

Journal of Information Security, 2010, 1, 45-94
Published Online October 2010 in SciRes (http://www.SciRP.org/journal/jis/)

Copyright © 2010 SciRes. JIS

TABLE OF CONTENTS

Volume 1 Number 2 October 2010

Extending the Strand Space Method with Timestamps: Part I the Theory

Y. J. Li, J. Pang……45

Extending the Strand Space Method with Timestamps: Part II Application to Kerberos V

Y. J. Li, J. Pang……56

Sustainable Tourism Using Security Cameras with Privacy Protecting Ability

V. Prashyanusorn, Y. Fujii, S. Kaviya, S. Mitatha, P. Yupapin…………………………………………………………………68

iPhone Security Analysis

V. R. Pandya, M. Stamp……74

Denial of Service Due to Direct and Indirect ARP Storm Attacks in LAN environment

S. kumar, O. Gomez……88

The figure on the front cover is from the article published in Journal of Information Security , 2010,Vol.1,
No.2, pp.68-73, by V. Prashyanusorn, Y. Fujii, S. Kaviya, S. Mitatha and P. P. Yupapin.

Journal of Information Security（JIS）

Journal Information

SUBSCRIPTIONS

The Journal of Information Security (Online at Scientific Research Publishing, www.SciRP.org) is published quarterly by Scientific

Research Publishing, Inc., USA.

Subscription rates:
Print: $50 per issue.

To subscribe, please contact Journals Subscriptions Department, E-mail: sub@scirp.org

SERVICES

Advertisements

Advertisement Sales Department, E-mail: service@scirp.org

Reprints (minimum quantity 100 copies)

Reprints Co-ordinator, Scientific Research Publishing, Inc., USA.

E-mail: sub@scirp.org

COPYRIGHT

Copyright©2010 Scientific Research Publishing, Inc.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as described below, without the

permission in writing of the Publisher.

Copying of articles is not permitted except for personal and internal use, to the extent permitted by national copyright law, or under

the terms of a license issued by the national Reproduction Rights Organization.

Requests for permission for other kinds of copying, such as copying for general distribution, for advertising or promotional purposes,

for creating new collective works or for resale, and other enquiries should be addressed to the Publisher.

Statements and opinions expressed in the articles and communications are those of the individual contributors and not the statements

and opinion of Scientific Research Publishing, Inc. We assumes no responsibility or liability for any damage or injury to persons or

property arising out of the use of any materials, instructions, methods or ideas contained herein. We expressly disclaim any implied

warranties of merchantability or fitness for a particular purpose. If expert assistance is required, the services of a competent

professional person should be sought.

PRODUCTION INFORMATION

For manuscripts that have been accepted for publication, please contact:

E-mail: jis@scirp.org

Journal of Information Security, 2010, 1, 45-55
doi:10.4236/jis.2010.12006 Published Online October 2010 (http://www.SciRP.org/journal/jis)

Copyright © 2010 SciRes. JIS

Extending the Strand Space Method with Timestamps:
Part I the Theory*

Yongjian Li1,2, Jun Pang3
1Chinese Academy of Sciences, Institute of Software, Laboratory of Computer Science, Beijing, China

2The State Key Laboratory of Information Security, Beijing, China
3University of Oldenburg, Department of Computer Science, Safety-critical Embedded Systems, Oldenburg, Germany

E-mail: lyj238@ios.ac.cn, jun.pang@informatik.uni-oldenburg.de
Received June 23, 2010; revised September 14, 2010; accepted July 12, 2010

Abstract

In this paper, we present two extensions of the strand space method to model Kerberos V. First, we include
time and timestamps to model security protocols with timestamps: we relate a key to a crack time and com-
bine it with timestamps in order to define a notion of recency. Therefore, we can check replay attacks in this
new framework. Second, we extend the classic strand space theory to model protocol mixture. The main idea
is to introduce a new relation  to model the causal relation between one primary protocol session and one
of its following secondary protocol session. Accordingly, we also extend the definition of unsolicited authen-
tication test.

Keywords: Strand Space, Kerberos V, Theorem Proving, Verification, Isabelle/HOL

1. Introduction

The strand space model [1] is a formal approach to rea-
soning about security protocols. For a legitimate regular
participant, a strand s represents a sequence of mes-
sages that the participant would receive or send as part of
a run as his/her role of the protocol. A typical message
has the form of  

K
h denoting the encryption of h

using key K . An element of the set of messages is
called a term. A term 't is a subterm of t is written as

tt' . Usually, we call a strand element node. Nodes can
be either positive, representing the transmission of a term,
or negative, representing the reception of a term. For the
penetrator, the strand represents atomic deductions. More
complex deductions can be formed by connecting several
penetrator strands. Hence, a strand space is simply a set
of strands with a trace mapping. Two kinds of causal
relation (arrow),  and  , are introduced to impose
a graphic structure on the nodes of the space. The rela-
tion  is defined to be the reflexive and transitive clo-

sure of these two arrows, modelling the causal order of
the events in the protocol execution. The formal analysis
based on strand spaces can be carried on the notion of
bundles. A bundle is a causally well-founded set of
nodes and the two arrows, which sufficiently formalizes
a session of a protocol. In a bundle, it must be ensured
that a node is included only if all nodes that proceed it
are already included. For the strand corresponding to a
principal in a given protocol run, we construct all possi-
ble bundles containing nodes of the strand. In fact, this
set of bundles encodes all possible interactions of the
environment with that principal in the run. Normally,
reasoning about the protocol takes place on this set of
bundles.

However, the original strand space model has its se-
mantical limitations to analyze the real-world protocols
such as Kerbeoros protocols. First, it does not include
timestamps as formalized message components, and
therefore can not model security protocols with time-
stamps. In fact, the strand space model [1] as given by
Thayer Fábrega, Herzog, and Guttman is only bench-
marked on nonce-based protocols such as the Needham-
Schroeder protocol and the Otway-Rees protocol. But
many modern protocols use timestamps to prevent replay
attacks, so this deficiency of the strand space theory
makes it difficult to analyze these protocols. Second, it

*This is a revised and extended version of the homonymous paper
appearing in the Proceedings the Eighth International Conference on
Parallel and Distributed Computing, Applications and Technologies
(PDCAT 2007, IEEE Computer Society). The main modifications have
been made on the presentation of the technical material, with the pur-
pose of having full details. The first author is supported by grants
(No.60496321, 60421001) from National Natural Science Foundation
of China.

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

46

does not address issues of the protocol dependency when
several protocols are mixed together. Many real-world
protocols are divided into causally related multiple
phases (or subprotocols), such as the Kerberos and Neu-
man-Stubblebine protocols. One phase may be used to
retrieve a ticket from a key distribution center, while a
second phase is used to present the ticket to a security-
aware server. To make matters more complex, many
protocols such as Kerbeors use timestamps to guarantee
the recency of these tickets, that is, such tickets are only
valid for an interval, and multiple sub-protocol sessions
can start in parallel by the same agent using the same
ticket if the ticket does not expire. Little work has been
done to formalize the causal relation between protocols
in a protocol mixture environment.

The aim of this paper is twofold. The first aim is to
extend the strand space theory to cover the aforemen-
tioned two semantical features. Briefly, we include time
and timestamps to model security protocols with time-
stamps: we relate a key to a crack time and combine it
with timestamps in order to define a notion of recency.
Therefore, we can check replay attacks in this new
framework. We also extend the classic strand space the-
ory to model protocol mixture: a new relation  is
introduced to model the causal relation between one
primary protocol session and one of its following secon-
dary protocol session. Despite the extensions, we hope
that the extended theory still maintains the simple and
powerful mechanism to reason about protocols. The
second aim is practical. We hope to apply the extended
theory to the analysis of some real-world protocols. Here
we select Kerberos V as our case study. Kerberos V is
appropriate because it covers both timestamps and pro-
tocol mixture semantical features.

2. Motivations

2.1. A Short Introduction to Kerberos V

The first version of Kerberos protocol was developed in
the mid eighties as part of project Athena at MIT [2].
Over twenty years, different versions of Kerberos proto-
cols have evolved. Kerberos V (Figure 1 and Figure 2)
is the latest version released by the Internet Engineering
Task Force (IETF) [4]. It is a password-based system for
authentication and authorization over local area networks.
It is designed with the following aims: once a client au-
thenticates himself to a network machine, the process of
obtaining authorization to access another network service
should be completely transparent to him. Namely, the
client only needs enter his password once during the au-
thentication phase. In order to access some network ser-
vice, the client needs to communicate with two trusted

Figure 1. The layout of Kerberos V.

Figure 2. Kerberos V: message exchanging.

servers Kas and Tgs . Kas is an authentication server
(or the key distribution center) and it provides keys for
communication between clients and ticket granting serv-
ers. Tgs is a ticket granting server and it provides keys
for communication between clients and application serv-
ers. The full protocol has three phases each consisting of
two messages between the client and one of the servers
in turn. Messages 2 and 4 are different from those in
Kerberos IV [2,4] in that nested encryption has been
cancelled. Later we will show that this change does not
affect goals of the protocol.

2.2. Timestamps

Timestamps are heavily used in the Kerberos protocols
to guarantee the recency of messages. The strand space
model cannot express security protocols with timestamps,
although Guttman [5] provided a notion of recency and
he used it to analyze replay attacks of a variant of the
Yahalom protocol, it is still impossible to analyze secu-

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

47

rity protocols with timestamps. Timestamps are mainly
used to avoid replay attacks in the literature of security
protocols. Usually such attacks occur in protocols that
involve a message encrypted by a session key, and the
session key itself is sent as a part of a message which is
encrypted by a long-term key. Although penetrators can
never obtain a long-term key K if K is not sent as a
part of a message, it is usually assumed that m will be
obtained from  

K
m via cryptanalysis by a penetrator

after some time t , especially if a session key SK is a
component of m , then it will be compromised after the
time t . Here, we say that the time t is the crack time
of K , and every key will be related to a crack time.
Although the penetrator cannot obtain m from  

K
m

during a protocol session provided that  
K

m did not
occur in any old session and K ’s crack time is longer
than the time of a session allowed, he still may replay
stale messages and use the old compromised session
keys to launch attacks if some message of the protocol
does not contain necessary information to indicate its
recency.

For example, in the Needham-Schroeder symmetric
key protocols (see Figure 3), when B receives the third
message  ,

BK
A K , although B can infer that it was

generated by S , he is not certain of its recency because
no such information is available. Perhaps  ,

BK
A K

has occurred in an old session, and a penetrator has
cryptanalyzed the conversation to obtain the session K .
In that case, the penetrator can start a session by resend-
ing  ,

BK
A K , and later return  1b K

N  . Denning
and Sacco [6] pioneered the use of timestamps to fix the
flaw of the protocol. A timestamp t , which is a number,
is employed in the ticket  , ,

BK
A K t by S to mark

the time of issue, and will be compared with the current
time by the receiver B to check whether the ticket is
recent. In this paper, we will assume that all agents are
synchronized via a global clock, so an agent knows the
time when receiving or sending a message.

Figure 3. Needham-Schroeder symmetric key protocol.

In this paper, we extend the strand space model with
such features. A crack time is attached to every key. The
crack-time of a key K is the time needed by a penetra-
tor to break an encrypted message  

K
m .1 We model a

timestamp in the same way as atomic messages. A regu-
lar agent can attach a timestamp in a message to indicate
when it sends the message, and check whether a received
message encrypted by a key K is recent by comparing
the timestamp in the message with the current time and
the crack time of K . Once a message  

K
m is no longer

recent, a penetrator can break the message to obtain m .

2.3. Protocol Mixture

Another important feature of Kerberos, which is difficult
to model in strand space, is protocol mixture. Kerberos
protocol comprises three protocol phases: authentication,
authorization, and service protocol phases. Once a client
has passed an authentication phase and obtained an au-
thentication ticket, then he can use the ticket to start mul-
tiple sessions of the authorization protocol phases in par-
allel to obtain different service tickets to access the ser-
vices he needs provided that the authentication ticket
does not expire. Similarly, once the client has gone
through a session of the authorization phase, then he can
use the service ticket obtained to access the service
server for many times provided that the service ticket
does not expire. Usually we refer to a protocol as one
primary protocol, and the protocol following it as a sec-
ondary protocol. We note that other researchers have
discussed the problem of protocols mixture [7,8], but
they emphasized more on independency between two
protocols. Namely, if they have disjoint encryption, then
the first protocol is independent of the second. By this
they mean that if the first protocol can achieve a security
goal (either an authentication goal or a secrecy goal)
when executed in isolation, then it still achieves the same
security goal when executed in combination with the
second protocol. In their theory, one primary and one
secondary strands are rather independent of each other.

However, in Kerberos protocols, a secondary strand
cannot be independent of its primary strand, and the
events of a secondary strand has temporal relation with
the events of the primary strand. For example, assuming
that a client A runs a session 's of an authorization
phase of Kerberos V, then he must have passed an au-
thentication phase s . When A receives the second mes-
sage in the session 's , he must ensure that the current
time should be before the ticket  , , ,

Tgs
a K

A Tgs authK T
expires, so A needs know the time aT when the ticket
is created, and checks how much time has elapsed until
now. This side condition cannot be expressed without the
semantical specification of s , because in the intended

1It is not the time to obtain K from {| m|}K.

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

48

case the ticket is a term encrypted with Tgs ’s long-term
key, which is unintelligible to A , A cannot know aT
from the ticket. Then A can only know the time aT
from the previous authentication phase s . Therefore, we
need to formalize the facts that 's follows s , and A
holds all the knowledge of s when he runs 's , and
there should be causal relation between events in s and
those in 's . Such semantical features are not covered in
[7,8].

In order to model the aforementioned causal relation
between a primary strand and its following secondary
strands, we introduce a new relation  between
strands. 'ss holds if s is a primary protocol strand
and 's is a subsequent secondary protocol strand. E.g.,
let s and 's be client strands in an authentication
phase and authorization phase in Kerberos V respectively,

'ss means that a client runs an authentication ses-
sion s , and subsequently starts an authorization session

's . In practice, if 'ss , then s and 's may be two
different processes started by the same client, and when
the client starts s , he knows all the events which have
occurred in s . This knowledge is useful for the client to
perform actions in 's . E.g., when a client starts an au-
thorization session, he uses an authentication ticket
which is obtained in the preceding authentication session,
and he knows the time when the ticket is created. So a
causal relation should be imposed on two events which
occur in a primary strand and its subsequent secondary
strand.

Figure 4 illustrates a possible protocol execution of
Kerberos V using the relation . A client runs an in-
stance in authentication phase, which is represented by
the strand 1i . Following the primary protocol instance,
the same client may run three authorisation subprotocol
instances in parallel, which are showed in the strands 21i ,

,22i and 23i respectively. 21Tr is a subtree which is a
collection of client strands in the service phase. 22Tr
and 23Tr are similar to 21Tr . Note that the semantics of
the relation  means that 21i and 22i and 23i in-
herits all the same knowledge from ,1i so they shares
the same ,authTicket authK , Tgs , aT , etc. Therefore,

if     1,1 = , , , ,
A

a K
term i authTicket A Tgs authK T then

then it must be the case that

    11 1 1,1 = , , ,
authK

term i authTicket A t B

and

    13 2 2,1 = , , ,
authK

term i authTicket A t B

for some 1t , 2t , 1B and .2B Here 1 1()t B can be
different from).(22 Bt This means that the client use the
same authTicket to obtain two different server tickets
for accessing servers 1B and .2B Without the relation

Figure 4. An illustration of protocol mixture.

, 21i and 1i are independent, therefore the knowl-

edge inherence relation between them can not be im-
posed.

We extend the relation  in the strand space model
in the way that 21 nn  holds if),(=1 isn and

1),(=2 isn , or 1)))((,(=1 strlengthsn and ,0)(=2
'sn

and 'ss . Namely, the edge means either that 1n is
an immediate causal predecessor of 2n on the same
strand s or that 1n is the last event in a primary strand
s and 2n is the first event in the subsequent secondary
strand 's .

Structure of the Paper. In Section 3, we present the
theory of the strand space method with our two exten-
sions. We devote Section 5 to a new definition of unso-
licited authentication test. We discuss related work and
conclude the paper in Section 6.

3. Preliminaries

3.1. Messages and Actions

The set of messages is defined as the following BNF
notation:

 ),(|,|

)(|)(|

)(|)(::=

21 Khhh

tK

nAh

enc

timestampkey

noncename

where A is an element from a set of agents, n from a
set of nonces, K from a set of keys, and t from a set
of times. Here we assume that Time is the set of all
natural numbers. 21 < tt means that the time 1t is ear-

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

49

lier than 2t . We represent a timestamp by marking t
as timestamp(t). Except this extension, the definitions of
other kinds of messages are the same as those in the
classic strand space theory. We call a key symmetric if

KK =1 . Otherwise, K is a public key and 1K is
private. For each K , we define)(Kcracktime as the
crack time of K .  1 2,h h is called a composed mes-
sage. We will write   1 2 3, ,h h h as  1 2 3, ,h h h .
   1 2 1 2, ,' 'h h h h if and only if 'hh 11 = and 'hh 22 = .
We abbreviate),(Khenc as  Kh , denoting the en-
cryption of h using key K . In our formulation, we use

AK to define a long-term key shared between an agent
(also called a client) A and a server, and clients have
distinct keys. An element of the set of messages is also
called a term. Terms of the form name(A), nonce(n),
timestamp(t), or key(K) are said to be atomic.2 The set
of all messages is denoted by Message. A message h is
a text message if Kh  for any K . The set of all
atomic text messages is denoted by T . We frequently
need the subterm relation on messages. A term 'g is a
subterm of g is written as gg' .

Definition 1 The subterm relation  is defined induc-
tively as the smallest relation such that gg ,  

K
g h

if hg , and  1 2,g h h if 1hg or 2hg .
In our extended strand space model, we need to revise

the definition of actions. The main point is to record the
time when an action takes place. The transmission of a
term g at time t is denoted by),,(gt  , and the re-
ception of a term g at t is denoted by),,(gt  . Both
are the possible actions that participants and a penetrator
can take. We represent the set of finite sequences of ac-
tions by (Time, ±, Message)*.

3.2. Strands and Strand Spaces

A strand space  is a set of strands with a trace map-
ping *),(: MessageTime  ,tr . A strand element is
called a node.),(is is the i -th node on strand s
()(<0 slengthi). We use sn to denote that a node
n belongs to the strand s . The set of all the nodes is
denoted by  . If),(= isn and),,(=)(gtstr i  ,
then we define)(ntime and)(nterm and)(nsign to
be the occurring time, the term and the sign of the node
n , respectively. Namely, tntime =)(, gnterm =)(, and

=)(nsign . We call a node positive if its term has sign
 , and negative if its term has sign  . A strand is a
protocol history from the point of view of a single par-
ticipant in a protocol run, so we explicitly define an at-
tribute function Aattr : to indicate which agent’s
peer a strand is. Namely, asattr =)(means that a is the
agent who performs actions of the strand s in the run.

As mentioned in Section 2, we introduce a relation
 between strands to model protocol mixture, and

'ss holds if s is a primary protocol strand, and 's
is a subsequent secondary protocol strand. To make our
theory sound, we also restrict the relation  to be a
tree-like one with the following principles. First,  is
irreflexive, i.e. ss . Second, every strand has at most
one  predecessor, meaning if ''ss and ''' ss  ,
then 'ss = . The two restrictions are consistent with our
intuition on protocol mixture. The first principle says that
one protocol session can not follow itself, this simply
means that the primary protocol session and any one of
its following secondary protocol sessions are different.
The second principle shows that one secondary protocol
session follows a unique primary protocol session.

Two kinds of causal relation (arrow),  and  ,
are introduced to impose a graph structure on the nodes
of  . To be more precise, the relation 'nn holds
between nodes n and 'n if),(= isn and 1),(= isn'
and),()('ntimentime  or    1,= strlengthsn and

,0)(= '' sn and 'ss and)()('ntimentime  . This
relation means that the event 'n immediately follows
n . On the other hand, the relation 'nn  holds for
nodes n and 'n if gntermnterm ' =)(=)(for some term
g , =)(nsign and =)('nsign , and)()('ntimentime  .
This represents that n sends a message g and 'n
receives the message at a later time. Obviously, here we
require that the two relations must respect the order of
time. The relation  is defined to be the reflexive and
transitive closure of  and  , modelling the causal
order of the events in the protocol execution. We say that
a term g originates at a node n if and only if n is
positive,),(ntermg and there is no node 'n such
that nn'  and)('ntermg ; We say that g
uniquely originates if and only if there exists an unique
node n such that g originates from node n . Nonces
and other recently generated terms such as session keys
are usually uniquely originated.

3.3. Penetrator Strands

The symbol Bad is defined to denote the set of all the
penetrators, and if an agent is not in Bad, then it is regu-
lar. There is a set of keys that are known initially to all
the penetrators, denoted as K . K usually contains
all the public keys, all the private keys of all the penetra-
tors, and all the symmetric keys initially shared between
all the penetrators and principals playing by the protocol
rules. It can also contain some keys to model known-key
attacks. In this paper, we only need the fact that if an
agent is not a penetrator then his shared key cannot be
penetrated, which is formalized as follows.

Axiom 1 If BadA , then KAK .
2For convenience, we often write A, n, K and t instead of name (A),
nonce (n), key (K), and timestamp (t).

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

50

In the classic strand space theory, a penetrator can in-
tercept messages, generate messages that are computable
from its initial knowledge and the messages it intercepts.
These actions are modelled by a set of penetrator strands,
and they represent atomic deductions. More complex
deduction actions can be formed by connecting several
penetrator strands. In our extension, we assume that
penetrators share their initial knowledge and can cooper-
ate each other by composing their strands. Besides the
behaviors inherited from classic strand space theory, a
penetrator has the ability to crack an encrypted message
once the message is no longer recent (see hKKC ,
strand).

Definition 2 A penetrator’s trace relative to K is one
of the following, where Time321 ,,, tttt and 321 ttt  :

• Mg (text message):)],,[(gt  , where Tg .

• KK (key):)],,[(Kt  , where KK .

• Cgh (concatenation):  )],,,(),,,(),,,[(321 hgthtgt  .

• Sg,h (separation):   ,,(),,,(),,,,[(321  tgthgt)]h .

• Eh,K (encryption): ,,(),,,(),,,[(321  thtKt  )]
K

h .

• Dh,K (decryption):  )],,(),,,(),,,[(32
1

1 hthtKt
K

  .

• KCK,h (key-crack):  )],,(),,,[(21 htht
K

 , where

21 <)(tKcracktimet  .
In our theory, if a strand s belongs to a penetrator,

namely, ()attr s Bad , then s must be a penetrator
strand. If a strand is not a penetrator strand, then it is
regular. A node is called regular if it is not in the pene-
trator strands. Except the key crack strand (hKKC ,), our
penetrator model is similar to the one in [1]. Here

gM (or KK) does not imply that a penetrator can issue
any unguessable terms which are not in his initial
knowledge such as nonces and session keys. Because
when we introduce secrecy or authentication properties
about an unguessable term t for all penetrators, we
usually assume that t uniquely originates from a regu-
lar strand, and this implicitly eliminates the possibility
that any penetrator can originate t . Intuitively, we use
 to model regular agents to start a primary protocol
session and then starts multiple parallel secondary pro-
tocol sessions, so a penetrator strand cannot be mixed
with any other strand. To be more precise, for all pene-
trator strands s and all strands 's , we have that

'ss and ss'  . This implies that a penetrator
strand can only be composed with other strands by the
relation  .

3.4. Bundles

The formal analysis based on strand spaces is carried on
the notion of bundles, which represents the protocol
execution under some configuration. A bundle is a caus-
ally well-founded graph, which sufficiently formalizes a

session of a protocol.
Definition 3 Suppose   ,, � N ,

and .  is a bundle if
• N and  and  are finite;
• If the sign of a node n is  , and Nn , then

there is a unique positive node 'n such that Nn' 
and nn'

 ;
• If nn'  and Nn , then Nn'  and

nn'
 ;

•  is acyclic.
Suppose  is a bundle, we say n if n is a

node in N , and use  to denote the reflexive and
transitive closure of the relation  and  in  . In
a bundle, it must be ensured that a node is included only
if all nodes that proceed it are already included. So a
bundle  has the following properties:

Lemma 1 (Bundle well foundedness) Let  be a
bundle. Then  is a partial order, i.e. a reflexive,
antisymmetric, transitive relation. Every non-empty sub-
set of the nodes in  has  minimal members.

We have formalized the above extended strand space
theory in the theorem prover Isabelle/HOL [9]. See [10]
for details.

4. Penetrator’s Knowledge Closure Property

In this section, we will describe a useful property on
penetrator strands. This property specifies what knowl-
edge can be obtained from some special message set.
First we need to define a key is regular w.r.t. a node m
in a bundle.

Definition 4 A key K is regular w.r.t. a node m in
a bundle  , denoted by  ,,mkregular , if and only if
the following condition holds: for any node n in  , if

Knterm =)(and)()(mtimentime  , then n must be
regular.

This definition is about K ’s secrecy w.r.t. a node m
in a bundle  , which means that K cannot be penetrated
before m in the bundle. In most of the cases, we only
consider security properties for a protocol in a given bun-
dle, so it is natural for us to just consider whether a key
can potentially be penetrated in this bundle. Besides, we
also need consider temporal restriction)()(mtimentime 
because we discuss K ’s secrecy a timed framework.

Definition 5 Let m be a node in a bundle . A
message ,t is a component w.r.t. m in bundle ,
denoted by  ,, mtcomponent , if

1) g( );,. hgth 

2)      ,,=. 1 mkregularhtkh
k



Intuitively,  ,,mtcomponent means that t basic
unit that can not be analyzed in  by penetrators.
Namely, t can not be detached because t is not a

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

51

concatenated form; and if t is an encrypted form of
 

K
h t can not be decrypted before m in  be-

cause 1k can not be penetrated before m .
Definition 6 Let m be a node in a bundle . a is

a message which uniquely originates at some node n . A
message set M is a test suite for a w.r.t. m in ,
denoted by  ,,,, nmaMsuite if

1)  taMt .  ,, mtcomponent

2) (.  taMt   
k

hthk =. )(mtime 

))()(kcracktimentime 

3) ;. Mttat  
Intuitively,  ,,,, nmaMsuite means that for any
Mt such that ,ta t can not be detached or de-

crypted before m because such t is a component w.r.t.
m in bundle  ; furthermore, if t contains a and is
of the form  

K
h for some k and ,h t can not be

cracked before m because the duration between m
and n is less than k ’s crack time, and this is guaran-
teed by (2). Recall that)(ntime is the first time when
a occurs because a uniquely originates at .n

Now we need introduce a function synth on a mes-
sage set H , which captures the “building up” aspect of
penetrator's ability [4,11].  Hsynth is defined to be the
least set that includes H , agents, timestamps and is
closed under pairing, and encryption.

Definition 7 Consider a message set ,H)(Hsynth
is a message set which is defined inductively as follows:

1))(HsynthA if A is an agent name;

2))(Hsyntht  if t is a timestamp;

3))(Hsynthm  if Hm ;

4)  ),(Hsynthh
k
 if)(Hsynthh and ;Hk 

5)  ),(, Hsynthhg  if)(Hsynthg  and

).(Hsynthh 

In the context of this paper, we usually assume that a
is an unguessable atomic message such as a nonce,
which is uniquely originated from a regular strand and
encrypted in a message. Let },|{=0 MttatM  in
later discussions we usually assume that 0M is the set
of messages which is emitted by some regular strands. f
M is a test suite for a w.r.t. m in b , then the set
synth  M is a knowledge closure which penetrators
can synthesize in the bundle b from .M Namely, if
the messages received in a penetror strand are in
synth  M , then the messages sent in the strand must
still be in synth  .M

Before we prove the closure property, we need two
useful lemmas, as shown below:

Lemma 2 If M is a test suite for a w.r.t. m in
, and  hg, synth  ,M then g synth  M and
h synth  .M
Lemma 3 If    ,Msynthh

K
 then  Msynthh

or   .Mh
K


Let a be an atomic message that uniquely originates
at some node n , m be a positive penetrator node in a
bundle  such that and  .mterma Suppose M is
a test suite for a w.r.t. m in the bundle  , if any
message that the penetrator can receive in the strand is in

 ,Msynth then the penetrator can only send a term
which is still in  Msynth . Figure 5 illustrates such
behaviors of penetrators on knowledge, where (a) shows
the cases for ,,hgC ,,KhE and ;,KhD (b) shows the
case for ;,hgS and (c) shows the case for .,hKKC

Lemma 4 Let m be a positive penetrator node in a

Figure 5. Penetrator’s knowledge closure property.

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

52

bundle , a be an atomic message that uniquely ori-
ginates at a regular node n , M be a message set such
that  ,,,,, nmaMsuite and    Msynthmterm '  for
any node such that ,mm'  then    .Msynthmterm 

Proof. For convenience, the assumption that
   Msynthmterm  for any node such that nm  is

referred as (1) in the proof as follows.
By case analysis on the form of penetrator strand, we

can easily exclude the cases when m is in a strand

gM , .KK If thus, we can conclude that a originates
at .m This contradicts with the fact that uniquely origi-
nates at a regular node .n Therefore, m is in a strand
i such that i is hgC , , ,,hgS ,,KhE ,,KhD or

hKKC , .
Case 1: i is in ,,hgC then   2,=mindex   ,=,0 giterm
  ,=,1 hiterm and    hgmterm ,= for some g , ,h

and   ,=,0 isign and   =,1isign . From the assump-
tion (1), we have    Msynthiterm ,0 and  ,1iterm

 ,Msynth then  Msynthg  and  ;Msynthh By
the definition of synth operator,    , ,g h synth M
then    .Msynthmterm 

Case 2: i is in ,,hgS then   1,=mindex or   2,=mindex
   ,,=,0 hgiterm   ,=,1 giterm and  =mterm h

for some g , .h From the assumption (1), we have
   Msynthiterm ,0 ,  hg, synth  ,M by Lemma

4, we have  Msynthg  and  .Msynthh So
 mterm  .Msynth

Case 3: i is in ,,KhE then   2,=mindex
  ,=,0 Kiterm   ,=,1 hiterm and    

K

' hmterm =
for some K , ,h and   ,=,0 isign and   .=,1 isign
From the assumption (1) ,    Msynthiterm ,0 and

   ,,1 Msynthiterm  then  MsynthK  and
 ;Msynthh by the definition of synth , we have

   ,Msynthh
K
 then    .Msynthmterm 

Case 4: i is in ,,KhD then   2,=mindex   ,=,0 1Kiterm
    ,=,1

K
hiterm and   hmterm = for some K , ,h

and   ,=,0 isign and   .=,1 isign From the assumption
(1), we have    Msynthiterm ,0 and    ,,1 Msynthiterm 
therefore  MsynthK 1 and    ,Msynthh

K
 by

Lemma 4, we have either (4-1)    Msynthhmterm =
or (4-2)   .Mh

K
 From (4-1), the lemma can be

proved at once. For the case (4-2), there are also two
subcases, either (4-2-1)  

K
ha or (4-2-2)   .

KK
ha

From (4-2-1), we have ,ha by M is a test suite for
a in b , so ,Mh then h  synth M , then term

'm  synth .M From (4-2-2), then by M is a test
suite for a in b , we have component  

K
h ,b then

we have  .,,1 mKregular  From this and   ,0i
and   ,=,0 1Kiterm then i is regular, but this contra-
dicts with that m is in a penetrator strand.

Case 5: i is in ,,hKKC then   1,=mindex
  ,=,1 hiterm     ,=,0

K
hiterm (2)

   .,1<)(,0 itermKcracktimeiterm  From the assump-
tion (1), we have    .Msynthh

K
 From this, by

Lemma 3, we have either (5-1)  Msynthh or (5-2)
  .Mh

K
 From (5-1), the lemma can be proved at once.

For the case (5-2), there are also two subcases, either
(5-2-1)  

K
ha or (5-2-2)   .

K
ha From (5-2-1), we

have ,ha by the definition of  ,,,, nmaMsuite , so
,Mh then  .Msynthh From (5-2-2), then by the

definition of  ,,,, nmaMsuite , we have (3)
).()()(kcracktimentimemtime  From  ,,0iterma and

a uniquely originates at ,n we have ,0).()(itimentime 
Then we have

),(,0)()()(kcracktimeitimekcracktimentime 
with (3), we have).(,0)()(kcracktimeitimemtime 
But this contradicts with (2).

On the other side, a strand’s receiving nodes get mes-
sages which are all in  ,Msynth but a new message,
which is not in  Msynth , is sent in the strand, then the
strand must be regular because a penetrator strand can
not create such a term. The result can be simply inferred
from Lemma 4.

Lemma 5 Let mbe a positive node in a bundle , a
be an atomic message that uniquely originates at a regu-
lar node n , M be a message set such that

 ,,,,, nmaMsuite and    Msynthmterm '  for any
node such that ,mm'  and    ,Msynthmterm  then
m is regular .

For Lemma 4 and 5, we have two comments:
1) Lemma 4 characterizes the knowledge closure prop-

erties of a penetrator’s operations on messages. It says
that if a penetrator only receives messages in  ,Msynth
where M is a test suite for some atomic message ,a
then the augmented knowledge of the penetrator is still in

 Msynth after the receiving actions.
2) Lemma 5 provides a key technique to prove the au-

thentication guarantee that m is regular. Intuitively,
condition (1) of suite requires the secrecy of the in-
verse key 1k for any key k which is used to encrypt
any message in M containing a ; condition (2) of op-
erator suite is a recency restriction that these encrypted
messages containing a can not be cracked until .m
Therefore this lemma provides a means of using secrecy
and recency restriction to prove authentication guarantee.
We will see this result is very useful for us to check
whether a strand is regular in the next sections.

Note that the two lemmas relates the algebraic opera-
tor synth in trace theory [4,11] with penetrator’s strand
ability to deduce knowledge, which is the most important
one which differs our work from the classical strand
space theory. Such closure properties are not available in
the classical strand space theory because message alge-
bra operators such as synth are not formalized.

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

53

5. Unsolicited Tests

In [12] (Subsection 4.2.3), a negative node n is an un-
solicited test for  

K
h , if  

K
h is a test component

for any atomic text a in n , and K cannot be pene-
trated in the strand space. Then an unsolicited test for
 

K
h in a bundle  can guarantee the existence of a

positive regular node of which  
K

h is a component.
We simplify this definition of unsolicited tests by the
following two aspects:

1) we consider a node n is an unsolicited test for
 

K
h in a bundle  ;
2) we only require that  

K
h is a subterm of the

term of n , and K is regular w.r.t. n in the bundle
 instead of a strand space.

In our formulation, unsolicited authentication test is a
kind of regularity about an encrypted term  

K
h , which

is a subterm of a node n where K cannot be pene-
trated before n in a bundle  . Then it can be ensured
that there is a positive regular node m originating
 

K
h as a subterm, i.e., m has  

K
h as a subterm

and it also holds that  )('

K
mtermh  for any node

mm'
 . Intuitively, the reason why m must be regular

lies in that K cannot be penetrated before m in  .
So the penetrator cannot create  

K
h by encrypting h

with K .
Definition 8 Given a bundle  . A node n in  is

an unsolicited test for  
K

h if  )(ntermh
K
 , and

K is regular w.r.t. n in  .
Lemma 6 (Unsolicited authentication test)  is a

given bundle. Let n be an unsolicited test for  
K

h .
Then there exists a positive regular node m in  such
that nm  and  )(mtermh

K
 and  )('

K
mtermh 

for any node 'm such that mm'
 .

Proof. Let  )}(|{= xtermhnxxP
Kdf   . Obvi-

ously, Pm . By Lemma 1, there exists a node 'm
such that 'm is minimal in P , which means that
 )('

K
mtermh  , nm'

 , and for all y such that
'my  , Py . Hence,  )(ytermh

K
 .

First, we prove that the sign of 'm is positive by
contradiction. If =)('msign , then by the upward-
closed property of a bundle there must be another node

''m in  such that =)(''msign and ''' mm  . Then
we have (a) ''' mm  and (b))(=)(''' mtermmterm .
By (a) and nm'

 , we have nm ''
 . By (b) and

 )('

K
mtermh  , we have  )(''

K
mtermh  . Hence,

Pm ''  which contradicts with the minimality of 'm .
Second, we prove that 'm is regular. We show that a

contradiction can be derived if 'm is in a penetrator
strand. Here, we only analyze cases when 'm is in ei-
ther 'gg

C
,

 (concatenation strand), 'Kg
E

,
 (encryption

strand), or
g'K

KC
,

 (key crack strand). Other cases are
either straightforward or can be analyzed in a similar

way.

• 'm is in 'gg
Ci

,
 .

By the form of the strand 'gg
C

,
 and the fact that 'm

is a positive node, we have ,2)(= im' ,
 '' ggmterm ,=)(, giterm =,0)(, and 'giterm =,1)(

for some g , 'g . By the upwards-closed property of a
bundle, we have that nodes ,0)(i and ,1)(i must be in
 . By    , '

K
h g g , we have either  

K
h g or

 
K

h g  , i.e.   ,0)(itermh
K
 or   ,1)(itermh

K
 .

So either node Pi ,0)(, or node Pi ,1)(. Both cases
contradict with the minimality of 'm .

• 'm is in 'Kg
Ei

,
 .

By the form of the strand 'Kg
E

,
 and the fact that 'm

is a positive node, we have ,2)(= im' ,
  'K

' gmterm =)(, 'Kiterm =,0)(, and giterm =,1)(
for some g and 'K . So    

K K
h g


 . Then it is

straightforward that either (1)  
K

h g or (2) gh =
and 'KK = . For the first case, we have
  ,1)(itermh

K
 . It is easy to derive a contradiction by

the same argument as before. For the second case, by the
definition of the relation  , we have (a)

,2)(,0)(itimeitime  . And by definition of P , we also
have (b))()(ntimemtime '  . Hence,)(,0)(ntimeitime  .
However, by the assumption that K must be regular
w.r.t. n in  , ,0)(iterm must be regular, and this
contradicts with the fact that i is a penetrator strand.

• 'm is in
g'K

KCi
,

 .

By the form of the strand
g'K

KC
,

, and the fact that
'm is a positive node, we have ,1)(= im' , gmterm ' =)(,

  'K
giterm =,0)(for some g and K  , and

)(<)(,0)('mtimeKcracktimeitime  .

By   gmtermh '

K
=)( , so     'KK

gitermh =,0)( .
Obviously nmi '

 ,0)(. So Pi ,0)(, which contra-
dicts with the minimality of 'm .

The proof totally depends on the well-founded induc-
tion principle on bundles, and we have formalized the
proof of this lemma in Isabelle/HOL in our inductive
strand space model, and the proof scripts are available at
[10]. In fact, lemma 6 provides a useful proof method to
reason about authentication properties basing on secrecy
properties. Note that the premise that n is an unsolic-
ited test for  

K
h requires that K is regular w.r.t. n

in  , which is an assumption on the secrecy of K .
And the conclusion is an authentication guarantee of the
existence of a regular node m . Besides, compared with
the original version of unsolicited test, our result also has
two extensions that nm  and m is minimal (i.e.,
 )('

K
mtermh  for any node 'm such that)mm'

 .
We find that the extended version of unsolicited authen-
tication test is quite useful in many cases, especially in

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

54

the verification of authentication properties of symmetric
key based protocols. In [13], we have used a version of
unsolicited authentication test in the classical strand
space theory to give new proofs of authentication proper-
ties of the Otway-Rees protocol. In this work, we have
successfully applied unsolicited authentication test to our
study of the Kerberos V protocol in the next paper.

6. Conclusions and related Work

This work is an extension of [14]. We have added two
new semantical features in our new framework: time-
stamp and protocol mixture. In essence, our treatment of
timestamps is to add a global clock to the underlying
execution model, and to extend every action by a tempo-
ral annotation. This allows us to align the timestamps
sent in the protocol messages with the actual occurrence
times of the corresponding actions. Although it is quite
straightforward, it gives a powerful mechanism to reason
about recency of a message. For protocol mixture, we
admit a realistic assumption that a regular agent can start
multiple parallel secondary sessions once he has finished
a primary protocol session, and he holds all the informa-
tion of the primary protocol session when he begins a
secondary protocol session. So we introduce a causal
relation  between strands to model the protocol de-
pendency. The above two semantical features are seldom
discussed in previous works of strand space literature.

Despite the aforementioned extensions in semantics,
the definition of a bundle, which is the cornerstone of the
strand space theory, remains unchanged. So the induction
principle on the well-foundedness of a bundle is still ef-
fective in our model. Based on this principle, we have
proved an extended result of the unsolicited authentica-
tion test.

In the literature, most of the existing approaches for
protocol analysis have not concentrated on timestamps
and replay attacks. These include the CSP model-
checking approach [15], the rank functions [16], and the
Multi-Set Rewriting formalism (MSR) [17]. Paulson and
Bella's inductive method [4,11] is one exception. They
not only have extended their method to model replay
attacks, but also have succeeded in applying their method
to the Yahalom protocol and the Kerberos IV protocol.
Recently, Bozga et al. [18] proposed an approach based
on timed automata, symbolic verification techniques and
temporal logic to analyze security protocols with time-
stamps. But they haven’t applied their approach to any
real-world security protocols.

For protocol mixture, there have been a few works to
reason rigorously about protocol interactions. For in-
stance, Meadows studied the Internet Key Exchange
protocol, emphasizing the potential interactions among

its specific sub-protocols [19]. The analysis work was
conducted in the NRL protocol analyzer. Recently, Cre-
mers discussed the feasibility of multi-protocol attacks,
and his work is done in the operational semantical frame-
work which considers a so-called type flaw attacks [20].
All these works, including [7], focus on protocol interac-
tions by message exchanging. Instead, our work empha-
sizes on the dependency between a primary protocol ses-
sion and a secondary protocol session. Here we assume
that when a regular agent starts a secondary protocol
session, he should be aware that he has finished a corre-
sponding primary protocol session, and he maintains all
the information obtained in the primary protocol session,
such as tickets and the creation time of the tickets. These
modelling assumptions fit well with the real-world envi-
ronments where the Kerberos protocols run.

7. References

[1] F. Javier Thayer, J. C. Herzog and J. D. Guttman, “Strand

Spaces: Proving Security Protocols Correct,” Journal of
Computer Security, Vol. 7, No. 1, 1999, pp. 191-230.

[2] S. P. Miller, J. I. Neuman, J. I. Schiller and J. H. Saltzer,
“Kerberos Authentication and Authorisation System,”
Technical Report, Technical Plan Section E.2.1, MIT,
Athena, 1989.

[3] K. R. C. Neuman and S. Hartman, “The Kerberos Net-
work Authentication Service (v5),” Technical report,
Internet RFC 4120, July 2005.

[4] G. Bella, “Inductive Verification of Cryptographic Pro-
tocols,” PhD thesis, Cambridge University Computer
Laboratory, 2000.

[5] J. D. Guttman, “Key Compromise, Strand Spaces, and the
Authentication Tests,” Proceedings of 7th Conference on
the Mathematical Foundations of Programming Seman-
tics, ENTCS 45, 2001, pp. 1-21.

[6] D. Denning and G. Sacco, “Timestamps in Key Distribu-
tion Protocols,” Communications of the ACM, Vol. 24,
No. 8, 1981, pp. 533-536.

[7] F. Javier Thayer, J. C. Herzog and J. D. Guttman, “Mixed
Strand Spaces,” Proceedings of 12th IEEE Computer Se-
curity Foundations Workshop, 1999, pp. 72-82.

[8] J. D. Guttman and F. Javier Thayer, “Protocol Independ-
ence through Disjoint Encryption,” Proceedings of 13th
IEEE Computer Security Foundations Workshop, 2000,
pp. 24-34.

[9] T. Nipkow, L. C. Paulson and M. Wenzel, “Isabelle/HOL—
A Proof Assistant for Higher-Order Logic,” LNCS 2283.
Spinger, 2002.

[10] Y. Li, “Strand Space and Security Protocols”. http://lcs.
ios.ac.cn/˜lyj238/strand.html

[11] L. C. Paulson, “The Inductive Approach to Verifying
Cryptographic Protocols,” Journal of Computer Security,
Vol. 6, No. 1-2, 1998, pp. 85-128.

[12] J. D. Guttman and F. Javier Thayer, “Authentication

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

55

Tests and the Structure of Bundles,” Theoretical Com-
puter Science, Vol. 283, No. 2, 2002, pp. 333-380.

[13] Y. Li and J. Pang, “Generalized Unsolicited Tests for
Authentication Protocol Analysis,” Proceedings of 7th
Conference on Parallel and Distributed Computing, 2006,
pp. 509-514.

[14] Y. Li, “The Inductive Approach to Strand Space,” Pro-
ceedings of 25th IFIP Conference on Formal Techniques
for Networked and Distributed Systems, LNCS 3731,
2005, pp. 547-552.

[15] G. Lowe, “Breaking and Fixing the Needham-Schroeder
Public-Key Protocol Using FDR,” Proceedings of 2nd
International Conference on Tools and Algorithms for the
10 Construction and Analysis of Systems, LNCS 1055,
pages 147-166, 1996.

[16] J. Heather and S. A. Schneider, “Toward Automatic
Verification of Authentication Protocols on an Un-

bounded Network,” Proceedings of 13th IEEE Computer
Security Foundations Workshop, 2000, pp. 132-143.

[17] F. Butler, I. Cervesato, A. Jaggard and A. Scedrov, “A
Formal Analysis of Some Properties of Kerberos 5 Using
MSR,” Proceedings of 15th IEEE Computer Security
Foundations Workshop, 2002, 175-190.

[18] L. Bozga, C. Ene and Y. Lakhnech, “A Symbolic Deci-
sion Procedure for Cryptographic Protocols with Time
Stamps,” Journal of Logic and Algebraic Programming,
Vol. 65, No. 1, 2005, pp. 1-35.

[19] C. Meadows, “Analysis of the Internet Key Exchange
Protocol Using the NRL Protocol Analyzer,” Proceedings
of 12th IEEE Computer Security Foundations Workshop,
1999, pp. 216-231.

[20] C. J. F. Cremers, “Feasibility of Multi-Protocol Attacks,”
Proceedings of 1st Conference on Availability, Reliability
and Security, 2006, pp. 287-294.

Journal of Information Security, 2010, 1, 56-67
doi:10.4236/jis.2010.12007 Published Online October 2010 (http://www.SciRP.org/journal/jis)

Copyright © 2010 SciRes. JIS

Extending the Strand Space Method with Timestamps:
Part II Application to Kerberos V*

Yongjian Li1,2, Jun Pang3
1Chinese Academy of Sciences, Institute of Software Laboratory of Computer Science, Beijing, China

2The State Key Laboratory of Information Security, Beijing, China
3University of Oldenburg Department of Computer Science Safety-critical Embedded Systems, Oldenburg, Germany

E-mail: lyj238@ios.ac.cn, jun.pang@informatik.uni-oldenburg.de
Received June 23, 2010; revised September 14, 2010; accepted July 12, 2010

Abstract

In this paper, we show how to use the novel extended strand space method to verify Kerberos V. First, we
formally model novel semantical features in Kerberos V such as timestamps and protocol mixture in this new
framework. Second, we apply unsolicited authentication test to prove its secrecy and authentication goals of
Kerberos V. Our formalization and proof in this case study have been mechanized using Isabelle/HOL.

Keywords: Strand Space, Kerberos V, Theorem Proving, Verification, Isabelle/HOL

1. Introduction

The first version of Kerberos protocol was developed in
the mid eighties as part of project Athena at MIT [1].
Over twenty years, different versions of Kerberos
protocols have evolved. Kerberos V (Figure 1 and
Figure 2) is the latest version released by the Internet
Engineering Task Force (IETF) [2]. It is a password-
based system for authentication and authorization over
local area networks. It is designed with the following
aims: once a client authenticates himself to a network
machine, the process of obtaining authorization to access
another network service should be completely trans-
parent to him. Namely, the client only needs enter his
password once during the authentication phase.

As we introduced in the previous paper [3], there are
two novel semantic features in Kerberos V protocol. First,
it uses timestamps to prevent replay attacks, so this
deficiency of the strand space theory makes it difficult to
analyze these protocols. Second, it is divided into three
causally related multiple phases: authentication,
authorization, and service protocol phases. One phase
may be used to retrieve a ticket from a key distribution

center, while a second phase is used to present the ticket
to a security-aware server. To make matters more
complex, Kerbeors uses timestamps to guarantee the
recency of these tickets, that is, such tickets are only
valid for an interval, and multiple sub-protocol sessions
can start in parallel by the same agent using the same
ticket if the ticket does not expire. Little work has been
done to formalize both the timestamps and protocol
mixture in a semantic framework.

The aim of this paper is practical. We hope to apply
the extended theory in [3] to the analysis of Kerberos V
protocol. Kerberos V is appropriate as our case study
because it covers both timestamps and protocol mixture
semantical features.

Structure of the Paper: Section 2 briefly introduces
the overview of Kerberos V. Section 3 presents the
formalization of Kerberos V. Sections 4 and 5 prove its
secrecy and authentication goals. We discuss related
work and conclude the paper in Section 6.

2. An Overview of Kerberos V

The protocol’s layout and its message exchanging are
presented in Figure 1 and Figure 2 separately. In the
infrastructure of the Kerberos V protocol, there is a
unique authentication server, and some (not necessarily
only one) ticket granting servers. The latter assumption is
different from that in [4], where only a unique ticket
granting server exists.

*This is a revised and extended version of the homonymous paper ap-
pearing in the Proceedings the Eighth International Conference on Paral-
lel and Distributed Computing, Applications and Technologies (PDCAT
2007, IEEE Computer Society). The main modifications have been made
on the presentation of the technical material, with the purpose of having
full details. The first author is supported by grants (No.60496321,
60421001) from National Natural Science Foundation of China.

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

57

Figure 1. The layout of Kerberos V.

 

   

  


2

1. : ,

2. : , , , , , , ,

3. : , , , , , ,

4. : , , , ,

Tgs

Tgs

B

K

authTicket

K authK

S K

seruTick

A Kas A Tgs

Kas A A Tgs authK Ta A Tgs authK Ta KA

A Tgs A Tgs authK Ta A t B

Tgs A A B seruK T




 



   
 



Authentication phase

Authorisation Phase



  

    
 

3

3

, , ,

5. : , , , , ,

6. :

B

S authK

et

S K seruK

seruK

A B seruK T

A B A B seruK T A t

B A t





Service Phase



Figure 2. Kerberos V: message exchanging.

In order to access some network service, the client
needs to communicate with two trusted servers Kas and
Tgs. Kas is an authentication server (or the key distribution
center) and it provides keys for communication between
clients and ticket granting servers. Tgs is a ticket
granting server and it provides keys for communication
between clients and application servers. The full protocol
has three phases each consisting of two messages
between the client and one of the servers in turn.
Messages 2 and 4 are different from those in Kerberos
IV [1,4] in that nested encryption has been cancelled.
Later we will show that this change does not affect goals
of the protocol.

Detailed explanation about Kerberos V is delayed to
Section 2, where the protocol is formalized in strand
space model with our extensions. Here we only give an

overview of the general principles to guarantee recency,
secrecy and authentication in the design of Kerberos V.
For recency,

• A regular sender should attach a timestamp to
indicate the time when the message is issued; usually
such a message is of the form  , ,

K
t  , where t is

the time, K may be either a session key or long-term
key.

• When a regular receiver the message  , ,
K

t 
first he need be ensured of K ’s secrecy to guarantee
that the message is not froged by the penetrator. Second
he check the recency of the message by comparing the
timestamp t with the reception time. More formally, if
the receiving node is n , then)(ntime should be no
later than ()cracktime K t , meaning that this message
cannot be cracked at ()time n , which in turn indicates
that the message  , ,

K
t  is recent.

For an encrypted message  
K

h , the secrecy of a
part of the plain message h also comes from both the
secrecy of K and the recency of the message  

K
h

itself. That is to say, when a regular receives  
K

h at
time t , it must be ensured that the aforementioned two
conditions must be guaranteed until t . From this, we
can see that recency and secrecy are closely related with
each other in a timed protocol framework.

Unsolicited tests are the main mechanism to guarantee
authentication. Because a guarantee of the existence of a
regular node can be drawn from an unsolicited test, a
regular agent uses unsolicited test to authenticate its
regular protocol participant in Kerberos V.

Now let us briefly review the main theoretical results
in [3], which will be used in this work. For interesting
readers, refer to [3] for preliminary definitions.

If an agent is not a penetrator then his shared key
cannot be penetrated, which is formalized as follows:

Axiom 1 If ABad , then KAK .
Lemma 1 is the main technique used to reason about

authentication guarantee of a node n which is an
unsolicited test for an encrypted term of the form  

K
h

(e.g., the tickets  , , ,
A

a K
A Tgs authK T ,  ,

authK
A t ,

and so on). That is to say, regular agents can use an
unsolicited test with other properties of the protocol to
guarantee that the agent who originates the term  

K
h

should be an intended regular agent.
Lemma 1 (Unsolicited authentication test)  is a

given bundle. Let n be an unsolicited test for  
K

h .
Then there exists a positive regular node m in 
such that nm  and  )(mtermh

K
 and  )('

K
mtermh 

for any node 'm such that mm'
 .

Let a be an atomic message that uniquely originates
at some node n , m be a positive penetrator node in a
bundle  such that and  .mterma Suppose M is a
test suite for a w.r.t. m in the bundle  . A strand’s

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

58

receiving nodes get messages which are all in  ,Msynth
but a new message, which is not in  Msynth , is sent in
the strand, then the strand must be regular because a
penetrator strand can not create such a term.

Lemma 2 Let m be a positive node in a bundle ,
a be an atomic message that uniquely originates at a
regular node n , M be a message set such that

 ,,,,, nmaMsuite and    'term m synth M for any
node such that ,'m m and     ,term m synth M
then m is regular .

We will illustrate these general principles in detail in
the next sections when we formalize the semantics and
prove secrecy properties of Kerberos V.

3. Formalizing Kerberos V

To model the time for a penetrator to break a message
encrypted by a long-term shared key or a session key, we
define two constants imeshrKcrackt and ktimesessionKcr .
The crack time of any regular agent’s long-term shared
key is the constant shrKcracktime,
Axiom 2 () = shrKcracktimeAcracktime K , for any regular
agent A in Kerberos V.

The crack time of any session key originated by an
authentication server is the constant sessionKcrktime.
Axiom 3 () = sessionKcrktimecracktime authK , for any
session key authK originated by Kas .

The trace tr specifications of the regular strands of
Kerberos V (see Figure 2) are defined as predicates:1

1) Part I (Authentication Phase)

• Ag-I],,,,,,,[101 ttauthTicketTauthKTgsAi a iff

 


  

0

1 1

(, , ,),

() = (, , ,

, , ,)a KA

t A Tgs

tr i t authTicket

A Tgs authK T

 
 
 
 
 
 
  

where TGSsTgs and imeshrKcrackt1  aTt .
• AS],,,,,[10 ttauthKTgsAas iff

 
 

  



























),,,

,,,,,,(

),,,,(

=)(

1

11

0

AK

TgsK

tauthKTgsA

tauthKTgsAt

TgsAt

astr

where TGSsTgs .
In the first phase, when Kas issues the second

message

    , , , , , , ,
ATgs

a a KK
A Tgs authK T A Tgs authK T ,

authK is the session key that will be used for the client
A to communicate with a ticket grant server Tgs ,

Kas attaches aT with the message to indicate when

this message is sent; if A receives this message at time

1t , A will check the condition 1 shrKcracktimeat T 

to ensure the recency of this message. At the end of this
phase, A obtains a ticket authTicket and the session
key authK to communicate with Tgs .

2) Part II (Authorization Phase)

• Ag-II ,,,,,,,[2 STservKBauthTicketauthKAi

],, 32 ttservTicket iff  21101 .,,,, iittTTgsi a 

Ag-I ],,,,,,,[101 ttauthTicketTauthKTgsAi a

 


 


 

2

2

2

3

(, , ,

, ,),
=

(, , ,

, , ,)

authK

S authK

t authTicket

A t B
tr i

t servTicket

A B servK T

 
 
 
 

 
 
 

where TGSsTgs and imeshrKcrackt3  aTt and

ktime.sessionKcr3  STt

• TGS aTBservKauthKTgsAtgs ,,,,,,[,],, 100 ttT iff

 
 

 
   


























),,,

,,,,,,(

),,,

,,,,,,(

=)(

1

11

0

0

authK

BK

authK

TgsKa

tservKBA

tservKBAt

BTA

TauthKTgsAt

tgstr

where TGSs,Tgs TGSs,B 1 sessionKcrktimet  
shrKcracktimeaT  .

In the second phase, the situation is more complex.
Both Tgs and A need to check whether their received
messages are recent by the same mechanism. Furthermore,
Tgs also need ensure a side condition that

1 sessionKcrktime shrKcracktimeat T  

to guarantee that the application server B only receives
a recent service ticket. Informally speaking, this condition
means that Tgs can guarantee any authK that he
receives can only be compromised later than servK
which is associated with the authK . We will comment
this side condition in analysis in the third phase. At the
end of this phase, A obtains a ticket servTicket and
the session key servK to communicate with B .

1For simplicity, we assume any trace of a regular agent always respects
the time order in Kerberos V protocol, and we do not include this side
condition in the trace specifications.

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

59

3) Part III (Service Phase)

• Ag-III 3 4 5[, , , , ,]i A servK servTicket t t iff

1 0 1 2 2 3, , , , , , , , , , ,a Si Tgs authK T t t i authTicket B T t t .

 3tr i =
   
  

4 4

5 4

, , , , ,

, ,

servK

servK

t servTicket A t

t t

 
  
   

Ag-I 1 0 1[, , , , , , ,]ai A Tgs authK T authTicket t t 

Ag-II 2[, , , , , , Si A authK authTicket B servK T ,

2 3 1 2 2 3, ,]servTicket t t i i i i  

where TgsTGSs , 5 shrKcracktimeat T  and

5 sessionKcrktime.St T 

• Apps 4 0 1[, , , , , , ,]Sapps A B servK T T t t iff

() =tr apps

    
 

0 4

1 1

(, , , , , , ,),

(, ,)

S servKKB

servK

t A B servK T A T

t t

 
 
   

where 0 sessionKcrktimeSt T  .
In the last phase, it is subtle for the application server

B to check the recency of the message

    4, , , , ,S servKKB
A B servK T A T . From the ticket

 , , , S KB
A B servK T , B knows that Tgs must have

issued     4, , , , , , , ,S SK authKB
A B servK T A B T servK T

at time ST . The potential compromise of servK is

from the message  , , , S authK
A B servK T . A penetrator

can either directly break  , , , S authK
A B servK T to

obtain servK , or have authK first then decrypt the

message  , , , S authK
A B servK T to obtain servK . Since

authK is also a session key which is originated by
Kas in an earlier time than sT , the guarantee for the

confidentiality of authK is of extreme importance. The

corresponding ticket  , , ,
Tgs

a K
A Tgs authK T is not

available for B , B cannot know the creation time of
authK . So B cannot directly check whether authK
has been compromised. Fortunately, if Tgs can guarantee
that any authK which it receives will be compromised
later than servK , associated with the authK , then it is

enough for B to check 0 sessionKcrktimeSt T  to

ensure that the authK has not been compromised. At
the end of this stage, A and B authenticate each
other, and A can access the service provided by B .

The authentication server Kas must obey the following
principles to generate a session key authK :

• authK must never be known initially to a
penetrator, i.e., KauthK ;

• authK must be uniquely originated;
• authK is a symmetric key;
• authK must not be the same as an agent’s long-

term shared key.
We summarize these principles as the following

axiom:
Axiom 4 For any authentication server strand as

such that 0 1[, , , , ,]as A Tgs authK t tAS , we have

KauthK , authK uniquely originates in (,1)as ,
1=authK authK  , and BauthK K for any agent B .

A ticket grant server creates the session key servK
by three principles, which are similar to those which the
authentication server obeys to create the session key
authK .

Axiom 5 For any ticket grant server strand tgs such
that 0[, , , , , , , ,atgs A Tgs authK servK B T TTGS 0 1,]t t ,

KservK , servK uniquely originates in (,1)tgs ,
1=servK servK  , and BservK K for any agent B .

In the following two subsections, we verify the
secrecy and authentication properties of Kerberos V. We
use similar ways for representing these security
properties as in [5]. However, we may need formulate
secrecy properties with temporal restrictions when we
discuss them in a timed framework. A value v is secret
for a protocol if for every bundle  of the protocol the
penetrator cannot receive v in cleartext until some time
t ; that is, there is no node n in  such that

() =term n v and ()time n t . For Kerberos V, we
mainly discuss the secrecy of a long-term key of a
regular agent, and ,authK servK issued by servers.
Authentication properties are specified as usual: for a
participant B (e.g. acting as a responder), for a certain
vector of parameters x


, if each time principal B

completes a run of the protocol as a responder using x


supposedly with A , then there is a run of the protocol
with A acting as an initiator using x


 supposedly with

B. And this is formalized as follows: there is a responder
strand Resp (x


) and the i -th node of the strand is in a

bundle  , then there is an initiator strand Init (x


) and
some j -th node of the initiator strand is in  .

In order to prove the secrecy of a long-term key AK ,
we only need use the well-founded induction principle
on bundles. But the knowledge closure property on
penetrators is needed when we prove the secrecy of some
session key authK or servK . For instance, in order to
prove the secrecy of authK , we construct a set

    , , , , , , ,
A

df a aK KTgs
M A Tgs authK T A Tgs authK T

 | .t authK t 

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

60

We will show that for any node m in a Kerberos
bundle , if)(mtermauthK and ()time m 

shrKcracktime,aT 

then ()term m must be in ().synth M Intuitively, this
fact holds because both the penetrator and regular strands
can only emit a message which is in ()synth M . The
penetrator can not decrypt or crack the messages

 , , ,
A

a K
A Tgs authK T and  , , , a KTgs

A Tgs authK T

until time .shrKcracktime,aT  so it can only synthesize
any messages which is in ();synth M except a unique
authentication server strand, any other regular strand can
not emit any message which has authK as a subterm
until that time. But for the authentication server strand,
he can only emit

   1 1, , , , , , ,
K KTgs A

A Tgs authK t A Tgs authK t
 
 
 

which is still in ().synth M Our formal proof is by
contradiction. If not so, by the well-founded induction
principle on  , we have a minimal element m such
that)(mtermauthK and () ().term m synth M By
the knowledge closure property, we can exclude the
cases when m is in a penetrator strand. By case
analysis on the form of the trace of regular strands, we
can also exclude the case when m is in a regular strand.
Thus, a contradiction is concluded.

In the following two sections, we give the detailed
proof on the secrecy and authentication properties to
show how to apply the proof techniques aforementioned.
Note that we also have formalized all the proofs in
Isabelle/HOL, and the proof scripts can be obtained at
[6]. The paper proof here can be viewed as a text account
of the mechanical proof scripts at [6].

4. Proving Secrecy Goals

In Kerberos V, a long-term key of a regular agent is
never sent in the network, so it cannot be compromised.
Let  be a bundle of Kerberos V. For any node in the
bundle, the long-term key of a regular agent cannot be a
part of the term of the node. In order to prove this lemma,
we only need the well-founded induction principle on
bundles.

Lemma 3 Let n . If BadA , then AKnterm )(.

Proof. Let

)}(|{= xtermKxxP Adf 

We show that P is empty by contradiction. If there
is a node Pn'  , then by the well-foundedness of a
bundle, there exists a node m such that m is minimal
in P . Namely, m ,)(mtermK A , and for all

'm , if mm'
 then)('

A mtermK  .

We prove that the sign of m is positive. If =)(msign ,
then by upward-closed property of a bundle there must
be another node ''m in the bundle  such that

=)(''msign and mm ''  . This contradicts with the
minimality of m . Then m is either in a regular strand
or in a penetrator strand.

• CASE 1: m is in a regular strand.
There are six cases. Here we only analyze the cases

when m is in an authentication server strand as AS
],,,,,[10 ttauthKTgsAas or m is in a client strand

i Ag-II ,[i ,A ,authK ,authTicket ,B ,servK ,ST
,servTicket ,2t]3t . The other cases are either straightforward

or can be analyzed in a similarly.
If m is in an authentication server strand such that
as AS ,[as ,A ,Tgs ,authK ,0t].1t By inspection on

the trace form of the strand, we have ,1)(= asm ,
,1)(astermK A , and

   1 1(,1) = , , , , , , ,
K KTgs A

term as A Tgs authK t A Tgs authK t
 
 
 

,

then

 1, , ,A KTgs
K A Tgs authK t or  1, , ,A KA

K A Tgs authK t .

In both cases, we can conclude that .= authKK A But
this contradicts with Axiom 4. If m is in a client strand
such that [,i i Ag II ,A ,authK ,authTicket ,B

,servK ,ST ,servTicket], 32 tt . By inspection on the trace
form of the client strand, we have ,0)(= im ,

,0)(itermK A , and

  2(,0) = , , , ,
authK

term i authTicket A t B

then .authTicketK A But by the definition of the client
strand, there exists some client strand 11 suchthatii 
i and Ag-I ,[1i ,A ,Tgs ,authK ,aT ,authTicket]., 10 tt
From the definition of the strand , we have

,1).(1itermauthTicket From this and AK 
,authTicket we have (1) ,1).(1itermK A From 1i 

,i we have (2) ,1)(1i  ,0).(i From (1) and (2), we
can conclude that m is not minimal in P . This
contradicts with the minimality of m .

• CASE 2: m is in a penetrator strand p .
Here we only analyze the cases when p is either

KK (key strand) or hgC , (concatenation). Other cases
are either straightforward or can be analyzed in a similar
way.

- p is KK . We have ,0)(= pm and KK A .
Then KKK A = . This contradicts with Axiom 1.

- p is hgC , . We have ,2)(= pm' and  hgK A , .
By the definition of  , we have gK A , or hK A . If

gK A , then ,0)(ptermK A . This contradicts with the
minimality of m . The case when hK A can be
analyzed similarly.

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

61

If an authentication ticket  , , ,
A

a K
A Tgs authK T or

 , , ,
Tgs

a K
A Tgs authK T occurs as a subterm of a node in
 , A is not compromised, and Tgs is a ticket
granting server, then it can be guaranteed that there must
be an authentication server strand as in which
 , , ,

A
a K

A Tgs authK T and  , , ,
Tgs

a K
A Tgs authK T originate

at time aT . Therefore, aT is the earliest time when
 , , ,

A
a K

A Tgs authK T and  , , ,
Tgs

a K
A Tgs authK T occur in

 . With the specification of the origination of the key
authK by Kas (formulated by Axiom 4), we also are
ensured that aT is the earliest time when authK
occurs in  . The minimal property of aT will be used
in the proof of Lemma 5.

Lemma 4 Let n , BadA , and TGSsTgs . If
 , , ,

A
a K

A Tgs authK T or  , , , ()
A

a K
A Tgs authK T term n ,

then there exists an authentication server strand as
such that ,,,[TgsAasAS],, 0 aTtauthK for some 0t ,

,1)(as , and)(ntimeTa  .
Proof.
Here we only prove the case  , , ,

A
a K

A Tgs authK T
  .nterm The other case can be proved in a similar
way. First we prove that (1) n is an unsolicited test for
the term  , , ,

A
a K

A Tgs authK T We only need prove
that AK must be regular w.r.t. n . By Lemma 3, there
is no node m in  such that   ,= AKmterm so AK
must be regular w.r.t. n .

From (1), by Lemma 1, there exists a positive regular
node m in  such that nm  and  , , ,

A
a K

A Tgs authK T
)(mterm and  , , ,

A
a K

A Tgs authK T )('mterm for
any node 'm such that mm'

 .
From nm  and  is a bundle, we can easily

conclude)()(ntimemtime  and .m
Now we prove that m must be in an authentication

server strand. From the fact that m is regular, then we
have six cases, here we select two cases when m is in
an authentication server strand as such that AS as[,

'A , 'Tgs , 'authK , 0t , 1]t or in an ticket granting server
strand tgs such that tgs[TGS , 'A ,Tg , 'authK , servK ,

'B , '
aT , 0T , 0t ,].1t

• m is in an authentication server strand as such
that AS as[, 'A , 'Tgs , 'authK , 0t ,].1t By inspection on
the form of the strand,  ,1= asm because m is
positive. Obviously

   1 1

()

, , , , , , ,
Tgs A

' ' ' ' ' '

K K

term m

A Tgs authK t A Tgs authK t
 



 
 
 

By , , ,
A

a K
A Tgs authK T ),(mterm we have either (2)

 , , ,
A

a K
A Tgs authK T   1, , ,

Tgs

' ' '

K
A Tgs authK t


 or (3)

 , , ,
A

a K
A Tgs authK T   1, , ,

A

' ' '

K
A Tgs authK t


. From (2),

we have 'AA = and 'TgsTgs = and 'authKauthK =
and 1= tTa , so AS].,,,,,[0 aTtauthKTgsAas Case (3)
can be prove similarly.

• m is in an ticket granting server strand such that

TGS].,,,,,,,,,[100 ttTTBservKauthKTgAtgs '
a

''' By

inspection on the form of the strand,  ,1= tgsm

because m is a positive node. Obviously

    1 1() , , , , , , , .
B

' ' ' '

K authK
term m A B servK t A B servK t

 


From  , , ,
A

a K
A Tgs authK T ),(mterm we have

either (2)  , , ,
A

a K
A Tgs authK T   1, , ,

B

' '

K
A B servK t



or (3)  , , ,
A

a K
A Tgs authK T   1, , ,' '

authK
A B servK t


.

From (2), we can prove that ,= 'BTgs then by the

assumption ,TGSsTgs we have .TGSs'B But by

the definition of the ticket granting server, we have

'B TGSs. Therefore a contradiction is obtained. Case
(3) can be proved similarly.

Once the authentication tickets  , , ,
A

a K
A Tgs authK T

or  , , ,
Tgs

a K
A Tgs authK T are created by the authentication

server Kas at aT , then the session key authK will

be not compromised until the time imeshrKcracktaT .
Lemma 5 Let n , BadA , and TGSsTgs . If

 , , ,
A

a K
A Tgs authK T or

 , , , ()
Tgs

a K
A Tgs authK T term n ,

then for any node m such that () atime m T 
shrKcracktime , authKmterm )(.

Proof. First we define two sets.

 
   tauthKt

TauthKTgsA

TauthKTgsA
M

TgsKa

AKa

df 












 |
,,,

,,,,

= { . () shrKcracktimedf aP m m time m T    

 () }term m synth M .

We show that for any node m such that
imeshrKcrackt)( aTmtime ,  Msynthmterm )(. In

order to prove this, we only need show P is empty. We
prove the assertion by contradiction. If P is not
empty , then by the well-foundedness of a bundle, (1)
there exists a positive node m such that m ,

 ,)(Msynthmterm  imeshrKcrackt)( aTmtime ,
and for all 'm , if mm'

 then ()term m 
 synth M .

First from the fact that  , , ,
A

a K
A Tgs authK T or

 , , , ()
Tgs

a K
A Tgs authK T term n by the Lemma 4, then

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

62

there exists an authentication server strand as such that
,,,[TgsAasAS],, 0 aTtauthK for some 0t , ,1)(as ,

and)(ntimeTa  . From the definition of AS and
Axiom 4 , we have (2) authK uniquely originates at

,1)(as and .=,1)(aTastime
Next we prove that (3) ,Msuite(,authK ,m ,1),(as
). Here we need show both  , , ,

A
a K

A Tgs authK T and

 , , ,
Tgs

a K
A Tgs authK T are components in  . From

A  Bad and Tgs  TGSs , by Lemma 3, we
have that neither AK nor TgsK is compromised, and
they are symmetry, therefore ),,(1 mKregular A

 and
),,(1 mKregular Tgs

 ; furthermore from)(mtime  aT 
,imeshrKcrackt and by Axiom 2,)(AKcracktime =

ime,shrKcrackt with (2), we have)(mtime  ,1)(astime
,)(AKcracktime similarly we have)(mtime  ,1)(astime

(),Tgscracktime K so (3) is proved .
From (1), we have for any 'm such that mm'  ,

term  Msynthm' )(. With (2)(3), by Lemma 2, we
have m must be in a regular strand i , then there exist
six cases. Here we analyze the cases when
AS i[, 'A , 'Tgs , 'authK , 't0 ,]1t , other cases are more
simpler . If m is in an authentication server strand
AS i[, 'A , 'Tgs , 'authK , 't0 ,].1t By inspection on the
form of the strand,  ,1= im because m is positive.
Obviously

   1 1

()

, , , , , , ,
Tgs A

' ' ' ' ' '

K K

term m

A Tgs authK t A Tgs authK t
 



 
 
 

.

Obviously authK  term),(m otherwise term)(m

 .M Therefore  1, , ,
A

' ' '

K
authK A Tgs authK t


 or

 1, , ,
Tgs

' ' '

K
authK A Tgs authK t


 then .'authK authK

From the definition of Axiom 4, we have authK
uniquely originates from the strand i . Combining with

(2), we have ias = , then 'AA = , 'TgsTgs = , aTt =1 ,

so

   

()

, , , , , , ,

()

a aK KTgs A

term m

A Tgs authK T A Tgs authK T

synth M

   
 



This contradicts with the fact).()(Msynthmterm 

Therefore for any node m such that )(mtime
imeshrKcracktaT ,  Msynthmterm )(. Next we

only need prove that  MsynthauthK  . We prove by
contradiction, if  ,MsynthauthK  by the rule inversion
of definition of synth , we have ,MauthK  this
contradicts with the definition of M .

In order to prove the conclusion of Lemma 5, we need

the conclusion of Lemma 4, which ensures us that a

penetrator cannot crack the term  , , , a KA
A Tgs authK T

(or  , , , a KTgs
A Tgs authK T) to obtain .authK Because

the earliest time when authK occurs in  is aT and

authK can only occur in  , , , a KA
A Tgs authK T (or

 , , , a KTgs
A Tgs authK T) the penetrator cannot crack

such a term until imeshrKcracktaT , and what he can

only do is to synthesize some term from M . Therefore,

authK must be safe until that time. Furthermore, the

intermediate result of this proof tells us that)(mterm

must be in  Msynth for any node m such that

ime.shrKcrackt)( aTmtime
If both the tickets

 , , , S authK
A B servK T

and

 , , , a KA

A Tgs authK T

occur as a part of the term of a node in  , A and B
are not compromised, and B is not a ticket grant server,
and authK is still not compromised at the time when
the above two tickets occur, then it can be guaranteed
that A must have passed the first and second phases of
the protocol, and a ticket grant server strand tgs must
exist in  , where two tickets

 , , , S KB
A B servK T and  , , , S authK

A B servK T

are issued for some session key authK . Similar to
Lemma 4, this lemma ensures us that ST is the earliest
time when servK occurs in  , and this minimal
property is needed in the proof of Lemma 7.

Lemma 6 Let nm, , BadA , TGSsTgs . If
both

 , , , ()a KA
A Tgs authK T term m ,

and

 , , , ()S authK
A B servK T term n

and imeshrKcrackt)( aTntime , then there exists a
ticket granting server strand tgs such that ,,[AtgsTGS

],,,,,,, 00 Sa TtTTBservKauthKTgs for some 0T , 0t ,
,1)(tgs  and)(ntimeTS  .

Here we only give the proof sketch of this lemma.
First we need show that (1) n is an unsolicited test for

 , , , S authK
A B servK T in  . We need prove

 .,, nauthKregular This can be ensured by Lemma 5.
Because ime,shrKcrackt)( aTntime we have

()'term n authK for any node 'n such that
() ().'time n time n From (1), we can show that there is

a regular node 'n such that 'n n and

 , , , S authK
A B servK T  term)('n and

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

63

 , , , S authK
A B servK T  term)('m for any node 'm

such that '' nm  . By the case analysis on the form of
regular strands, we can prove that 'n must be in a ticket
granting server strand tgs such that [,tgsTGS ,A

,Tgs ,authK ,servK ,B ,aT 0 ,T 0 ,t]ST for some 0T ,

0t , 'ntgs =,1)(and)(= '
S ntimeT .

Moreover, by the fact a ticket  , , , S authK
A B servK T

is originated at time ST , then the session key servK
will not be compromised until the time

ktimesessionKcrST .

Because during the interval from ST to

ktimesessionKcrST ,

neither  , , , S authK
A B servK T will be cracked, nor the

session key authK can be obtained by a penetrator to
decrypt the ticket  , , , S authK

A B servK T .
Lemma 7 Let 0m , n , BadBA, , TGSsTgs .

If both  , , , a K A
A Tgs authK T)(0mterm and

 , , , ()S authK
A B servK T term n ,

and imeshrKcrackt)( aTntime , then for any node
m such that ktimesessionKcr)( STmtime ,

servKmterm )(.
Proof. First we define:

 
   .|

,,,

,,,,
= tservKt

TservKBA

TservKBA
M

authKS

BKS

df 












We will show that for any node m such that
ktimesessionKcr)( STmtime , term  .)(Msynthm 

We prove the assertion by contradiction.
Let

.{= mP df m   )(mtime  ST  ktimesessionKcr
term)(m   }.Msynth If P is not empty , then by
the well-foundedness of a bundle, (1) there exists a
positive node m such that m ,)(mtime  ST
 ktimesessionKcr , term  ,)(Msynthm  and for all

'm , if mm'
 then term  Msynthm' )(.

From the fact  , , , a K A
A Tgs authK T),(0mterm

by Lemma 4, there exists an authentication server strand
as such that ,,,[TgsAasAS],, 0 aTtauthK for some 0t ,

,1)(as . From the definition of AS , we know (2)
authK uniquely originates at ,1)(as and

aTastime =,1)(.
From the fact that  , , , a KA

A Tgs authK T )(0mterm
and  , , , a KA

A Tgs authK T ),(nterm by Lemma 6,
then there exists a ticket granting server strand tgs
such that ,[tgsTGS ,A ,Tgs ,authK ,servK ,B ,aT ,0T

,0t]ST for some 0T , 0t . From the definition of
TGS and Axiom 5, we have (3) servK uniquely
originates at ,1)(tgs , ,=,1)(STtgstime

 , , , a KTgs
A Tgs authK T  term ,0),(tgs

and imeshrKcracktktimesessionKcr  aS TT . From
 , , , a KTgs

A Tgs authK T  term ,0),(tgs by Lemma 4,
we can easily conclude that ,0)(tgstimeTa  , then (4)

,1).(tgstimeTa 
Next we prove that (5)),1),(,,,(tgsmservKMsuite .

Here we need show both  , , , a KB
A Tgs servK T and

 , , , S authK
A B servK T are components in  . From

BadB , by Lemma 3, we have BK are never
compromised, similar to counterpart in Lemma 5, we can
prove that  .,,1 mKregular B

 From

imeshrKcracktktimesessionKcr  aS TT
and ktimesessionKcr)( STmtime , we have (6)

ime,shrKcrackt)( aTmtime with (4), we have
)(mtime  ,1)(tgstime).(BKcracktime From (6)

and  , , , ()a KA
A Tgs authK T term m for any node 'n

such that)('ntime ),(mtime we have

ktimesessionKcr)( S
' Tntime ,

then)('ntime  eshrKcrktimaT , by Lemma 5,
term)('n  ;authK by Axiom 4, authK is symmetry,
therefore 1authK = ,authK so  .,,1 mauthKregular 
From ktime,sessionKcr)( STmtime and by Axiom 4
again, we have)(authKcracktime = ktime,sessionKcr
then  STmtime)(),(authKcracktime with (3), we
have )(mtime ,1)(tgstime).(authKcracktime
Therefore (5) is proved .

From (1), we have for any 'm such that mm'  ,
term )('m synth  M . With (2)(5), by Lemma 2, we
have m must be in a regular strand i , then there exists
six cases. Here we analyze the cases when ,[iAS ,'A

,'Tgs ,'authK ,0
't]1t or ,[iTGS ,'A ,'Tgs ,'authK

,'servK ,'B ,'
aT ,0

'T ,0
't]'

ST , other cases are more
simpler.

If ,[iAS ,'A ,'Tgs ,'authK ,0
't],1t then by inspection

on the form of the strand,  ,1= im because m is
positive. Obviously

   1 1

()

, , , , , , ,
K 'Tgs

' ' ' ' ' '

KA

term m

A Tgs authK t A Tgs authK t


    
  

.

Obviously servK  term),(m otherwise )(mterm

.M Therefore  , , ,
A

' ' '
a

K
servK A Tgs authK T


 or

 , , ,
Tgs

' ' '
a

K
servK A Tgs authK T




then servK = .'authK From Axiom 5, we have
authK uniquely originates from the strand i .
Combining with (3), we can conclude i is both an
authentication server strand and a ticket granting server

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

64

strand, obviously this is a contradiction.
If],,,,,,,,,[00

'
S

'''
a

''''' TtTTBservKauthKTgsAiTGS ,
then by similar argument, we can prove that 'servK =

,servK from Axiom 5, we have servK uniquely
originates from i , with (3), we have i = tgs , we can
prove that

    
()

, , , , , , ,S SK authKB

term m

A B servK T A B servK T

then term )(m synth ()M this contradicts with (1).
At last we only need prove that term )(m synth

()M implies that term servKm )(, this is similar to
counterpart in Lemma 5.

Both Lemma 6 and Lemma 7 have the assumption that
 , , , a KA

A Tgs authK T is a subterm of the node n , which
can guarantee that authK must be a session key originated
by an authentication server strand. The assumption

imeshrKcrackt)( aTntime is used to guarantee that
authK is still safe at)(ntime . Besides, the two terms
 , , , S authK

A B servK T and  , , , a KA
A Tgs authK T are

intelligible for the client A , so these two lemmas are
secrecy properties in the view of A .

In Lemmas 6 and 7, both  , , , S authK
A B servK T and

 , , , a KA
A Tgs authK T are unintelligible for an application

server B because authK and AK cannot be known
by B . So the two properties are not in B ’s view. B
can only receive a message such as  , , , S KB

A B servK T ,
can it be ensured that servK is confidential when he
receives the message  , , , S KB

A B servK T ? The following
two lemmas are about the confidential information
inferred from the message  , , , S KB

A B servK T . They
are secrecy properties in B ’s view.

Once a server ticket such as  , , , S KB
A B servK T occurs

in a bundle, where A and B are not compromised,
and B is not a ticket granting server, then conclusions
similar to those in Lemma 6 and Lemma 7 can be drawn.

Lemma 8 Let n , BadBA, , and TGSsB .
If  , , , ()S KB

A B servK T term n , then there exists a
ticket grant server strand tgs such that ,,[AtgsTGS

],,,,,,, 00 Sa TtTTBservKauthKTgs for some Tgs , authK ,

aT , 0T , ,0t ,1)(tgs and)(ntimeTS  .
Lemma 9 Let n , BadBA, , and TGSsB .

If  , , , ()S KB
A B servK T term n , then for any node
m such that ktimesessionKcr)( STmtime ,

servKmterm )(.
Here we summarize the main ideas used in the above

proof of secrecy properties.
• For a long-term key of a regular agent, its secrecy is

easily inferred because it is never sent as a part of a
message. We only need the well-founded induction
principle on bundles to prove this.

• But for a short session key authK or servK , the
cases are more complex because they are sent as a part in
a message such as

 , , , a KA
A Tgs authK T or  , , , S authK

A B servK T .

In kerberos V, a session key such as authK (servK)
occurs as a part of a term of node n which is of the
form  

K
h , where K can be either a long-term key

or another short session key, and h also contains a
timestamp t such as)(Sa TT , which indicates the time
when  

K
h is .t As mentioned before, both secrecy

of K and recency of  
K

h should be guaranteed.
Secrecy of K can be directly drawn from other lemmas
on K . But for recency checking, firstly we need prove
that the timestamp t indeed indicates the time when
 

K
h is originated. Lemmas 4, 6, 9 play a role in

guaranteeing that t is the first time when authK
(servK) is originated. From this and the assumption that

cracktime)( tntime (K), the recency of  
K

h can
be proved.

5. Proving Authentication Goals

For convenience, we call that a strand i uses a term
 

K
h as an unsolicited test if there is a node n is in

the strand i and is an unsolicited test for  
K

h in a
bundle . Because a guarantee of the existence of a
regular node can be drawn from an unsolicited test, a
regular agent uses unsolicited test to authenticate its
regular protocol participant in Kerberos V.

The client strand in the authentication phase receives
 , , , a KA

A Tgs authK T as an unsolicited test that authenti-
cates the positive node of the authentication server strand.
The intuition behind this authentication is quite straight-
forward. By case analysis on the form of ,i we have
 , , , a KA

A Tgs authK T  (,1),term i combining with the
assumption that A is not compromised, by Lemma 4,
we have  , , , a KA

A Tgs authK T can only be originated
by an authentication server. For the sake of brevity, in
the following discussion we use],,,[yxP  to denote

],,,[. yxxPx ''  .  is a bundle of Kerberos V.
Lemma 10 Let BadA . If i is a client strand in

the authentication phase such that Ag-I ,,,,[authKTgsAi
],,, 10 ttauthTicketTa and ,1)(i , then there exists an

authentication server strand as such that ,,[AasAS
],*,, aTauthKTgs , ,1)(as .

The ticket grant server strand uses  0,
authK

A T as an
unsolicited test to authenticate the client strand in the
authorization phase. This guarantee is ensured from the
secrecy of authK , which is in turn guaranteed by the
ticket  , , , a KTgs

A B authK T . By the trace specification
of a ticket grant server strand, we have that

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

65

   0, , , , ,a K authKTgs
A B authK T A T

 
 
 

is received by Tgs earlier than the time

ktimesessionKcraT ,

by Lemma 5, authK is safe at that time.
Lemma 11 Let BadA , TGSsTgs . If tgs is a

ticket grant server strand such that [, ,tgs ATGS

0 0 1, , , , , , ,],aTgs authK servK B T T t t and ,0)(tgs , then
there exists a client strand i in the authorization phase
such that ,0)(i and Ag-II],,,,,,,,,,[0  TauthKAi .

Proof. By analysis on the form of tgs strand, we
have (1)  0,

authK
A T  ,0),(tgs (2)  , , , a KTgs

A B authK T
 ,0)(tgsterm and ,0)(tgstime  aT  imeshrKcrackt .
From (2), by Lemma 5, we have that   mterm authK
for any m such that  mtime  ,0)(tgstime ,
therefore),0),(,(tgsauthKregular . With (1), by
Lemma 1, we have (3) there is a positive regular node
m such that ,0)(tgsm  and  0,

authK
A T  ()term n

and  0,
authK

A T )('mterm for any node 'm such
that .mm'

 Obviously m .
Now we need prove that m must be in a client strand

i in the authorization phase. From the fact that m is
regular, then we have six cases, here we select two cases
when (4) m is in a strand i such that Ag-II ,[i ,'A ,'authK

,'authTicket ,'B ,'servK ,'
ST ,'servTicket ,2t]3t or (5)

m is in a strand i such that [, , ,' 'i A servKAg_III
].,, 54 ttservTicket' Other cases are more simpler.

If (4) holds, then m  ,0= i because m is positive.

From  0, ()
authK

A T term n and

 mterm =   2, , , ,'

authK
authTicket A t B

we have either (6)  0, '

authK
A T authTicket or (7)

   0 2, , .'
'authK authK

A T A t

If (6) holds, then by the definition of the client strand,
there exists some client strand 1 1such thati i  i and
Ag-I ,[1i ,'A ,'Tgs ,'authK ,'

aT ,'authTicket]., 10
'' tt From

the definition of the strand , we have

 1(,1) , , , , .' ' ' ' '
a

K 'A

term i authTicket A Tgs authK T
    
  

From this and (6), we have (8)  0 1, (,1).
authK

A T term i
From 1i  ,i ,1)(1i  ,0)(i , then (9) ,1)(1i ,0).(i
But (8) and (9) contradicts with (3). If (7) holds, then

,= 'AA ,= 20 tT .= 'authKauthK So the conclusion
is obtained.

If (5) holds, then similar to the counterpart of the
argument for case (4), we have either (10)  0,

authK
A T 

'servTicket or (11)    0 4, , .'
'authK servK

A T A t For

case (10), its proof is similar to that of case (6). If (11)
holds, then (12) ,= 'AA ,= 40 tT .= 'servKauthK By
the definition of Ag_III , (13) there is a client strand

12 , ii such that 1i  2i and 2i  i and Ag-II ,,[2
'Ai

,'authK ,'authTicket ,'B ,'servK ,'
ST ,'servTicket ,2t

]3t and Ag-I ,[1i ,'A ,'Tgs ,'authK ,'
aT ,'authTicket

], 10
'' tt for some 'Tgs  .TGSs Obviously,

 , , ,
A

' ' '
a

K
A Tgs authK T


 1(,1),term i

  2, , , (,1),' ' ' '
S 'authK

A B servK T term i

and ime.shrKcrackt,1)(2  '
aTitime From 1i  2i and

2i  i and ,0)(i , we have ,1)(1i and
,1)(2i . From (12), and the assumption Bad,A by

Lemma 6, (14) there is a ticket granting server strand
'tgs such that [,'tgsTGS ,'A ,'Tgs ,'authK ,'servK
,'B ,'

aT ,0
'T ,0

''t]'
ST for some ., 00

''' tT But from (2), by
Lemma 4, we have (15) there is an authentication server
as such that ,,,[TgsAasAS ,authK],0 a

' Tt for some
.0

't But from (12) and Axioms 4,5, we have astgs' =
because authK ('servK) uniquely originates from a
strand , obviously this is a contradiction.

A client strand 2i in the authorization phase receives
 , , , S authK

A B servK T as an unsolicited test. Note that
 , , , S authK

A B servK T is received in the second node in
the client strand; furthermore, from the definition of
Ag-II, we have that there exists a client strand 1i in the
authentication phase such that 1i  2i , and the ticket
 , , , a KA

A Tgs authK T must be received at the second node
of 1i ; from the definition of Ag-II,  , , , S authK

A B servK T
must have been received at an earlier time than aT

imeshrKcrackt , then by Lemma 5, it can be guaranteed
that authK must be safe at the time when the client
strand receives  , , , S authK

A B servK T .
Lemma 12 Let BadBA, . If i is a client strand in

the authorization phase such that Ag-II [, , , ,ai A authK T
auth - ,,1)(and],,,,,, 10 ittservTicketTservKBTicket S
then there exists a client strand 0i in the authentication
phase, and a ticket grant server strand ,tgs and some
Tgs such that ii 0 and Ag-I 0[, , , , ,ai A Tgs authK T

, ,]authTicket   and [, , , , , ,tgs A Tgs authK servK BTGS
, , ,]a sT T  , and ,1)(tgs , and TGSsB .
The application server B receives  4,

servK
A T ,

which is an unsolicited test to guarantee that the first
received message must be from a client strand in the
service phase. This guarantee is ensured from the secrecy
of servK , which is in turn guaranteed by the ticket
 , , , S KB

A B servK T . By the trace specification of an
application server strand, we have that

    4
, , , , ,S servKKB

A B servK T A T

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

66

is received by B earlier than the time

ktimesessionKcrST .

By Lemma 9, servK is safe at that time.
Lemma 13 Let BadBA, , TGSsB . If b is an

application server strand such that [, , , ,b A B servKApps

4 0 1, , ,],ST T t t ,0)(and b , then there are two client
strands 2i , 3i and some servTicket such that

2 3i i and ,0)(3i and 2[, ,*,*, , ,i A B servKAg_II
, ,ST servTicket *,*] and 3[, , , ,i A servK servTicketAg_III

4 ,*]T .
The client strand in the service phase uses  4 servK

T
as an unsolicited test to authenticate the application
server strand. This guarantee is also ensured from the
secrecy of servK , which is in turn guaranteed by the
ticket  , , , S authK

A B servK T , and  , , , a KA
A Tgs authK T .

By the trace specification of an application server strand,
we have that  4 servK

T is received by A earlier than
the time ktimesessionKcrST and imeshrKcracktaT .
By Lemma 7, servK is safe at that time.

Lemma 14 Let BadBA, , TGSsB . If 3i is a
client strand in a service phase such that 3[,iAgent_III

],,,,, 4 tservTicketservKA and ,1)(3i , and 2i is a
client strand in the authorization phase such that

2[, , , , , , , ,Si A authK authTicket B servK T servTicketAgent_II

2 3,]t t and 2 3i i , then there exists an application
server strand b such that 4,,,,,[tTservKBAb SApps ,

],,  and ,1)(b .
Proof. By analysis on the form of strand 3i and ,2i

we have (1) ,1)(3iterm =  4 servK
t and (2)  , ,A B

,
authK

servK Ts  ,1)(2iterm . By unfolding the
definition of Agent_II, there exists a client strand 1i
such that 1i  2i and Ag-I ,[1i ,A ,Tgs ,authK ,aT

,authTicket ,0t]1t and Tgs  TGSs for some
,Tgs ,aT ,0t .1t Obviously, (3)  , , , a KA

A Tgs authK T 
,1),(1iterm ,1)(1itime  aT imeshrKcrackt . From

1i  2i and 2i  ,3i we can easily conclude that
,1)(1i

 ,1)(3i and ,1)(2i
 ,1).(3i With

,1)(3i   , we have ,1)(2i   and ,1)(1i   .
With (2)(3), by Lemma 7, (4)  mterm  servK for any
node m such that)(mtime  ST ktimesessionKcr .
By the definition of Agent_III we have (5)

,1)(3itime  ST ktime.sessionKcr From (4)(5), we
have  mterm  servK for any node m such that

)(mtime  ,1),(3itime therefore regular
 .,1),(, 3 iservK So ,1)(3i is an unsolicited test for
 4 servK

T in . By Lemma 1, (5) there is a regular
positive node m such that m ,1)(3i and  4 servK

t
  mterm and  4 authK

t )('mterm for any node
'm such that 'm .m Obviously m . By simple

case analysis, we have that m must be in an application
server b such that ,[bApps ,'A ,'B ,'servK ,'

ST ,4
't

,], ,1).(= bm By the definition of Apps ,

,1)(bterm = .4 'servK
't With ,1)(4 btermt servK , we have (6)

servKservK' = and .= 44 tt'

Let
 
   .|

,,,

,,,,
= tservKt

TservKBA

TservKBA
M

authKS

BKS

df 












Obviously ,0)(btime ,1)(btime ,1)(3itime  ST

 ktimesessionKcr , by the proof of Lemma 7, we have
,0)(bterm ),(Msynth i.e.,

    4, , , , ()
B

' ' ' '
S ' servKK

A B servK T t synth M



  .

By the definition of synth , we have

 , , ,
B

' ' ' '
S 'K

A B servK T

),(Msynth

then we have (7)  , , ,
B

' ' ' '
S 'K

A B servK T

 M or (8)

 , , ,' ' ' '
SA B servK T ).(Msynth If (7) holds, from (6)

(7) and the definition of M , we have

 , , , SA B servK T   , , ,' ' ' '
SA B servK T ,

then A = 'A and B = 'B and ST = .'
ST Therefore,

the conclusion holds. If (8) holds, by the definition of

synth, we have 'servK ),(Msynth with (6), we have

servK ),(Msynth then by the definition of synth,

we have servK  ,M but this contradicts with the
definition of M .

Roughly speaking, we need two steps to prove an
authentication goal that if there is a regular responder
strand Resp (r , x


) and the k -th node of the strand is in

a bundle  , then there is an initiator strand Init (i , x


)
and some j -th node of the initiator strand is in  .
First we prove that),(kr is an unsolicited test for some
encrypted term  

K
h in  , which requires the secrecy

of K . This is can be easily proved by the secrecy results
on keys in section 3. Therefore, we have that there exists
some regular node m in  by Lemma 2. Second, we
need prove that m indeed is the intended node),(ji .
In order to prove this, we need do case analysis on the
form of the strand which m possibly lies in. This proof
needs unicity property of some session keys and the
results of unsolicted tests, namely, the facts that  

K
h

)(mterm and m is minimal.

6. Conclusions and Related Work

Our main aim is to extend and mechanize the strand
space theory to analyze Kerberos V, since mechanization
in a theorem prover not only helps us model protocols
rigorously and specify protocol goals without any
ambiguity, it also guarantees a formal proof. Besides the

Y. J. LI ET AL.

Copyright © 2010 SciRes. JIS

67

essential inherence from the classic strand space method,
our work is deeply inspired by Paulson and Bella’s work.
We have directly used their formalization of message
algebra, and have learned a lot about the semantics of
timestamps and replay attacks from [4]. However, we
model and analyze protocols in strand space theory
rather than in Paulson's trace theory. In detail, we model
behaviors of all the agents by strands, and mainly use the
well-founded induction principle to prove properties. So
in our Isabelle formalization, main efforts have been
devoted to definitions and lemmas about strand space
theory. e.g., we formalize strands, bundles, unique
originality, the well-founded principle on bundles, and
use this principle to prove important results such as
unsolicited authentication test and regularity of keys.

In [4], the ability of a penetrator to crack a stale en-
crypted message is modelled by the Oops rule in the
inductive definition of a trace, and the trace definition
depends on the protocol under study. However, in the
strand space theory, a penetrator’s abilities are modelled
to be independent of the protocol, that is the main reason
why we relate a key with a crack time, and model a
penetrator’s ability of cracking a stale encrypted message
by a new key cracking strand. The advantage of our
method is that modelling a penetrator’s behavior remains
independent and results such as the unsolicited authen-
tication tests can be generalized.

Regarding verification of the Kerberos protocols,
Mitchell et al. [7] analyzed a simplified version of the
protocol by model checking, and Butler et al. [8]
analyzed the Kerberos V protocol using MSR [9]. But
they did not include timestamps and replay attacks in
their model, in fact the former work ignored both nonces

and timestamps, and the latter only considered the
implementation of the Kerberos protocol basing on
nonce.

7. References

[1] S. P. Miller, J. I. Neuman, J. I. Schiller and J. H. Saltzer,

“Kerberos Authentication and Authorisation System,”
Technical Report, Technical Plan Section E.2.1, MIT,
Athena, 1989.

[2] K. R. C. Neuman and S. Hartman, “The Kerberos Net-
work Authentication Service (v5),” Technical report,
Internet RFC 4120, July 2005.

[3] Y. L. and J. Pang, “Extending the Strand Space Method
with Timestamps: Part I the Theory,” Journal of Informa-
tion Security, Vol. 1, No. 2, 2010, pp. 45-55.

[4] G. Bella, “Inductive Verification of Cryptographic Pro-
tocols,” PhD Thesis, Cambridge University Computer
Laboratory, 2000.

[5] F. Javier Thayer, J. C. Herzog and J. D. Guttman, “Strand
Spaces: Proving Security Protocols Correct,” Journal of
Computer Security, Vol. 7, No. 1, 1999, pp. 191-230.

[6] Y. Li, “Strand Space and Security Protocols”. http://lcs.
ios.ac.cn/˜lyj238/strand.html.

[7] J. C. Mitchell, M. Mitchell and U. Stern, “Automated
Analysis of Cryptographic Protocols Using Murphi,”
Proceedings of 18th Symposium on Security and Privacy,
1997, pp. 141-153.

[8] L. Bozga, C. Ene and Y. Lakhnech, “A Symbolic Deci-
sion Procedure for Cryptographic Protocols with Time
Stamps,” Journal of Logic and Algebraic Programming,
Vol. 65, No. 1, 2005, pp. 1-35.

[9] F. Butler, I. Cervesato, A. Jaggard and A. Scedrov, “A
formal Analysis of Some Properties of Kerberos 5 Using
MSR,” Proceedings of 15th IEEE Computer Security
Foundations Workshop, 2002, pp. 175-190.

Journal of Information Security, 2010, 1, 68-73
doi:10.4236/jis.2010.12008 Published Online October 2010 (http://www.SciRP.org/journal/jis)

Copyright © 2010 SciRes. JIS

Sustainable Tourism Using Security Cameras with Privacy
Protecting Ability

Vacharee Prashyanusorn1, Yusaku Fuji2, Somkuan Kaviya1, Somsak Mitatha3, Preecha Yupapin3
1Innovative Communication Program, Krirk University, Bangkok, Thailand

2Gunma University, Kiryu, Japan
3King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand

E-mail: vacharee_prashyanusorn@hotmail.com, fujii@el.gunma-u.ac.jp, courting_19@hotmail.com,
kmsomsak@kmitl.ac.th, kypreech@kmitl.ac.th

Received September 26, 2010; revised October 12, 2010; accepted October 15, 2010

Abstract

For sustainable tourism, a novel method of security camera operation is proposed. In the method, security
cameras, which encrypt the taken images and store them into the memory card inside, are used. Only when
crimes occur, the memory cards are taken out from the cameras and the images are decrypted with the key
and viewed by the city government and/or the police. When no crimes occur, images are overwritten by the
new ones after a week automatically without being viewed by anyone. By using the stand-alone cameras
without wiring to the control center, the installation cost and the operation cost are much lower than CCTV
cameras. By using image encryption, the privacy of the tourists is protected. Using this system, high density
installation of the security cameras with very low cost can be realized in encryption with image encryption
privacy protection function.

Keywords: Innovative Communication, Security Camera, Privacy, Safety, Sustainable Tourism,

Crime Prevention

1. Introduction

In the sightseeing places, security camera systems, such
as Closed-circuit Television (CCTV) system, are now
widely used and can be found in ordinary shops and citi-
zens’ houses. These systems sometimes play an impor-
tant role in reducing crime and identifying suspects.
However, many problems seem to arise with regard to
such security camera systems because of the fact that
they are introduced only for the benefit of the owners.
One problem is that an expensive high-end security
camera system is required for maintaining complete sur-
veillance of an owner’s property. The second problem is
that a typical system usually keeps watch only inside the
owner's property; therefore, it cannot be used for the
overall safety of the community. The third problem is
that if the system keeps a watch outside the owner’s
property, it could amount to invasion of the privacy of
neighbour. We argue that these problems can be solved if
the camera systems are introduced within an altruistic,
community-minded framework.

Recently, many security camera systems have been in-

stalled in some countries such as the United Kingdom
and the United States of America, by the national and the
local governments. Although, it is difficult to evaluate
the effectiveness of the security camera system in pre-
enting crime [1,2], which are obvious that they can cap-
ture images of any person or car passing within their
range. If a considerable number of security cameras are
installed without any dead angles on every road, then
every criminal who uses the roads can be captured and
traced.

However, a center-controlled real-time monitoring
system such as the typical systems costs a considerable
amount of money and cannot be introduced everywhere
without any dead angles. Therefore, we propose a new
concept according to which a community can effectively
prevent crime if some residents keep watch on what
happens around their houses with the aid of their own
home computers, cheap commercially available cameras,
and free software. Figure 1 shows the concept of the
e-JIKEI Network.

Many types of software applications for capturing
video images are available; however, we could not find a

V. PRASHYANUSORN ET AL.

Copyright © 2010 SciRes. JIS

69

Figure 1. Concept of “e-JIKEI with privacy protection”.

free one that could be used to implement our concept.
Therefore, we have developed asoftware with the mini-
mum necessary functions and distributed it free of charge
through our website [3]. The software supports both Eng-
lish and Japanese languages. The software simply selects
relevant pictures and saves them to the hard disk [4].
This concept has been discussed from the viewpoints of
social science [5], homeland security [6] and e-Govern-
ment [7].

2. Personal Computer (PC)-Based System

Using Free Software

We have provided the first version of the free software
“Dairy EYE standard.” Its functions are very limited but
essential. The major features of the software are as fol-
lows:

• High stability: It can be run continuously for more
than 300 days.

• High operation of file storage: The file name and its
path express time and location information.

• Minimum necessary storage: Simple picture selec-
tion software has been adapted. The software saves a
picture only when the difference between two consecu-
tive pictures exceeds the threshold.

• Automatic delete: Folders that are older than the save
period set by the owner are automatically deleted.

• Compatibility with many types of cameras: The
software can operate in the VFW mode (PC cameras and
USB video adapters) and the FTP mode (network cam-
eras).

• Simultaneous operation: The software can operate
several cameras connected to a PC.

• No Internet connection: Because of concerns related
to privacy, the function of connection to the Internet was
disabled in the distributed version of the software. Even
in this case, the e-JIKEI Network can be formed, where
the word "Network" refers not to the Internet but to the
personal network of the residents.

We think that the e-JIKEI Network system should be
easily installed in a D.I.Y. (Do It Yourself) manner at a
low cost. Figure 2 shows the examples of camera set-

(a) e-JIKEI Camera (b) e-JIKEI Light

Figure 2. Prototype of the e-JIKEI camera and e-JIKEI
Light.

tings. In one case, an inexpensive network camera is in-
stalled outside a house. In the other case, an inexpensive
USB PC camera is installed inside a house by using ad-
hesive tape.

3. E-JIKEI with Privacy Protection

We propose a new concept regarding the management of
security cameras, e-JIKEI with Privacy Protection, in
which those who own and manage images (owners) and
those who have the right to view these images (viewers)
are separated by means of the encryption of the images
[8]. On the basis of this concept, encrypted images are
transferred from an owner to a viewer only when both
the owner and the viewer consider it necessary, such as
in the case of crimes; then, the encrypted images are re-
stored for viewing by the viewer. By this method, the
images can be viewed only when absolutely necessary.
This concept has been proposed to prevent the risk of
privacy violation, as well as to reduce the unnecessary
psychological burden that third parties may be subjected
to, with the aim of promoting the placement of security
cameras throughout local communities.

By managing the security camera system using our
concept, it is possible to markedly reduce the negative
effects associated with the introduction of security cam-
eras, such as concerns over the violation of privacy,
without reducing the positive effects, such as crime pre-
vention at places other than those requiring high-level
security and constantly manned surveillance, i.e., most
communities, while providing recorded images to invest-
tigating authorities in the case of crime.

In a practical example carried out in Kiryu City,
Gunma Prefecture, a PC-based security camera system is
owned and managed by the owners of retail stores affili-
ated with the merchant association “Suehirocho Shoten-
gai Shinkokyokai,” and images are encrypted and stored

V. PRASHYANUSORN ET AL.

Copyright © 2010 SciRes. JIS

70

in the system. To view the stored images, special soft-
ware installed in the PCs at the Police Department of
Kiryu City must be used. Only when the owners of the
retail stores and the police determine that it is necessary
to view these images, are the stored images transferred
from the owners of the retail stores to the police. Then,
the stored images are viewed by the police and used as
information for investigations. The encrypted images that
are stored at retail stores are automatically deleted after
30 days if no incidents or accidents have occurred.

To prove that the software installed in the PC defi-
nitely encrypts the images with the cipher-key owned by
only the police, a paper on which the owner states the
purpose of the camera system and allows the investiga-
tions by the merchant association at any time is posted
near the cameras. Because the owners of retail stores
purely wish to safeguard their shopping street and the
customers, and do not intend to violate the privacy of
their customers, the installed system is ideal for them.

4. All-in-One System “E-JIKEI Camera”

In the experiments of the PC-based system, we have re-
alized that the PC-based system is not very user-friendly
since it is difficult for ordinary residents to maintain and
operate PCs. In the near future, when home automation is
widespread, this problem of PC operation will be solved.
However, at this time, it is a serious obstacle for the wide-
spread nationwide use of the e-JIKEI Network. There-
fore, we decided to develop an all-in-one system without
the use of a PC.

We have developed a prototype of security camera
systems “e-JIKEI Camera,” which can realize the con-
cept of “e-JIKEI with Privacy Protection.” Figure 3
shows the prototype of the e-JIKEI Camera. It only re-
quires an AC power supply and can be attached outdoors
just like a streetlamp. If it is mass produced, the cost per
camera will be less than 200 USD. The features of the
developed camera are as follows:

1) It can realize the concept of “e-JIKEI with Privacy
Protection.”

2) All images are encrypted and stored in the mem-
ory.

3) To decrypt and view the image, both the special
software and the secret key are required.

4) It has a card-type memory of 16 GB, in which the
images for the last 1 week are recorded.

5) It can be placed outside.
6) It requires an AC power supply of only 100-240

ACV.
7) The price of the prototype, the first 1000 pieces, is

500 USD/piece.
There are many types of security camera systems

available; however, a system with the above features
does not exist, except for the newly developed e-JIKEI
Camera.

The e-JIKEI Camera is used for realizing our concept
of a security camera system in which those who own
images (owners) and those who have the right to view
the images (viewers) are separated by means of image
encryption. This concept was suggested with the aim of
preventing the risk of privacy violation, reducing the
unnecessary psychological burden that third parties may
experience, and promoting the placement of security
cameras in local communities.

In Kiryu city, Japan, a social experiment has been
conducted since 30 May 2009, in which eleven cameras
are installed on the poles of the street lamps in a residen-
tial area, as illustrated in Figure 3(b). Figure 4 shows
the location of the 11 e-JIKEI Cameras and the 411 street
lamps in the area, where 2218 homes are located. In the
experiment, the owner of the images is the PTA (Par-
ent-Teacher Association) of the Higashi Elementary
School, and the viewer is the Kiryu Police Station.

(a) Setting of e-JIKEI Camera (b) Setting of e-JIKEI Light

Figure 3. Examples of camera installation in walking street
in Pattaya City.

Figure 4. Locations of e-JIKEI cameras and street lamps.

V. PRASHYANUSORN ET AL.

Copyright © 2010 SciRes. JIS

71

Figure 5 shows the procedure for using the e-JIKEI
camera in the experiment. Before the experiment, we
explained the concept of e-JIKEI with Privacy Protection
to the residents of all the 2218 homes by circulating a
notice for the same and in an explanation meeting held at
the community hall. Our proposal for this experiment
was granted by the residents without any negative opin-
ions. During the first six months of the experiment, three
crimes were committed. In each case, the police asked
the PTA to provide the images, and the PTA decided to
grant the police request. During the experiment, many
residents expressed their opinion that the e-JIKEI Cam-
eras were very effective in improving the safety of the
community but the number of cameras was still very
small compared to the number of street lamps.

Recently, we held a discussion with the residents, PTA,
and police. The residents and the PTA provided the fol-
lowing opinions about the installed system:

1) It seems very effective in improving the safety of
the community.

2) Number of cameras is very small.
3) Privacy violation seems to be perfectly prevented.
4) The cost is comparable to that of the usual street

lamps and therefore affordable.

(a) Picture taken by e-JIKEI Camera-1

(b) Picture taken by e-JIKEI Camera-5

Figure 5. Pictures taken by the cameras.

The police had the following opinions:
1) The reliability of the system is very high. (There

has been no trouble for more than six months now.)
2) The quality of the images is acceptable but can be

improved.
3) We hope this camera system spreads all over the

city.
If our concept on the security camera system with pri-

vacy protection is accepted by society, then a consider-
able number of cameras, which is comparable to the
number of streetlamps, will be introduced in communi-
ties throughout the country and the world. Then, every
street will be watched by numerous cameras, and photo-
graphs of suspects can be provided to the police once a
crime occurs in a community.

In the current all-in-one security camera in the e-JIKEI
Network, the camera has to be opened to remove the
memory card. However, this inconvenience is preferred
from the viewpoint of privacy protection, especially in
the initial stage of the society’s gradual acceptance of our
concept. However, in the near future, the cameras will be
connected to the Internet after the information security
system between the owners and the viewers is estab-
lished. Thereafter, online operations of solving crime,
such as the rescue of kidnapped child CCTV camera
system [11,12] is suitable for the real time monitoring of
the very important points. However, the cost of installa-
tion/maintenance/operation is high, Then the number of
the cameras are strictly limited due to such costs.ren, can
be implemented.

5. Discussions

Comparing to the existing the CCTV camera system in
Pattaya City, the e-JIKEI Camera has the following fea-
tures,

1) Low installation cost: The wiring to the control
room and control room itself are not necessary. Only AC
power supply is required.

2) Low maintenance/operation cost: The memory
cards of the cameras are only taken, when the city gov-
ernment thinks that necessary.

3) Privacy Protection: Only crime occurs, only the
certain officers of the city government can view the im-
ages.

In the case of the Pattaya City, we propose that the
combination the existing CCTV system and the e-JIKEI
Cameras. 300 pieces CCTV system watches for only the
very busy points, and the huge number of the e-JIKEI
Cameras watch the dead-angle of the CCTV in the busy
area. In addition, if a huge number of the e-JIKEI Cam-
eras are installed to the quiet residential area, the safety
of the whole city will be increased significantly.

V. PRASHYANUSORN ET AL.

Copyright © 2010 SciRes. JIS

72

If the memory capacity is sufficiently large, the selec-
tion of images, in which only the images that are suffi-
ciently different from the previous ones are saved, is not
necessary. If the memory capacity is small and memory
needs to be conserved, then the selection of images is
useful. However, in general, there is no selection algo-
rithm that has a zero failure rate with respect to the se-
lection of necessary images. If all the images are saved
without image selection, then the failure of saving a nec-
essary image is prevented. In addition, without this se-
lection, the CPU power can be saved.

At this moment, only the software and programmable
stand-alone camera devices, which do not connect to the
Internet, have been developed. If the system of security
cameras connected to computers and to the Internet
spreads nationwide, a very powerful and flexible social
structure can be formed. In addition, the software in-
stalled in each system can be easily upgraded. This
means that this social structure can lead to very interest-
ing research subjects and applications for software re-
search, such as research involving image processing,
security systems, and artificial intelligence.

If the security cameras are to be connected to the
Internet, the protection of the privacy of the ordinary
citizen has to be considered very seriously. A different
social structure, including increased social awareness and
a revised legal system, will be required for the society; in
this structure, every outdoor location will be monitored
by security cameras, but the privacy of ordinary citizens
will be highly protected, being understood and accepted.

If the appropriate legal, social, and administrative sys-
tems are established, most residents will allow appropri-
ate third parties, such as the police department and the
city hall, to access their PCs and the saved information
through the Internet in the case of a community emer-
gency. In such a case, it will be necessary to ensure that
the access rights to the images saved on the PCs can be
separately, strictly, and flexibly defined and given to the
appropriate third parties by the owner of each system.

If the security cameras are connected to the Internet
and can be accessed by the police in the case of serious
crimes, the real-time chasing of criminals and rescue of
kidnapped children will be possible. A single control
station manned by the police, where many operators can
access images from cameras spread throughout the na-
tion, is required to realize such a social system.

6. Conclusions

We are asking citizens to compare the responsibility of
watching what happens around their houses with the risk
of violation of their privacy. In the meanwhile, we are
trying to increase the advantages of the security camera

such as crime prevention and identification of suspects
and to reduce its disadvantages such as violation of pri-
vacy. We are now commencing tests to assess the true
contribution of our concept toward the realization of a
safer and more comfortable community.

7. Acknowledgements

The Japanese team was supported by the research aid
fund of the Research Foundation for Safe Society and the
Grant-in-Aid for Scientific Research (B) 21300268
(KAKENHI 21300268).

The authors would also like to give their acknowl-
edgement to Pattaya City Council, Chonburi, Thailand
for the research facility under the tourism with safety and
privacy project.

8. References

[1] C. Welsh and D. Farrington, “Crime Prevention Effects

of Closed Circuit Television: A Systematic Review,”
Home Office Research Study, 252, 2002.

[2] M. Gill and A. Spriggs, “Assessing the Impact of CCTV,”
Home Office Research Study, 292, 2005.

[3] NPO, The e-JIKEI Network Promotion Institute. http://
www.e-jikei.org/index_e.htm/.

[4] Y. Fujii, N. Yoshiura and N. Ohta, “Community Security
by Widely Available Information Technology,” JoCI 2005,
2. http://ci-journal.net/index.php/ciej/article/view/285/.

[5] Y. Fujii, N. Yoshiura and N. Ohta, “Creating a World-
wide Community Security Structure Using Individually
Maintained Home Computers: The e-JIKEI Network Pro-
ject,” Soc. Sci. Comput. Rev., Vol. 23, 2005, pp. 250-258.

[6] N. Yoshiura, Y. Fujii and N. Ohta, “Using the Security
Camera System Based On Individually Maintained Com-
puters For Homeland Security: The e-JIKEI Network
Project,” Proc. IEEE IMTC, Ottawa, Canada, 2005, pp.
101-105.

[7] H. Ueda, Y. Fujii, S. Kumakura, N. Yoshiura and N. Ohta,
“e-JIKEI Network Project/Japan: Enhancing Community
Security,” eGov., Vol. 11, 2009, pp. 9-11.

[8] Y. Fujii, K. Maru, N. Yoshiura, N. Ohta, H. Ueda and Y.
Sugita, “New Concept Regarding Management of Secu-
rity Cameras,” JoCI 2008, 4. http://www.ci-journal.net/
index.php/ciej/article/view/442/427/

[9] Y. Fujii, K. Maru, K. Kobayashi, N. Yoshiura, N. Ohta,
H. Ueda and P. P. Yupapin, “e-JIKEI Network Using
e-JIKEI Cameras: Community Security Using Consider-
able Number of Cheap Stand-Alone Cameras,” Safety
Science, Vol. 48, No. 7, 2010, pp. 921-925.

[10] V. Prashyanusorn, S. Kaviya and P. P. Yupapin, “Sur-
veillance System for Sustainable Tourism with Safety and
Privacy Protection,” Procedia—Social and Behavioral
Sciences, Vol. 2, 2020, pp. 74-78.

[11] M. Zhang, B. Yang, S. Zhu and W. Zhang, “Ordered

V. PRASHYANUSORN ET AL.

Copyright © 2010 SciRes. JIS

73

semiring-Based Trust Establish Model with Risk Evalu-
ating,” International Journal of Network Security, Vol. 8,
No. 2, 2009, pp. 101-106.

[12] S. H. Chiu, C. P. Lu and C. Y. Wen, “A Motion Detec-

tion-Based Framework for Improving Image Quality of
CCTV Security Systems,” Journal of Forensic Sciences,
Vol. 51, No. 5, 2006, pp. 1115-1119.

Journal of Information Security, 2010, 1, 74-87
doi:10.4236/jis.2010.12009 Published Online October 2010 (http://www.SciRP.org/journal/jis)

Copyright © 2010 SciRes. JIS

iPhone Security Analysis

Vaibhav Ranchhoddas Pandya, Mark Stamp
Department of Computer Science, San Jose State University, San Jose, USA

E-mail: stamp@cs.sjsu.edu
Received August 10, 2010; revised September 21, 2010; accepted October 15, 2010

Abstract

The release of Apple’s iPhone was one of the most intensively publicized product releases in the history of
mobile devices. While the iPhone wowed users with its exciting design and features, it also angered many for
not allowing installation of third party applications and for working exclusively with AT & T wireless ser-
vices (in the US). Besides the US, iPhone was only sold only in a few other selected countries. Software at-
tacks were developed to overcome both limitations. The development of those attacks and further evaluation
revealed several vulnerabilities in iPhone security. In this paper, we examine some of the attacks developed
for the iPhone as a way of investigating the iPhone’s security structure. We also analyze the security holes
that have been discovered and make suggestions for improving iPhone security.

Keywords: iPhone, Wireless, Mobile, Smartphone, Jailbreaking, Reverse Engineering

1. Introduction

The release of Apple’s iPhone on June 29, 2007 was one
of the most heavily publicized events in the history of
mobile electronics devices. Thousands of people lined up
outside Apple stores prior to its release. Approximately
three and half million iPhones were sold within the first
six months of its release in the U.S. alone [1]. By any
measure, the iPhone has been a commercial successin
spite of being a first-timer in the smart phone industry,
Apple immediately outpaced traditional cell phone giants
like Nokia, Motorola, and LG. The iPhone is an all-in-
one package including a cell phone, a digital music and
video player, a camera, a digital photo, music, and video
library, and more [2]. It has helpful widgets for maps,
weather, in addition to email and other Internet capabili-
ties [2].

1.1. Features

The iPhone confirms that Apple understands consumers’
desires, not only in terms of functionality, but also in
terms of appearance and style. While other smart phone
companies have offered products that include features
offered by the iPhone, none have approached the iPhone
in terms of popularity and sales. Phone features include a
soft keypad with the ability to easily merge calls and
visually obtain voicemail information. Apple took ad-
vantage of iPod’s popularity by including complete iPod

functionality in the iPhone. A full-functional web
browser with zoom in/out functionality made internet
surfing experience on a mobile phone better than ever.
The Multi-Touch touch screen display allows for gliding
and scrolling besides zooming. The accelerometer de-
tects the orientation of the phone. These features put
iPhone above and beyond other smartphones such as
Blackberry and Motorola Q.

1.2. Hardware

The iPhone uses the ARM 1176JZF-S processor, which
offers good power management for superior battery life
and powerful processing for 3D graphics. Further details
regarding this processor are available on the ARM prod-
uct website [3]. Figure 1 shows how different functions
within the iPhone interface with one another [4]. Figure
2 shows an image of the board inside an iPhone.

2. Motivation

iPhones are supposed to only be used with AT & T wire-
less service (in the US). AT & T agreed to give a portion
of its revenue to Apple per each new contract it signed
with iPhone users. This agreement spawned outrage
among users of other GSM-based wireless services such
as T-Mobile since they could not offer services to iPhone
customers. Many people viewed this as an “unfair” move
by the two companies. People felt that they should be

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

75

Figure 1. iPhone architecture from a high level [4].

Figure 2. Board showing different parts in iPhone.

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

76

able to choose whatever wireless service they prefer and
should not be forced to use a particular one.

There was another reason that some iPhone users be-
came irritated. Apple designed iPhone as a closed system
that does not allow installation of third-party applications.
Users can only access a very small subset of the file sys-
tem, a “sandbox” where they can add and remove music
and other files via iTunes. Users who wanted to install
third-party applications such as widgets and games were
unable to do so.

These two limitations placed on iPhone users promp-
ted a series of hack and attack efforts by iPhone enthuse-
asts and hackers. “Jailbreak” is an iPhone hack that per-
mits the addition of third-party applications or gadgets
on the iPhone by permitting read/write access to the root
file system. Without “jailbreaking” an iPhone, a cus-
tomer is limited to the factory-installed tools included
with it. “Unlock” is an attack on iPhone that allows it to
be used with any wireless service offering the GSM stan-
dard, not just AT & T. Without “unlocking” an iPhone,
one can only use AT&T’s wireless services. Perhaps
surprisingly, jailbreaking is the more important of the
two because it is the first step to unlocking. We look at a
jailbreak attack in detail and also discuss different
unlocking solutions.

Due to the commercial success of the iPhone, it makes
a good candidate for security analysis. Having close to a
million iPhones jailbroken and unlocked within first six
months of its release, iPhone security obviously has had
significant financial implications. In addition, with more
millions of users worldwide, any security holes in iPhone
can jeopardize the privacy of millions of people. We
believe that these issues make the security analysis of
iPhone a worthwhile and important topic.

3. Jailbreaking

The process of gaining root access to the iPhone so that
third party tools can be installed is called Jailbreaking [5].
Without gaining read-write access to the root system, one
cannot install third party applications. Note that this
limitation prevents users from doing what they want to
do with their iPhones—products that they own. This is
somewhat analogous to buying a computer and not being
allowed to install new programs on it. There are several
websites (see, for example, [6]) that provide interesting
gadgets and games for iPhone. Some of the most popular
games are iSolitaire, iZoo, Tetris, iPhysics, and NOIZ2SA.
Beyond providing access to such applications, jailbreak-
ing is essential for another reason: it is the first step in
unlocking.

Without jailbreaking, one cannot install the necessary
application to use a wireless service other than AT & T.

Close to a million new iPhones were not activated with
AT & T in the first six months after its release [1]. With-
out jailbreaking, these iPhone owners would not be able
to use the phone part of the iPhone unless they signed a
contract with AT & T after switching from their existing
GSM wireless service provider. Even for AT & T cus-
tomers, jailbreaking is still necessary to enable the addi-
tion of third party applications to the iPhone.

3.1. Looking for Ideas

Immediately after its release, iPhone enthusiasts and
hackers all around the world were looking for a way to
gain root access. A feasible solution has to be reasonably
easy to use and should not take several hours to complete.
Hackers investigated various techniques for meeting
these requirements. They evaluated existing hacks for
other phones and devices and searched for similar vul-
nerabilities in the iPhone [7,8].

A previous hacker success was using buffer overflow
techniques on the Sony PSP. By exploiting vulnerability
in the Tag Image File Format (TIFF) library, libtiff, used
for viewing TIFFs, hackers were able to hack PSP to run
homebrew games, which was otherwise prohibited [9].

Hackers inspected Apple’s MobileSafari web browser
to see if it could be targeted for the same vulnerability. It
turned out that for firmware version 1.1.1 of the iPhone,
MobileSafari uses a vulnerable version of libtiff [10,11].
The exploitable vulnerability in libtiff is documented as
entry CVE-2006-3459 in Commom Vulnerabilities and
Exposures, a database tracking information security vul-
nerabilities and exposures [10]. This vulnerability is also
documented and tracked in the U.S. National Vulnerabil-
ity Database [12]. A malicious TIFF file can be created
to include the desired rogue code. When attempting to
view the malicious tiff file in a vulnerable version of
MobileSafari, the vulnerabilities in libtiff are exploited to
create a stack buffer overflow, and the malicious code is
injected and executed.

3.2. Stack Buffer Overflow and Return-To-Libc

Attacks

The attack we review, which exploits the libtiff vulner-
ability, uses a stack buffer overflow to inject code and
the “return-to-libc” technique to execute it. To illustrate
how a stack buffer overflow can be created and how a
return-to-libc attack works, we first consider a generic
example.

Consider the piece of code below [13]:
void func (char *passedStr) {
 char localStr[4]; // Note that only 4 bytes allo-

cated

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

77

 strcpy(localStr, passedStr); // length of pass-
edStr is not checked

}
int main (int argc, char **argv) {
 func(argv[1]);
}
Suppose that we have a program is called myprog.

Now, let us look at a simplified representation of the
stack when myprog is executed with “hi” as the input
parametersee Table 1 below.

Now, consider the stack when myprog is executed
with the string “goodsecurity.”

As it is clear from the tables above(Table 1, 2), our
program is only capable of handling a string with three
characters plus NULL. When a string of more than three
characters is passed, the extra characters cause stack
buffer overflow and overwrite other sections of the stack
[14]. Of course, the function func() should have per-
formed a string length check on passedStr to ensure that
it has three characters or fewer before the NULL. Any
piece of code that makes a mistake similar to this is po-
tentially vulnerable to a stack buffer overflow [14,15].

Instead of entering “good security,” a carefully crafted
string could be used. In the example above, suppose we
replace “good security” with, say, “good secu\x12\x34\
x56\x78.” In little-endian, the last 4 bytes are 0x78563412,
which might be the address of a function, say, system().
Then when the stack unwinds, instead of execution re-
turning to the calling function, the pre-existing function
indicated by the overwrite bytes will be executedin
this case, system(). Moreover, the stack could be over-
written so that desired parameter values are passed to a
pre-existing function [16]. Such an attack is generally
known as the return-to-libc attack. By discovering the
address of such a desirable function, an attacker can po-
tentially exploit a buffer overflow to execute the function
and thereby achieve the desired behavior. Furthermore,

Table 1. Simplified stack representation with proper input.

Parent function’s stack

Return address (4 bytes)

char* passedStr

hi\0 (4 bytes allocated for localStr. so String up to 3 characters is
a good input)

Table 2. Simplified stack representation with corrupting
input.

Parent function’s stack

“rity” (return address overwritten)

“secu” (char* passedStr overwritten)

“good” (expected 3 characters + \0, got 12)

by passing a carefully crafted malicious input that ex-
ploits a stack overflow, an attacker can even inject mali-
cious code that results in a chain of calls to such pre-
existing functions.

3.3. Libtiff Vulnerability

A vulnerability similar to that in the example above is
found in libtiff version 3.8.1 and earlieran area of
memory is accessed without performing an out-of-
bounds check. The vulnerability is in function TIFFFetch-
ShortPair in the tif_dirread.c file [10]. That function
fetches a pair of bytes or shorts, as the name implies. It
should throw an error if the request is to fetch more than
two bytes or shorts. Instead, it fetches any arbitrary
number of bytes requested. This vulnerability was fixed
in libtiff version 3.8.2. The source code for both versions
of libtiff can be downloaded from the Maptools.org web-
site [17]. Below we give excerpts of this function as it
appears in libtiff versions 3.8.1 and 3.8.2. First, we look
at the snippet from version 3.8.1:

static int
TIFFFetchShortPair(TIFF* tif, TIFFDirEntry* dir)
{
 switch (dir->tdir_type) {
 case TIFF_BYTE:
 case TIFF_SBYTE:
 {
 uint8 v[4];
 return TIFFFetchByteArray(tif, dir,

v)
 && TIFFSetField(tif,

dir->tdir_tag, v[0], v[1]);
 }
 case TIFF_SHORT:
 case TIFF_SSHORT:
 {
 uint16 v[2];
 return TIFFFetchShortArray(tif, dir,

v)
 && TIFFSetField(tif,

dir->tdir_tag, v[0], v[1]);
 }
 default:
 return 0;
 }
}
Now, let us look at the snippet from version 3.8.2,

which has the fix for the vulnerability. The fix is obvious
from the developer’s comments.

static int
TIFFFetchShortPair(TIFF* tif, TIFFDirEntry* dir)
{

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

78

 /*
 * Prevent overflowing the v stack arrays be-

low by performing a sanity
 * check on tdir_count, this should never be

greater than two.
 */
 if (dir->tdir_count > 2) {
 TIFFWarningExt(tif->tif_clientdata,

tif->tif_name,
 "unexpected count for field \"%s\", %lu,

expected 2; ignored",
 _TIFFFieldWithTag(tif,

dir->tdir_tag)->field_name,
 dir->tdir_count);
 return 0;
 }

 switch (dir->tdir_type) {
 case TIFF_BYTE:
 case TIFF_SBYTE:
 {
 uint8 v[4];
 return TIFFFetchByteArray(tif, dir,

v)
 && TIFFSetField(tif,

dir->tdir_tag, v[0], v[1]);
 }
 case TIFF_SHORT:
 case TIFF_SSHORT:
 {
 uint16 v[2];
 return TIFFFetchShortArray(tif, dir,

v)
 && TIFFSetField(tif,

dir->tdir_tag, v[0], v[1]);
 }
 default:
 return 0;
 }
}
To take advantage of the vulnerability in the TIFF li-

brary, a malicious TIFF file must be constructed. To ac-
complish that requires a reasonable working knowledge
of the TIFF file format. There are two important objec-
tives to keep in mind while constructing a malicious
TIFF file: causing buffer overflow and injecting code.
The iPhone is constructed around an ARM processor,
thus some knowledge of it is required for successful code
injection. Next, we discuss the TIFF format and give a
brief overview of the ARM processor.

3.4. TIFF

The TIFF standard is owned and maintained by Adobe. It
is tag-based format used primarily for scanned images
[18]. A TIFF file has a header section and descriptive
sections at the top of the file with offsets pointing to the
actual pixel image data [19]. This means that a poorly
constructed file may have tags pointing to incorrect off-
sets or offsets beyond the end of the file. Such aberra-
tions can be used to exploit a buffer overflow in poorly
written programs that read and manipulate tiff images
[19]. Some examples of tags include image height, image
width, planar configuration, and dot range. Different tags
give necessary information about the image including
color, compression, dimensions, and location of data.
Below is an example of a tiff file (“value” column) with
corresponding descriptions [18].

Offset Description Value
(hex) (numeric values are expressed in hexadecimal notation)
Header:
0000 Byte Order 4D4D
0002 42 002A
0004 1st IFD offset 00000014
IFD:
0014 Number of Directory Entries 000C
0016 NewSubfileType 00FE 0004 00000001 00000000
0022 ImageWidth 0100 0004 00000001 000007D0
002E ImageLength 0101 0004 00000001 00000BB8
003A Compression 0103 0003 00000001 8005 0000
0046 PhotometricInterpretation 0106 0003 00000001 0001 0000
0052 StripOffsets 0111 0004 000000BC 000000B6
005E RowsPerStrip 0116 0004 00000001 00000010
006A StripByteCounts 0117 0003 000000BC 000003A6
0076 XResolution 011A 0005 00000001 00000696
0082 YResolution 011B 0005 00000001 0000069E
008E Software 0131 0002 0000000E 000006A6

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

79

009A DateTime 0132 0002 00000014 000006B6
00A6 Next IFD offset 00000000
Values longer than 4 bytes:
00B6 StripOffsets Offset0, Offset1, ... Offset187
03A6 StripByteCounts Count0, Count1, ... Count187
0696 XResolution 0000012C 00000001
069E YResolution 0000012C 00000001
06A6 Software “PageMaker 4.0”
06B6 DateTime “1988:02:18 13:59:59”
Image Data:
00000700 Compressed data for strip 10
xxxxxxxx Compressed data for strip 179
xxxxxxxx Compressed data for strip 53
xxxxxxxx Compressed data for strip 160 …

The first two bytes in an Image File Directory (IFD)

represent the number of directory entries (14 in the ex-
ample above). The IFD then consists of a sequence of
tags, 12 bytes each, where the first two bytes identify the
field, and the next two identify the field type: short int,
long int, byte, or ASCII. The next four bytes specify the
number of values, and the final four specify the value
itself or an offset to the value [18]. Since TIFF files are
not intended to be human-readable, their contents are

best viewed in a hex editor.

3.5. Arm Processor

Since the ARM1176JZF-S processor is used in the
iPhone, some working knowledge regarding its architec-
ture and instruction set is required for this study. ARM is
a RISC-based processor. Figure 3 gives a high-level
diagram of ARM1176JZF-S.

Figure 3. ARM 1176JFZ-S processor [3].

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

80

The ARM processor can be configured in either little-
or big-endian modes to access its data [20]. The iPhone
runs the ARM processor in little-endian mode. For ex-
ample, if a value in a register is 0x12345678, in lit-
tle-endian mode it appears in memory “byte-reversed”,
that is, as 0x78 0x56 0x34 0x12. This is illustrated in the
Figures 4 and 5 below.

The ARM processor can be configured in either little-
or big-endian modes to access its data [20]. The iPhone
runs the ARM processor in little-endian mode. For ex-
ample, if a value in a register is 0x12345678, in lit-
tle-endian mode it appears in memory “byte-reversed”,
that is, as 0x78 0x56 0x34 0x12. This is illustrated in the
Figures 4 and 5 below.

3.6. Dre And Niacin’S Tiff Exploit Jailbreak

We now have accumulated the background required to
understand and reverse-engineer the libtiff exploit for
jailbreaking developed by two teenagers known as Dre
and Niacin. The source code for the attack is available on
Dre and Niacin’s website [23]. However, little explana-
tion is provided, so we found it necessary to reverse en-
gineer various aspects of the attack.

First, we verify and demonstrate the overflow problem.
Though the exploit was created for the iPhone, we dem-
onstrate the overflow on a Windows PC in cygwin to
mimic a Unix-like environment. First the exploit source
code was downloaded and compiled. Then, a malicious
TIFF badDotRange.tiff was created.

An interesting outcome occurred when we attempted
to create the code badDotRange.tiff. The file creation
was blocked by Norton AntiVirus software running on
the machine, and it claimed the file was “Bloodhound.
Exploit.166” [24]. Further information on the vulnerabil-
ity shows Norton characterizing badDotRange. tiff as a
Trojan and a Virus, as shown in Figure 6 [24].

Figure 4. Big-endian [22].

Figure 5. Little-endian [22].

Once the work area was put in the list of directories to

be excluded by Norton AntiVirus, badDotRange.tiff was
created; a hex editor view of the file is available in [25].

Next, we demonstrate the malicious TIFF file causing
a buffer overflow in libtiff. We also show a well formed
TIFF file being handled properly by libtiff. A program
was written to simulate the stack buffer overflow. Below
is a snippet from driver.cpp file.

int main() {
 cout << "Start!" << endl;
 TIFF* tif = TIFFOpen("c:/thesis/tiffExp/t1.tiff",

"r");
 if (tif) {
 cout << "Opened file successfully" << endl;
 } else {
 cout << "FAILED to open tiff file" << endl;
 }
 TIFFClose(tif);
 cout << "End!" << endl;
 return 0;
}
Next, badDotRange.tiff is copied to t1.tiff and

driver.cpp is compiled, linked with libtiff.a, and run,
which results in a segmentation fault, as shown below.

$cp badDotRange.tiff t1.tiff
$g++ -I /usr/local/include –g driver.cpp –c
$g++ driver.o –L. –ltiff –o driver.exe
$./driver.exe
Start!
Segmentation fault <core dumped>
The program execution sequence is the following:

TiffOpen() calls TIFFReadDirectory(), which upon en-
countering the DotRange tag calls TIFFFetchShortPair ()
as can be seen from the following snippet from tif_dir-
read.c.

case TIFFTAG_DOTRANGE:
 (void) TIFFFetchShortPair(tif, dp);

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

81

Figure 6. Bloodhound.Exploit.166 trojan [24].

 break;
case TIFFTAG_REFERENCEBLACKWHITE: …
As seen earlier, that function allocates memory for two

shorts, but instead receives the request to fetch 255 of
them. Below is the corresponding line in the source code
of the attack.
0x50,0x01,0x03,0x00,0xff,0x00,0x00,0x00,0x84,0x00,0
x00,0x00,

Since we are assuming little-endian representation, the
first two bytes become 0x0150, which represents the
DotRange tag. The next two bytes give us the value
0x0003, which means the data type is SHORT. The next
four bytes give us the number of different values for this
tag, which is 0x000000ff or 255 in decimal. Finally, the
final four bytes give us 0x00000084, which is the offset
to the actual values for the tag [18].

By looking at the TIFF specification [18] and also
looking at the code for the version of libtiff with sanity
check [17], we see that the number of parameters ex-
pected by DotRange is two. As seen in the stack buffer
overflow example, attempting to fetch 255 shorts causes
a stack buffer overflow. In our example, the program
overwrites the return value in the stack, changing it to
some area in memory that is not accessible, resulting in a
segmentation fault. Below, the line in badDotRange.tiff

corresponding to the DotRange tag is shown, as it ap-
pears in Hex Editor. The twelve bytes corresponding to
the DotRange tag appear from 0x74 to 0x7f.
0000070: 0100 0000 5001 0300 ff00 0000 8400 0000
P...........

Thus far, we have solved half of the problem of creat-
ing an attack by gaining control of the stack. Before we
move on to injecting particular code and executing it, we
first confirmed that a well-formed TIFF file is not recog-
nized as a virus by Norton AntiVirus and does not cause
a crash when opened with our program.

We now consider the code that provides root access to
the iPhone and observe how it is executed. As mentioned
earlier, this exploit uses the return-to-libc technique to
execute a sequence of pre-existing functions. These pre-
existing functions come from the dynamically loaded
libSystem. dylib, which can be disassembled and
searched for blocks of code that perform desired tasks
[26]. The iPhone only allows access to a small section of
the file system to add and remove music and other files.
This “sandbox” area is the directory /var/root/Media. The
algorithm used in the exploit renames /var/root/Media to
/var/root/OldMedia. It then creates a symbolic link with
/var/root/Media pointing to root, “/” and next it remounts
root with the “MNT_UPDATE” flag to make it writable

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

82

[23]. The malicious tiff file is crafted skillfully to set up
the stack to call the necessary functions from libSys-
tem.dylib. Each of those functions must be studied care-
fully to discover how many values it reads from the stack
and in what registers. The stack pointer must be set ap-
propriately, and the link registers must be set properly
for the next function call. With this method the exploit
uses pre-existing functions to make the iPhone root wri-
tablein other words, it “jailbreaks” the iPhone.

3.7. Summary of Jailbreaking

Let’s recap the tools needed and the process taken for
jailbreaking method used above. Vulnerability in tiff
library was targeted to create a stack buffer overflow and
inject desired code. Then return-to-libc technique was
used to execute desired code to make the root directory
of iPhone writeable – i.e. to jailbreak it. During the
process knowledge of TIFF was necessary in order to
construct a vulnerable TIFF file. Also, knowledge of
ARM processor architecture and it’s deficiencies were
required to ensure the attack works consistently on any
given iPhone. Furthermore, knowledge of ARM instruc-
tions was required to construct the code for the attack. In
summary, a great deal of research and learning was re-
quired in order to pick up the necessary tools to success-
fully create the Jailbreak attack.

4. Unlocking

The iPhone is considered unlocked when it is able to use
a cellular service other than that of AT & T. There are
several free and paid software unlocking solutions avail-
able on the Internet including AnySIM, TurboSIM, and
SimFree. Among these solutions, AnySIM seems to be
quite popular, likely because it is free. It is developed
by a group of people who call themselves the iPhone dev
team.

AnySim works by patching the firmware on the base-
band [27]. We can predict that somewhere in the base-
band firmware, there is code that checks whether the
SIM card being used is AT & T’s. If the check passes,
the baseband allows the phone part of the iPhone to work
normally; conversely, if the check fails, the phone func-
tion does not work. AnySim performs a patch to the
firmware so that it skips the above check and jumps to
the section of code that executes when the check passes
[27]. This procedure unlocks the iPhone because a SIM
card from any GSM wireless carrier can then be used to
make phone calls. If the baseband firmware is upgraded
or downgraded, the iPhone gets “un-unlocked”, as the
patch that skips the check will almost certainly no longer
be part of the code.

SimFree, also known as iPhone SimFree or IPSF, is
unlocking software that currently sells for approximately
$60, and at one point cost $99 [28]. Since it is a paid
product, details about how it works are not revealed. It
claims not to rely on firmware patching, so a phone
unlocked with SimFree should remain unlocked even
when a baseband upgrade is performed [27].

TurboSim is another paid solution for unlocking. It
tricks the iPhone SIM card checking function into think-
ing it is an AT & T SIM card by providing an Interna-
tional Mobile Subscriber ID (IMSI) and an Integrated
Circuit Card ID (ICC-ID)—also known as SIM Serial
Number (SSN). For TurboSim to work, it must be pro-
grammed with a valid AT & T SIM, which it copies for
later use [29].

Following table summarizes the above mentioned
unlocking methods.

Unlocking Method Technique used

AnySim
Patch the baseband to skip AT & T
SIM card check.

SimFree
Proprietary software application that
patches the iPhone firmware

TurboSim
Tricks iPhone into thinking that it’s
SIM card is an AT & T SIM card

5. Jailbreaking and Unlocking Newer

Versions of Iphone

As mentioned earlier, for the purposes of this project,
iPhone firmware version 1.1.1 and baseband bootloader
version 3.9 are assumed. As of 2008, Apple had released
versions 1.1.2, 1.1.3, and 1.1.4 of the firmware. Also, the
baseband bootloader version is 4.6 in some of the phones.
Can these phones be jailbroken and unlocked?

We use a simple approach: on newer versions of the
iPhone, we downgrade the firmware to version 1.1.1 and
the bootloader to version 3.9. Then we use the known
attacks to jailbreak and unlock the iPhone. Several
hacker websites, including iphone.unlock.no, offer in-
structions on how to downgrade the firmware and boot-
loader, and they also have different firmware files avail-
able for download [27].

Unlocking is not possible if the iPhone has version 4.6
or higher of bootloader because that version requires a
secpack—a special password—to modify the baseband
[30] and unlocking cannot be achieved without modify-
ing the baseband. Since version 3.9 of the bootloader
does not require any passwords, the baseband can be
modified, and unlocking can be achieved. For that reason
a “bootloader downgrader” tool gbootloader was devel-
oped by George Hotz and made available to iPhone users
[31]. The tool downgrades the bootloader from version

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

83

4.6 to version 3.9 so that a patch to the baseband can be
made and the iPhone can be unlocked.

Several other small utilities have been developed in
addition to the ones mentioned here, which allows users
to sort out different versions of firmware, baseband, and
bootloader and make appropriate choices. Tools have
been developed to upgrade the firmware on jailbroken
phones to pick up some of the latest features developed
by Apple for the iPhone.

6. Other Malicious Attacks

Attacks that we have examined so far do not carry the
intention to be malicious, though the libtiff attack cer-
tainly could be malicious, depending on the type of code
injected. For jailbreaking, the code injected was non-
malicious—both behavior and intention-wise. However,
using the libtiff vulnerability, malicious code could cer-
tainly be injected for a malicious attack. Now, let us
examine a couple of malicious attacks created by a group
of researchers at Independent Security Evaluators by
exploiting other vulnerabilities; those attacks give us
further insight into iPhone security. Details of the attacks
discussed below are not revealed; the goal of the re-
searchers was to make Apple aware of some of the issues
and not to let the hackers find out the details of the vul-
nerabilities and the attacks. The attacks expose well-
known security weaknesses in the OS X operating sys-
tem used in the iPhone, including lack of address ran-
domization and an executable heap [32].

The first attack consists of an exploit written to attack
Safari on the iPhone. When a malicious HTML docu-
ment was visited using MobileSafari, the iPhone was
forced to make a connection to an outbound compro-
mised server controlled by the attackers. The attackers
were then secretly and automatically able to obtain per-
sonal data including contacts, call history, text message,
and voice mail from the attacked iPhone. Attackers con-
cluded that further personal information including pass-
words and emails could have been obtained had they
chosen to do so [32]. What makes this attack even more
dangerous is the ease with which it can be carried out. A
link to a compromised website could be sent via email,
and the iPhone owner could be lured into visiting it. That
is all it would take to capture all of the personal data of
the iPhone owner.

A second exploit was written to perform physical ac-
tions on the phone such as making a system sound and
vibrating [32]. This exploit was run on the iPhone when
another malicious HTML was viewed using Safari
browser. To make matters worse, certain API functions
discovered during this exploit could have allowed it to
send text messages, dial phone numbers, or even record
audio and transmit it over the network [32]. This vulner-
ability is particularly dangerous since the phone bill or
text message bill could be increased by the attacker,
which could cost the iPhone’s owner a significant sum.
The attacker could also send maliciously provocative
messages to the owner’s contacts, which could result in
personal or professional relationship problems.

These malicious exploits are, collectively, comparable
to having one’s iPhone stolen. If attacks like these be-
come widespread, there is a potential that customers
would reconsider buying the iPhone.

While details of the attacks above were not disclosed,
let us look at the high level approach used in the above
MobileSafari attacks. This information could certainly be
used as a guideline for the attacks above, provided one is
able to write appropriate payloads. The iPhone uses
Webkit, an open source web browser engine used by
Mobile Safari [33], which in turn uses the Perl Compati-
ble Regular Expression Library (PCRE). One of the first
versions of iPhone used a version of PCRE that was
more than a year old. Several versions of PCRE had been
released with several bug fixes since the version used by
iPhone. One of the bug fixes found in the change log of a
newer version 6.7 [34] follows.

A valid (though odd) pattern that looked like a POSIX
character class but used an invalid character after [(for
example [[,abc,]]) caused pcre_compile() to give the er-
ror “Failed: internal error: code overflow” or in some
cases to crash with a glibc free() error. This could even
happen if the pattern terminated after [[but there just
happened to be a sequence of letters, a binary zero, and
a closing] in the memory that followed.

Now, one can review the bug fix and immediately get
ideas for possible attacks on the iPhone. Attackers used
the above vulnerability and constructed a regular expres-
sion in an HTML file that attacked the vulnerability
when the file was viewed in Safari. The HTML docu-
ment used was constructed as below [35]:

<SCRIPT LANGUAGE="JavaScript"><!--
var re = new RegExp("[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

84

[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]]
[[**]][[**]]ABCDEFGHIJKLMNOPQRSTUVWXYZAB-

CDEFG[\x01\x02\x03\x04\x05\x06\x07\x09\x0b\x0e\x0f\x11\x12\x13\x14\x15\x17\x19\x1b\x1c\x1d\x1f\x20\x21\x22
\x23\x25\x26\x27\x29\x2a\x2b\x2c\x2d\x2f\x30\x32\x33\x35\x37\x39\x3a\x3b
\x3c\x3e\x3f]XYZABCDEFGHIJKLMNOPQR");
</script>

To develop the exploit, attackers resorted to a tech-

nique called “fuzzing” [35], which involves passing dif-
ferent inputs that cause a given program to crash and
then analyzing the crash to gain insight about the pro-
gram. From the crash reports, they were able to get
useful information such as the stack pointer and values in
different registers. They then employed a technique to
overwrite the return address on the stack to point to the
heap area where shell code was injected [35]. The shell
code then executed and did the job of stealing private
information. The code consisted of typical socket con-
nect, open, read, and write functions. The researchers
have revealed some of the functions they used to perform
physical actions on the phone including making a system
sound, dialing phone calls, and sending SMS text mes-
sages. Those functions include AudioServicesPlaySys-
temSound from the Audio Toolbox library and CTCall-
Dial, CTSMSMessageCreate, and CTSMSMessageSend
from the Core Telephony library [35]. The purpose of
each function is clear from its name.

To summarize, vulnerabilities in PCRE were targeted
by creating a malicious HTML file to create a buffer
overflow, which facilitated injection and execution of
malicious code.

7. Security Analysis

Having briefly examined several vulnerabilities in the
iPhone and attacks that exploit those vulnerabilities, we
now analyze the iPhone security structure from a high
level. What was the approach Apple took while design-
ing the security architecture for the iPhone? Were there
flaws in this philosophy? What high-level approaches
can be used to exploit the security flaws? What are some
of the ways that Apple can either fix some of the vulner-
abilities or at least make it difficult for an attacker to
exploit them? Let us try to answer some of these ques-
tions.

It is clear that iPhone is a vulnerable device with sev-
eral security holes. The iPhone security philosophy itself
has a signifcant flaw. Apple’s approach to making the
iPhone a secure device was to reduce “the attack surface
of device” or “the device’s exposure to vulnerabilities”
[32]. To achieve this, Apple allowed write access only to
a sandbox area in the file system and disallowed installa-
tion of third-party applications. Several features of Safari

were removed in Mobile Safari, including the ability to
use plug-ins like Flash and the ability to download cer-
tain file types. Mobile Safari was restricted to only exe-
cute Javascript code, and only do so in the sandbox area.
In short, Apple’s approach was to make a controlled,
essentially closed-box device. Apple’s security approach
might be summed up by the following analogy: rather
than teaching a child how to swim to prevent him from
drowning, he is simply not allowed to jump in a lake.

While the security philosophy is debatable, the archi-
tecture has significant holes. Since Apple banked on
preventing the iPhone from being compromised in the
first place, it put very little effort into protecting different
parts of the device individually. This conclusion is sup-
ported by the fact that all significant processes run as a
super user or with administrative privileges—a major
mistake from a security perspective. A result of this con-
figuration is that an attacker is likely able to control the
entire iPhone if he is able to exploit any vulnerability in
any of its applications [32]. For example if Mobile Mail
were compromised by an attack, the attacker could also
gain access to contacts and pictures. In simple terms, the
iPhone’s security architecture looks like a home owner
putting all effort for securing his or her home into buying
a strong lock to stop an intruder from getting in. No ef-
fort is made to, say, secure individual room, to put valu-
ables in a safe-deposit box, to use a home security sys-
tem, etc. While it may be difficult to enter the house, if a
thief can do so, he can easily steal all its contents.

A security hole is also created by the fact that the
iPhone uses several applications including MobileSafari
and MobileMail that are based on open source projects.
While the use of open source is itself likely a good idea,
using (and sharing) of open source projects with old and
outdated versions of those projects is clearly a problem.
Earlier we looked at examples of an old version of libtiff
library facilitating the jailbreak attack, and an old version
of the PCRE library allows another malicious attack. By
using outdated versions of open source projects, Apple
made it relatively easy for hackers to develop ideas and
approaches for attacks attacks.

Apple also failed to make the exploitation of vulner-
abilities challenging for hackers. By not utilizing com-
mon techniques such as Address Space Layout Ran-
domization (ASLR) or non-executable heap in the ver-
sion of OS X used for iPhone, Apple has not posed any

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

85

particular difficulties for hackers in the development and
distribution of buffer overflow exploits [32].

The table below summarizes the attacks discussed in
this paper.

Attack Vulnerability targeted Tools used Effects

Jailbreaking Vulnerable libtiff
TIFF, buffer overflow,

return-to-libc, ARM architecture and
instructions

Get root access

Unlocking
Jailbroken phones allow for installation

of unauthorized applications
Installation of unauthorized

application
Being able to use the iPhone with

non-AT&T wireless services

Mobile safari (malicious) Vulnerable PCRE
Malicious HTML, fuzzing,

buffer overflow
Stolen personal data and other

malicious effects

Apple did employ some good practices and has shown

more effort recently in making the iPhone more secure.
That has not stopped the hackers, however, as they have
found solutions to the obstacles presented by Apple. For
example, the stack is non-executable in the iPhone, so an
attacker cannot simply add payload to the stack via a
buffer overflow and execute it. However, a non-execu-
table stack does not protect against the return-to-libc
attack, which was employed in the jailbreaking attack, as
we observed earlier. New versions of firmware have
been released with certain vulnerabilities fixed to prevent
jailbreaking. Unfortunately, these have been somewhat
countered by the ability to downgrade the firmware. Ap-
ple also attempted to prevent unlocking by using a new
version of the bootloader. That attempt failed because
hackers found a way to downgrade the bootloader as
well.

After evaluating Apple’s security for the iPhone, one
can safely conclude that overall the company failed to
make the iPhone as secure as it could possibly have been.
Looking at the security approach and the decisions the
company made, it is no surprise that the initial iPhones
were considered a fairly vulnerable device.

8. Analysis of Sample Decisions by Apple

Now that we have had a chance to analyze the iPhone’s
security structure, we can ask several questions regarding
different choices Apple has made. Why are they using
versions of open-source based packages that are about a
year out of date? Why did they choose to have almost all
important processes run as super user? Why did they not
use ASLR? Why did they use a vulnerable version of the
tiff library? This final question is particularly important
because even after three new versions of firmware and a
new version of the bootloader, Apple was still paying for
this mistake.

It seems implausible that Apple had no knowledge of
the vulnerability in libtiff that causes buffer overflow,
since this vulnerability is well known in the hacking
community and other mobile devices including Sony’s
PSP had been hacked using it. We can only speculate as

to why Apple used the vulnerable version of libtiff. Per-
haps there was an existing version of Safari with the
vulnerable version of libtiff ready to be used with iPhone.
One can certainly see that there is some cost involved in
using a new version of libtiff in Safari, which would
have to be thoroughly tested prior to being deployed in a
new version for iPhone. Perhaps Apple found that there
were other known vulnerabilities in the version used
anyway. Perhaps Apple performed a cost analysis of
losses suffered by delaying the new version of firmware
versus losses due to the number of people who would
hack the iPhone to jailbreak it and eventually unlock it
and use a wireless service other than that of AT & T.
Such a decision would express disregard for consumer
security, since the same vulnerability could be also used
to perform truly malicious acts.

From a short-term perspective, it is hard to argue with
the success of the iPhone. However, from the consumer
confidence or reputation perspective, the situation is not
so clear. Apple is generally regarded as a company that
delivers secure and robust products. They may have lost
some of that sheen with the iPhone.

9. Suggestions to Improve Security Structure

We have pinpointed several flaws in the initial iPhone
security structure. A large security hole would have been
filled if most of the processes were not run with adminis-
trative privileges, or as the super user. This would gener-
ally make it more difficult for an attacker to gain full
control of an iPhone.

While using open-source based applications is a good
idea, Apple needs to be more cognizant about using ver-
sions that do not have serious known bugs. Apple should
also use a technique such as ASLR for heap and stack
address randomization to make it more difficult for
hackers to develop stable attacks and distribute them [32].
Moreover, it could develop a mechanism that prohibits
both writing to and executing an area of the heap. Some
attacks copy the exploit payload into the heap area that is
both writeable and executable, and they execute it there.
If an area in heap was not both writeable and executable,

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

86

such attacks would be thwarted. Also, if ASLR were
employed, even if an attacker could successfully write an
attack that relies on an address in the stack or heap, dis-
tribution of the attack would be difficult, as the target
address is unreliable due to randomization.

10. Conclusions

In this paper, we considered the iPhone security structure
and its vulnerabilities. The Jailbreaking attack analyzed
here relied on a known vulnerability in the TIFF library.
The analysis of the attack required some knowledge of
the ARM architecture and the TIFF file format. We
showed that using a vulnerable version of the TIFF li-
brary proved costly for Apple, in the sense that updates
could not easily prevent “rollback” attacks. Interestingly,
hackers found ways to jailbreak later iPhone without
even losing the new features introduced in newer ver-
sions. Perhaps predictably, the attacks on the iPhone and
the countermeasures by Apple quickly devolved into a
cat and mouse game.

The security problems discussed here have resulted in
financial losses for both Apple and AT&T and, arguably,
a reputation loss for Apple. For each iPhone that was
unlocked to access an alternate wireless carrier, AT & T
stood to lose about $1500 in revenue for the two-year
contract period. As we noted earlier, the number of
unlocked iPhones was estimated at nearly a million in
just its first six months [1]. Apple too missed out on
some gains, as it receives a certain amount from AT & T
for each iPhone activated with AT&T. The security vul-
nerabilities of the iPhone have also affected Apple’s
reputation as a company, as it had been generally be-
lieved to deliver relatively secure products. While Ap-
ple’s exclusive deal with AT & T and its decision to use
a closed system undoubtedly increased the motivation to
attack the iPhone.

We have also explained that malicious attacks can be
created for the iPhone. However, the significant attacks
have not been malicious, but were instead focused on
enabling people more freedom to do what they want with
their telephone product.

We conclude that Apple’s initial effort in making the
iPhone a secure device was somewhat disappointing.
While Apple worked to improve iPhone security, the
initial release unnecessarily gave hackers the upper hand,
which, to some extent, has continued to this day.

10. References

[1] C. Maxcer, “Apple Minus AT&T Equals Lots of iPhones

Somewhere Else,” Mac News World. http://www.mac-
newsworld.com/story/61389.html?welcome=1209968031

[2] iPhone, Apple–iPhone. http://www.apple.com/iphone/

[3] ARM, ARM1176 Processor. http://www.arm.com/prod-
ucts/CPUs/ARM1176.html

[4] A. L. Shimpi, “Apple’s iPhone Dissected: We did it, so
you don’t have to,” Anandtech, 29 June 2007. http://www.
anandtech.com/mac/showdoc.aspx?i=3026&p=3

[5] In brief, Network Security, Vol. 2009, No. 7, July 2009,
pp. 3.

[6] Best iPhone Apps. http://www.Installerapps.com

[7] K Dunham, “Mobile Malware Attacks and Defense,”
Elsevier 2009, pp. 197-265.

[8] B. Haines, “Seven Deadliest Wireless Technologies At-
tacks,” Syngress, 2010.

[9] Max Console. http://www.maxconsole.net/?mode=news&
newsid= 9516

[10] Common Vulnerabilities and Exposures, 2006. http://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3459

[11] TIFF Library and Utilities, 15 January 2008. http://www.
libtiff.org/

[12] National Vulnerability Database, 2006. http://nvd.nist.
gov/nvd.cfm?cvename=CVE-2006-3459

[13] “Stack buffer overflow,” Wikipedia. http://en.wikipedia.
org/wiki/Stack_buffer_overflow

[14] M. Stamp, “Information Security: Principles and Prac-
tice,” Wiley 2005.

[15] C. Cowan, et al., “StackGuard: Automatic Adaptive De-
tection and Prevention of Buffer-Overflow Attacks,”
Proceedings of the 7th USENIX Security Symposium, San
Antonio, Texas, January 26-29, 1998.

[16] “Return-to-libc,” Wikipedia. http://en.wikipedia.org/wiki/
Return-to-libc

[17] Maptools, 15 January 2008. http://dl.maptools.org/dl/lib-
tiff/

[18] Adobe Developers Association, TIFF Revision 6.0 Final,
3 June 1992. http://partners.adobe.com/public/developer/
en/tiff/TIFF6.pdf

[19] “Tagged Image File Format,” Wikipedia. http://en.wiki-
pedia.org/wiki/TIFF

[20] Simple Machines, The ARM instruction set. http://www.
simplemachines.it/doc/arm_inst.pdf

[21] “1176JZF-S Technical Reference Manual Revision
r0p7,” ARM. http://infocenter.arm.com/help/topic/com.
arm.doc.ddi0301g/DDI0301G_arm1176jzfs_r0p7_trm.pdf

[22] “Little-endian,” Wikipedia. http://en.wikipedia.org/wiki/
Little_endian

[23] Toc2rta, TIFF exploit. http://www.toc2rta.com/files/itiff_
exploit.cpp

[24] “Bloodhound.Exploit.166 Technical Details,” Symantec,
9 November 2007.

[25] V. Pandya., IPhone security analysis, Masters Thesis,
Department of Computer Science, San Jose State Univer-
sity, 2008. http://www.cs.sjsu.edu/faculty/stamp/students/
pandya_vaibhav.pdf

V. R. PANDYA ET AL.

Copyright © 2010 SciRes. JIS

87

[26] Metasploit. http://www.metasploit.com

[27] iPhone UnlockUSA.com. http://iphone.unlock.no

[28] iPhone Sim Free. http://www.iphonesimfree.com

[29] Hackintosh, Turbosim Technical Background. http://
hackint0sh.org/forum/showthread.php?t=18048

[30] Hackintosh, iPhone. http://www.hackint0sh.org

[31] G. Hotz, “On the iPhone,” 15 February 2008. http://
iphonejtag.blogspot.com/

[32] C. Miller, J. Honoroff and J. Mason, “Security Evaluation
of Apple’s iPhone,” Independent Security Evaluators, 19

July 2007. http://securityevaluators.com/files/papers/ex-
ploitingiphone.pdf

[33] The Webkit Open Source Project. http://webkit.org/

[34] Perl Compatible Regular Expressions, Change log. http://
www.pcre.org/changelog.txt

[35] C. Miller, “Hacking Leopard: Tools and Techniques for
Attacking the Newest Mac OS X,” Black Hat Media Ar-
chives, 2 August 2007. https://www.blackhat.com/pres-
entations/bh-usa-07/Miller/Presentation/bh-usa-07-miller.
pdf

Journal of Information Security, 2010, 1, 88-94
doi:10.4236/jis.2010.12010 Published Online October 2010 (http://www.SciRP.org/journal/jis)

Copyright © 2010 SciRes. JIS

Denial of Service Due to Direct and Indirect ARP Storm
Attacks in LAN Environment*

Sanjeev Kumar, Orifiel Gomez
Department of Electrical/Computer Engineering, University of Texas—PanAm, Edinburg, USA

Email: sjk@utpa.edu, sanjeevk@utpa.edu
Received October 3, 2010; revised October 16, 2010; accepted October 19, 2010

Abstract

ARP-based Distributed Denial of Service (DDoS) attacks due to ARP-storms can happen in local area net-
works where many computer systems are infected by worms such as Code Red or by DDoS agents. In ARP
attack, the DDoS agents constantly send a barrage of ARP requests to the gateway, or to a victim computer
within the same sub-network, and tie up the resource of attacked gateway or host. In this paper, we set to
measure the impact of ARP-attack on resource exhaustion of computers in a local area network. Based on
attack experiments, we measure the exhaustion of processing and memory resources of a victim computer
and also other computers, which are located on the same network as the victim computer. Interestingly
enough, it is observed that an ARP-attack not only exhausts resource of the victim computer but also signifi-
cantly exhausts processing resource of other non-victim computers, which happen to be located on the same
local area network as the victim computer.

Keywords: ARP Attack, Computer Network Security, Computer Systems, Direct Attack, Distributed Denial of Ser-

vice Attacks (DDoS), Indirect Attack, Local Area Networks

1. Introduction

A Distributed Denial of Service (DDoS) attack [1,2] in-
volves multiple DoS agents configured to send attack
traffic to a single victim computer. DDoS is a deliberate
act that significantly degrades the quality and/or avail-
ability of services offered by a computer system by con-
suming its bandwidth and/or processing time. As a result,
legitimate users are unable to have full quality access to
a web service or services. A Denial of Service attack
consumes a victim’s system resource such as network
bandwidth, CPU time and memory. This may also in-
clude data structures such as open file handles, Trans-
mission Control Blocks (TCBs), process slots etc. Be-
cause of packet flooding in a DDoS attack that typically
strives to deplete available bandwidth and/or processing
resources, the degree of resource depletion depends on
the traffic type, volume of the attack traffic, and the
processing power of the victim computer.

According to Computer Emergency Response Team
Coordination Center (CERT/CC) [3], there has been an

increase in use of Multiple Windows-based DDoS agents.
There has been a significant shift from Unix to Windows
as an actively used host platform for DDoS agents. Fur-
thermore, there has been an increased targeting of Win-
dows end-users and servers. To raise awareness of such
vulnerabilities, the CERT/CC published a tech tip enti-
tled “Home Network Security” in July of 2001 [4]. Ac-
cording to the CERT/CC [3], there is a perception that
Windows end-users are generally less security conscious,
and less likely to be protected against or prepared to re-
spond to attacks compared to professional industrial sys-
tems and network administrators. Furthermore, large
populations of Windows end-users of an Internet Service
Provider are relatively easy to identify and hence the
attackers or intruders are leveraging easily identifiable
network blocks to selectively target and exploit Windows
end -user servers and computer systems.

In this paper, we consider a Distributed Denial of Ser-
vice (DDoS) attack that can be caused by a barrage of
ARP-requests sent to a victim computer. In order to un-
derstand the intensity of the attack, we conduct experi-
ments in a controlled lab environment to measure the

*Work of Dr. Kumar is supported in part by funding from CITeC, FRC,
FDC, OBRR/NIH, digital-X Inc, and US National Science Foundation.

S. KUMAR ET AL.

Copyright © 2010 SciRes. JIS

89

availability of the processing power and memory re-
sources of the victim computer during an ARP-attack.
Since, windows based servers are very commonly de-
ployed, we consider a Window-XP server with a 3.06
GHz Pentium-IV processor and 512 Mbytes of RAM to
be used as the victim computer in the ARP-attack ex-
periments. Section II presents a background on ARP and
how it is used to exploit vulnerability of a computer sys-
tem; Section III presents detail on use of ARP requests,
ARP format, types of ARP-request traffic, and the proc-
essing that needs to be done for ARP-request messages;
Section IV presents the experimental-setup, systems con-
figuration for DDoS attacks in the controlled lab envi-
ronment, and attack measurement results under direct
ARP attack traffic and Indirect ARP attack traffic; and
Section V provides discussion on detection and preven-
tion schemes for ARP storm attacks, Section VI con-
cludes the paper.

2. Arp-As an Attack Bullet

The Address Resolution Protocol (ARP) requests are
legitimate and essential for the operation of the network.
However, ARP can be used in more than one way to ex-
ploit the vulnerability of a computer system or a network.
Some of the security attacks involving ARP can cause
Denial of Service (DoS) attack by sending a massive
amount of ARP requests to a victim computer and tying
up its resource [5]. ARP can also be used to create De-
nial of Service attack by sending a victim computer’s
outgoing data to a sink by the technique of ARP cache
poisoning. Other ARP based attacks can result in unau-
thorized sniffing of packets, or hijacking of secured
Internet sessions. The Denial of Service attacks due to
ARP storms can also be caused by worms such as code
red due to their rapid scanning activity [6,7]. The worm
initiated ARP storms have been commonly found in
networks with high numbers of infected and active com-
puters and servers. In ARP storm, an attacked victim (the
gateway or a server) may receive a constant barrage of
ARP requests from attacking computers in the same
sub-network, and this ties up not only the network band-
width but also the processing resource of the victim
computer.

The worm Code-Red’s rapid scanning activity can
result in a denial-of-service attack against a Windows
NT 4.0 IIS 4.0 server with URL redirection enabled [6].
The worm Code-Red can easily spread to new vulnerable
systems, and there is a patch available for this vulner-
ability. Applying the patch can keep a server from being
infected by the worm Code-Red. Nevertheless, it is still
possible for the worm in other infected computers on the
network to attack the same chain of IP addresses over

and over again. This can generate a high-traffic overload
due to massive amount of ARP requests generated in the
network, which in turn can still affect the server’s per-
formance (despite the patch).

In this paper, we investigate the brute force of ARP
attack where a constant barrage of ARP requests is di-
rected to a victim computer. In this experiment, we set
out to measure how bad the effect of the ARP attack was
on the victim computer. Furthermore, we also measure
the extent of resource exhaustion due to the ARP attack
traffic on other computers located on the same LAN
segment as the victim computer. To understand the de-
gree of resource exhaustion, we measure performance in
terms of processor exhaustion, occupancy of systems’
memory and the page-file size. Since Microsoft Win-
dows-XP based computers and servers with high per-
formance Pentium-IV processors are becoming quite
affordable and popular with small businesses, we use a
Windows-XP based computer as a victim computer to be
stress-tested for the extent of resource exhaustion under
the ARP attack.

3. Processing an Arp-Request Message

3.1. Use of ARP-Request Message

A gateway or a host on a local area network uses ARP
request broadcast messages [8] for IP and hardware ad-
dress bindings. The ARP message contains the IP ad-
dress of the host for which a hardware address needs to
be resolved (Figure 2). All computers on a network re-
ceive ARP message and only the matching computer
responds by sending a reply that contains the needed
hardware address.

3.2. ARP Message Format

ARP is used for a variety of network technologies. The
ARP packet format varies depending on the type of net-
work being used. The ARP packet format used in
Ethernet is shown in Figure 1. While resolving IP pro-
tocol address, the Ethernet hardware uses 28-octet ARP
message format [8]. The ARP message format contains
fields to hold sender’s hardware address and IP address,
shown as SENDER-HA and SENDER-IP fields in Fig-
ure 1. It also has fields for the target computer’s hard-
ware and IP address, which is shown as TARGET-HA
and TARGET-IP fields in Figure 1. When making an
ARP request, the sender supplies the target IP address,
and leaves the field for the target hardware address
empty (which is to be filled by the target computer).

In the broadcasted ARP request message, the sender
also supplies its own hardware and IP addresses for the
target computer to update its ARP cache table for future

S. KUMAR ET AL.

Copyright © 2010 SciRes. JIS

90

correspondence with the sender. Other fields in the ARP
packet format in Figure 2 are HARDWARE TYPE of 2
Bytes (shown as 2B in Figure 1), which specifies the
type of network being used such as Ethernet in this case.
The PROTOCOL TYPE field of 2 Bytes specifies the
high-level protocols address used such as the IP ad-
dresses. The fields HLEN and PLEN of one Byte each
specify the length of hardware address and high-protocol
address, in the case of ARP protocol use in the arbitrary
networks. The OPERATION field of 2 Bytes specifies if
the message is one of the four possible types i.e. 1 for
ARP-request, 2 for ARP-reply, 3 for RARP-request and
4 for RARP-reply.

4. Types of ARP-Request Traffic on a LAN

A computer on the LAN will receive two different types
of ARP-request packets from the network. The first type
of ARP request packets can be named as the direct ARP
request traffic where the IP address in the ARP request
packet matches the local IP address of the computer Pi.
The second type of ARP request traffic that is received
by the computer on a LAN can be named as indirect ARP
request traffic where the IP address in the ARP request
packets doesn’t match the local IP address of the com-
puter Pi.

In other words, a computer i on a LAN with IP address

Harware Type (2b) Protocol Type (2b)

Hlen (1b) Plen (1b) Operation (2b)

Sender Ha (Octets 0-3)

Sender Ha (Octets 4-5) Sender Ip (Octets 0-1)

Sender Ip (Octets 2-3) Target Ha (Octets 0-1)

Target Ha (Octets 2-5)

Target Ip (Octets 0-3)

Figure 1. ARP mssage frmat

Figure 2. Processor exhaustion under direct ARP- attack
traffic with IP address = {χ | χ = Pi}.

of Pi may receive one of the two possible types of ARP
request traffic during an ARP-attack –

a) Direct ARP traffic – it is a traffic comprising of
ARP request messages with IP address = {χ | χ = Pi}

b) Indirect ARP traffic – it is a traffic comprising of
ARP request messages with IP address = {χ | χ ≠ Pi}

The target or victim computer will primarily be inun-
dated with the direct-ARP attack traffic, whereas the
other computers (non-victim computers) located on the
same LAN segment will be inundated with the indirect
ARP-attack traffic.

The main task of the processor in the target computer
after receiving the ARP request message is to make sure
the ARP request message is for it. In the case of direct
ARP frames, the processor proceeds to fill in the missing
hardware-address in the ARP request format-header,
swaps the target and sender hardware & IP address pair,
and changes the ARP-request operation to an ARP-reply.
Thus the ARP reply carries the IP and hardware ad-
dresses of both, the sender and the target computers.
Unlike the ARP request message, the ARP replies are
directed to just the sender computer and it is not broad-
casted. In the case of indirect ARP frames received, the
computer still does some processing to determine if the
ARP request message is for the local computer. In this
case, once it is determined that the frame is not for the
local computer, the indirect ARP message is simply
dropped.

The processing needed for an ARP-request message is
fairly simple, however there is more processing involved
when direct ARP request frames are received by a victim
computer, compared to that of the indirect ARP-request
frames received by non-victim computers present on the
same LAN. Even though, there is comparatively less
processing involved when an indirect ARP request mes-
sage is received, a barrage of such requests can still ex-
haust the processing power of a non-victim computer just
because it happens to be sitting on the same LAN seg-
ment as the victim computer or server. The degree of
processor exhaustion for a given computer will of course
depend on the processor speed and the bandwidth con-
sumed by ARP-request messages. In the following sec-
tions, we discuss our experiment to measure the extent of
resource exhaustion of two different types of computers
on a LAN under an ARP attack – the first type of com-
puter, being the victim computer, which is inundated
with direct ARP-request frames. We also measure the
computing resource exhaustion of the second type of
computers (the non-victim computers, which happen to
be on the same LAN as the victim computer or server),
when inundated with indirect ARP-request frames.

S. KUMAR ET AL.

Copyright © 2010 SciRes. JIS

91

5. Performance Evaluation

5.1. Experimental Setup

In this experiment, an ARP-storm was generated in a
controlled environment of the network security research
lab at the UTPA by having different computers send a
barrage of ARP-request messages to a victim computer
on the same local area network. A Windows-XP based
computer was used as the attack target of the ARP-storm.
The computer under attack deployed a Pentium IV proc-
essor with a speed of 3.06 GHz with 533 MHz Bus, 512
kb Cache, a physical memory of 512 Mbytes (RAM),
and a NIC card from 3 Com. Furthermore, other com-
puters (that received indirect ARP request traffic) on the
LAN deployed exactly the same resources as the victim
computer on the LAN. Computers under attack on the
LAN deployed Windows-XP Service-Pack 2 (SPK 2).
We also used the network observer software to collect
traffic detail and the applied load on the LAN.

This experimental setup and results obtained in this
paper are much more detailed compared to the one pre-
sented in [9] where a different system was used for the
victim computer, which deployed a Pentium-4 processor
with a speed of 2.66 GHz. Furthermore, the NIC card
used in [9] were the Intel’s NIC card, which could not
support full speed of 100 Mbps of network traffic.
Whereas, in this experiment, the 3 Com’s NIC card was
used that supported full speed of 100 Mbps. Furthermore,
in [9] only the effect of direct ARP traffic was measured
and no indirect ARP traffic was considered.

5.2. Attack Measurements

Parameters of performance evaluation considered for this
attack experiment were the applied load of the ARP-
attack traffic, processor exhaustion during the attack and
memory occupied while processing the attack traffic by
the target computer. The DDoS attack was simulated as
ARP packets coming from multiple different attack-
ing-computers at a maximum aggregate speed of 100
Mbps towards the target server. The attack traffic (while
simulating ARP storm) load was started with 0 Mbps
(the background condition) and was increased by 10
Mbps i.e. from 0% load to 100% load (= 100 Mbps). In
the ARP-storm experiment, the attacked target computer
continued to receive a barrage of ARP-requests for a
period of 60 minutes for a given load, and was obligated
to process them by creating an ARP-reply. In this ex-
periment, a total of 10 different loads were generated, i.e.
10% - 100%. A total of 10 hours of ARP attack traffic
were experienced at the victim computer and another
non-victim computer on the local network. The CPU

time is termed as processor exhaustion in these meas-
urements, which gives an indication of the rate of proc-
essor exhaustion for a given bandwidth consumed by the
attack-traffic during the ARP storm. It is observed that as
the network bandwidth is increasingly consumed by the
ARP-attack traffic, the processor is exhausted at a much
faster rate, and hence this type of attack can be classified
under computing-resource starvation attack.

5.3. Resource Exhaustion of the Victim

Computer Due to Direct-ARP
Request Traffic

Direct ARP request traffic comprises of ARP-request
frames that have

IP address = {χ | χ = Pi}

In this experiment, we measure, processor exhaustion,
memory used and the page file size under direct-ARP
request traffic. Page file size gives indication of virtual
memory activity, if any, during the attack.

Figure 2 shows minimum and maximum CPU time
observed (called processor exhaustion in the attack ex-
periments) for a given load of the direct ARP-attack traf-
fic. Average CPU time is also shown in the graph so that
we can get an idea if the majority of observations are
closer to the maximum CPU time or closer to the mini-
mum CPU time. It can be seen that a bandwidth con-
sumption of 40% by direct ARP-attack traffic in a fast
Ethernet environment exhausts a Pentium-IV processor
to up to 85% of its 3.06 GHz processing capacity. Due to
the processing of a barrage of ARP-requests the CPU
resource is easily consumed and this in turn can degrade
the quality and availability of associated web services.

Furthermore, it is obvious that if such servers are op-
erated in a Gigabit network deploying higher interfaces
such as 1 Gbps then it will be easier for such CPU of
3.06 GHz to be completely consumed by the Giga-
bit-flood of ARP-attack traffic, and attacks in such Giga-
bit environment can completely stall the system. Com-
plete stalling of system means that one cannot even move
the cursor on the attacked computer, let alone running
the security diagnostics. It is also obvious from this ex-
periment that a lower capacity (< 3.06 GHz) processor
can easily be frozen (consumed 100%) by this type of
ARP-storm in commonly available fast Ethernet envi-
ronment of local area networks.

Figure 3 shows the memory-usage of the victim com-
puter under direct ARP-attack traffic, as the network
bandwidth is increasingly consumed by the ARP-storm.
The memory consumed due to direct ARP attack traffic
is observed to be within a range of 6 Mbytes, which
seems to be not much of an issue for a 3.06 GHz proces-
sor with 512 Mbytes of RAM. However, for a slower

S. KUMAR ET AL.

Copyright © 2010 SciRes. JIS

92

Figure 3. Memory usage under the direct ARP-attack traf-
fic with IP address = {χ | χ = Pi}.

Figure 4. Page-file size is visibly unaffected under direct-
ARP-attack traffic with IP address = {χ | χ = Pi}.

processor with processing power less than 3.06 GHz, a
greater amount of computer’s memory resource can be
wasted. Slower processing power in the fast Ethernet
environment can cause the queue of ARP packets to
build up waiting for address resolution and computer’s
response. Hence a slower processor will exhaust a rela-
tively greater amount of memory resource of the victim
computer under ARP storm. In any case, the memory
usage is so insignificant that it is not really a problem in
these ARP attacks.

Another parameter of interest is the Page file size.
Page File size is the current number of bytes that the ac-
tive processes have used in the paging file(s). We meas-
ure the page file size during the attack to observe for
activities in the virtual memory.

Figure 4 shows that there is no change in the page-file
size before and during the direct ARP attack. Page-file
size measurement at 0% load mainly provides the size
due to the background processes running in the computer
in the absence of any ARP request traffic. Furthermore,
as the load of incoming direct ARP traffic is increased,
there is really no impact on the virtual memory of the
computer.

5.4. Resource Exhaustion of a (Non-Victim)
Computer Receiving Indirect Frames

If ith computer in the broadcast domain has an IP address
of Pi then the indirect ARP-request frames arriving to the
computer can be described as the frames with

IP addresses = {χ | χ ≠ Pi}

Figure 5 shows minimum, maximum and average
value for the processor exhaustion for a given load of the
indirect ARP-attack traffic. It can be seen that a band-
width consumption of 40% by indirect ARP-attack traffic
in a fast Ethernet environment exhausts a Pentium-IV
based non-victim computer to up to 55% of its 3.06 GHz
processing capacity. Indirect ARP requests are still
being processed by the computers on the network even
though they are not directed towards them. Due to the
processing of a barrage of indirect ARP-request mes-
sages, the CPU resource is still getting significantly
consumed, however the processor exhaustion rate is rela-
tively less intense compared to the one under direct ARP
attack traffic. This is understandable as there is relatively
more processing involved in direct ARP attack traffic
compared to that of indirect ARP attack traffic.

Figure 6 shows the memory-usage of a non-victim
computer, which is located on the same LAN segment as
that of the victim computer, as the network bandwidth is
increasingly consumed by the indirect ARP attack traffic.
The memory consumed due to such indirect-ARP attack
traffic is observed to be within 3 Mbytes, which is com-
paratively less than that consumed by the direct ARP
attack traffic in Figure 3. Consumption of physical
memory in the range of 3 Mbytes is not much of an issue
for a 3.06 Hz computer with 512 Mbytes of RAM.

In this experiment, we also measure the page-file size
before the onset of indirect ARP attack, and during the
indirect ARP attack (Figure 7). The page-file size at 0%
ARP traffic indicates the page-file size before the onset

Figure 5. Processor exhaustion under the indirect ARP-
attack traffic with IP address = {χ | χ ≠ Pi}.

S. KUMAR ET AL.

Copyright © 2010 SciRes. JIS

93

Figure 6. Occupancy of the computer’s memory under in-
direct ARP-attack traffic with IP address = {χ | χ ≠ Pi}.

Figure 7. Page-file size is visibly unaffected under the indi-
rect ARP-attack traffic with IP address = {χ | χ ≠ Pi}.

of the ARP-attack, which is mainly due to the processes
running in the background. The page-file size of the vic-
tim computer is measured as the network bandwidth is
increasingly consumed by the indirect ARP-attack traffic.
Figure 7 shows that the page-file size is not affected by
the indirect ARP attack traffic, as it stays the same before
and after the onset of the indirect ARP attack. This is
obviously due to the fact that the memory-consumed by
the indirect ARP traffic (Figure 6) is quite minimal, and
stays within the range of 3 Mbytes (out of a total 512
Mbytes) of RAM space, and hence no incoming ARP
messages spill to the page-file.

6. Detection and Prevention

It can be seen from the prior experiments that the ARP
storms can consume the computing resources rapidly for
all the computers on the affected LAN segment. Hence it
is important to detect the ARP storms immediately and
raise alarm for its possible prevention before the entire
LAN segment is brought down by such ARP storms. In

order to detect these types of ARP attacks, it is important
to monitor the ARP traffic on each LAN segments. Pro-
grams such as ARPwatch [10] can be used to monitor
ARP traffic on each LAN segments and raise alarm when
ARP storms or ARP poisoning tools are detected. One
can also use SNMP to monitor changes in ARP table in
routers and switches to raise alarm for onset of such ARP
attacks.

One way to prevent ARP storm is to involve layer-2
switches in controlling the ARP broadcast floods at the
source where the storm starts building up. This can be
achieved by allowing for threshold limits for broad-
cast/multicast traffic on a per-port basis. Furthermore,
these thresholds per-port basis should be set up by limit-
ing the bandwidth consumed by ARP broadcasts on a
switch port.

In order to support multiple layers of prevention, the
routers can also be used in controlling ARP storm from
spreading to others LAN segments. A network manager
can configure the router (using its control policy) to im-
pose a limit on the rate of ARP requests that can be al-
lowed for the associated LAN segments. When the im-
posed threshold for the ARP requests is exceeded then
the ARP request packets are dropped by the router. The
router hardware should be fast enough to examine and
drop the ARP request packets that exceed the imposed
threshold, otherwise it is possible for the router to crash
or experience slowdown of its operation and itself be-
come a bottleneck resulting in eventual denial of service
(DoS).

7. Conclusions

According to Computer Emergency Response Team
(CERT/CC), there has been an increased targeting of
Windows end-users’ computer systems and servers for
security attacks. Distributed Denial of Service (DDoS)
attacks due to ARP-storms can be found in local area
networks where many computer systems are infected by
worms such as Code Red or by DDoS agents. In this
paper, we present results of our experiments to measure
the impact of ARP-storms on systems resource exhaus-
tion of a Window-XP based computer system deploying
a high performance Pentium-IV processor. It is observed
that ARP-storms not only waste the communication
bandwidth but also exhaust a processor’s resource of a
victim computer even more rapidly by forcing it to reply
to a barrage of ARP-request messages. It is also observed
that when the network bandwidth is consumed 40% by
the ARP-attack traffic in a fast Ethernet environment, a
computer system with a high-performance Pentium-IV
processor of 3.06 GHz speed wastes up to 85% of its
(victim computer) raw CPU-time in processing direct

S. KUMAR ET AL.

Copyright © 2010 SciRes. JIS

94

ARP attack traffic and 55% of its (non-victim computers)
raw CPU-time in processing indirect ARP attack traffic.
This attack is found to be more processor intensive
which means that it exhausts processor resource more
rapidly than other computing resources such as memory.
The memory exhaustion is found to be not significant
when compared with the corresponding processor ex-
haustion. Memory usage is observed to be quite insig-
nificant compared to the memory resource deployed in
the system. The virtual memory or the page file of the
victim computer is observed to be completely unaffected.
Based on these experimental results, the ARP-attack can
be categorized as the attack that causes computing re-
source starvation more rapidly than the bandwidth star-
vation, especially that of the processor of the victim and
non-victim computer systems on the affected network. It
is interesting to notice the collateral damage done by this
attack on a given LAN, according to which it not only
exhausts the resource of the victim computer but also
exhausts computing resource of other non-victim com-
puters present on a given LAN where the victim com-
puter resides. The rate of resource exhaustion in this type
of experiment can help network security engineers de-
sign efficient flow-control and threshold based attack
prevention schemes at the switches and routers used in
the LAN.

8. Acknowledgements

The authors would like to thank Uriel Ramirez and Su-
manth Avirneni for equipment support, data collection
and verification efforts in the Network Security Research
Lab (NSRL) at UTPA. The work in this paper is sup-

ported in part by funding from US National Science
Foundation under grant # 0521585.

9. References

[1] L. Gerber, “Denial of Service Attacks Rip the Internet,”

IEEE Computer, April 2000.

[2] P. G. Neumann, “Denial-of-Service Attacks,” ACM Com-
munications, Vol. 43. No. 4, April 2000, p. 136.

[3] K. J. Houle and G. M. Weaver, “Trends in Denial of Ser-
vice Attack Technology,” Computer Emergency Response
Team (CERT)® Coordination Center, V1.0, October
2001.

[4] Computer Emergency Response Team (CERT)® Advisory,
“Home Network Security,” CA-2001-20. http://www.cert.
org/tech_tips/home_networks.html

[5] A. Householder, A. Manion, L. Pesante and G. M. Weaver,
“Managing the Threat of Denial-of-Service Attacks,”
CERT Coordination Center, October 2001.

[6] CERT® Incident Note IN-2001-10, “Code-Red Worm
Crashes IIS 4.0 Servers with URL Redirection Enabled,”
CERT Coordination Center, August 2001. http://www.
cert.org/incident_notes/IN-2001-10.html

[7] Cisco Security Advisory, “Code-Red Worm—Customer
Impact,” Cisco Networks, July 2001. http://www.cisco.
com/warp/public/707/cisco-code-red-worm-pub.shtml

[8] D. C. Plummer, “Ethernet Address Resolution Protocol,”
IETF Network Working Group, RFC-826, November
1982.

[9] S. Kumar, “Impact of a Distributed Denial of Service
(DDoS) Attack Due to ARP Storm,” International Con-
ference on Networking, to be published in Lecture Notes
in Computer Science (LNCS), April 2005.

[10] ARPwatch. http://en.wikipedia.org/wiki/Arpwatch

	Cover 1
	Cover 2
	Cover 3
	Cover 4
	JIS 1.2 online.pdf
	JIS 1.2 CONTENTS
	journal information JIS
	1-7800007_1_
	1-7800007_2_
	3-7800010
	4-7800009
	5-7800012

