ( )

( )
( ) ( ) ( ) ( )

0
0

2
1

1

2 4 3 2 4 4
2

2 2 3

: , 0,

2: , ,
1

4 4 2: , ,
1 11 1

p w x t

x tp w x t

t x t t x tp w x t

α

α α α α

α

α αα α

+ +

=

=
Γ +

 
= − − + 

Γ + Γ +Γ + Γ +  


 

Thus the solution of Equation (48) is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 4 3 2 4 4

2 31 0

2 4 4 2, lim ,
1 1 11 1

n
np n

x t t x t t x tw x t p w x t
α α α α α

α α αα α

+ +∞

→ =

= = + − − + +
Γ + Γ + Γ +Γ + Γ +

∑        (53) 

If we put 2α →  in Equation (53) or solve Equation (48) and (49) with 2,α =  and so on, we can find that 

( ), 0, 1,nw x t n= >  

we obtain the exact solution 

( ) 2 2, .w x t x t=  

which is in full agreement with the result in Ref. [28]. 
Example 4. Consider the one-dimensional linear inhomogeneous fractional Klein-Gordon equation 

( ) ( ) ( ) ( )
2

3 3 3
2

,
, , 6 6 6 , , 0, , 1 2t

w x t
D w x t w x t x t x x t t x

x
α α

∂
= − + + − > ∈ < ≤

∂
           (54) 

subject to the initial conditions 

( ) ( ),0 0, ,0 0.tw x w x= =                               (55) 

Taking the Sumudu transform on both sides of Equation (54), thus we get 

( ) ( ) ( ) ( )2 3 3 3, , , 6 6 6 ,t xD w x t D w x t w x t x t x x tα    = − + + −   S S  

and 

( ) ( ) ( ) ( ) ( )( )1 2 3 3 3,0
, ,0 , , 6 6 6 .x

w x
u w x t u w x u D w x t w x t x t x x t

t
α α α− − − ∂   − + = − + + −      ∂ 
S S  

Using the property of the Sumudu transform and the initial condition in Equation (55), we have 

( ) ( ) ( ) ( )2 3 3 3, , , 6 6 6 .xw x t u D w x t w x t x t x x tα  = − + + −    S S                  (56) 
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Operating with the Sumudu inverse on both sides of Equation (56) we get 

( ) ( ) ( ) ( )1 2 3 3 3, , , 6 6 6 .xw x t u D w x t w x t x t x x tα−   = − + + −     S S                 (57) 

By applying the homotopy perturbation method, and substituting Equation (30) in Equation (57) we have 

( ) ( ) ( ) ( )1 2 3 3 3

0 0
, 1 , 6 6 6 .n n

n x m
n n

p w x t p u D p w x t x t x x tα
∞ ∞

−

= =

   = − + + −   
   

∑ ∑S S             (58) 

Equating the terms with identical powers of ,p  we get 

( )

( ) ( )
( )

( )

( )
( )

( )
( )

( )

0
0

3 33 1
1

1

3 2 1 3 2 3
2

2

: , 0,

6 66: , ,
2 4

6 6 6 12
: ,

2 2 2 4

p w x t

x x tx tp w x t

x x t x x t
p w x t

αα

α α

α α

α α

++

+ +

=

−
= +
Γ + Γ +

 − −
 = − +

Γ + Γ +  


 

Thus the solution of Equation (54) is given by 

( ) ( ) ( )
( )

( )
( )

( )
( )

( )

3 3 3 2 1 3 2 33 1

1 0

6 6 6 6 6 126, lim ,
2 4 2 2 2 4

n
np n

x x t x x t x x tx tw x t p w x t
α α αα

α α α α

+ + ++∞

→ =

 − − −
 = = + − + +

Γ + Γ + Γ + Γ +  
∑     (59) 

If we put 2α →  in Equation (59) or solve Equation (54) and (55) with 2,α =  we obtain the exact solution 

( ) 3 3 3 7 7, 0.0019047619 0.01428571429 .w x t x t x t xt= − + +  

which is in full agreement with the result in Ref. [29]. 
As it is presented above in Example 4 we obtained homotopy perturbation Sumudu transform solution of Eq-

uation (54) for values of 2,α =  1.5,α =  1.75.α =  Figures 1-4 show the approximate solutions for Equation 
(54) obtained for the three different values of α  using the homotopy perturbation Sumudu transform method  
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Figure 1. Profiles of w(x, t) when α = 2: exact solution of (54). 
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Figure 2. Profiles of w(x, t) when α = 2: approximate solution of (54). 
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Figure 3. Profiles of w(x, t) when α = 1.5: approximate solution of (54). 
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Figure 4. Profiles of w(x, t) when α = 1.75: approximate solution of (54). 

 
(HPSTM). The values of 2α =  is the only case for which we know the exact solution ( ) 3 3,w x t x t=  and the 
results of (HPSTM) are in excellent agreement with the exact solution. 

6. Conclusion 
In this paper, we have introduced a combination of the homotopy perturbation method and the Sumudu trans-
form method for time fractional problems. This combination builds a strong method called the HPSTD. This 
method has been successfully applied to one-dimensional fractional equations and also for problems of linear 
and nonlinear partial differential equations. The HPSTD is an analytical method and runs by using the initial 
conditions only. Thus, it can be used to solve equations with fractional and integer order with respect to time. 
An important advantage of the new approach is its low computational load. 
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Abstract 
A meshfree method namely, element free Gelerkin (EFG) method, is presented in this paper for the 
solution of governing equations of 2-D potential problems. The EFG method is a numerical method 
which uses nodal points in order to discretize the computational domain, but where the use of 
connectivity is absent. The unknowns in the problems are approximated by means of connectivity- 
free technique known as moving least squares (MLS) approximation. The effect of irregular dis-
tribution of nodal points on the accuracy of the EFG method is the main goal of this paper as a 
complement to the precedent researches investigated by proposing an irregularity index (II) in 
order to analyze some 2-D benchmark examples and the results of sensitivity analysis on the pa-
rameters of the method are presented. 
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Element Free Galerkin (EFG) Method, Potential Problems, Moving Least Squares Approximation, 
Irregular Distribution of Nodal Points, Irregularity Index 

 
 

1. Introduction 
Partial differential equations arise in connection with various physical and geometrical problems in which the 
functions involved depend on two or more independent variables, usually on time t and on one or several space 
variables [1]. A potential problem is one of the most important partial differential equations in engineering ma-
thematics, because it occurs in connection with gravitational fields, electrostatics fields, steady-state heat con-
duction, incompressible fluid flow, and other areas [1]. 

Mesh based numerical methods, such as finite element method (FEM) and boundary element method (BEM), 
have been the primary numerical techniques in engineering computations. In spite of the positive points of the 
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finite element method, it still suffers from high preprocessing time, low accuracy of stresses, difficulty in incor-
porating adaptivity and it is also not an ideal tool for certain classes of problems, e.g. large deformations, ma-
terial damage, crack growth, and moving boundaries [2] [3]. Therefore, meshless or meshfree methods are an 
ideal choice for these problems, because only a set of nodes is required for the problem domain discretization. 

In the past few decades, a variety of new meshless methods have been developed, including the smoothed 
particle hydrodynamics (SPH) method [4], the finite point method (FPM) [5], the diffuse element method (DEM) 
[6], the element free Galerkin (EFG) method [7], the point interpolation method (PIM) [8], the hp clouds method 
[9], the partition of unity method (PUM) [10], the meshless local Petrov-Galerkin (MLPG) method [11], the lo-
cal point interpolation method (LPIM) [12], the discrete least squares meshless (DLSM) method [13], the boun-
dary point interpolation method (BPIM) [14], and the meshless method with boundary integral equations [15]- 
[18]. 

Recently several meshless methods are proposed in order to solve potential problems. The improved EFG 
method [19] based on the improved MLS approximation is used to solve 2-D potential problems. The method of 
fundamental solution (MFS), in which the desingularization technique is used to regularize the singularity and 
hyper singularity of the kernel functions, is applied to solve potential problems [20]. The discrete least squares 
meshless method with extra Gauss points is suggested for the solution of elliptic partial differential equations 
[21]. Singh and Singh used EFG method to solve 2-D potential flow problems [22] with regular distribution of 
nodal points. 

The element free Galerkin (EFG) method that was developed by Belytschko et al. [7], is one of the most 
commonly used meshless methods and is based on the earlier version of diffuse element method [6]. In the EFG 
method, moving least squares (MLS) shape functions are used for the approximation of the field variables [23]; 
a background cell is used for numerical integration and Lagrange multipliers or penalty method is used for the 
imposition of essential boundary conditions. 

The element free Galerkin method is presented in this paper to solve potential problems, and the effect of ir-
regularity distribution of nodal points by using a proposed irregularity index (II) that was not considered in the 
previous researches for the EFG method, is investigated. In what follows, the construction of MLS shape func-
tions is first explained. EFG method for discretization of the governing differential equation is then explained. 
Several 2-D potential problems are solved using the proposed method; sensitivity analysis on the parameters of 
the proposed method is also carried out, and the results are presented. 

2. MLS Approximation 
2.1. MLS Interpolants Function 
MLS is a very important component of the element free Galerkin (EFG) method for the approximation of the 
field variables. The MLS approximation uh of a scalar function u at point x is given as 

( ) ( ) ( ) ( ) ( )T

1

m
h

i i
i

u p a P a
=

= =∑x x x x x                              (1) 

where P(x) is a polynomial basis function of the spatial coordinates, m is the number of monomial terms in the 
basis function, and ( )a x  is a vector of coefficients given by 

( ) ( ) ( ) ( )( )T
1 2, , , ma a a a= x x x x                                (2) 

The polynomial basis function P(x) is built from Pascal’s triangle and pyramid for 2- and 3-D problems, re-
spectively. In 2-D problems, linear and quadratic basis functions are given as 

( ) ( ) ( )T 1, ,    3  linear basisP x y m= =x                                  (3) 

( ) ( ) ( )T 2 21, , , , ,    6  quadratic basisP x y xy x y m= =x                       (4) 

The unknown coefficients in Equation (1) can be found by minimizing the following weighted least squares 
method. 
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( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2

1 1 1

n n m
h

I I I i i i I
i i i

J W u u W p a u
= = =

  = − − = − ⋅ −    
∑ ∑ ∑x x x x x x x x x              (5) 

where ( )IW −x x  is the weight function of node Ix  at a point x which for simplicity it will be stated as 
( )IW x . 

Equation (5) using vector notation can be written as: 

( ) ( )( )TJ pa u W pa u= − −x                                 (6) 

The minimum of J with respect to ( )a x  is found by 

0J
a
∂

=
∂

                                          (7) 

This leads to the following system of linear equations 

( ) ( ) ( )A a B U=x x x                                     (8) 

Here ( )A x  and ( )B x  are ( )m m×  and ( )m n×  matrices, respectively, and are given as 

( ) ( ) ( ) ( )T

1

n

i i i
i

A W p p
=

= ∑x x x x                                               (9) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3, ( ) , , , n nB W P W P W P W P =  x x x x x x x x x                 (10) 

And U is ( )1n×  vector and is given as 

[ ]T1 2 3, , , , nU u u u u= 
                                  (11) 

( )a x  can be found using Equation (8); 

( ) ( ) ( )1a A B U−=x x x                                   (12) 

Putting ( )a x  from Equation (12) into Equation (1) leads to 

( ) ( ) ( ) ( ) ( ) ( )T 1

1

n
h

i i
i

u P A B U U uφ ϕ−

=

= = = ∑x x x x x x                       (13) 

where ( )φ x  is a vector of shape functions. The first derivative of the shape functions with respect to the spatial 
coordinates is also required for the numerical implementation and is given as 

( )T 1 T 1 1
, , , ,i i i iP A B P A B A Bφ − − −= + +                              (14) 

where 
1 1

, ,  i iA A A A− −= −                                     (15) 

and the index after the comma is a spatial derivative. 

2.2. Weight Function 
Weight function is an important part of the MLS approximation. There are no predefined rules to select the 
weight function for a particular application, but the weight function that could be used for meshless methods 
should have the following properties: 

1) Its value should be maximized at the node and decrease with the distance from the node. 
2) Smooth and non-negative. 
3) It should have a compact support, i.e. non-zero over a small neighborhood of a node. This compact support 

is known as the influence domain of a node (nodal point). 
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Influence domain of a nodal point is a very important concept in meshless methods, as it determines the re-
gion in which it has influence. The size of influence domain for a node i is maxw id d c= , where maxd  is a scal-
ing parameter and ic  is determined by searching for enough neighbor nodes such that matrix A in Equation (8) 
is invertible. In regular distribution of nodal points ic  can be chosen as the distance between two neighboring 
nodes. In this paper, the cubic spline weight function is used; 

( )

2 3

2 3

2 14 4                  for
3 2
4 4 1 4 4        for 1
3 3 2
0                                      for 1 

d d d

W d d d d d

d

 − + ≤

= − + − < ≤

 >


                       (16) 

where ( )i wd d= −x x  is the distance between node ix  and point of interest x . Weight function deriva-
tives with respect to the spatial coordinates are also required for the shape function derivatives as given in Equa-
tion (14) and are given as follows [2]: 

2

2

18 12              for
2

d 14 8 4        for 1
2d

0                              for 1 

d d d

W d d d
d

d

− + ≤

= − + − < ≤

 >


                          (17) 

3. EFG Method for Potential Problems 
3.1. 2-D Potential Formulation 
Consider a Poisson’s partial differential equation in a two dimensional domain Ω  bounded by Γ ; 

( )2 , 0,      inu g x y∇ + = Ω                                (18) 

where ( ),g x y  is a source term. On one part of the boundary, uΓ  is the Dirichlet boundary condition, and on 
the other part, qΓ  is the Neumann boundary condition. 

,   on uu u= Γ                                      (19) 

,     on q
u q
n
∂

= Γ
∂

                                   (20) 

where n is the outward normal vector to the boundary. 

3.2. Enforcement of Essential Boundary Condition 
The MLS shape functions do not satisfy the Kronecker delta property, i.e. ( )i j ijφ δ≠x , and are termed as ap-
proximants instead of interpolants. The values obtained from the MLS approximation are therefore, not the same 
as the nodal values, i.e. ( )h

i iu u≠x , and are known as nodal parameters. This leads to some difficulties in im-
position essential boundary condition in contrast to conventional FEM [2]. 

In this paper, the penalty method is used to enforce the essential boundary condition. The use of penalty me-
thod produces system of equations of the same dimension that FEM produces for the same number of nodes, and 
the modified stiffness matrix is still positively defined; moreover, the symmetry and the bandedness of the sys-
tem matrix are preserved [2]. 

In the EFG method, the essential boundary condition has the form 

( ) ,    on
n

i i u
i

u uφ = Γ∑ x                               (21) 
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where ( )u x  is the prescribed potential on the boundary. 
Consider the problem stated in Equation (18), a penalty factor is applied to penalize the difference between 

the potential of the MLS approximation and the prescribed potential on the essential boundary [2]. The con-
strained Galerkin weak form uses the penalty method and with substituting the expression of MLS approxima-
tion of Equation (13) can then be posed as 

d d d d 0
q u u

i i
i q i u i u i

u u q u ud g
x x y y
φ φ

φ α φ α φ φ
Ω Γ Γ Γ Ω

∂ ∂ ∂ ∂
− + Ω+ Γ + Γ − Γ + Ω = ∂ ∂ ∂ ∂ 
∫∫ ∫ ∫ ∫ ∫∫            (22) 

where ( )1 2, , , kα α α α=   is a diagonal matrix of the penalty factor that 2k =  for 2-D case. The penalty fac-
tor ( )1, ,i kα α  can be a function of the coordinates, and it can be different from one another. Although in 
practice the identical constant of a large positive number is assigned for penalty factor, which can be chosen by 
following method [2] 

( )4 131.0 10 max  diagonal element in the stiffness matrixα −= × ×                  (23) 

The final system of equation of the EFG formulation with penalty method is 

K K u F Fα α + = +                                     (24) 

where 

dj ji i
ijK

x x y y
φ φφ φ

Ω

∂ ∂ ∂ ∂
= + Ω ∂ ∂ ∂ ∂ 
∫∫                               (25) 

q

d di i q iF q gφ φ
Γ Ω

= Γ + Ω∫ ∫∫                                    (26) 

The additional matrix Kα  is the global penalty matrix assembled using the nodal matrix defined by 

d
u

ij i j uKα α φ φ
Γ

= Γ∫                                     (27) 

And the vector Fα  is caused by the essential boundary condition that its nodal vector has the form 

d
u

i i uF uα α φ
Γ

= Γ∫                                     (28) 

4. Irregularity Index (II) 
To demonstrate the efficiency and accuracy of the EFG method in dealing with irregular distribution of nodal 
points, following irregularity index (II) is proposed in this paper 

min

max

II
r
r

=                                        (29) 

where maxr  and minr  are the maximum and minimum distances between nodal points, respectively, that are 
located in circular local domain such that each local domain includes at least 5 nodal points. The interval of the 
proposed index is 0 II 0.5≤ ≤ , in which 0 indicates fully irregular and 0.5 indicates fully regular distribution of 
nodal points. 

5. Numerical Examples 
In this section, three 2-D numerical examples are solved to demonstrate the efficiency and accuracy of the pro-
posed method. The effect of irregularity in distribution of nodal points is investigated by using of a proposed ir-
regularity index (II) and the results are compared with the existing analytical solutions. 
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5.1. 2-D Poisson’s Equation with Mixed Boundary Conditions 
Consider the following 2-D Poisson’s equation 

( ) ( )
2 2

2 2 cos π cos π ,    0 1,  0 1u u x y x y
x y
∂ ∂

+ = ≤ ≤ ≤ ≤
∂ ∂

                    (30) 

with the following Dirichlet and Neumann boundary conditions 

( ) ( ) ( ) ( )2 2

1 1,0 cos π ,     0, cos π
2π 2π

u x x u y y= − = −                     (31) 

( ) ( )1, 0,    ,1 0u uy x
x y
∂ ∂

= =
∂ ∂

                                       (32) 

the analytical solution of the aforementioned Poisson’s equation is 

( ) ( )2

1 cos π cos π
2π

exactu x y= −                              (33) 

The above-mentioned problem is solved using two different sets of 81 distributed nodes. In all of these cases, 
the polynomial basis function is considered as T [1      ]P x y=  and the ratio of influence domain is considered 3. 
The regular and irregular distribution of 81 nodal points for this problem is shown in Figure 1 and Figure 2. 
The analytical and EFG solution on a mesh of 81 nodal points with 96 and 1152 Gauss points along x axis are 
shown in Figure 3 and Figure 4, respectively, to assess the effect of number of Gauss points on the solution 
accuracy. 

 

 
Figure 1. Nodal distribution on a rectangular domain with II = 0.5. 

 

 
Figure 2. Nodal distribution on a rectangular domain with II = 0.0727. 
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Figure 3. Results obtained by analytical and EFG method at y = 0.2 with 96 
Gauss points. 

 

 
Figure 4. Results obtained by analytical and EFG methodat y = 0.2 with 
1152 Gauss points. 

 
There are different parameters in the EFG method that affect the obtained results. In this paper a sensitivity 

analysis is carried out on these parameters. Number of nodal points, number of Gauss points, ratio of influence 
domain, number of monomial terms in the basis function, and the type of weight function, are the parameters 
that are analyzed. For the sensitivity analysis the following error norm has been used 

1
0

1

n
exact num
i i

i
n

exact
i

i

u u
e

u

=

=

−
=
∑

∑
                                 (34) 

where exact
iu  and num

iu  is the quantity of analytical solution and numerical solution, respectively. For the sensi-
tivity analysis, one of the parameters is changed while the others are constant. The result of this analysis is 
shown in Tables 1-10, and the computational time is presented. 

The results of Table 1 indicate that the errors are dramatically reduced with increasing the number of nodal 
points while they get nearly constant when more nodal points are added. These results are also used to evaluate 
the convergence rate of the method with respect to nodal points and the results are shown in Figure 5. 

The results of Table 2 and Table 3 quantitatively emphasize the rule of Gauss points on the accuracy of the 
EFG method and demonstrate high accuracy and low sensitivity of the proposed method in dealing with irregu-
lar distribution of nodal points. 

This problem is solved here with different values of irregularity index to present the effect of irregularity dis-
tribution of nodal points. This analysis is done by using a proposed index that is shown in Table 4 and a con-
vergence rate is also demonstrates the obtained results in Figure 6. These results indicate the convergent beha-
vior of the method as expected. 
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Table 1. The effect of number of nodal points on the error norm with 480 regular Gauss points. 

Number of nodal points 25 36 64 81 

x∆  0.250 0.200 0.143 0.125 

0e  0.3944 0.0730 0.0031 0.0029 

CPU TIME (Sec) 0.6708 0.7800 0.8580 0.9572 

 
Table 2. The effect of number of Gauss points on the error norm with 81 regular nodal points. 

Number of Gauss points 96 320 480 1152 

0e  0.0153 0.0032 0.0029 0.0022 

CPU TIME (Sec) 0.6084 0.7800 0.9672 1.6848 

 
Table 3. The effect of number of Gauss points on the error norm with 81 irregular nodal points. 

Number of Gauss points 96 320 480 1152 

0e  0.3273 0.2289 0.1323 0.0577 

CPU TIME (Sec) 1.3193 2.2932 2.3868 4.5396 

 
Table 4. The effect of irregularity of nodal points on the error norm with 81 irregular nodal points. 

Irregularity Index (II) 0.5 0.0727 0.0143 0.0012 

0e  0.0002 0.0577 0.0991 0.1907 

CPU TIME (Sec) 1.6848 4.5396 0.9984 1.6068 

 
Table 5. The effect of ratio of influence domain on the error norm with 81 regular nodal points. 

Ratio of influence domain 1.12 2 3 4.8 6.4 

0e  0.0112 0.0026 0.0007 0.1156 0.6371 

CPU TIME (Sec) 0.3276 0.7176 1.5912 4.4928 7.5660 

 
Table 6. The effect of ratio of influence domain on the error norm with 81 irregular nodal points. 

Ratio of influence domain 1.12 2 3 4.8 6.4 

0e  0.7114 0.1583 0.0577 0.0134 0.0025 

CPU TIME (Sec) 1.2168 1.5756 4.5396 13.3536 22.3237 

 
Table 7. The effect of number of monomial terms in basis function on the error norm (regular). 

The number of monomial terms in the basis function 0 1 2 

0e  0.0029 0.0007 0.0006 

CPU time (Sec) 1.2792 1.5912 2.3868 

 
Table 8. The effect of number of monomial terms in basis function on the error norm (ırregular). 

The number of monomial terms in the basis function 0 1 2 

0e  0.0267 0.0577 0.1645 

CPU time (Sec) 3.7284 4.5396 6.2400 



A. R. Firoozjaee et al. 
 

 
157 

Table 9. The effect of the type of weight function on the error norm with 81 regular nodal points. 

Type of weight functions Cubic spline Quartic spline Exponential 

0e  0.0006 0.0016 0.0070 

CPU time (Sec) 2.3868 2.4180 2.3556 

 
Table 10. The effect of the type of weight function on the error norm with 81 irregular nodal points. 

Type of weight functions Cubic spline Quartic spline Exponential 

0e  0.0577 0.1428 0.2116 

CPU time (Sec) 4.5396 3.2136 4.1340 

 

 
Figure 5. Convergence rate of the method with respect to nodal points. 

 

 
Figure 6. Convergence rate of the method with respect to irregularity index. 

 
The problem is solved again on a mesh of 81 regularly and irregularly distributed of nodal points with differ-

ent ratio of influence domain and 1152 Gauss points. The effect of this parameter is investigated in Table 5 and 
Table 6. The values of this ratio in Table 6 vary in the same way as Table 5 to have a better comparison be-
tween them. The results of Table 5 demonstrate that the appropriate interval of ratio of influence domain in reg-
ular distribution of nodal points is 2 - 3, while it is obvious from Table 6 that the errors are decreased by in-
creasing this ratio. 

The number of monomial terms in basis function is the other parameter that can affect the performance of the 
EFG method. In this case, the problem domain is discretized with 81 regular and irregular nodal points with 
1152 Gauss points. The ratio of influence domain in Table 7 and Table 8 is considered 3 to have a better com-
parison between them. 
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According to the results of Table 7 and Table 8, the errors are diminished by increasing the number of mo-
nomial terms in basis function in regular distribution of nodal points, however, this effect is opposite in irregular 
distribution of nodal points because the higher number of monomial terms, the more nodal points are acquired in 
a favorable influence domain. 

The other parameter that affects the solution’s accuracy of the EFG method is the type weight function. In 
order to investigate this effect, the problem domain is discretized again with 81 regular and irregular meshes of 
nodes with 1152 Gauss points and three types of weight functions that are considered. It is also notable that the 
ratio of influence domain in both cases is considered 3. 

It can be concluded from Table 9 and Table 10 in both cases, the solution’s accuracy obtained by cubic 
spline is more desirable than the other weigh functions. 

5.2. Poisson’s Equation with Dirichlet Boundary Conditions on a Torus [19] 
The second example is a 2-D Poisson’s equation with Dirichlet boundary conditions on the torus. The equation 
is 

2 2

2 2

d d 4 0    ,   0 2π
d d

u u a r b
x y

θ+ − = < < < <                         (35) 

with the following boundary conditions 

( ), 0u a θ =                                     (36) 

( ), 0u b θ =                                     (37) 
and the analyticalsolutionofthisproblemis 

( ) ( ) ( )2 2 2 2 log log,
log log

r au r r a a b
a b

θ
 −

= − − −  − 
                      (38) 

here, 1a =  and 2b =  are assumed. The regular distribution of nodal points is shown in Figure 7. The above- 
mentioned problem is solved using two different sets of 460 distributed nodes that are shown in Figure 7 and 
Figure 8. The analytical and numerical solutions along r direction at any angle with 460 nodal points are plotted 
in Figure 9 and the ratio of influence domain is considered 3 for this problem again. 

5.3. Flow over a Circular Cylinder 
In this section, flow over a circular cylinder is considered. Such a flow can be generated by adding a uniform 
flow, in the positive x direction to a doublet at the origin directed in the negative x direction. The geometry of 
the example is shown in Figure 10 and the governing equation of that is as follows: 

2 2
2

2 2 0,    in  
x y
φ φφ ∂ ∂

∇ = + = Ω
∂ ∂

                            (39) 

 

 
Figure 7. Nodal distribution on a tours domain with II = 0.3862. 
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Figure 8. Nodal distribution on a tours domain with II = 
0.0114. 

 

 
Figure 9. Results obtained by analytical and EFG method 
alongr direction at any angle. 
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Figure 10. Flow over acircular cylinder. 

 
and the exact solution is 

( )2 2

1x u
x y

φ
 
 = +
 + 

                                 (40) 

where u  is the fluid’s velocity. Due to the symmetry, only the one-quarter of the problem domain is consi-
dered. This domain with its boundary condition is shown in Figure 11. 
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The above-mentioned problem is solved using three different sets of 241 distributions of nodal points with 
962 Gauss points. It is notable that the ratio of influence domain in all cases is considered 3 and the distribution 
of nodal points with different values of irregular index is shown in Figure 12-14. The analytical and the EFG 
solutions along y axis are shown in Figure 15. 

6. Conclusion 
A meshless method namely element free Galerkin (EFG) method is presented in this paper. In order to investigate 
the performance and accuracy of the method, some 2-D potential problems on regular and irregular distribution 
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Figure 11. Boundary condition of the flow over a circular 
cylinder. 

 

 
Figure 12. Nodal distribution of flow over a circular cylinder 
with II = 0.49999. 

 

 
Figure 13. Nodal distribution of flow over a circular cylinder with II 
= 0.02323. 
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Figure 14. Nodal distribution of flow over a circular cylinder with II 
= 0.00289. 

 

 
Figure 15. Results obtained by analytical and EFG method at x = 
−1.0. 

 
of nodal points by using a proposed irregularity index (II) are analyzed and compared with the exact solution. A 
sensitivity analysis on the parameters of the EFG method is also carried out. From above analysis, it can be in-
ferred that the errors are dramatically reduced by increasing the number of nodal points and Gauss points while 
they get nearly constant when more of them are added. It is also notable that the appropriate ratio of influence 
domain has been found to be 2 - 3 for regular mesh of nodal points, and in irregular mesh of nodal points, the 
errors are converged by increasing this ratio. Increasing the number of monomial terms in basis function is 
another factor that can improve the accuracy of the EFG method in regular distribution of nodal points while this 
effect is contradictory in comparison with irregular distribution of nodal points. The effect of using different 
type of weight functions is another parameter considered and the results indicate better performance of the me-
thod in using cubic spline weight function. Finally, it can be concluded that EFG method can be used to solve 
problems on irregular mesh of nodes with admissible performance. 
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Abstract 
In this paper I introduce the geometric notion of a differential system describing surfaces of a 
constant negative curvature and describe a family of pseudo-spherical surface for Kaup-Ku- 
pershmidt Equation with constant Gaussian curvature −1. I obtained new soliton solutions for 
Kaup-Kupershmidt Equation by using the modified sine-cosine method. 

 
Keywords 
Soliton Solutions, Pseudo Spherical Surfaces, Nonlinear Evolution Equations 

 
 

1. Introduction 
Many partial differential equations which continue to be investigated due to their role in mathematics and phys-
ics exhibit interrelationships with the geometry of surfaces, or submanifolds, immersed in a three-dimensional 
space [1]. In particular, it has been known for a while that there is a relationship between surfaces of a constant 
negative Gaussian curvature in Euclidean three-space, the Sine-Gordon Equation and Bäcklund transformations 
which are relevant to the given equation [2]. Moreover, the original Bäcklund transformation for the Sine-Gor- 
don Equation is also a simple geometric construction for pseudospherical surfaces [3]-[5]. It is well known that 
nonlinear complex physical phenomena are related to nonlinear partial differential equations (NLPDEs) which 
are involved in many fields from physics to biology, chemistry, mechanics, etc. 

As mathematical models of the phenomena, the investigation of exact solutions to the NLPDEs reveals to be 
very important for the understanding of these physical problems. Many mathematicians and physicists have well 
understood this importance when they decided to pay special attention to the development of sophisticated me-
thods for constructing exact solutions to the NLPDEs. Thus, a number of powerful methods have been pre-
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sented. 
We can cite the inverse scattering transform [6], the Bäcklund and Darboux transform [7]-[10], Hirota’s bili-

near method [11], the homogeneous balance method [12], Jacobi elliptic function method [13], the tanh method 
and extended tanh-function method [14]-[20], F-expansion method [21]-[23] and so on. The notion of conserva-
tion laws is important in the study of nonlinear evolution equations (NLEEs) appearing in mathematical physics 
[24]. 

Consider Kaup-Kupershmidt Equation, 

2
5 3 2

255 5
2t x x x x xu u uu u u u u= + + +                                (1) 

where ( ),u u x t=  is a function of two independent variables t  and x . 

2. Kaup-Kupershmidt Equation Which Describes Pseudo Spherical Surfaces 
I recall the definition [25]-[28] of a differential equation (DE) that describes a pss. Let 2M  be a two dimen-
sional differentiable manifold with coordinates ( ),x t . A DE for a real function ( ),u x t  describes a pss if it is a 
necessary and sufficient condition for the existence of differentiable functions 

,   1 3,   1 2,ijf i j≤ ≤ ≤ ≤                                    (2) 

depending on u and its derivatives such that the one-forms 

1 11 12 2 21 22 3 31 32,    ,    ,f dx f dt f dx f dt f dx f dtω ω ω= + = + = +                     (3) 

satisfy the structure equations of a pss, i.e., 

1 3 2 2 1 3 3 1 2,    ,   . d d dω ω ω ω ω ω ω ω ω= ∧ = ∧ = ∧                         (4) 

I obtain that the Kaup-Kupershmidt Equation (1) describes pseudospherical surfaces, with associated one 
forms 1 2i i if dx f dtω = +  1 3i≤ ≤  given by 

( )
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( ) ( ) ( )
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32 12 2

1 1 ,
2
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1 1 ,
2
1 1 1 19 1 2 2 1 ,
2 4 2 2
1 2 2 ,
2 2

1 .
2

x x x x x

x x x

x

f u

f

f u

f u u u u u uu u u

f u uu u u

f f u u

η

η

η

η η η η

η

= − + −

=

= − + +

= − + + − − + − + − + −

= − − − − −

= − −

             (5) 

As a consequence, each solution of the DE provides a local metric on 2M , whose Gaussian curvature is con-
stant, equal to −1. Moreover, the above definition is equivalent to saying that DE for u  is the integrability 
condition for the problem [19] [29]: 

1

2

,     ,d
φ

φ φ φ
φ
 

= Ω =  
 

                                  (6) 

where d  denotes exterior differentiation, φ  is a column vector and the 2 2×  matrix ( )Ω Ω , , 1,2ij i j =  is 
traceless 

2 1 3

1 3 2

1Ω .
2

ω ω ω
ω ω ω

− 
=  + − 

                                (7) 
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3. Exact Solution for Kaup-Kupershmidt Equation 
With the rapid development of science and technology, the study kernel of modern science is changed from li-
near to nonlinear step by step. Many nonlinear science problems can simply and exactly be described by using 
the mathematical model of nonlinear equation. Up to now, many important physical nonlinear evolution equa-
tions are found, such as Sine-Gordon Equation, KdV Equations, Schrodinger Equation all possess solitary wave 
solutions. There exist many methods to seek for the solitary wave solutions, such as inverse scattering method, 
Hopf-Cole transformation, Miura transformations, Darboux transformation and Bäcklund transformation [7]-[10], 
but solving nonlinear equations is still an important task [27]-[30]. In this paper, with the aid of Mathematica, a 
traveling wave solution for a class of Kaup-Kupershmidt Equation, 

2
5 3 2

255
2

.5t x x x x xu u uu u u u u= + + +  

In order to obtain the soliton solution of (1), I will use the modified sine-cosine to develop traveling wave so-
lutions to this equation. The modified sine-cosine method admits the use of solutions [30] 

( ) ( )0, cos ,    ,nu x t a x ct bρ ρ µ= = − +                            (8) 
and 

( ) ( )0, sin ,    ,nu x t a x ct bρ ρ µ= = − +                            (9) 

where a  is the soliton amplitude, µ  is the width of the soliton, c  is the soliton velocity and 0b  is constant 
to be determined later, the unknown index n  will be determined during the course of derivation of the solution 
of Equation (8). From Equation (8), I obtain 
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5 5 1    cos sin .na nµ ρ ρ−−

   (10) 

From Equation (9), I obtain 
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    (11) 

With the aid of Mathematica or Maple, from (8) and (10), we can get 

( )( )( )( )
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Now, from Equation (12) equating the exponents n − 5 and 2n − 3 leads 5 2 3n n− = − , which gives 2n = − , 
such that ( )( )( )( )1 2 3 4 0.n n n n n− − − − ≠  

Also from Equation (12) equating the coefficients of like powers of 3cos sinρ ρ− , 5cos sinρ ρ−  and 7cos sinρ ρ−  
to zero, I get 

5 5 0,ac n a nµ µ+ =                                    (13) 

( )( )( ) ( ) ( )5 2 2 3 2 2 3 2252 1 2 2 2 5 2 2 0,
2

a n n n n n a n n a n nµ µ µ− − − − + − − − − =            (14) 

( )( )( )( ) ( )( ) ( )5 2 3 2 3 2 3251 2 3 4 5 1 2 1 5 0.
2

a n n n n n a n n n a n n a nµ µ µ µ− − − − + − − + − + =       (15) 

Solving the above system by the aid of Wu elimination method [31], I obtain the three solutions  

2 412 ,   , 16
7

a cµ µ= − = −                                 (16) 

and  
2 43 ,    ,16a cµ µ= − = −                                  (17) 

and 
2 424 ,   . 16a cµ µ= − = −                                 (18) 

Then the soliton solutions of the Kaup-Kupershmidt Equation is given by 

( ) ( )2 2 4
1 0

12, sec 16 ,
7

u x t x t bµ µ µ= − + +  see Figure 1 and Figure 2            (19) 

and 

( ) ( )2 2 4
2 0, 3 sec 16 ,u x t x t bµ µ µ= − + +  see Figure 3 and Figure 4             (20) 

and 

( ) ( )2 2 4
3 0, 24 sec 16 .u x t x t bµ µ µ= − + +  see Figure 5 and Figure 6             (21) 

If setting iµ σ= , then the solutions (19) and (21) are given by 

( ) ( )2 2 4
4 0

12, sech 16 ,
7

u x t x t bσ σ σ= + +  see Figure 7 and Figure 8            (22) 

and 

( ) ( )2 2 4
5 0, 3 sech 16 ,u x t x t bσ σ σ= + +  see Figure 9 and Figure 10             (23) 

and 

( ) ( )2 2 4
6 0, 24 sech 16 .u x t x t bσ σ σ= + +  see Figure 11 and Figure 12           (24) 

The double-kink solutions (19), (20), and (21) are characterized by the eigenvalue 1µ =  (see Figures 1-6). 
The solutions (22), (23) and (24) are the single-soliton solutions (see Figures 7-12) corresponding to the eigen-
value 1σ = . 

4. Conclusions 
The new types of exact traveling wave solution obtained in this paper for the Kaup-Kupershmidt Equation will  



G. M. Gharib 
 

 
167 

 
Figure 1. See [6]: solution 1u  is shown at 1t = , 1µ =  and 0 3b = . 
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Figure 2. See [20]: solution 1u  is shown at 1µ =  and 0 3b = . 

 

 
Figure 3. See [6]: solution 2u  is shown at 0t = , 1µ =  and 0 0b = . 
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Figure 4. See [20]: solution 2u  is shown at 1µ =  and 0 3b = − . 

 

 
Figure 5. See [6]: solution 3u  is shown at 2t = , 1µ =  and 0 0b = . 
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Figure 6. See [20]: solution 3u  is shown at 1µ =  and 0 0b = . 
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Figure 7. See [6]: solution 4u  is shown at 1t = , 1σ =  and 0 3b = . 
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Figure 8. See [20]: solution 4u  is shown at 1σ =  and 0 3b = . 

 

 
Figure 9. See [6]: solution 5u  is shown at 0t = , 1σ =  and 0 0b = . 
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Figure 10. See [20]: solution 5u  is shown at 1σ =  and 0 3b = − . 

 

 
Figure 11. See [6]: solution 6u  is shown at 2t = , 1σ =  and 0 0b = . 
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Figure 12. See [20]: solution 6u  is shown at 1σ =  and 0 0b = . 
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be of benefit to future studies. 
The Soliton Equations play a central role in the field of integrable systems and also play a fundamental role in 

several other areas of mathematics and physics. 
A soliton is a localized pulse-like nonlinear wave that possesses remarkable stability properties. Typically, 

problems that admit soliton solutions are in the form of evolution equations that describe how some variable or a 
set of variables evolves in time from a given state. The equations may take a variety of forms, for example, 
PDEs, differential difference equations, partial difference equations, integro-differential equations, as well as 
coupled ODEs of finite order. 

In this paper, we considered the construction of exact solutions to Kaup-Kupershmidt Equation. I obtain tra-
velling wave solutions for the above equation by using the modified sine-cosine method with the aid of Mathe-
matica. 

A travelling wave of permanent form has already been met; this is the solitary wave solution of the nonlinear 
evolution equation itself. Such a wave is a special solution of the governing equation which does not change its 
shape and propagates at constant speed. 

The soliton phenomena of nonlinear evolution equations represent an important and well-established field of 
modern physics, mathematical physics and applied mathematics. Solitons are found in various areas of physics 
from hydrodynamics and plasma physics, nonlinear optics and solid state physics, to field theory and gravitation. 
NLEEs which describe soliton phenomena have a universal character. 
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Abstract 
Invertibility is one of the desirable properties of moving average processes. This study derives 
consequences of the invertibility condition on the parameters of a moving average process of or-
der three. The study also establishes the intervals for the first three autocorrelation coefficients of 
the moving average process of order three for the purpose of distinguishing between the process 
and any other process (linear or nonlinear) with similar autocorrelation structure. For an inverti-

ble moving average process of order three, the intervals obtained are 1
1 5 1 5

4 4
− − −

< <ρ , 

20.5 0.5− < <ρ  and 10.5 0.5− < <ρ . 
 

Keywords 
Moving Average Process of Order Three, Characteristic Equation, Invertibility Condition, 
Autocorrelation Coefficient, Second Derivative Test 

 
 

1. Introduction 
Moving average processes (models) constitute a special class of linear time series models. A moving average 
process of order q  ( ( )MA q  process) is of the form: 

1 1 2 2t t t q t q qX e e e eθ θ θ− − −= + + + +                             (1.1) 

where 1 2,  ,  ,  qθ θ θ  are real constants and te , t Z∈  is a sequence of independent and identically distri-
buted random variables with zero mean and constant variance. These processes have been widely used to model 
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time series data from many fields [1]-[3]. The model in (1.1) is always stationary. Hence, a required condition 
for the use of the moving average process is that it is invertible. Let m

t t mB e e −= , then the model in (1.1) is in-
vertible if the roots of the characteristic equation 

2
1 21 0q

qB B Bθ θ θ+ + + + =                             (1.2) 

lie outside the unit circle. The invertibility conditions of the first order and second order moving average models 
have been derived [4] [5]. 

Ref. [6] used a moving average process of order three (MA (3) process) in his simulation study. Though, 
higher order moving average processes have been used to model time series data, not much has been said about 
the properties of their autocorrelation functions. This study focuses on the invertibility condition of an MA (3) 
process. Consideration is also given to the properties of its autocorrelation coefficients of an invertible moving 
average process of order three. 

2. Consequence of Invertibility Condition on the Parameters of an MA (3) Process 
For 3q = , the following moving average process of order 3 is obtained from (1.1): 

1 1 2 2 3 3t t t t tX e e e eθ θ θ− − −= + + +                            (2.1) 

The characteristic equation corresponding to (2.1) is given by 

2 3
1 2 31 0B B Bθ θ θ+ + + =                              (2.2) 

Dividing (2.2) by 3θ  yields 

3 22 1

3 3 3

1 0B B Bθ θ
θ θ θ

+ + + =                             (2.3) 

It is important to know that (2.2) is a cubic equation. Detailed information on how to solve cubic equations 
can be found in [7] [8] among others. It has been a common tradition to consider the nature of the roots of a 
characteristic equation while determining the invertibility condition of a time series model [9]. As a cubic equa-
tion, (2.2) may have three distinct real roots, one real root and two complex roots, two real equal roots or three 
real equal roots. The nature of the roots of (2.2) is determined with the help of the discriminant [8] 

2 3
1 2D D D= −                                  (2.4) 

where 
3

2 2 1

3 3 3 3
1

12 9 27

54
D

θ θ θ
θ θ θ θ
      

− +      
      =                       (2.5) 

and 
2

2 1

3 3
2

3

9
D

θ θ
θ θ
   

−   
   =                              (2.6) 

If 0D < , (2.2) has the following distinct roots [7] 

2
1 22 cos

3 3
x D θθ = − − 

 
,                            (2.7) 

2
2 2

2π2 cos
3 3

x D θθ + = − − 
 

,                          (2.8) 
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and 

2
3 2

2π2 cos
3 3

x D θθ − = − − 
 

.                           (2.9) 

where θ  is measured in radians and 1 1
3
2

cos
D

D
θ −

 
 =
 
 

. 

When 0D > , (2.2) has only real root given by [1] as 

23 3
1 1 1 3

x D D D D θ
= − + + − − −                         (2.10) 

The other roots are [8] 

( ) ( ) ( )2 2
1 1 1 1

2 3

4
,  

2

ax b ax b a ax bx c
x x

a

− + ± + − + +
=                   (2.11) 

If 1 0D ≠ , 2 0D ≠  and 2 3
1 2D D= , then 0D =  and (2.2) has two equal roots. The roots of (2.2) in this case, 

are the same as (2.7), (2.8) and (2.9). For 0D =  and 1 2 0D D= = , (2.2) has three real equal roots. Each of 
these roots is given by [8] as 

2

33
x θ

θ
−

=                                     (2.12) 

For (2.1) to be invertible, the roots of (2.2) are all expected to lie outside the unit circle and 3 1θ < . In the 
following theorem, the invertibility conditions of an MA (3) process are given subject to the condition that the 
corresponding characteristic equation has three real equal roots. 

Theorem 1. If the characteristic equation 2 3
1 2 31 0B B Bθ θ θ+ + + =  has three real equal roots, then the mov-

ing average process of order three 1 1 2 2 3 3t t t t tX e e e eθ θ θ− − −= + + +  is invertible if 

2 33 0θ θ− > , 2 33 0θ θ+ <  and 3 1θ < . 

Proof 
For invertibility, we expect each of the three real equal roots to lie outside the unit circle. Thus, 

2 2

3 3

1 1
3 3
θ θ
θ θ
− −

> ⇒ < −  or 2

3

1
3
θ
θ
−

>  

Solving the inequality 2

3

1
3
θ
θ
−

< − , we obtain 

2 33 0θ θ− >  

For 2

3

1
3
θ
θ
−

> , we have 

2 33 0θ θ+ <  

Since each of the roots lie outside the unit circle, the absolute value of their product must therefore be greater 
than one. Hence, 

3 1θ <  

This completes the proof. 
The invertibility region of a moving average of order three with equal roots of the characteristic Equation (2.2) is 

enclosed by triangle OAB in Figure 1. 
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θ2 

θ2-3 θ3 = 0 

θ3 
 

1 -1 

A 

B 

θ2 + 3 θ3 = 0 

0 

 
Figure 1. Invertibility region of an MA (3) process when the characteristic 
equation has three real equal roots. 

3. Identification of Moving Average Process 
Model identification is a crucial aspect of time series analysis. A common practice is to examine the structures 
of the autocorrelation function (ACF) and partial autocorrelation function (PACF) of a given time series. In this 
regard, a time series is said to follow a moving average process of order q  if its associated autocorrelation 
function cut off after lag q  and the corresponding partial autocorrelation function decays exponentially [10]. 
Authors using this method, believe that each process has unique ACF representation. However, the existence of 
similar autocorrelation structures between moving average process and pure diagonal bilinear time series 
process of the same order makes it difficult to identify a moving average process based on the pattern of its ACF. 
Furthermore, a careful look at the autocorrelation function of the square of a time series can help one determine 
if the series follows a moving average process. If the series can be generated by a moving average process, then 
its square follows a moving average process of the same order [11] [12]. The conditions under which we use the 
autocorrelation function to distinguish among processes behaving like moving average processes of order one 
and two have been determined by [13] [14] respectively. These conditions are all defined in terms of the extreme 
values of autocorrelation coefficients of the processes. 

4. Intervals for Autocorrelation Coefficients of a Moving Average Process of Order 
Three 

As stated in Section 3, knowledge of the extreme values of the autocorrelation coefficient of a moving average 
process of a particular order can enable us ensure proper identification of the process. It has been observed that 
for a moving average process of order one, 10.5 0.5ρ− ≤ ≤  [15] while for a moving average process of order  

two 1
2 2

2 2
ρ− ≤ ≤  and 20.5 0.5ρ− ≤ ≤  [5]. In order to generalize about the range of values of qρ  for a  
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moving average process of order q , it is worthwhile to determine the range values of 3ρ  for a moving aver-
age process of order three. The model in (2.1) has the following autocorrelation function [10]: 

1 1 2 2 3
2 2 2

1 2 3

2 1 3
2 2 2

1 2 3

3
2 2 2

1 2 3

1,                                0

,        1
1

,        2
1

,        3
1
0,                               1, 2, 3

k

k

k

k

k

k

θ θ θ θ θ
θ θ θ
θ θ θ

ρ
θ θ θ

θ
θ θ θ

 =


+ + = ±
 + + +


+= = ±
+ + +


= ±

+ + +
 ≠ ± ± ±

                          (4.1) 

We can deduce from (4.1) that the autocorrelation function at lag one of the MA (3) process is 

1 1 2 2 3
1 2 2 2

1 2 31
θ θ θ θ θ

ρ
θ θ θ
+ +

=
+ + +

                                  (4.2) 

Using the Scientific Note Book, the minimum and maximum values of 1ρ  are found to be 1 5
4

− −  and 

1 5
4
−  respectively. For the autocorrelation function at lag two, we have 

2 1 3
2 2 2 2

1 2 31
θ θ θ

ρ
θ θ θ

+
=

+ + +
                                  (4.3) 

The extreme values of 2ρ  are equally obtained with the help of the Scientific Note Book. To this effect, 2ρ  
has a minimum value of −0.5 and a maximum value of 0.5. 

From (4.1), we obtain 

3
3 2 2 2

1 2 31
θ

ρ
θ θ θ

=
+ + +

                                  (4.4) 

Based on the result obtained from the Scientific Notebook, 3ρ  has a minimum value of −0.5 and a maxi-
mum value of 0.5. However, the intervals for 3ρ  can easily be obtained analytically and this result is genera-
lized in Theorem 2 for qρ  of the MA ( )q  process. 

The partial derivatives of 3ρ  with respect to 1θ , 2θ  and 3θ  are 

( )
3 1 3

22 2 21 1 2 3

2

1

ρ θ θ
θ θ θ θ

∂ −
=

∂ + + +
                                (4.5) 

( )
3 2 3

22 2 22 1 2 3

2

1

ρ θ θ
θ θ θ θ

∂ −
=

∂ + + +
                                (4.6) 

( )
2 2 2

3 1 2 3
22 2 23 1 2 3

1

1

ρ θ θ θ
θ θ θ θ

∂ + + −
=

∂ + + +
                                (4.7) 

The critical points of 3ρ  occurs when 3

i

ρ
θ
∂

=
∂

, 1, 2,3i = . Equating each of the partial derivatives in (4.5),  

(4.6) and (4.7) to zero, we obtain 

1 3 0θ θ =                                       (4.8) 
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2 3 0θ θ =                                       (4.9) 

2 2 2
1 2 31 0θ θ θ+ + − =                                  (4.10) 

From (4.10), we have 
2 2

3 1 21θ θ θ= ± + +                                  (4.11) 

Using (4.8), we obtain 

1 0θ =                                       (4.12) 

or 

3 0θ =                                       (4.13) 

Substituting 1 0θ =  into (4.11) yields 
2

3 21θ θ= ± +                                   (4.14) 

For 2
3 21θ θ= − + , (4.9) becomes 

( )2
2 21 0θ θ+ =  

( )2 2
2 21 0θ θ+ =  

2 20   or   1θ θ= = ± −                                (4.15) 

If we also substitute 2
3 21θ θ= +  into (4.9), we obtain 

2 20   or   1θ θ= = ± −                                (4.16) 

When we substitute 1 0θ =  and 2 0θ =  into (4.11), we have 3 1θ = ± . It is also clear that if 1 0θ =  and 
2 1θ = − − , then 3 0θ = . Similar result is obtained when 1 0θ =  and 2 1θ = − . 
Hence, the critical points of 3ρ  are ( )0,0, 1− , ( )0,0,1 , ( )0, 1,0− −  and ( )0, 1,0− . 

The minimum and maximum values of a function occur at it critical points. To determine which of the critical 
points is a local minimum, local maximum or a saddle point, we shall apply the second derivative test. The 
second derivative test for critical points of a function of three variables ( )3 , ,f x y zρ =  focuses on the Hessian 
matrix: 

xx xy xz

xy yy yz

xz yz zz

f f f
H f f f

f f f

 
 =  
  

                               (4.17) 

where 

( )
( )

2 2 2 22
3 1 2 3 1 33

2 32 2 2
1 1 2 3

2 1 8

1
xxf

θ θ θ θ θ θρ
θ θ θ θ

− + + + +∂
= =
∂ +

                      (4.18) 

( )
2

3 1 2 3
32 2 21 2 1 2 3

8

1
xyf

ρ θ θ θ
θ θ θ θ θ

∂ −
= =
∂ ∂ +

                                  (4.19) 

( )
( )

2 2 2 22
1 1 2 3 1 33

32 2 21 3 1 2 3

2 1 8

1
xzf

θ θ θ θ θ θρ
θ θ θ θ θ

− + + + +∂
= =
∂ ∂ +

                     (4.20) 
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( )
( )

2 2 2 2
3 1 2 3 2 3

32 2 2
1 2 3

2 1 8

1
yyf

θ θ θ θ θ θ

θ θ θ

− + + + +
=

+
                              (4.21) 

( )
( )

2 2 2 2
2 1 2 3 2 3

32 2 2
1 2 3

2 1 8

1
yzf

θ θ θ θ θ θ

θ θ θ

− + + + +
=

+
                              (4.22) 

( ) ( )
( )

2 2 2 2 2 2
3 1 2 3 3 1 2 3

32 2 2
1 2 3

2 1 4 1

1
zzf

θ θ θ θ θ θ θ θ

θ θ θ

− + − + + −
=

+
                      (4.23) 

Let ( ), ,a b c  be a critical point of ( )3 , ,f x y zρ = . Then ( ), ,a b c  is called a local minimum point if at  

( ), ,a b c , 1 0xxf∆ = > , 2 0xx xy

xy yy

f f
f f

∆ = >  and 3 0H∆ = >  [16]. If 0xxf < , 2 0∆ >  and 3 0∆ <  at ( ), ,a b c ,  

then ( ), ,a b c  represents a local maximum. 
A critical point that is neither a local minimum nor a local maximum is called a saddle point. 
Though 3ρ  has four critical points, it is not defined at ( )0, 1,0− −  and ( )0, 1,0− . We then focus on the 

classification of the two remaining critical points. 
At ( )0,0, 1−  

1 0 0
2

10 0
2

10 0
2

H

 
 
 
 =  
 
 
  

 

Hence, 1
1 0
2

∆ = > , 2

1 0 12 0
1 40
2

∆ = = >  and 3

1 0 0
2

1 10 0 0
2 8

10 0
2

∆ = = > . 

Therefore, ( )0,0, 1−  is a local minimum. The value of 3ρ  at this point is 0.5− . 
For the critical points ( )0,0,1 , we have 

1 0 0
2

10 0
2

10 0
2

H

 − 
 
 = − 
 
 −
  

 

Consequently, 

1
1 0,
2

∆ = − <  

2

1 0 12 0
1 40
2

−
∆ = = >

−
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and 

3

1 0 0
2

1 10 0 0.
2 8

10 0
2

−

∆ = − = − <

−

 

We therefore conclude that ( )0,0,1  is a local maximum. The maximum value of 3ρ  obtained at ( )0,0,1  is 
0.5. 

We can deduce from the result in this section and other previous works that for MA (1) process 1 0.5ρ ≤ , 
while for MA (2) process and MA (3) process 2 0.5ρ ≤  and 3 0.5ρ ≤  respectively. 

In what follows, we establish the bounds for qρ , where q  is order of the moving average process. 
Theorem 2. 
Let 1 1 2 2t t t q t q qX e e e eθ θ θ− − −= + + + +  be an MA ( )q  process. Then, 0.5qρ ≤ . 
Proof 
It is easily seen that for the MA ( )q  process, 

2 2 2
1 21

q
q

q

θ
ρ

θ θ θ
=

+ + + +

 

Partial derivatives of qρ  with respect to 1 2, , ,q qρ θ θ θ=   are as follows 

( )

( )

( )

( )

1
22 2 21 1 2

2
22 2 22 1 2

1
22 2 21 1 2

2 2 2 2
1 2 1

22 2 2
1 2

2
,

1

2
,

1

     
2

,
1

1
.

1

q q

q

q q

q

q q q

q q

q q q

q q

ρ θ θ
θ θ θ θ

ρ θ θ
θ θ θ θ

ρ θ θ
θ θ θ θ

ρ θ θ θ θ
θ θ θ θ

−

−

−

∂ −
=

∂ + + + +

∂ −
=

∂ + + + +

∂ −
=

∂ + + + +

∂ + + + + −
=

∂ + + + +













 

Equating each of the partial derivatives to zero yields 

1

2

1

2 2 2 2
1 2 1

2 0,

2 0,

   
2 0,

1 0.

q

q

q q

q q

θ θ

θ θ

θ θ

θ θ θ θ
−

−

− =

− =

− =

+ + + + − =





                            (4.24) 

From (4.24), we obtain 

2 2 2
1 2 11q qθ θ θ θ −= ± + + + −                             (4.25) 

Since 0qθ ≠  for an MA ( )q  process, it is obvious that the 1q −  equations preceding (4.24) are only sa-
tisfied if 1 2 1 0qθ θ θ −= = = = . Substituting 1 2 1 0qθ θ θ −= = = =  into (4.25) leads to 1qθ = ± . The two 
critical points of qρ  are then ( )0,0,0, , 1−  and ( )0,0,0, ,1 . . 
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At ( )0,0,0, , 1− , 0.5qρ = −  while at ( )0,0,0, ,1 , 0.5qρ = . It then follows that q 0.5ρ ≤ . 

Remark: For an invertible MA (3) process, 3 1θ < . Hence, 1
1 5 1 5

4 4
ρ− − −

< < , 20.5 0.5ρ− < <  and 

10.5 0.5ρ− < < . 

5. Conclusion 
We have established necessary conditions for the parameters of an invertible MA (3) process. When the charac-
teristic equation has three real equal roots, the conditions are 2 33 0θ θ− > , 2 33 0θ θ+ <  and 3 1θ < . Also the 
intervals for the autocorrelation coefficients of an invertible moving average process of order three are estab- 

lished. These are 1
1 5 1 5

4 4
ρ− − −

< < , 20.5 0.5ρ− < <  and 10.5 0.5ρ− < < . It is also noteworthy that the  

condition on 3ρ  for an invertible MA (3) process is generalized for qρ  of the invertible MA ( )q  process. 
That is for the invertible MA ( )q  process, q 0.5ρ < . These results can now be used to compare other linear 
and nonlinear processes that have similar autocorrelation structures with the MA (3) process. 
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Abstract 
In this paper the estimates for norms of solutions to nonlinear systems are obtained via an 
integral inequality. As an application we considered affine control systems and systems of equa-
tions for synchronization of motions. 
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1. Introduction 
The problem of estimating the norms of solutions to nonlinear systems of ordinary differential equations remains 
urgent due to extensive application of the latter in the description of real processes in many mechanical, physical 
and other nature systems. Usually, to obtain the estimates of norms of solutions to linear and weakly nonlinear 
equations, the Gronwall-Bellman lemma is applied (see, for example, [1]-[3] and bibliography therein). The de-
velopment of the theory of nonlinear inequalities has substantially widened the possibilities for obtaining the es-
timates of norms of solutions to nonlinear systems and has given an impetus to their application in the qualita-
tive theory of equations (see, for example, [4]-[6]). 

Both linear and nonlinear integral inequalities are efficiently used for the development of the direct Lyapunov 
method, in particular, for the investigation of motion boundedness and stability of nonlinear weakly connected 
systems [7]. 

The present paper is aimed at obtaining new estimates of norms of solutions for some classes of nonlinear 
equations of perturbed motion. The paper is arranged as follows. 

In Section 2 the statement of the problem is given in view of some results of papers [1] [3]. 
Section 3 presents main results on obtaining the estimates of norms of solutions for some classes of nonlinear 

systems of differential equations. In this regard, several results from [8] are taken into account. 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.61018
http://dx.doi.org/10.4236/am.2015.61018
http://www.scirp.org
mailto:center@inmech.kiev.ua
http://creativecommons.org/licenses/by/4.0/
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In Section 4 two application problems are considered: a problem on stabilization of solutions to affine system 
(cf. [8]) and a problem on estimation of divergence of solutions at synchronization (cf. [9]). 

In Section 5 the possibilities of application of this approach for solution of modern problems of nonlinear dy-
namics and systems theory are discussed. 

2. Statement of the Problem 
Consider a nonlinear system of ordinary differential equations of perturbed motion 

( ) ( ) ( )0 0
d , ,     ,
d
x A t x f t x x t x
t
= + =                             (1) 

where nx∈ ; ( ),n nf C +∈ ×   , ( )A t  is an n n× -matrix with the elements continuous on any finite in-
terval. It is assumed that solution ( ) ( )0 0, ,x t x t t x=  of problem (1) exists and is unique for all 0 t≤ < ∞  and 
( )0 0, .nt x +∈ ×   

Equations of type (1) are found in many problems of mechanics (see, for example, [1] [10] and bibliography 
therein). Moreover, these equations may be treated as the ones describing the perturbation of the system of linear 
equations 

( ) ( )0 0
d ,     ,
d
x A t x x t x
t
= =                                 (2) 

In order to establish boundedness and stability conditions for solutions of system (1) it is necessary to esti-
mate the norms of solutions under various types of restrictions on system (2) and vector-function of nonlineari-
ties in system (1). 

The purpose of this paper is to obtain estimates of norms of solutions to some classes of nonlinear ordinary 
differential Equations (1) in terms of nonlinear and pseudo-linear integral inequalities. 

3. Main Results 
First,we shall determine the estimate of the norm of solutions ( )x t  of system (1) under the following assump-
tions: 

A1. For all 0t ≥  there exists a nonnegative integrable function ( )b t  such that 

( ) ( )     for  all    0;A t b t t≤ ≥  

A2. For all 0t t≥  and 0u ≥  there exists a continuous nonnegative integrable function ( ),w t u , ( ),0 0w t = , 
such that (cf. [11]) 

( ) ( ), ,f t x w t x≤  

for all ( ), nt x +∈ ×  . 
Here and elsewhere an Euclidian norm of the vector x and a spectral norm of the matrix consistent with it are 

used. 
Theorem 1. For system (1) let conditions of assumptions 1A  and 2A  be satisfied, then for any solution 
( ) ( )0 0, ,x t x t t x=  with the initial values 0 :x x c≤ , 0 c< < +∞  the inequality 

( ) ( ) ( ) ( )( )
0

, d
t

t

x t c b s x s w s x s s ≤ + + ∫                           (3) 

holds for all 0 0t t≥ ≥ . 
If there exist: 
(a) a continuous and nonnegative function ( )v t  for all 0t t≥  and 
(b) a continuous, nonnegative and nondecreasing function ( )g u  for 0u ≥  such that 

( ) ( ) ( ) ( )
0 0

0, exp d exp d ,     ,    0,
t t

t t

w t z b s s b s s v t g z t t z
    
  − ≤ ≥ ≥           

∫ ∫  
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then for all [ )0 ,t t β∈  the inequality 

( ) ( ) ( ) ( )
0 0

1 d exp d ,
t t

t t

x t G G c v s s b s s−
   

≤ +         
∫ ∫                         (4) 

holds true, where 1G−  is a function converse with respect to the function ( )G u : 

( ) ( ) ( )
0

0 0
d ,     0 ,

u

u

sG u G u u c u
g s

− = < ≤ ≤ ≤ ∞∫  

and the value β  is determined by the correlation 

( ) ( )
0

1
0sup : d dom .

t

t

t t G c v s s Gβ −
  = ≥ + ∈ 
  

∫  

(c) If, additionally, there exists a constant 0 0a >  such that 

( ) ( )00

dd ,
t a

sv t t
g s

∞ ∞

≤∫ ∫  

then inequality (4) is satisfied for all 0t t≥ , i.e. β = ∞  for the values ( )00,c a∈ . 

Proof. Let the right-hand part of inequality (3) be equal ( ) ( )
0

exp d
t

t

p t b s s
 
  
 
∫ . Using inequality (3) and condi-

tion (b) of Theorem 1 we get 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

0

0 0

d exp d ,
d

                                                   exp d exp d .

t

t

t t

t t

p b t p t b s s b t x t w t x t
t

b t p t v t g x t b s s b s s

  + = +       
     
  ≤ + −             

∫

∫ ∫
 

Since the function g  is nondecreasing and 

( ) ( ) ( )
0

exp d ,
t

t

x t p t b s s
 

≤   
 
∫  

we get the inequality 

( ) ( )( ) ( )0
d ,     .
d
p v t g p t p t c
t
≤ =  

Hence, by the Bihari lemma (see [10], p. 110) we have 

( ) ( ) ( )
0

1 d ,
t

t

p t G G c v s s−
 

≤ + 
  

∫  

for all ( )0 ,t t β∈ . This implies estimate (4). 
To prove the second assertion of Theorem 1 we note that the continuability condition for function ( )p t  is 

the inequality 

( ) ( ) ( )
0 0

dd
t u

sG c v s s
g s

∞ ∞

+ ≤∫ ∫  

or 
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( ) ( ) ( ) ( )
0 0 0

d d dd .
c

t u u c

s s sv s s
g s g s g s

∞ ∞ ∞

≤ − + =∫ ∫ ∫ ∫  

This inequality is satisfied for any ( )00,c a∈  for which condition (c) of Theorem 1 holds true. Since 0c a< , 
we have 

( ) ( ) ( )
0 0

d dd .
t a c

s sv s s
g s g s

∞ ∞ ∞

≤ <∫ ∫ ∫  

Hence it follows that for ( )00,c a∈  the value β = ∞ . This proves Theorem 1. 
Further we shall consider system (1) under the following assumption. 
A3. There exist a nonnegative integrable function ( )c t  for all 0 0t t≥ ≥  and a constant 1α >  such that 

( ) ( ),f t x c t x α≤  

for all ( ), nt x +∈ ×  . 
Theorem 2. For the system of Equations (1) let conditions of Assumptions 1A  and 3A  be satisfied. Then 

for the norm of solutions ( ) ( )0 0, ,x t x t t x=  the estimate 

( )
( )

( ) ( ) ( ) ( )

0

0

0

1
1

1
0

exp d

1 1 exp 1 d d

t

t

t t

t s

x b s s
x t

x c s b s
α

αα α τ τ
−

−

≤
  
− − −  

   

∫

∫ ∫

                  (5) 

holds true for all 0 0t t≥ ≥  whenever 

( ) ( ) ( ) ( )
0

1
01 exp 1 d d 1.

t t

t s

x c s b sαα α τ τ−  
− − < 

 
∫ ∫                        (6) 

Proof. Let ( )x t  be the solution of system of Equations (1) with the initial conditions ( )0 0x t x= , 0 0t ≥ . 
Under conditions 1A  and 3A  Equation (1) yields the estimate of the norm of solution ( )x t  in the form 

( ) ( ) ( ) ( ) ( )
0 0

0 d d .
t t

t t

x t x b s x s s c s x s s
α

≤ + +∫ ∫                        (7) 

We transform inequality (7) to the pseudo-linear form 

( ) ( ) ( ) ( )( ) ( )
0

1
0 d ,

t

t

x t x b s c s x s x s s
α −

≤ + +∫                        (8) 

and applying the Gronwall-Bellman lemma [1] arrive at the estimate 

( ) ( ) ( ) ( )( )
0

1
0 exp d

t

t

x t x b s c s x s s
α − 

≤ +  
 
∫                         (9) 

for all 0 0t t≥ ≥ . 
Further, for estimation of the expression 

( ) ( )
0

1
exp d

t

t

c s x s s
α − 

  
 
∫  

the following approach is applied (cf. [8]). 
Designate ( ) ( )x t tψ=  for all 0t t≥  and from inequality (9) obtain 
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( ) ( ) ( ) ( ) ( )( )
0

11 1
0 exp 1 d .

t

t

t x b s c s s sαα αψ α ψ−− −
 

≤ − + 
  

∫                    (10) 

Multiplying both parts of inequality (10) by the expression 

( ) ( ) ( ) ( ) ( )
0

11 exp 1 d ,
t

t

c t c s s sαα α ψ −
 

− − − −  
 

∫  

we get 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

11 1
01 exp 1 d 1 exp 1 d .

t t

t t

c t t c s s s x c t b s sαα αα ψ α ψ α α−− −
   

− − − − ≥ − − −   
      

∫ ∫  

This implies that 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

1 1
0

d1 exp 1 d exp 1 d .
d

t t

t t

x c t b s s c s s s
t

α αα α α ψ− −
    

− − − ≤ − −           
∫ ∫  

Integrating the obtained inequality between the limits 0t  and t  we arrive at 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0

1 1
01 1 exp 1 d d exp 1 d .

t s t

t t t

x c s b s c s s sα αα α τ τ α ψ− −
   

− − − ≤ − −   
      

∫ ∫ ∫  

Under condition (6) this estimate implies 

( ) ( ) ( )
( ) ( ) ( ) ( )0

0

1

1
0

1exp 1 d .
1 1 exp 1 d d

t

t t
t

t s

c s s s
x c s b s

α

α
α ψ

α α τ τ

−

−

 
− ≤ 

    − − − 
 

∫
∫ ∫

 

Moreover, inequality (10) becomes 

( )
( ) ( )

( ) ( ) ( ) ( )

0

0

11
0

1
0

exp 1 d

.
1 1 exp 1 d d

t

t

t t

t s

b s s

t x
x c s b s

αα

α

α

ψ
α α τ τ

−−

−

 
− 

  ≤
 

− − − 
 

∫

∫ ∫
 

This inequality yields estimate (5) for all 0 0t t≥ ≥  for which condition (6) is satisfied. 
This completes the proof of Theorem 2. 
Inequality (7) is a partial case of inequality (3) and its representation in pseudo-linear form (8) allows us to 

simplify the procedure of obtaining the estimate of norm of solutions to system (1). 
Theorem 2 has a series of corollaries as applied to some classes of systems of ordinary differential equations. 
Corollary 1. Consider system (1) for ( ) 0A t ≡  for all 0 0t t≥ ≥  

( ) ( )0 0
d , ,     .
d
x f t x x t x
t
= =                                (11) 

This is an essentially nonlinear system, i.e. a system without linear approximation. Such systems are found in 
the consideration of systems with dry friction, electroacoustic waveguides and in other problems. Systems with 
sector nonlinearity (see [12]) are close to this type of systems. 

If condition A3 is fulfilled with the function ( )c t  such that 

( )
1

d 0,
k

k

t

t

c s s
+

>∫  
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for any ( )1,k kt t + +∈ , 1k kt t +< , 0,1, 2,k =  , then 

( ) ( ) ( )
0

0 d .
t

t

x t x c s x s s
α

≤ + ∫  

Applying to this inequality the same procedure as in the proof of Theorem 2 it is easy to show that if 

( ) ( )
0

1
01 1 d 0

t

t

x c s sαα −− − >∫  

for all 0 0t t≥ ≥ , then 

( )

( ) ( )
0

0
1

1
1

01 1 d
t

t

x
x t

x c s s
α

αα
−

−

≤
 
− −  

 
∫

                          (12) 

for all 0 0t t≥ ≥ . 
Comment 1. Estimate (12) is obtained as well by an immediate application of the Bihari lemma (see [10]) to 

the inequality 

( ) ( ) ( )
0

0 d
t

t

x t x c s x s s
α

≤ + ∫  

with the function ( )u x αΦ = , 0α > , 1α ≠ . 
Corollary 2. In system (1) let ( ) ( ), ,f t x B t x x≡ , where : n n nB ×

+ × →    is an n n× -matrix conti-
nuous with respect to ( ), nt x +∈ ×  . 

Consider a system of non-autonomous linear equations with pseudo-linear perturbation 

( ) ( )( ) ( )0 0
d , ,     .
d
x A t B t x x x t x
t
= + =                            (13) 

Assume that condition 1A  is satisfied and there exists a nonnegative integrable function ( )h t  such that 

( ) ( ), ,B t x h t x≤                                   (14) 

for all ( ), nt x +∈ ×  . 
Equation (13) implies that 

( ) ( ) ( ) ( ) ( )( )2
0

0

( d .
t

x t x b s x s h s x s s≤ + +∫                        (15) 

Applying to inequality (15) the same procedure as in the proof of Theorem 2 we get the estimate 

( )
( )

( ) ( )

0
0

0
0 0

exp d

1 exp d d

t

t s

x b s s
x t

x h s b sτ τ
≤

−

∫

∫ ∫
                            (16) 

which holds true for the values of ( ) [ )0,t ∈ ∞  for which 

( ) ( )0
0 0

1 exp d d 0.
t s

x h s b sτ τ− >∫ ∫                               (17) 

Comment 2. If in inequality (15) functions ( ) ( ) 1b t h t= =  for all 0 0t t≥ ≥ , then Theorem 1 yields the 
estimate (see [4]) 
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( ) ( )
( )( )

0 0

0 0

exp
1 1 exp

x t t
x t

x t t
−

≤
+ − −

 

for all [ )0 ,t t τ∈ , where τ  is determined by the formula 0
0

0

1
ln

x
t

x
τ

+
= + . 

Corollary 3. In system (1) let ( ) ( ) 2
2, n

nf t x A t x A x= + + , where ( )1 2col , , ,i i i i
nx x x x=   for all 

2,3, ,i n=  . Further we shall consider the system of nonlinear equations 

( ) ( )0 0
1

d ,     ,
d

n
k

k
k

x A t x x t x
t =

= =∑                               (18) 

where ( ), n n
iA C ×

+∈    are ( )n n× -matrices with the elements continuous on any finite interval and 
( ) ( )1A t A t≡ . 
Assume that there exist nonnegative integrable on [ )0,∞  functions ( )kb t , 1, 2, ,k n=  , such that 

( ) ( ) ,     1, 2, ,k kA t b t k n≤ =                                (19) 

In view of (19) we get from (18) the inequality 

( ) ( ) ( ) ( ) ( )0 0
1 10 0

d d .
t tn nk k

k k
k k

x t x A s x s s x b s x s s
= =

≤ + ≤ +∑ ∑∫ ∫                 (20) 

Inequality (20) is presented in pseudo-linear form 

( ) ( ) ( ) ( ) ( )1
0 1

20

d .
t n k

k
k

x t x b s b s x s x s s
−

=

 ≤ + + 
 

∑∫  

Hence 

( ) ( ) ( ) ( ) 1
0 1

20

exp d .
t n k

k
k

x t x b s b s x s s
−

=

  ≤ +  
  

∑∫                       (21) 

We shall find the estimate of the expression ( ) ( ) 1

20

exp d .
t n k

k
k

b s x s s
−

=

 
 
 
∑∫  

Inequality (21) implies that the estimate 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
1 1

0 1
20

11
0 1

20

exp 1 d

              exp 1 1 d .

rt nk k
r

r

t n rk
r

r

x t x k b s b s x s s

x k b s n b s x s s

−
− −

=

−−

=

  ≤ − +  
   

  ≤ − + −  
  

∑∫

∑∫
 

is true. 
Multiplying both parts of this inequality by the negative expression 

( ) ( ) ( ) ( ) ( ) 1

=20

1 exp 1 d
t n r

k r
r

n b t n b s x s s
− 

− − − − 
 

∑∫  

we get 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1
0 1

20 0

1 exp 1 d 1 exp 1 d .
t tnk r k

k r k
r

n b t x t n b s x s s n b t x k b s s
− − −

=

   
− − − − ≥ − − −   

   
∑∫ ∫  

Summing up both parts of this inequality from 2k =  to n  we find 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1
0 1

2 2 20 0

1 exp 1 d 1 exp 1 d .
t tn n nk r k

k r k
k r k

n b t x t n b s x s s n b t x k b s s
− − −

= = =

   
− − − − ≥ − − −   

   
∑ ∑ ∑∫ ∫  

Integration of this inequality between 0 and t results in the following inequality 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
0 1

2 20 0 0

exp 1 d 1 1 exp 1 d d
t t tn nk k

k k
k k

n b s x s s n b s x k b sτ τ
− −

= =

   
− − ≥ − − −   
   

∑ ∑∫ ∫ ∫  

From this inequality we find that 

( ) ( )

( ) ( ) ( ) ( )

1

1
20 1

1
0 1

20 0

1exp d

1 1 exp 1 d d

t n k
k

k t t nn k
k

k

b s x s s

n b s x k b sτ τ

−

= −
−

=

 
≤ 

     − − −  
   

∑∫
∑∫ ∫

 

Hence follows the estimate 

( )
( )

( ) ( ) ( ) ( )

0 1
0

1
1

1
0 1

20 0

exp d

1 1 exp 1 d d

t

t t nn k
k

k

x b s s
x t

n b s x k b sτ τ
−

−

=

 
 
 ≤

   − − −  
   

∫

∑∫ ∫

                (22) 

which is valid for all [ )0,t∈ ∞  such that 

( ) ( ) ( ) ( )1
0 1

20 0

1 1 exp 1 d d 0
t sn k

k
k

n x b s k b sτ τ−

=

 
− − − > 

 
∑∫ ∫  

Estimate (5) allows boundedness and stability conditions for solution of system (1) to be established in the 
following form. 

Theorem 3. If conditions 1A  and 3A  of Theorem 2 are satisfied for all ( ), nt x +∈ ×   and there exists a 
constant 0β >  such that ( ) ( )5

x t β<  for all 0t t≥ , where β  may depend on each solution, then the solu- 
tion ( )0 0, ,x t t x  of system (1) is bounded. 

Theorem 4. If conditions A1 and A3 of Theorem 2 are satisfied for all ( ), nt x +∈ ×   and ( ), 0f t x =  for 
0x = , and for any 0ε >  and 0 0t ≥ t0? 0 there exists a ( )0 , 0tδ ε >  such that if ( )0 0 ,x tδ ε< , then the 

estimate ( ) ( )5
x t ε<  is satisfied for all 0t t≥ , then the zero solution of system (1) is stable. 

The proofs of Theorems 3 and 4 follow immediately from the estimate of norm of solutions ( )x t  in the form  
of (5). The notations ( ) ( )5

x t β<  and ( ) ( )5
x t ε<  mean that the right hand part of inequality (5) must sa-  

tisfy these inequalities under appropriate initial conditions. 
Similar assertions are valid for the systems of Equations (11), (13) and (18) in terms of estimates (12), (16) 

and (22). 

4. Applications 
4.1. Stabilization of Motions of Affine System 
Consider an affine system with many controlling bodies 

( ) ( ) ( )( ) ( ) ( )0
1

d , ,
d

l

i i
i

x A t x t G t x t u t Bu t
t =

= + +∑                        (23) 

( ) ( ) ,y t Cx t=                                      (24) 

( )0 0 ,x t x=                                       (25) 
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where nx∈ , ( )A t  is an n n× -matrix with continuous elements on any finite interval, ( ),iG t x  is an n m× - 
matrix, the control vectors ( ) m

iu t ∈  for all 1, 2, ,i l=  , B is an n m× -matrix and the control ( )0
mu t ∈ , 

C is a constant n n× -matrix, 0x  is a vector of the initial states of system (23). With regard to system (23) the 
following assumptions are made: 

A4. Functions ( ),0 0iG t = , 1, 2, ,i l=  , for all 0t ≥ . 
A5. There exists a constant n m× -matrix 0K  such that for the system 

( )( )0
d
d
y A t BK C y
t
= −  

the fundamental matrix ( )tΦ  satisfies the estimate 

( ) ( ) ( )1 e ,t st s M α− −−Φ Φ ≤  

for 0t s t≥ ≥ , where M  and α  are some positive constants. 
A6. There exist constants 0iγ >  and 1q >  such that 

( ), ,q
i iG t x xγ≤  

for all 1, 2, ,i l=  . 
The following assertion takes place. 
Theorem 5. Let conditions of assumptions 4A - 6A  be satisfied and, moreover, 

( )1
0

1 0

1 e d 0,
tl qq qs

i I
i

qM K C x sαγ + −

=

− >∑ ∫  

where 
1

l

i
i

γ γ
=

= ∑ . 

Then the controls 

( ) ( ) ( ) ( )0 0,     1, 2, , ,     i iu t K y t i l u t K y t= − = = −  

stabilize the motion of system (23) to the exponentially stable one. 
Proof. Let the controls ( ) ( )i iu t K y t= −  and ( ) ( )0 0u t K y t= −  be used to stabilize the motions of system 

(23). Besides, we have 

( )( ) ( ) ( )( ) ( )( )0
1

d , .
d

l

i i
i

x A t BK C x t G t x t K Cx t
t =

= − −∑  

and 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
0

1 1
0 0

1
, d .

t l

i i
it

x t t t x t s G s x s K Cx s s− −

=

= Φ Φ − Φ Φ ∑∫                (26) 

In view of conditions of Theorem 5 we get from (26) the estimate of norm of solution of system (23) in the 
form 

( ) ( ) ( ) 1
0

10

e e d .
t l qt st

i
i

x t x M M K C x s sαα γ
+− −−

=

≤ + ∑∫                     (27) 

We transform inequality (27) to the form 

( ) ( )
1

0
10

e e e d .
t l qt qs s

i
i

x t x M M K C x s sα α αγ
+−

=

≤ + ∑∫                     (28) 

Applying Corollary 3 to inequality (28) we get 



A. A. Martynyuk 
 

 
191 

( )

( )

( )
( )

( )

0
1

1
0

1 0

0
1

1
0

1

0
1

1
0

1

e

1 e d

              

1 e 1

              .

1 .

t

tl qqq qs
i I

i

l qqq
i I

qti

l qqq
i

i

M x
x t

qM K C x s

M x

M K C x

M x

M K C x

α

α

α

γ

γ

α

γ

α

+ −

=

+

−=

+

=

≤
 
− 

 

=
 
 
 + −
 
 
 

≤
 
 
 −
 
 
 

∑ ∫

∑

∑

 

for all 0t ≥ . 
If condition 

( )1
0

1 0

1 e d 0,
tl qq qs

i I
i

qM K C x sαγ + −

=

− >∑ ∫  

of Theorem 5 is satisfied, then 

( )1
0

11 0

l qq
i

i
M K C xγ

α

+

=− >
∑

 

and for the norm of solution ( )x t  we have the estimate 

( ) 0 0 e tx t M x α−≤  

for all 0t ≥ , where 

( )
0 1

1
0

1

.

1

l qqq
i

i

MM

M K C xγ

α

+

=

=
 
 
 −
 
 
 

∑

 

This completes the proof of Theorem 5. 

4.2. Syncronization of Motions 
The theory of motion synchronizations studies the systems of differential equations of the form (see [9] and 
bibliography therein) 

( ) ( )0 0
d , , ,     ,
d
x f t x x t x
t

µ µ= =                               (29) 

where ( ) [ ], , : 0,1n nf t x µ + × × →   , f  is a function continuous with respect to t , x , µ  and periodic 
with respect to t  with the period T , and µ  is a small parameter. Alongside system (29) we shall consider an 
adjoint system of equations 
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( ) ( )0 0
d ,     ,
d
x g x x t x
t

µ= =                                (30) 

where 

( ) ( )
0

1 , ,0 d .
T

g x f s x s
T

= ∫  

Assume that in the neighborhood of point 0x  for sufficiently small value of µ  for any [ ]0,t T∈  the 
vector-function f  and its partial derivatives are continuous. Designate 

[ ]
( )

00, , ,
max , , , , .i

t T x x d j

ffM f t x
vµ µ

µ
µ∗∈ − ≤ ≤

 ∂∂ =  
∂ ∂  

 

It is clear that the solutions of Equations (29) and (30) remain in the neighborhood 0x x d− ≤  for 
1t dMµ −< . 

With allowance for 

( ) ( )( )0
0

, , , , d
t

x t x f s x s sµ µ µ µ= + ∫  

and 

( ) ( )( )0
0

, , d ,
t

x t x g x s sµ µ µ= + ∫  

we compile the correlation 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )
0 0

0

, , , , , , , ,0 d , , ,0 , , ,0 d

                                    , , ,0 , d .

t t

t

x x x t f s x s f s x s s f s x s f s x s s

f s x s g x s s

µ µ µ µ µ µ µ µ µ

µ µ µ

   − = − + −   

 + − 

∫ ∫

∫
(31) 

As it is shown in monograph [9] for the first and third summands in correlation (31) the following estimates 
hold true 

( )( ) ( )( )
0

, , , , , ,0 d ,
t

f s x s f s x s s M tµ µ µ µ − ≤ ∫                       (32) 

( )( ) ( )( ) 2

0

, , ,0 , d 2 4 .
t

f s x s g x s s MT M T tµ µ µ − ≤ + ∫                    (33) 

To estimate the second summand we assume that there exist an integrable function ( ) :N t + +→   such 
that for any [ ]1 2,  0,t t T∈  ( )1 20 t t≤ <  

( )
2

1

d 0
t

t

N s s >∫  

and 1α >  such that 

( ) ( ) ( ), ,0 , ,0f t x f t x N t x x α− ≤ −                          (34) 

in the domain of values [ ]0,t T∈  and ,  x x D∈ . 
In view of estimates (32)-(34) we find from (31) 



A. A. Martynyuk 
 

 
193 

( ) ( ) ( )( ) ( ) ( ) ( )2

0

, , 2 4 , , d
s

x s x s MT M T M t N x x
α

µ µ µ µ µ τ τ µ τ µ τ− ≤ + + + −∫
         

 (35) 

for all s t≤ . 
Let there exist [ ]0,1µ∗ ∈  such that 

( ) ( )( ) ( )
1

2

0

1 1 2 4 d 0
T

MT M T M t N s s
α

α µ µ µ
−

 − − + + >  ∫
                    

 (36) 

for all µ µ∗< . Then the norm of divergence of solutions ( ),x t µ  and ( ),x t µ  under the same initial condi-
tions is estimated as follows 

( ) ( )
( )

( ) ( )( ) ( )

2

1
11

2

0

2 4
, ,

1 1 2 4 d
T

MT M T M t
x t x t

MT M T M t N s s
αα

µ µ
µ µ

α µ µ µ
−−

 + + − ≤
  − − + +   

∫
           

(37) 

for all [ ]0,t T∈  and for µ µ∗< . 
Estimate (37) is obtained from inequality (35) by the application of Corollary 1. 
Comment 3. If in estimate (34) 1α =  and ( )N t M= , then the application of the Gronwall-Bellman lemma 

to inequality (35) yields the estimate of divergence between solutions in the form [9] 

( ) ( ) ( ) ( )2, , 2 4 expx t x t MT M T M t MTµ µ µ µ µ − ≤ + +   

for all [ ]0,t T∈ . 

5. Concluding Remarks 
In this paper the estimates of norms of solutions to differential equations of form (1), (11) and (13) are obtained 
in terms of nonlinear and pseudo-linear integral inequalities. This approach facilitates establishing the estimates 
of norms of solutions for some classes of systems of equations of perturbed motion found in various applied 
problems (see [11] [13]). Efficiency of the obtained results is illustrated by two problems of nonlinear dynamics. 

It is of interest to develop the obtained results in the investigation of solutions to dynamic equations on time 
scale (see [14] [15]). In monograph [16] the integral inequalities on time scale form a basis of one of the me-
thods of analysis of solutions to dynamic equations. 
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Abstract 
The design of large disk array architectures leads to interesting combinatorial problems. Mini-
mizing the number of disk operations when writing to consecutive disks leads to the concept of 
“cluttered orderings” which were introduced for the complete graph by Cohen et al. (2001). Muel-
ler et al. (2005) adapted the concept of wrapped Δ-labellings to the complete bipartite case. In this 
paper, we give some sequence in order to generate wrapped Δ-labellings as cluttered orderings 
for the complete bipartite graph. New sequence we give is different from the sequences Mueller et 
al. gave, though the same graphs in which these sequences are labeled. 

 
Keywords 
Cluttered Ordering, RAID, Disk Arrays, Label for a Graph 

 
 

1. Introduction 
The desire to speed up secondary storage systems has lead to the development of disk arrays which achieve per-
formance through disk parallelism. While performance improves with increasing numbers of disks, the chance 
of data loss coming from catastrophic failures, such as head crashes and failures of the disk controller electron-
ics, also increases. To avoid high rates of data loss in large disk arrays, one includes redundant information 
stored on additional disks—also called check disks—which allows the reconstruction of the original data— 
stored on the so-called information disks—even in the presence of disk failures. These disk array architectures 
are known as redundant arrays of independent disks (RAID) (see [1] [2]). 

Optimal erasure-correcting codes using combinatorial framework in disk arrays are discussed in [1] [3]. For 
an optimal ordering, there are [4] [5]. Cohen et al. [6] gave a cyclic construction for a cluttered ordering of the 
complete graph. In the case of a complete graph, there are [7] [8]. Furthermore, in the case of a complete bipar-
tite graph, Mueller et al. [9] gave a cyclic construction for a cluttered ordering of the complete bipartite graph by 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.61019
http://dx.doi.org/10.4236/am.2015.61019
http://www.scirp.org
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utilizing the notion of a wrapped Δ-labelling. In the case of a complete tripartite graph, we refer to [10]. 
As Figure 1, we present the case 2= . For example, information disk 1 is associated to the check disks a 

and c. A 2-dimensional parity code can be modeled by the complete bipartite graph ( ), , ,K U V E=
 

 in the 
following way. The point set of ,K

 

 is partitioned into the two sets—U and V both having cardinality  . 
Assign the points of U to the   check bits corresponding to the rows and the points of V to the   check bits 
corresponding to the columns. By definition, in ,K

 

 any point of U is connected with any point of V exactly on 
edge constituting the edge set E, i.e., 2E =   (see Figure 2). 

In this paper, we make label to the vertex of a bipartite graph. For example, we make label 1, 3, 0 and −1, 
respectively, to four vertices a, b, c and d of a bipartite graph in Figure 2. By such labelling, we get that the 
label of the edge { },a c  is 1 0 1− = ; the label of the edge { },a d  is ( )1 1 2− − = ; the label of the edge { },b c  
is 3 0 3− =  and the label of the edge { },b d  is ( )3 1 4− − = . The labellings [ ]1,3  of the upper vertices 
[ ],a b  and the labellings [ ]0, 1−  of the lower vertices [ ],c d  are sequences. The goal of this paper is to find 
new sequence in order to generate wrapped Δ-labellings as cluttered orderings for the complete bipartite graph. 
In Section 5, we give new sequence which we want. The new sequence we give is different from the sequences 
Mueller et al. [9] gave, though the same graphs in which these sequences are labeled. 

2. A Cluttered Ordering 
In a RAID system disk writes are expensive operations and should therefore be minimized. In many applications 
there are writes on a small fraction of consecutive disks—say d disks—where d is small in comparison to k, the 
number of information disks. Therefore, to minimize the number of operations when writing to d consecutive 
information disks one has to minimize the number of check disks—say f—associated to the d information disks. 

Let ( ),G V E=  be a graph with n V=  vertices and edge set { }0 1 1, , , mE e e e −=  . Let d m≤  be a 
positive integer, called a window of G, and π  a permutation on { }0,1, , 1m − , called an edge ordering of G. 
Then, given a graph G with edge ordering π  and window d, we define ,d

iV π  to be the set of vertices which 
are connected by an edge of ( ) ( ) ( ){ }1 1, , ,i i i de e eπ π π+ + − , 0 1i m≤ ≤ − , where indices are considered modulo m. 
The cost of accessing a subgraph of d consecutive edges is measured by the number of its vertices. An upper 
bound of this cost is given by the d-maximum access cost of G defined as ,max d

i iV π . An ordering π  is a (d, 
f)-cluttered ordering, if it has d-maximum access cost equal to f. We are interested in minimizing the parameter 
f. 

Let   be a positive integer and let ,K
 

 denote the complete bipartite graph with 2  vertices and 2
  

edges. In the following, we identify the vertex set of ,K
 

 with 2Z Z×


, where two vertices are connected by 
an edge iff they have different second components in 2Z Z×



. The construction of (d, f)-cluttered orderings for 
,K
 

 with small positive integer f is based on two fundamental concepts. Firstly, we introduce the well-known 
concept of a Δ-labelling of a suitable bipartite subgraph from which one gets a decomposition of ,K

 

 into 
isomorphic copies of this subgraph. Secondly, we define the concept of a (d, f)-movement which will lead to 
“locally” defined edge orderings of ,K

 

. This principle was implicitely used in [6] in case of the complete 
graph. In case of the complete bipartite graph, we refer to [9]. 

In the following, ( ),H U E=  always denotes a bipartite graph with vertex set U which is partitioned into 
 

 
Figure 1. 2-dim. parity code and its parity check matrix. 

 

 
Figure 2. Code as graph. 
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two subsets denoted by V and W. Any edge of the edge set E contains exactly one point of V and W respectively. 
Let E= , then a Δ-labelling of H with respect to V and W is defined to be a map 2:U Z Z∆ → ×



 with 
( ) { }0V Z∆ ⊂ ×



 and ( ) { }1W Z∆ ⊂ ×


, where each element of Z


 occurs exactly once in the difference list 

( ) ( ) ( )( ) ( )( )1: , , , .E v w v V w W v w Eπ∆ = ∆ −∆ ∈ ∈ ∈                       (1) 

Here, 1 2: Z Z Zπ × →
 

 denotes the projection on the first component. In general, Δ-labellings are a well- 
known tool for the decomposition of graphs into subgraphs (see [11]). In this context a decomposition is un-
derstood to be a partition of the edge set of the graph. In case of the complete bipartite graph, one has the fol-
lowing proposition. 

Proposition 1. ([9]) Let ( ),H U E=  be a bipartite graph, E= , and Δ be a Δ-labelling as defined above. 
Then there is a decomposition of the complete bipartite graph ,K

 

 into isomorphic copies of H. 
For example, Figure 3 shows Δ-labellings of a graph ( )1;1H H=  with 3 edges leading to a decomposition 

of 3,3K  into isomorphic copies of ( )1;1H  such as Figure 4. Next, in order to move a graph H to an isomorphic 
copy such as Figure 5, we define the concept of a (d, f)-movement which can easily be generalized to arbitrary 
set system. 

Definition 1. Let G be a graph with edge set ( ) { }0 1 1, , , nE G e e e −=  , where n is positive integer, and let 0Σ , 
( )1 E GΣ ⊂  with 0 1:d = Σ = Σ . For a permutation σ  on { }0,1, , 1n −  define ( )

1,
0

: dd
i i jj

V eσ
σ

−
+=

=


 for 
0 i n d≤ ≤ − . Then, for some given a positive integer f, and a map σ  is called a ( ),d f -movement from 0Σ  
to 1Σ  if ( ){ }0 0 1je j dσΣ = ≤ ≤ − , ( ){ }1 1je n d j nσΣ = − ≤ ≤ − , and ,max d

i iV fσ ≤ . 
In order to assemble such (d, f)-movements of certain subgraphs to a (d, f)-cluttered ordering, we need some 

notion of consistency. Let 0 1:ϕ Σ → Σ  be any bijection, then a (d, f)-movement σ  from 0Σ  to 1Σ  is called 
consistent with ϕ  if 

( )( ) ( )     for    0,1, , 1.j n d je e j dσ σϕ − += = −,                          (2) 

Now, for each j Z∈


 one gets an automorphism jτ  of the bipartite graph ,K
 

 defined by cyclic transla-
tion of the vertex set: 
 

 
Figure 3. A Δ-labelling of a graph ( )1;1H  with 3 
edges. 

 

 
Figure 4. Isomorphic copies of ( )1;1H . 

 

 
Figure 5. A (3,4)-movement. 
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( )( ) ( )2 2: ,     , : , ,j jZ Z Z Z u b u j bτ τ× → × = +
 

                        (3) 

( ) 2,u b Z Z∈ ×


. Obviously, jτ  induces in a natural way an automorphism of the edge set of ,K
 

 which we  
also denote jτ . Then, ( )( ) ( )i i j

j E Eτ +=  and ( )( ) ( )
0 0
i i j

jτ
+Σ = Σ , i Z∈



. Next, we define a subgraph ( )0
,G K⊂
 

  

by specifying its edge set ( )( ) ( ) ( )0 0
0:E G E κ= ∪Σ . Let ( )( ) ( ) ( ) ( ){ }0 0 0 0

0 1 1, , , nE G e e e −=  , n d= + , where we fix 
some arbitrary edge ordering. We denote the restriction of the cyclic translation κτ  to ( )0

0Σ  by ( )0
κϕ  which 

defines a bijection ( ) ( ) ( )0 0
0 0: κ

κϕ Σ → Σ . 
Definition 2. With above notation, a (d, f)-movement of ( )0G  from ( )0

0Σ  to ( )
0
κΣ  consistent with ( )0

κϕ  
will be denoted as ( ),d f -movement from ( )0

0Σ  consistent with the translation parameter κ . 
According to Definition 1, such a (d, f)-movement is given by some permutation σ  of the index set 

{ }0,1, , 1n − . By applying the cyclic translation iτ  one gets a graph ( ) ( )( )0:i
iG Gτ=  with edge set 

( )( ) ( ) ( ) ( ) ( ) ( ){ }0 0 1 1, , ,i i i i i i
nE G E e e eκ+
−= ∪Σ =  , i Z∈



. We denote the restriction of κτ  to ( )
0
iΣ  by ( )i

κϕ  which  

defines a bijection 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
0 0 0: ,     ,     .i i i i i i i ie e eκ κ

κ κϕ ϕ+ +Σ → Σ = ∈Σ                       (4) 

Then σ  also defines a ( ),d f -movement of ( )iG  from ( )
0
iΣ  to ( )

0
i κ+Σ  consistent with ( )i

κϕ . Using that 
( )

( ) ( )
0

i i
jeσ ∈Σ , 0 j d≤ < , (see Defintion 1), we get, for 0,1, , 1j d= − , 

( )
( )

( )
( )

( )
( )( )

( )

( )
( )

( )
( )

4 2

.i i i ii
j j n d j je e e eκ

κσ σ σ σϕ+
− + += = =



                           (5) 

Having such a consistent σ , it is easy to construct a (d, f)-cluttered ordering of ,K
 

. In short, one orders the 
edges of ,K

 

 by first arranging the subgraphs of the decomposition along ( ) ( ) ( ) ( )( )10 2, , , ,E E E E κκ κ −
  and 

then ordering the edges within each subgraph according to σ . 
Proposition 2. ([9]) Let ( ),H U E= , E= , be a bipartite graph allowing some ρ -labelling, and let κ  

be a translation parameter coprime to  . Furthermore, let 0 EΣ ⊂ , 0:d = Σ . If there is a (d, f)-movement 
from 0Σ  consistent with κ , then there also is a (d, f)-cluttered ordering for the complete bipartite graph 

,K . 

3. Construction of Cluttered Orderings of ( );H h t  
In this section, we define an infinite family of bipartite graphs which allow (d, f)-movements with small f. In 
order to ensure that these (d, f)-movements are consistent with some translation parameter κ , we impose an 
additional condition on the Δ-labellings also referred to as wrapped-condition. 

Let h and t be two positive integers. For each parameter f and t, we define a bipartite graph denoted by 
( ) ( ); ,H h t U E= . Its vertex set U is partitioned into U V W= ∪  and consists of the following ( )2 1h t +  ver-

tices: 
( ){ }
( ){ }

: 0 1 ,

: 0 1 .
i

i

V v i h t

W w i h t

= ≤ < +

= ≤ < +
 

The edge set E is partitioned into subsets sE , 0 s t≤ < , defined by 

{ }{ }
{ }{ }
{ }{ }
1

0

: , , ,

: , ,

: , ,

:     for    0 ,

: .

s i j

s i h j

s h i j

s s s s
t

s
s

E v w s h i j s h h

E v w s h j i s h h

E v w s h i j s h h

E E E E s t

E E

+

+

−

=

′ = ⋅ ≤ < ⋅ +

′′ = ⋅ ≤ ≤ < ⋅ +

′′′ = ⋅ ≤ ≤ < ⋅ +

′ ′′ ′′′= ∪ ∪ ≤ <

=


,
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Figure 6 shows the edge partition of ( )2;1H . For the number of edges holds  

( ) ( ) ( )2 1 1
2 1

2 2
h h h h

E t h th h
+ + 

= ⋅ + + = + 
 

. 

The t subgraphs defined by the edge sets Es, 0 s t≤ < , and its respective underlying vertex sets are isomorphic 
to ( );1H h . Intuitively speaking, the bipartite graph ( );H h t  consists of t “consecutive” copies of ( );1H h , 
where the last h vertices of V and W respectively of one copy are identified with the first h vertices of V and W 
respectively of the next copy. Traversing these copies with increasing s will define a (d, f)-movement of 

( );H h t  with small parameter f as is shown in the next proposition. 
Proposition 3. ([9]) Let h, t be pogitive integers. Let ( ) ( ); ,H h t U E= , 2t ≥ , be the bipartite graph as de- 

fined above. Then, there is a (d, f)-movement of ( );H h t  from 0E  to 1tE −  with ( )2 1d h h= +  and 4f h= . 
By Proposition 1 a Δ-labelling of the graph ( );H h t  will lead to a decomposition of the complete bipartite 

graph ,K
 

 into   isomorphic copies of ( );H h t , where ( )2 1th h= + . However, in general there is no 
( ),d f -movement consistent with some translation parameter κ . To this means, we impose an additional con-
dition on the Δ-labelling. The following definition generalizes and adapts the notion of a wrapped Δ-labelling to 
the bipartite case, which was introduced in [6] for certain subgraphs of the complete graph. 

Definition 3. Let ( ),H U E= , E= , denote a bipartite graph and let ,  X Y U⊂  with X Y= . A Δ- 
labelling Δ is called a wrapped Δ-labelling of H relative to X and Y if there exists a Zκ ∈  coprime to   such 
that 

( ) ( ) ( ),0Y X κ∆ = ∆ +                                 (6) 

as multisets in 2Z Z×


. The parameter κ  is also referred to as translation parameter of the wrapped 
Δ-labelling. 

For the graphs ( );H H h t= , we define { }: , 0i iX v w i h= ≤ <  and ( ){ }: , 1i iY v w ht i h t= ≤ < + . Further-
more, in the following we only consider wrapped Δ-labellings relative to X and Y for which the stronger condi-
tion 

( ) ( ) ( ) ( ) ( ) ( ),0     and    ,0 ,i ht i i ht iv v w wκ κ+ +∆ = ∆ + ∆ = ∆ +                  (7) 

hold for 0 i h≤ < . Suppose we have such labelling Δ satisfying condition (7). Now, ( )iE , i Z∈


, are isomor-
phic copies of ( );H h t . Furthermore, ( )

0
κΣ  is isomorphic to ( );1H h  consisting of the first d edges of ( )E κ . 

From condition (7) follows that the graph ( )0
,G K⊂
 

 with edge set ( )( ) ( ) ( )0 0
0:E G E κ= ∪Σ  can obviously 

identified with ( ); 1H h t + . In addition, one easily checks that the (d, f)-movement of ( ) ( )0 ; 1G H h t= +  from 
Proposition 3 is consistent with the translation parameter κ . 

Proposition 4. ([9]) Let ,  h t  be positive integers. From any wrapped Δ-labelling of ( );H h t , satisfying 
condition (7), one gets a (d, f)-cluttered ordering of the complete bipartite graph ,K

 

 with ( )2 1th h= + , 
( )2 1d h h= + , and 4f h= . 

4. Sequences of Wrapped Δ -Labellings for H(1; t), H(2; t) and H(h; 1) 
In this section, we construct some infinite families of such wrapped Δ-labellings. By applying Proposition 2 we 
get explicite (d, f)-cluttered orderings of the corresponding bipartite graphs. For these results in this section, we 
refer to [9]. 

4.1. A Sequence for H(1; t) 
We define a wrapped Δ-labelling of ( )1;H t  for any positive integer t. ( ) ( )1; ,H t U E=  has ( )2 1t +  vertices 
 

 
Figure 6. Partition of the edge set of ( )2;1H . 
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and 3t edges. For a fixed t, we define 3 2: tU Z Z∆ → ×  on the vertex set U V W= ∪  as follows: 

( )
( )
( )
( )( )

( )

2

2

,0 , for 0 ,

1,0 , for ,

1 ,1 , for 0 ,
( )

1,1 , for ,

j

j

jt j t
v

t j t

j t j t
w

t j t

≤ <∆ = 
+ =

 − ≤ <∆ = 
+ =

 

where the integers in the first components are considered modulo 3t. We now compute the difference list ( )E∆  
of δ  defined as in (1). Hence each element of 3tZ  appears in ( )E∆  and the difference condition holds. 
Figure 3 illustrates the definition for the case t = 1. 

Obviously, the wrapped-condition (7) relative to { }0 0,X v w=  and { },t tY v w=  holds as well and the transla-
tion parameter 2 1tκ = +  is coprime to 3t for any t. Therefore, Δ defines the desired wrapped Δ-labelling of 

( )1;H t . 
Theorem 5. ([9]) Let t be a positive integer. For all t there is a (d, f)-cluttered ordering of the complete bi- 

partite graph ttK ,33  with = 3d  and = 4f . 
Theorem 6. ([9]) Let t be a positive integer. For all t there is a (d, f)-cluttered ordering of the complete bi- 

partite graph 3 ,3t tK  with 3d s r= +  and ( )2 1f s r= + + , 0s > , 0,1,2r = . 

4.2. A Sequence for H(2; t) 
We define a wrapped Δ-labelling of ( )2;H t  for any positive integer t. ( ) ( )2; ,H t U E=  has ( )4 1t +  ver-
tices and 10t edges. For a fixed t, a labelling Δ is a map 210: ZZU t ×→∆  on the vertex set U V W= ∪ . We 
specify the second component of Δ on the vertices ( )0 1 2 1, , , tV v v v +=   sequentially by the following list of 2t 
+ 2 numbers: 

0 0 1 1 1 1 0 0, , , , , , , , , , , ,j j t tc c a c c a c c a c c a c c aκ κ− −+ + + + + + +   

and, on the vertices ( )0 1 2 1, , , tW w w w +=   by, similarly, 

0 0 1 1 1 1 0 0, , , , , , , , , , , ,j j t td d b d d b d d b d d b d d bκ κ− −+ + + + + + +   

where we set 

( )
2

6 1,     2 ,              0,1, , 1,

6 2,     2 1 ,     0,1, , 1,

2 1.

j

j

a t c jt j t

b t d j t j t

tκ

= − = = −

= − = − = −

= +




 

All integers are considered modulo 10t. Note that 10E t=  and 22 1tκ = +  are coprime for all t and that 
the wrapped-condition (7) is obviously fulfilled. Thus, Δ defines a wrapped Δ-labelling. 

Theorem 7. ([9]) Let t be a positive integer. For all t there is a (d, f)-cluttered ordering of the complete bipar- 
tite graph 10 ,10t tK  with 10d =  and 8f = . 

Theorem 8. ([9]) Let t be a positive integer. For all t there is a (d, f)-cluttered ordering of the complete bipar- 
tite graph 10 ,10t tK  with 10d s r= +  and ( ) ( )4 1 min , 4f s r= + + , 0s > , 0,1, ,9r =  . 

4.3. A Sequence for H(h; 1) 
We define in this section a wrapped Δ-labelling for ( );1H h  for any positive integer h. ( ) ( );1 ,H h U E=  has  
4h vertices and ( )2 1h h +  edges. We define the Δ-labelling ( ) 22 1: h hU Z Z+∆ → ×  on the vertex set U V W= ∪   

by specifying the first component of Δ on the vertices ( )0 1 2 1, , , hV v v v −=   sequentially by the following list of 
2h numbers: 

0 1 1 0 1 1, , , , , , , ,h ha a a a a aκ κ κ− −+ + +   

and on the vertices ( )0 1 2 1, , , hW w w w −=   by, similarly, 
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0 1 1 0 1 1, , , , , , , ,h hb b b b b bκ κ κ− −+ + +   

where we set 

( )
( )

0

0

0,     2 2 1 ,        1, 2, , 1,

0,     2 1 1,     1, 2, , 1,

1.

i

j

a a i h i h

b b j h j h

κ

= = − + = −

= = − + − = −

= −



  

All integers are considered modulo ( )2 1h h + . Obviously, ( )2 1E h h= +  and κ  are coprime for any posi-
tive integer h and the wrapped-condition (7) is fulfilled. Figure 7 illustrates the definition for the case 3h = . 
All numbers in ( )2 1h hZ +  appear exactly once as difference of Δ which hence defines a wrapped Δ-labelling. 

Theorem 9. ([9]) Let h  be a positive integer. For all h  there is a (d, f)-cluttered ordering of the complete 
bipartite graph ( ) ( )2 1 , 2 1h h h hK + +  with ( )2 1d h h= +  and 4f h= . 

5. Our Result: A Sequence of a Wrapped ∆ -Labelling for ( )3;H t   
In this section, we define a wrapped Δ-labelling of ( )3;H t  for any positive integer t. ( ) ( )3; ,H t U E=  has 
( )6 1t +  vertices and 21t edges. For a fixed t, a labelling Δ is a map 21 2: tU Z Z∆ → ×  on the vertex set 

U V W= ∪ . We specify the second component of Δ on the vertices ( )0 1 3 2, , , tV v v v +=   sequentially by the 
following list of 3 3t +  numbers: 

0 0 0 1 1 1 1 1 1 0 0 0, , 2 , , , 2 , , , , 2 , , , , 2 , , , 2 ,j j j t t tc c a c a c c a c a c c a c a c c a c a c c a c aκ κ κ− − −+ + + + + + + + + + + + +   

and, on the vertices ( )0 1 3 2, , , tW w w w +=   by, similarly, 

0 0 0 1 1 1 1 1 1 0 0 0, , 2 , , , 2 , , , , 2 , , , , 2 , , , 2 ,j j j t t td d b d b d d b d b d d b d b d d b d b d d b d bκ κ κ− − −+ + + + + + + + + + + + +   

where we set 

( )
2

15 1     3              0,1, , 1,

15 2     3 1     0,1, , 1,

3 1.

j

j

a t c jt j t

b t d j t j t

tκ

= − = = −

= − = − = −

= +





, ,

, ,  

All integers are considered modulo 21t. Note that 21E t=  and 23 1tκ = +  are coprime for all positive in-
teger t and that the wrapped-condition (7) is obviously fulfilled. Figure 8 illustrates the definition for the case t = 1. 
 

 
Figure 7. Some wrapped Δ-labelling of ( )3;1H , 21E = , 12V = , 1κ = − . 

 

 
Figure 8. Some wrapped Δ-labelling of ( )3;1H , 21E = , 12V = , 4κ = . 
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We now compute the differences of Δ using the notation from (1): 

( ) ( ) ( )(
( ) ( ))

( )

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

, , 2 2 , , 2 , , 2 ,

                 2 , 2

          0,1, 2,15 1,9 2,6 2,12 4,15 ,6 3 ,

E c d c d a b c d a b c d a c d a c d b c d b

c d a b c d a b

t t t t t t

′∆ = − − + − − + − − + − + − − − −

− + − − + −

= − − + + +

 

( ) ( ) ( )(
( ) ( ))

( )

, , 2 2 , , 2 , ,

                  2 , 2 , 2

          3 ,3 1,3 2,3 15 1,3 9 2,3 6 2,3 12 4,3 15 ,3 6 3
                  for 

j j j j j j j j j j j j j

j j j j j j

E c d c d a b c d a b c d a c d a c d b

c d b c d a b c d a b

j j j j t j t j t j t j t j t

′∆ = − − + − − + − − + − + − −

− − − + − − + −

= + + + − + − + + + + + + +

  1, 2, , 1,j t= −

 

( ) ( ) ( ) ( )( )
( )

1 1 1 1 1 1 1, , 2 , , 2 , 2 2

            3 18 ,3 12 1,3 6 2,3 18 1,3 12 ,3 18 2
                       for   1, 2, , 1,

j j j j j j j j j j j j jE c d c d a c d a c d a b c d a b c d a b

j t j t j t j t j t j t
j t

− − − − − − −′′∆ = − − + − + − + − − + − − + −

= + + − + − + + + + +

= −

 

( ) ( ) ( ) ( )( )
( )

1 1 1 1 1 1 1, , 2 , , 2 , 2 2

             3 3 3,3 9 1,3 15 1,3 3 2,3 9 ,3 3 1
                         for   1, 2, , 1,

j j j j j j j j j j j j jE c d c d b c d b c d a b c d a b c d a b

j t j t j t j t j t j t
j t

− − − − − − −′′′∆ = − − − − − − + − − + − − + −

= + − + − + + + − + + −

= −

 

( ) ( ) ( )(
( ))

( )

1 1 0 1 0 1 0 1 0 1 0

1 0

, , 2 , , 2 ,

                    2 2

             18 1,12 2,6 3,18 ,12 1,18 1 ,

t t t t t t

t

E c d c d a c d a c d a b c d a b

c d a b

t t t t t t

κ κ κ κ κ

κ
− − − − − −

−

′′∆ = − − − − + − − + − − + − − − + −

− − + −

= − − − − +

 

( ) ( ) ( )(
( ))

( )

1 0 1 0 1 0 1 0 1 0 1

0 1

, , 2 , , 2 ,

                       2 2

            6 2,12 ,18 2,6 1,12 1,6 .

t t t t t t

t

E c d c d b c d b c d a b c d a b

c d a b

t t t t t t

κ κ κ κ κ

κ
− − − − − −

−

′′′∆ = + − + − − + − − + − + − + − + −

+ − + −

= − + − +

 

We now compute the difference list ( )E∆ : 

( ) ( )0 0,1, 2 ,E′∆ ⊃                                                                     (1) 

( ) { } { }1

=1
3 ,3 1,3 2 1 1 3,4,5, ,3 1 ,t

jj
E j j j j t t− ′∆ ⊃ + + ≤ ≤ − = −



                               (2) 

( ) { } { }1

=1
3 3 3,3 3 2,3 3 11 1 3 ,3 1,3 2, ,6 4 ,t

jj
E j t j t j t j t t t t t− ′′′∆ ⊃ + − + − + − ≤ ≤ − = + + −



           (3) 

( ) ( )1 6 3 ,tE t−′′∆ ⊃ −                                                                    (4) 

( ) ( )1 6 2,6 1,6 ,tE t t t−′′′∆ ⊃ − −                                                             (5) 

( ) { } { }1
1=1

3 6 2 1 6 1 ,t
jj

E j t j t−
−′′∆ ⊃ + − = = +



                                               (6) 

( ) ( ) ( )0 1 6 2,6 3 ,E t t′∆ − ⊃ + +                                                            (7) 

( ) ( ) { } { }1
1=1

6 3 6 2 2 1 6 4,6 7,6 10, ,9 5 ,t
jj

E j t j t t t t t−
−′′∆ − ⊃ + − ≤ ≤ − = + + + −



                (8-1) 

( ) ( ) { } { }1

=1
2 3 6 2,3 6 3 1 2 6 5,6 6,6 8,6 9, ,9 4,9 3 ,t

jj
E j t j t j t t t t t t t− ′∆ − ⊃ + + + + ≤ ≤ − = + + + + − −



(8-2) 
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( ) ( )( ) ( ) ( )( )
( ) ( )

{ } { }
( )

1 1
1=1 1

6 2

    8 1 8 2

    3 6 2 2 1 3 6 2,3 6 3 1 2

    6 4,6 5,6 6,6 7,6 8,6 9,6 10, ,9 5,9 4,9 3 ,

t t
j jj j

E E

j t j t j t j t j t

t t t t t t t t t t

− −
− =
′′ ′∆ − ∪ ∆ −

⊃ − ∪ −

= + − ≤ ≤ − ∪ + + + + ≤ ≤ −

= + + + + + + + − − −

 

                      (8-3) 

( ) ( ) ( ) ( )0 1 7 9 2 ,E t′∆ − − ⊃ −                                                              (9) 

( ) ( ) ( ) { } ( )1

1
2 8 2 3 6 2,3 6 3 1 9 1,9 ,t

jj
E j t j t j t t t−

=
′∆ − − − ⊃ + + + + = − = −



                        (10) 

( ) ( ) ( ) ( ) { } ( )1

1
2 8 2 10 3 9 2 1 1 9 1,9 4,9 7, ,12 5 ,t

jj
E j t j t t t t t−

=
′∆ − − − − ⊃ + − ≤ ≤ − = + + + −



       (11-1) 

( ) ( ) { } ( )1
11

3 3 9 1,3 9 1 1 9 2,9 3,9 5,9 6, ,12 4,12 3 ,t
jj

E j t j t j t t t t t t t−
−=
′′′∆ − ⊃ + − + ≤ ≤ − = + + + + − −



(11-2) 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )
{ } { }
( )

1 1
11 1

2 8 2 10 3

    11 1 11 2

    3 9 2 1 1 3 9 1,3 9 1 1

    9 1,9 2,9 3,9 4,9 5,9 6, ,12 5,12 4,12 3 ,

t t
j jj j

E E

j t j t j t j t j t

t t t t t t t t t

− −
−= =

′ ′′′∆ − − − − ∪ ∆ −

⊃ − ∪ −

= + − ≤ ≤ − ∪ + − + ≤ ≤ −

= + + + + + + − − −

 

                        (11-3) 

( ) ( ) ( )1 4 12 2,12 1 ,tE t t−′′∆ − ⊃ − −                                                          (12) 

( ) ( ) ( )1 5 12 ,12 1 ,tE t t−′′′∆ − ⊃ +                                                            (13) 

( ) ( ) ( ) { } ( )1
11

6 8 1 3 12 1,3 12 1 12 2,12 3 ,t
jj

E j t j t j t t−
−=
′′∆ − − − ⊃ + − + = = + +



                      (14) 

( ) ( ) ( ) ( ) ( )0 1 7 9 12 4 ,E t′∆ − − − ⊃ +                                                        (15) 

( ) ( ) ( ) ( ) { }
( )

1
11

6 8 1 14 3 12 1,3 12 2 1

           12 5,12 6,12 8,12 9, ,15 4,15 3 ,

t
jj

E j t j t j t

t t t t t t

−
−=
′′∆ − − − − ⊃ + − + ≤ ≤ −

= + + + + − −

                          (16-1) 

( ) ( ) ( ) ( ) ( ) { } ( )1

1
2 8 2 10 11 1 3 12 4 1 2 12 7,12 10, ,15 2 ,t

jj
E j t j t t t t−

=
′∆ − − − − − − ⊃ + + ≤ ≤ − = + + −



 (16-2) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

{ } { }
( )

1 1
11 1

6 8 1 14 2 8 2 10 11 1 16 1 16 2

    3 12 1,3 12 2 1 3 12 4 1 2

    12 5,12 6,12 7,12 8,12 9,12 10, ,15 4,15 3,15 2 ,

t t
j jj j

E E

j t j t j t j t j t

t t t t t t t t t

− −
−= =
′′ ′∆ − − − − ∪ ∆ − − − − − − ⊃ − ∪ −

= + − + ≤ ≤ − ∪ + + ≤ ≤ −

= + + + + + + − − −

 

 (16-3) 

( ) ( ) ( ) ( ) ( ) ( )0 1 7 9 15 15 1,15 ,E t t′∆ − − − − = −                                                 (17) 

( ) ( ) ( ) ( ) ( ) ( ) { } ( )1

1
2 8 2 10 11 1 16 2 3 12 4 1 15 1 ,t

jj
E j t j t t−

=
′∆ − − − − − − − − ⊃ + + = − = +



             (18) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

{ }
( )

1

1
2 8 2 10 11 1 16 2 18

    3 15 1,3 15 1 1

    15 2,15 3,15 5,15 6, ,18 4,18 3 ,

t
jj

E

j t j t j t

t t t t t t

−

=
′∆ − − − − − − − − −

= + − + ≤ ≤ −

= + + + + − −



                                   (19-1) 
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( ) ( ) ( ) { } ( )1
11

3 11 2 3 15 11 1 15 4,15 7, ,18 2 ,t
jj

E j t j t t t t−
−=
′′′∆ − − − = + + ≤ ≤ − = + + −



       (19-2) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )
{ } { }
( )

1 1
11 1

2 8 2 10 11 1 16 2 18 3 11 2

    19 1 19 2

    3 15 1,3 15 1 1 3 15 11 1

    15 2,15 3,15 4,15 5,15 6,15 7, ,18 4,18 3,18 2 ,

t t
j jj j

E E

j t j t j t j t j t

t t t t t t t t t

− −
−= =

′ ′′′∆ − − − − − − − − − ∪ ∆ − − −

= − ∪ −

= + − + ≤ ≤ − ∪ + + ≤ ≤ −

= + + + + + + − − −

 

  (19-3) 

( ) ( ) ( ) ( )1 4 12 18 1,18 ,18 1 ,tE t t t−′′∆ − − = − +                                             (20) 

( ) ( ) ( ) ( )1 5 13 18 2 ,tE t−′′′∆ − − = +                                                     (21) 

( ) ( ) ( ) ( ) { }

( )

1

1
1

6 8 1 14 16 1 3 18 ,3 18 1,3 18 2 1 1

                                                                 18 3,18 4,18 5, , 21 1 .

t

j
j

E j t j t j t j t

t t t t

−

−
=

 
′′∆ − − − − − − = + + + + + ≤ ≤ − 

 
= + + + −



       (22) 

From this one easily checks that the twenty-two lists cover all numbers in 21tZ  exactly once. Thus, Δ defines 
a wrapped Δ-labelling and by applying Proposition 4 we get the following result. 

Theorem 10. Let t be a positive integer. For all t there is a (d, f)-cluttered ordering of the complete bipartite 
graph 21 ,21t tK  with 21d =  and 12f = . 

Using the same edge ordering of 21 ,21t tK  one gets the following theorem by enlarging the window d. 
Theorem 11. Let t be a positive integer. For all t there is a (d, f)-cluttered ordering of the complete bipartite 

graph 21 ,21t tK  with 21d s r= +  and ( ) ( )6 1 min ,6f s r= + + , 0s > , 0,1, , 20r =  . 
For example, we get a (21, 12)-cluttered ordering of 21 ,21t tK . For the graphs 21 ,21t tK , this is a much better 

ordering than the (21, 16)-cluttered ordering from Theorem 6. 

6. Conclusion 
In conclusion, we give a new sequence for construction of wrapped Δ-labellings. Figure 7 and Figure 8 are the 
same as a graph, but they are different as a sequence. Cluttered orderings given by two sequences construct the 
different orderings for the complete bipartite graph 21,21K . 
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Abstract 
In this work, we used the complex variable methods to derive the Goursat functions for the first 
and second fundamental problem of an infinite plate with a curvilinear hole C. The hole is mapped 
in the domain inside a unit circle by means of the rational mapping function. Many special cases 
are discussed and established of these functions. Also, many applications and examples are consi-
dered. The results indicate that the infinite plate with a curvilinear hole inside the unit circle is 
very pronounced. 

 
Keywords 
Complex Variable Method, An Infinite Plate, Curvilinear Hole, Conformal Mapping, Goursat 
Functions 

 
 

1. Introduction 
Many intangible phenomena can be found in nature-like magnetic field, electricity and heat. These phenomena 
cannot be presented mathematically in the real plane. The complex plane plays an important role in presenting 
these intangible phenomena. Also, many mathematical problems cannot be solved in the real plane; their solu-
tions can be found in the complex plane. 

The considerable mathematical difficulties which arise during any attempt to solve plane elastic problems ne-
cessitate the search for practical methods of solution. The first use and development of the methods of complex 
function theory in two-dimensional elastic problems were made by Muskhelishvili (see [1]), and their ideas were 
expounded in their latter books (see [2]-[4]). The development of the theory was based on the complex repre-
sentation of the general solution of the equations of the plane theory of elasticity. This complex representation 
has been found very useful for the effective solution of the plane elastic problems. 

Contact and mixed problems in the theory of elasticity have been recognized as a rich and challenging subject 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.61020
http://dx.doi.org/10.4236/am.2015.61020
http://www.scirp.org
mailto:F.S.Bayones@hotmail.com
mailto:shobee33@gmail.com
http://creativecommons.org/licenses/by/4.0/
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for study (see Popov [5], Sabbah [6] and Atkin and Fox [7]). These problems can be established from the initial 
value problems or from the boundary value problems, or from the mixed problems (see Colton and Kress [8] and 
Abdou [9]). Also, many different methods are established for solving the contact and mixed problems in elastic 
and thermoelastic problems; the books edited by Noda [10], Hetnarski [11], Parkus [12] and Popov [5] contain 
many different methods to solve the problems in the theory of elasticity in one, two and three dimensions. 

Several authors wrote about the boundary value problems and their applications in many different sciences 
(see [7] [13]-[15]). Form these problems, we established contact and mixed problems (see [8] [16]). Complex 
variable method used to express the solutions of these problems in the form of power series applied Laurent’s 
theorem (see [8] [17]-[19]). The extensive literature on the topic is now available and we can only mention a 
few recent interesting investigations in [20]-[24]. 

The first and second fundamental problems in the plane theory of elasticity are equivalent to finding analytic 
functions ( )1 zφ  and ( )1 zψ  of one complex argument z x iy= + . 

These functions satisfy the boundary conditions 

( ) ( ) ( ) ( )\
1 1 1k t t t t f tφ φ ψ− − =                               (1) 

where ( )1 tφ  and ( )1 tψ  are two analytic functions; t denotes the affix of a point on the boundary. In the first 
fundamental problem 1k = − , ( )f t  is a given function of stresses, while in the second fundamental problem 

( )

( )( )

3

1 2 1

k

E
v v

λ µ
χ

λ µ

λ

+
= =

+

=
− +

                                   (2) 

And 2f gµ=  is a given function of the displacement; λ  and µ  are called the Lame constants. 
Let the complex potentials ( )1 tφ  and ( )1 tψ  take the form 

( ) ( ) ( )1 ln
2π 1

X iY cφ ζ ζ ζ φ ζ
χ

+
= − + Γ +

+
                           (3) 

( ) ( )
( ) ( )*

1 ln
2π 1

X iY
cψ ζ χ ζ ζ ψ ζ

χ
−

= + Γ +
+

                         (4) 

where X, Y are the components of the resultant vector of all external forces acting on the boundary and *,Γ Γ  
are constants; generally complex functions ( ) ( ),φ ζ ψ ζ  are single-valued analytic functions within the region 
inside the unit circle γ  and ( ) 0φ ∞ = . 

Take the conformal mapping which mapped the domain of the curvilinear hole C  on the domain inside a 
unit circle γ  by the rational function 

( ) , 1, 0.z w cζ ζ= < >                                 (5) 

and ( )w ζ′  does not vanish or become infinite to conform the curvilinear hole of an infinite elastic plate onto 
the domain inside a unit circle γ  i.e. 

( ) 0, .w ζ′ ≠ ∞                                      (6) 

2. Conformal Mapping 
Consider the rational mapping on the domain inside a unit circle γ  by the rational function 

( )
3

, 1, 1,mz w n
n

ζ ζζ ζ
ζ
+

= = < <
−

                            (7) 

where, m and n are complex number 1 2 1 2,n n in m m im= + = + , Equation (7) must satisfy the condition Equa-
tion (6). 
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For determining the tax parameters x  and y , we put eiθζ ρ= , 1ρ =  in Equation (7) to get 

( ) ( )
( ) ( )

1 2 1 2

1 2

cos3 cos sin sin 3 sin cos
cos sin

m m i m m
x iy

n i n
θ θ θ θ θ θ

θ θ
+ − + + +

+ =
− + −

               (8) 

Then 

( ) ( )
( ) ( )

1 1 1 2 1 1 2
2 2

1 2

cos 2 cos3 cos sin sin 3 sin cos

cos sin

m n m m n m m
x

n n

θ θ θ θ θ θ θ

θ θ

+ − + − + + +
=

− + −
         (9) 

( ) ( )
( ) ( )

2 2 1 2 1 1 2
2 2

1 2

sin 2 cos3 cos sin sin 3 sin cos

cos sin

m n m m n m m
y

n n

θ θ θ θ θ θ θ

θ θ

+ + + − − + +
=

− + −
        (10) 

Also, 

( )
( )

3 2

2

2 3 .n mnz w
n

ζ ζζ
ζ
− −′ ′= =

−
 

To obtain the critical points, we consider 
3 22 3 0n mnζ ζ− − =                                  (11) 

this linear equation of three order, the roots of this equation must be under 1. 
The following graphs give the different shapes of the rational mapping (7), see Figure 1. 

3. The Components of Stresses 
It is known that, the components of stresses are given by, see [1] 

( ){ }4Rexx yy zσ σ φ′+ =                                    (12) 

( ) ( ){ }2yy xx xyi z z zσ σ σ φ ψ′′ ′− + = +                         (13) 

Hence, we have 

( ) ( ){ } ( ) ( ) ( )Re 2 , , ,yy z M z z M z z z z zσ φ φ ψ′ ′′ ′= + = +                  (14) 

( ) ( ){ } ( ) ( ) ( )Re 2 , , ,xx z M z z M z z z z zσ φ φ ψ′ ′′ ′= − = +                  (15) 

and 
( ) ( ){ } ( ){ }2 Im 2Im ,xy z z z M z zσ φ ψ′′ ′= + =                      (16) 

4. Goursat Functions 
To obtain the tow complex potential functions (Goursat functions) by using the conformal mapping (7) in the  

boundary condition (6). We write the expression ( )
( )

w

w

ζ

ζ′
 in the form, 

( )
( )

( ) ( )
w

w

ζ
α ζ β ζ

ζ
= +

′
                               (17) 

where, 

( ) ( ) ( ) ( )
( )

,
wh h

n nw

ζ
α ζ β ζ

ζ ζζ
= = −

− −′
                        (18) 



F. S. Bayones, B. M. Alharbi 
 

 
209 

 
50 0 100 -50 150 200 250 

50  

150  

250  

100  

200  

300  

 

n1 = 0.91, n2 = 0.4, m1 = 0.6, m2 = 0.9  

50 

-100 

100 

-200 

-50 
-0 

-150 

-50 

 

n1 = 0.91, n2 = 0.43, m1 = −0.87; m2: = 0.58  

0.5 1 -0.5 

-0.5 

1 

0.5 

1.5 

 

n1 = 0, n2 = 0, m1 = 0.47, m2 = 0.08 
 

 

0 

-200 

-400 

-200 

-600 

-400 -600 

 

n1 = 0.91, n2 = 0.42, m1 = 0.87, m2 = 0.98   
0 100 -100 200 -200 -300 

100 

200 

300 

400 

500 

600 

 

n1 = 0.91, n2 = 0.41, m1 = −0.87, m2 = 0.58  

0 -50 -150 -100 -200 -250 -300 

-400 

-200 

200 

400 

600 

 

n1 = 0.899, n2 = 0.44, m1 = 0.999, m2 = −0.88 
 

 

-100 

100 

-200 

-300 

-100 -200 200 -300 -400 -500 

100 

0 

 

n1 = 0.899, n2 = 0.44, m1 = 0.09, m2 = 0.058  

0 

-100 

-200 

-300 

-100 -200 -300 

-250 

-150 

-50 

50 

 

n1 = −0.899, n2 = −0.45, m1 = 0.9, m2 = 0.58 

Figure 1. The different shapes of the rational mapping (7). 
 
( )1β ζ −  is a regular function for 1ζ < . 
In order to separate the singularity, we use the definition of mapping, to have 

( )
( )

( )
( )

( )( )
( )

22 223

3 3

11 1
2 3 2 3

m nw nm
n nn mn n mnw

ζ ζ ζζ ζ ζζ ζ
ζ ζζ ζ ζ ζζ

+ −−+
= ⋅ = ⋅

− −′ − − − −
             (19) 

The term ( )32 3n mnζ ζ− −  in the are has no singular point while ( )nζ −  has a singularity at nζ = . 
where 

( )
( )

( )

3

2

2 3

1

n mn
w

n

ζ ζ
ζ

ζ ζ

− −
′ =

−
                              (20) 

To determine h  form Equation (19), we can write the form 

( )
( )

( )( )
( )

22 2

3

11 .
2 3

m nw
n n mnw

σ σ σσ
σ σ σσ

+ −
= ⋅

−′ − −
                         (21) 

By using the residues in this equating we have 
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( )( )
( )

22 2 2

2 4

1
.

2 3

n n m n
h

n mn

+ −
=

− −
                                 (22) 

Using Equation (3) and Equation (4) in Equation (1), we get 

( ) ( ) ( ) ( ) ( )*k Gφ σ α σ φ σ ψ σ σ′− − =                               (23) 

where 

( ) ( ) ( ) ( )*ψ σ ψ σ β σ φ σ′= +                                       (24) 

( ) ( ) ( ) ( ) ( ) ( )
*cG F ck N Nσ σ σ σ α σ σ β σ

σ
Γ

= − Γ + + +                  (25) 

( ) ( )
( ) ( ) ( ),

2π 1
X iY

N c F f t
σ

σ σ
χ

 −
= Γ − = 

+  
                            (26) 

Assume that the function ( )F σ  with its derivatives must satisfy the Holder condition. Our aim is to deter-
mine the functions ( )φ ζ  and ( )ψ ζ  for the various boundary value problems. For this multiply both sides of  

Equation (23) by 
( )
d

2πi
σ
σ ζ−

, where ζ  is any point in the interior of γ  and integral over the circle, we ob-

tain 

( ) ( ) ( ) ( ) ( )1 1 1d d d d
2π 2π 2π 2π

Gk
i i i iγ γ γ γ

φ σ α σ φ σ ψ σ σ
σ σ σ σ

σ ζ σ ζ σ ζ σ ζ
∗′

− − =
− − − −∫ ∫ ∫ ∫             (27) 

Using Equations (24)-(26) in Equation (27) then applying the properties of Cauchy integral, to have 

( ) ( )d
2π
k k

i γ

φ σ
σ φ ζ

σ ζ
= −

−∫                                 (28) 

and 

( ) ( )1 d
2π

chb
i nγ

α σ φ σ
σ

σ ζ ζ
′

=
− −∫                                (29) 

( ) ( )
( )

( )1 d
2π

N N n h
i nγ

σ α σ
σ

σ ζ ζ
=

− −∫                              (30) 

Also, 

( )
( ) ( ) ( )

( )
1 d

2π
G hN ncA

i nγ

σ
σ ζ

σ ζ ζ ζ

∗Γ
= − +

− −∫                           (31) 

where, 

( ) ( )
( ) ( ) ( )

( )
1 d , .

2π 2π 1
F X iY

A N c
i γ

σ σ
ζ σ σ

σ ζ χ
 −

= = Γ − 
− +  

∫                      (32) 

From the above, Equation (27) becomes 

( ) ( ) ( )( )
*h ck A cb N n

n
φ ζ ζ

ζ ζ
Γ

− = + + −
−

                         (33) 
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To determined b , where b  are complex constants, differentiating Equation (33) with respect to ζ  and 
substituting in Equation (29), we get 

( )
( ) ( )

( )
( )( ) ( )

2
* 2

2

1 d
2π 1

h ckhbA c cb N n
i nnγ

α σ σσ σ σ
σ ζ ζσ

 
′− − Γ − + = 

− −−  
∫              (34) 

Substituting Equation (18) in Equation (34), then using the properties of Cauchy integral and applying the re-
side theorem at the singular points, we obtain 

( ) ( )( )* 2 0ckb A n c n h cb N nυ′+ + Γ + + =                          (35) 

where 

( )
2

221

n

n
υ =

−
                                    (36) 

The last equation can be written in the form 

ckb hcb Eυ+ =                                    (37) 

where, 

( ) ( )* 2E A n c n hN nυ′= − − Γ −                             (38) 

taking the complex conjugate of Equation (37), we get 

ckb hcb Eυ+ =                                    (39) 

form Equation (37) and Equation (39), we have 

( )2 2 2

kE hEb
c k h

υ
υ

−
=

−
                                  (40) 

To obtain the complex function ( )ψ ζ  we have form Equation (23) after substituting the expression of 
( )ψ σ  and ( )G σ , and taking the complex conjugate of the resulting equation after using the expression of  
( )β σ  to yields, 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1 *

* * *( )
1

w hF ck c k
w n

σ σψ σ σ σ σ φ σ α σ φ σ φ σ φ σ
σ σ

−= − + Γ − Γ + − − +
′ −

      (41) 

where, 

( ) ( ) ( ) ( ) ( )
( )

1

* ,
2π 1

X iY
N N c

σ
φ σ φ σ σ σ

χ

− +
′= + = Γ − 

+  
                     (42) 

and calculate sum residue, we obtain multiplying both sides of Equation (41) by 
( )

1
2πi σ ζ−

, where ζ  is any  

point in the interior of γ  and integrating over the circle, then using the properties of Cauchy’s integral and 
calculating the sum residue, we obtain 

( ) ( )
( ) ( ) ( ) ( ) ( )1 1

* *1
w hck n B B
w n

ζ ζψ ζ ζ φ ζ φ ζ
ζ ζ

− −= Γ − + + −
′ −

                  (43) 

where, 
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( ) ( )
( )

1 d ,
2π

F
B

i γ

σ
ζ σ

σ ζ
=

−∫                                (44) 

and 

( )1 d .
2π

F
B

i γ

σ
σ

σ
= ∫                                   (45) 

5. Special Cases 
Now, we are in a position to consider several cases: 

1) Let 0, 0m n= ≠ , we get the mapping function represent of the hole is an ellipse, see Figure 2 

( )
3

z w
n

ζζ
ζ

= =
−

                                   (46) 

by let 
3 20 2 3 0.z nζ ζ′ = ⇒ − =  
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Figure 2. The different shapes of the rational mapping for special cases. 
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Then (33) and (43) becomes 

( )

( ) ( )
( )

( )( )
( )

( ) ( )
( )

( )( )
( )

( )

( )

24 2

2

24 2*

2 2 22

6

24 2 2*

122
2

22

1

2 3

1

2 3

1 2 3
.

2 3
2 3

n n
h

n

n nc kE h Ek A N n
k hn n

n EkE
n n nck A N n

nn n k
n

υφ ζ ζ
ζ υζ

φ ζ ζ
ζ ζ

−
=

−

−  Γ −
− = − + + −− −  

 
− 

− − Γ
− = − + + 

− −  −
 − 

             (47) 

Also, 

( ) ( )
( )
( ) ( )

( )
( )( )

( )
21 4 2

1
* *2

1
.

2 3 1

w n nckB n B
w n n

ζ ζ
ψ ζ ζ φ ζ φ

ζ ζ ζ

−
−

−Γ
= + − + −

′ − −
             (48) 

where 

( ) ( )
6

* 2
22 3

nE A n c n N n
n

′= − − Γ −
−

 

2) For 0,0 1n m= ≤ ≤ , we get the mapping function represent of the hole is an ellipse, see Figure 2 
3

2

0 2 0

mz m

z

ζ ζ ζ
ζ

ζ

+
= = +

′ = ⇒ =

                                (49) 

then 

e , e cos sin .i i iα αζ α α= = +  

Then (33) and (43) becomes 

0h =  

( ) ( )
*ck Aφ ζ ζ

ζ
Γ

− = −                                  (50) 

( ) ( ) ( )
2

*3

1
2

ck mB Bζψ ζ ζ φ ζ
ζ ζ
Γ +

= + − −                           (51) 

where 

( ) * 2 , 0.E A n c n n′= − − Γ =  

3) Let 0m n= = , we get the mapping function represent of the hole is an ellipse, see Figure 2 
3

2z ζ ζ
ζ

= =                                      (52) 

0 2 0z ζ′ = ⇒ =  

e , e cos sini i iα αζ α α= = +  
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Then (33) and (43) becomes 

0h =  

( ) ( )
*ck Aφ ζ ζ

ζ
Γ

− = −                                  (53) 

( ) ( ) ( )*3

1
2

ckB Bψ ζ ζ φ ζ
ζ ζ
Γ

= + − −                            (54) 

( ) * 2 , 0.E A n c n n′= − − Γ =  

4) Let 1m = − , where 1 21, 0m m= − =  we get the mapping function represent of the hole is an ellipse, see 
Figure 2 

3

z
n

ζ ζ
ζ
−

=
−

                                     (55) 

3 20 2 3 0z n nζ ζ′ = ⇒ − + =  

Then (33) and (43) becomes 

( )( )22 2 2

2 4

1 1

2 3

n n n
h

n n

− −
=

− +
 

( ) ( )
( )( )

( )( )
( )

( )
( )

( )
( )

4 2

22 2 2 2 4*

22 4 8 2
2

22 4

1

1 1 2 3

2 3 1

2 3

n n E
kE

n n n n nck A N n
n n n n n

k
n n

φ ζ ζ
ζ ζ

 − − − − − +Γ  − = − + + − + − − − 
− +  

          (56) 

Also, 

( ) ( )
( )
( ) ( )

( )( )
( )( )

( )
21 2 2 2

1
* *2 4

1 1

2 3 1

w n n nckB n B
w n n n

ζ ζ
ψ ζ ζ φ ζ φ

ζ ζ ζ

−
−

− −Γ
= + − + −

′ − + −
            (57) 

where 

( )
( )

( )
4 2

* 2
2 4

1

2 3

n n
E A n c n N n

n n

−
′= − − Γ +

− +
 

5) Let 2m n= − ,we get the mapping function represent of the hole is an ellipse, see Figure 2 
3 2

2nz n
n

ζ ζ ζ ζ
ζ
−

= = +
−

                                (58) 

0 2 0z nζ′ = ⇒ + =  

2
nζ = −  

Then (33) and (43) becomes 

0h =  
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( ) ( )
*ck Aφ ζ ζ

ζ
Γ

− = −                                  (59) 

Also, 

( ) ( )
( )
( ) ( )

1

*

wckB B
w

ζ
ψ ζ ζ φ ζ

ζ ζ

−
Γ

= + − −
′

                          (60) 

( )
( )

( )
4 2

* 2
2 4

1

2 3

n n
E A n c n N n

n n

+
′= − − Γ +

− +
 

6. Applications 
In this section we study some applications: 

1) For * 211, , e
4 2

ipk p θ−= − Γ = Γ = −  and 0X Y f= = = , we have the case of infinite plate stretched at in-  

finity by the application of a uniform tensile stress of intensity p , making an angle θ  with the x-axis. The 
plate weakened by the curvilinear hole C  which is free from stresses (see Figure 3, Figure 4 (n1 = 0.001, n2 = 
0.002l, m1 = 0.025, m2 = 0.03I, c = 2, p = 0.25)). Then the functions in (33) and (43) become 

( )0 0f A ζ= ⇒ =                                  (61) 

( ) ( )
( )2π 1 4

n X iY cpN n c
χ

 −
= Γ − = 

+  
                            (62) 

2 2 2 22 e 2 e,
4 4

i icn p hcp cn p hcpE E
θ θυ υ− − −

= =                        (63) 

( ) ( )2 2 2 2 21
kE hE E hEcb
k h h

υ υ
υ υ
− − −

= =
− −

                             (64) 

( ) ( )
2 2 2 2 2 2 2

2 2

e 2 e 2 e1 .
2 4 1

i i icp chp ch cn h cn ch
n h

θ θ θυ υ υφ ζ
ζ ζ υ

− − − +
= + + − − 

             (65) 
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Figure 3. The relation between components of stresses and the angle made on the x-axis. 
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Figure 4. The ratio of vertical to horizontal stresses. 

 

( )
( )
( ) ( ) ( ) ( )

1
1

* *4 1

wcp h n
w n

ζ ζψ ζ φ ζ φ
ζ ζ ζ

−
−= − − +

′ −
                       (66) 

where 

( ) ( )* .
4
cpφ ζ φ ζ′= +  

2) For *1,  0k X Y= − Γ = Γ = = =  and f Pt= , where P  is a real constant (see Figure 5, Figure 6 
( 1 2 1 20.001, 0.002 , 0.025, 0.03 , 2, 0.25n n I m m I c p= = = = = = )). 

Then the functions in (33) and (43) become 

( )
( )

3Pc m
f Pt f

n

σ σ

σ

+
= ⇒ =

−
                                     (67) 

( )
( )

2

2

1

1

cP m
f

n

σ

σ σ

+
=

−
                                               (68) 

( ) ( )( )
( )
( )

33

d
2π

cP n mncP mA
i n nγ

σ σζ σ
σ σ ζ ζ

++
= =

− − −∫                       (69) 

( )
( )
( )

( )
( )

( )

3 2 3

2 2,
1

cP n mn cP n mn
A A

n n

ζ
ζ ζ

ζ ζ

+ +
′ ′= =

− −
 

( )
( )

( )
( )

2 3

22
, 0

1

cPn n mn
A n N n

n

+
′ = =

−
                                (70) 

( )
( )

2 3

22 1

cPn n mn
E E

n

+
= − =

−
                                        (71) 
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Figure 5. The relation between components of stresses and the angle made on the x-axis. 
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Figure 6. The ratio of vertical to horizontal stresses. 

 
( )

( )( )

2 3

221 1

cPn n mn
cb

h nυ

+
=

− −
                                                    (72) 

( )
( )
( )

( )
( )( )( )

3 2 3

221 1

cP n mn hcPn n mn

n n h n
φ ζ

ζ ζ υ

+ +
= +

− − − −
                                (73) 

( )
( )
( ) ( ) ( ) ( )

1
1

2

1
1

w hcP n n
w n

ζ ζψ ζ φ ζ φ
ζ ζζ

−
−  ′ ′= − + − +  ′ − 

                        (74) 

where 

( ) ( )
( )

( )
( )( )

( )2

2 2

1 11 d d
2π 2π 1

mF cP ncPB
i i nγ γ

σσ ζ
ζ σ σ

σ ζ σ σ σ ζ ζ

+ +
= = = −

− − −∫ ∫  
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( )
( ) ( ) ( ) ( )

2
2

*3

1
d 2 , .

2π 1

mcPB cP m n
i nγ

σ
σ φ ζ φ ζ

σ σ

+
′= = + =

−∫  

3) For *,  0k fχ= Γ = Γ = =  (see Figure 7, Figure 8 ( 1 0.001,n = 2 0.002 ,n I= 1 0.025,m = 2 0.03 ,m I=
2,c = 0.25,x = 2,X = 2Y = )). Then the functions in (33) and (43) become 

( )0 0f A ζ= ⇒ =                                   (75) 

( ) ( )
( )2π 1

n X iY
N n

χ
−

= −
+

                                 (76) 

( )
( )

( )
( )

,
2π 1 2π 1
hn X iY hn X iY

E E
υ υ

χ χ
+ −

= =
+ +

                            (77) 
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Figure 7. The relation between components of stresses and the angle made on the x-axis. 
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Figure 8. The ratio of vertical to horizontal stresses. 
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( ) ( )
( )( )

2 2

2 2 22π 1
h n X iY nh X iY

cb
h

χ υ υ

χ χ υ

+ − −
=

+ −
                                      (78) 

( ) ( )
( ) ( )
( )( )

( )
( )

2 2

2 2 2 2π 12π 1
h n X iY nh X iY n X iYh

n h
χ υ υ

χφ ζ
ζ χχ χ υ

 + − − − − = −
 − ++ − 

 

( ) ( )( )
( )

( ) ( ) ( )
2 2

2 2 2 2 2 2

1 1
2π 1

h X iYhn hX iY
n h h

χ υ υφ ζ
χ χ ζ χ υ χ υ

  +−   = − − +
  + − − −  

        (79) 

( )
( )
( ) ( ) ( ) ( )

1
1

* *1

w h n
w n

ζ ζψ ζ φ ζ φ
ζ ζ

−
−= − +

′ −
                                  (80) 

where 

( ) ( ) ( )
( )* .

2π 1
X iY

φ ζ φ ζ
χ ζ

+
′= −

+
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