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Abstract 
 
In this paper, we present two extensions of the strand space method to model Kerberos V. First, we include 
time and timestamps to model security protocols with timestamps: we relate a key to a crack time and com-
bine it with timestamps in order to define a notion of recency. Therefore, we can check replay attacks in this 
new framework. Second, we extend the classic strand space theory to model protocol mixture. The main idea 
is to introduce a new relation   to model the causal relation between one primary protocol session and one 
of its following secondary protocol session. Accordingly, we also extend the definition of unsolicited authen-
tication test. 
 
Keywords: Strand Space, Kerberos V, Theorem Proving, Verification, Isabelle/HOL 

1. Introduction 
 
The strand space model [1] is a formal approach to rea-
soning about security protocols. For a legitimate regular 
participant, a strand s  represents a sequence of mes-
sages that the participant would receive or send as part of 
a run as his/her role of the protocol. A typical message 
has the form of  

K
h  denoting the encryption of h  

using key K . An element of the set of messages is 
called a term. A term 't  is a subterm of t  is written as 

tt' . Usually, we call a strand element node. Nodes can 
be either positive, representing the transmission of a term, 
or negative, representing the reception of a term. For the 
penetrator, the strand represents atomic deductions. More 
complex deductions can be formed by connecting several 
penetrator strands. Hence, a strand space is simply a set 
of strands with a trace mapping. Two kinds of causal 
relation (arrow),   and  , are introduced to impose 
a graphic structure on the nodes of the space. The rela-
tion   is defined to be the reflexive and transitive clo-

sure of these two arrows, modelling the causal order of 
the events in the protocol execution. The formal analysis 
based on strand spaces can be carried on the notion of 
bundles. A bundle is a causally well-founded set of 
nodes and the two arrows, which sufficiently formalizes 
a session of a protocol. In a bundle, it must be ensured 
that a node is included only if all nodes that proceed it 
are already included. For the strand corresponding to a 
principal in a given protocol run, we construct all possi-
ble bundles containing nodes of the strand. In fact, this 
set of bundles encodes all possible interactions of the 
environment with that principal in the run. Normally, 
reasoning about the protocol takes place on this set of 
bundles. 

However, the original strand space model has its se- 
mantical limitations to analyze the real-world protocols 
such as Kerbeoros protocols. First, it does not include 
timestamps as formalized message components, and 
therefore can not model security protocols with time- 
stamps. In fact, the strand space model [1] as given by 
Thayer Fábrega, Herzog, and Guttman is only bench- 
marked on nonce-based protocols such as the Needham- 
Schroeder protocol and the Otway-Rees protocol. But 
many modern protocols use timestamps to prevent replay 
attacks, so this deficiency of the strand space theory 
makes it difficult to analyze these protocols. Second, it 

*This is a revised and extended version of the homonymous paper 
appearing in the Proceedings the Eighth International Conference on 
Parallel and Distributed Computing, Applications and Technologies 
(PDCAT 2007, IEEE Computer Society). The main modifications have 
been made on the presentation of the technical material, with the pur-
pose of having full details. The first author is supported by grants 
(No.60496321, 60421001) from National Natural Science Foundation 
of China. 
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does not address issues of the protocol dependency when 
several protocols are mixed together. Many real-world 
protocols are divided into causally related multiple 
phases (or subprotocols), such as the Kerberos and Neu- 
man-Stubblebine protocols. One phase may be used to 
retrieve a ticket from a key distribution center, while a 
second phase is used to present the ticket to a security- 
aware server. To make matters more complex, many 
protocols such as Kerbeors use timestamps to guarantee 
the recency of these tickets, that is, such tickets are only 
valid for an interval, and multiple sub-protocol sessions 
can start in parallel by the same agent using the same 
ticket if the ticket does not expire. Little work has been 
done to formalize the causal relation between protocols 
in a protocol mixture environment. 

The aim of this paper is twofold. The first aim is to 
extend the strand space theory to cover the aforemen- 
tioned two semantical features. Briefly, we include time 
and timestamps to model security protocols with time-
stamps: we relate a key to a crack time and combine it 
with timestamps in order to define a notion of recency. 
Therefore, we can check replay attacks in this new 
framework. We also extend the classic strand space the-
ory to model protocol mixture: a new relation   is 
introduced to model the causal relation between one 
primary protocol session and one of its following secon-
dary protocol session. Despite the extensions, we hope 
that the extended theory still maintains the simple and 
powerful mechanism to reason about protocols. The 
second aim is practical. We hope to apply the extended 
theory to the analysis of some real-world protocols. Here 
we select Kerberos V as our case study. Kerberos V is 
appropriate because it covers both timestamps and pro- 
tocol mixture semantical features. 
 
2. Motivations 
 
2.1. A Short Introduction to Kerberos V 
 
The first version of Kerberos protocol was developed in 
the mid eighties as part of project Athena at MIT [2]. 
Over twenty years, different versions of Kerberos proto-
cols have evolved. Kerberos V (Figure 1 and Figure 2) 
is the latest version released by the Internet Engineering 
Task Force (IETF) [4]. It is a password-based system for 
authentication and authorization over local area networks. 
It is designed with the following aims: once a client au-
thenticates himself to a network machine, the process of 
obtaining authorization to access another network service 
should be completely transparent to him. Namely, the 
client only needs enter his password once during the au-
thentication phase. In order to access some network ser-
vice, the client needs to communicate with two trusted 

 

Figure 1. The layout of Kerberos V. 

 

 

Figure 2. Kerberos V: message exchanging. 

 
servers Kas and Tgs . Kas is an authentication server 
(or the key distribution center) and it provides keys for 
communication between clients and ticket granting serv- 
ers. Tgs  is a ticket granting server and it provides keys 
for communication between clients and application serv- 
ers. The full protocol has three phases each consisting of 
two messages between the client and one of the servers 
in turn. Messages 2 and 4 are different from those in 
Kerberos IV [2,4] in that nested encryption has been 
cancelled. Later we will show that this change does not 
affect goals of the protocol. 
 
2.2. Timestamps 
 
Timestamps are heavily used in the Kerberos protocols 
to guarantee the recency of messages. The strand space 
model cannot express security protocols with timestamps, 
although Guttman [5] provided a notion of recency and 
he used it to analyze replay attacks of a variant of the 
Yahalom protocol, it is still impossible to analyze secu- 
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rity protocols with timestamps. Timestamps are mainly 
used to avoid replay attacks in the literature of security 
protocols. Usually such attacks occur in protocols that 
involve a message encrypted by a session key, and the 
session key itself is sent as a part of a message which is 
encrypted by a long-term key. Although penetrators can 
never obtain a long-term key K  if K  is not sent as a 
part of a message, it is usually assumed that m  will be 
obtained from  

K
m  via cryptanalysis by a penetrator 

after some time t , especially if a session key SK  is a 
component of m , then it will be compromised after the 
time t . Here, we say that the time t  is the crack time 
of K , and every key will be related to a crack time. 
Although the penetrator cannot obtain m  from  

K
m  

during a protocol session provided that  
K

m  did not 
occur in any old session and K ’s crack time is longer 
than the time of a session allowed, he still may replay 
stale messages and use the old compromised session 
keys to launch attacks if some message of the protocol 
does not contain necessary information to indicate its 
recency. 

For example, in the Needham-Schroeder symmetric 
key protocols (see Figure 3), when B  receives the third 
message  ,

BK
A K , although B  can infer that it was 

generated by S , he is not certain of its recency because 
no such information is available. Perhaps  ,

BK
A K  

has occurred in an old session, and a penetrator has 
cryptanalyzed the conversation to obtain the session K . 
In that case, the penetrator can start a session by resend- 
ing  ,

BK
A K , and later return  1b K

N  . Denning 
and Sacco [6] pioneered the use of timestamps to fix the 
flaw of the protocol. A timestamp t , which is a number, 
is employed in the ticket  , ,

BK
A K t  by S  to mark 

the time of issue, and will be compared with the current 
time by the receiver B  to check whether the ticket is 
recent. In this paper, we will assume that all agents are 
synchronized via a global clock, so an agent knows the 
time when receiving or sending a message. 
 

 

Figure 3. Needham-Schroeder symmetric key protocol. 

In this paper, we extend the strand space model with 
such features. A crack time is attached to every key. The 
crack-time of a key K  is the time needed by a penetra- 
tor to break an encrypted message  

K
m .1 We model a 

timestamp in the same way as atomic messages. A regu- 
lar agent can attach a timestamp in a message to indicate 
when it sends the message, and check whether a received 
message encrypted by a key K  is recent by comparing 
the timestamp in the message with the current time and 
the crack time of K . Once a message  

K
m  is no longer 

recent, a penetrator can break the message to obtain m . 
 
2.3. Protocol Mixture 
 
Another important feature of Kerberos, which is difficult 
to model in strand space, is protocol mixture. Kerberos 
protocol comprises three protocol phases: authentication, 
authorization, and service protocol phases. Once a client 
has passed an authentication phase and obtained an au-
thentication ticket, then he can use the ticket to start mul-
tiple sessions of the authorization protocol phases in par-
allel to obtain different service tickets to access the ser-
vices he needs provided that the authentication ticket 
does not expire. Similarly, once the client has gone 
through a session of the authorization phase, then he can 
use the service ticket obtained to access the service 
server for many times provided that the service ticket 
does not expire. Usually we refer to a protocol as one 
primary protocol, and the protocol following it as a sec-
ondary protocol. We note that other researchers have 
discussed the problem of protocols mixture [7,8], but 
they emphasized more on independency between two 
protocols. Namely, if they have disjoint encryption, then 
the first protocol is independent of the second. By this 
they mean that if the first protocol can achieve a security 
goal (either an authentication goal or a secrecy goal) 
when executed in isolation, then it still achieves the same 
security goal when executed in combination with the 
second protocol. In their theory, one primary and one 
secondary strands are rather independent of each other. 

However, in Kerberos protocols, a secondary strand 
cannot be independent of its primary strand, and the 
events of a secondary strand has temporal relation with 
the events of the primary strand. For example, assuming 
that a client A  runs a session 's  of an authorization 
phase of Kerberos V, then he must have passed an au-
thentication phase s . When A receives the second mes-
sage in the session 's , he must ensure that the current 
time should be before the ticket  , , ,

Tgs
a K

A Tgs authK T  
expires, so A  needs know the time aT  when the ticket 
is created, and checks how much time has elapsed until 
now. This side condition cannot be expressed without the 
semantical specification of s , because in the intended 

1It is not the time to obtain K from {| m|}K. 
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case the ticket is a term encrypted with Tgs ’s long-term 
key, which is unintelligible to A , A  cannot know aT  
from the ticket. Then A  can only know the time aT  
from the previous authentication phase s . Therefore, we 
need to formalize the facts that 's  follows s , and A  
holds all the knowledge of s  when he runs 's , and 
there should be causal relation between events in s  and 
those in 's . Such semantical features are not covered in 
[7,8]. 

In order to model the aforementioned causal relation 
between a primary strand and its following secondary 
strands, we introduce a new relation   between 
strands. 'ss  holds if s  is a primary protocol strand 
and 's  is a subsequent secondary protocol strand. E.g., 
let s  and 's  be client strands in an authentication 
phase and authorization phase in Kerberos V respectively, 

'ss  means that a client runs an authentication ses-
sion s , and subsequently starts an authorization session 

's . In practice, if 'ss , then s  and 's  may be two 
different processes started by the same client, and when 
the client starts s , he knows all the events which have 
occurred in s . This knowledge is useful for the client to 
perform actions in 's . E.g., when a client starts an au-
thorization session, he uses an authentication ticket 
which is obtained in the preceding authentication session, 
and he knows the time when the ticket is created. So a 
causal relation should be imposed on two events which 
occur in a primary strand and its subsequent secondary 
strand. 

Figure 4 illustrates a possible protocol execution of 
Kerberos V using the relation .  A client runs an in-
stance in authentication phase, which is represented by 
the strand 1i . Following the primary protocol instance, 
the same client may run three authorisation subprotocol 
instances in parallel, which are showed in the strands 21i , 

,22i  and 23i  respectively. 21Tr  is a subtree which is a 
collection of client strands in the service phase. 22Tr  
and 23Tr  are similar to 21Tr . Note that the semantics of 
the relation   means that 21i  and 22i  and 23i  in-
herits all the same knowledge from ,1i  so they shares 
the same ,authTicket  authK , Tgs , aT , etc. Therefore,  

if     1,1 = , , , ,
A

a K
term i authTicket A Tgs authK T  then 

then it must be the case that 

    11 1 1,1 = , , ,
authK

term i authTicket A t B  

and 

    13 2 2,1 = , , ,
authK

term i authTicket A t B  

for some 1t , 2t , 1B  and .2B  Here 1 1( )t B  can be 
different from ).( 22 Bt  This means that the client use the 
same authTicket  to obtain two different server tickets 
for accessing servers 1B  and .2B Without the relation 

 

Figure 4. An illustration of protocol mixture. 

 
,  21i  and 1i  are independent, therefore the knowl-

edge inherence relation between them can not be im-
posed. 

We extend the relation   in the strand space model 
in the way that 21 nn   holds if ),(=1 isn  and 

1),(=2 isn , or 1)))((,(=1 strlengthsn  and ,0)(=2
'sn  

and 'ss . Namely, the edge means either that 1n  is 
an immediate causal predecessor of 2n  on the same 
strand s  or that 1n  is the last event in a primary strand 
s  and 2n  is the first event in the subsequent secondary 
strand 's . 
 
Structure of the Paper. In Section 3, we present the 
theory of the strand space method with our two exten-
sions. We devote Section 5 to a new definition of unso-
licited authentication test. We discuss related work and 
conclude the paper in Section 6. 
 
3. Preliminaries 
 
3.1. Messages and Actions 
 
The set of messages is defined as the following BNF 
notation: 

  ),(|,|

)(|)(|

)(|)(::= 

21 Khhh

tK

nAh

enc

timestampkey

noncename

 

where A  is an element from a set of agents, n  from a 
set of nonces, K  from a set of keys, and t  from a set 
of times. Here we assume that Time is the set of all 
natural numbers. 21 < tt  means that the time 1t  is ear-
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lier than 2t . We represent a timestamp by marking t  
as timestamp(t). Except this extension, the definitions of 
other kinds of messages are the same as those in the 
classic strand space theory. We call a key symmetric if 

KK =1 . Otherwise, K  is a public key and 1K  is 
private. For each K , we define )(Kcracktime  as the 
crack time of K .  1 2,h h  is called a composed mes-
sage. We will write   1 2 3, ,h h h  as  1 2 3, ,h h h . 
   1 2 1 2, ,' 'h h h h  if and only if 'hh 11 =  and 'hh 22 = . 
We abbreviate ),( Khenc  as  Kh , denoting the en-
cryption of h  using key K . In our formulation, we use 

AK  to define a long-term key shared between an agent 
(also called a client) A  and a server, and clients have 
distinct keys. An element of the set of messages is also 
called a term. Terms of the form name(A), nonce(n), 
timestamp(t), or key(K) are said to be atomic.2 The set 
of all messages is denoted by Message. A message h  is 
a text message if Kh   for any K . The set of all 
atomic text messages is denoted by T . We frequently 
need the subterm relation on messages. A term 'g  is a 
subterm of g  is written as gg' . 

Definition 1 The subterm relation   is defined induc-
tively as the smallest relation such that gg ,  

K
g h  

if hg , and  1 2,g h h  if 1hg  or 2hg . 
In our extended strand space model, we need to revise 

the definition of actions. The main point is to record the 
time when an action takes place. The transmission of a 
term g  at time t  is denoted by ),,( gt  , and the re-
ception of a term g  at t  is denoted by ),,( gt  . Both 
are the possible actions that participants and a penetrator 
can take. We represent the set of finite sequences of ac-
tions by (Time, ±, Message)*. 
 
3.2. Strands and Strand Spaces 
 
A strand space   is a set of strands with a trace map-
ping *),(: MessageTime  ,tr . A strand element is 
called a node. ),( is  is the i -th node on strand s  
( )(<0 slengthi ). We use sn  to denote that a node 
n  belongs to the strand s . The set of all the nodes is 
denoted by  . If ),(= isn  and ),,(=)( gtstr i  , 
then we define )(ntime  and )(nterm  and )(nsign  to 
be the occurring time, the term and the sign of the node 
n , respectively. Namely, tntime =)( , gnterm =)( , and 

=)(nsign . We call a node positive if its term has sign 
 , and negative if its term has sign  . A strand is a 
protocol history from the point of view of a single par-
ticipant in a protocol run, so we explicitly define an at-
tribute function Aattr :  to indicate which agent’s 
peer a strand is. Namely, asattr =)(  means that a  is the 
agent who performs actions of the strand s  in the run. 

As mentioned in Section 2, we introduce a relation 
  between strands to model protocol mixture, and 

'ss  holds if s  is a primary protocol strand, and 's  
is a subsequent secondary protocol strand. To make our 
theory sound, we also restrict the relation   to be a 
tree-like one with the following principles. First,   is 
irreflexive, i.e. ss . Second, every strand has at most 
one   predecessor, meaning if ''ss  and ''' ss  , 
then 'ss = . The two restrictions are consistent with our 
intuition on protocol mixture. The first principle says that 
one protocol session can not follow itself, this simply 
means that the primary protocol session and any one of 
its following secondary protocol sessions are different. 
The second principle shows that one secondary protocol 
session follows a unique primary protocol session. 

Two kinds of causal relation (arrow),   and  , 
are introduced to impose a graph structure on the nodes 
of  . To be more precise, the relation 'nn  holds 
between nodes n  and 'n  if ),(= isn  and 1),(= isn'  
and ),()( 'ntimentime   or    1,= strlengthsn  and 

,0)(= '' sn  and 'ss  and )()( 'ntimentime  . This 
relation means that the event 'n  immediately follows 
n . On the other hand, the relation 'nn   holds for 
nodes n  and 'n  if gntermnterm ' =)(=)(  for some term 
g , =)(nsign  and =)( 'nsign , and )()( 'ntimentime  . 
This represents that n  sends a message g  and 'n  
receives the message at a later time. Obviously, here we 
require that the two relations must respect the order of 
time. The relation   is defined to be the reflexive and 
transitive closure of   and  , modelling the causal 
order of the events in the protocol execution. We say that 
a term g  originates at a node n  if and only if n  is 
positive, ),(ntermg  and there is no node 'n  such 
that nn'   and )( 'ntermg  ; We say that g  
uniquely originates if and only if there exists an unique 
node n  such that g  originates from node n . Nonces 
and other recently generated terms such as session keys 
are usually uniquely originated. 
 
3.3. Penetrator Strands 
 
The symbol Bad is defined to denote the set of all the 
penetrators, and if an agent is not in Bad, then it is regu-
lar. There is a set of keys that are known initially to all 
the penetrators, denoted as K . K  usually contains 
all the public keys, all the private keys of all the penetra-
tors, and all the symmetric keys initially shared between 
all the penetrators and principals playing by the protocol 
rules. It can also contain some keys to model known-key 
attacks. In this paper, we only need the fact that if an 
agent is not a penetrator then his shared key cannot be 
penetrated, which is formalized as follows. 

Axiom 1 If BadA , then KAK . 
2For convenience, we often write A, n, K and t instead of name (A), 
nonce (n), key (K), and timestamp (t).
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In the classic strand space theory, a penetrator can in-
tercept messages, generate messages that are computable 
from its initial knowledge and the messages it intercepts. 
These actions are modelled by a set of penetrator strands, 
and they represent atomic deductions. More complex 
deduction actions can be formed by connecting several 
penetrator strands. In our extension, we assume that 
penetrators share their initial knowledge and can cooper-
ate each other by composing their strands. Besides the 
behaviors inherited from classic strand space theory, a 
penetrator has the ability to crack an encrypted message 
once the message is no longer recent (see hKKC ,  
strand). 

Definition 2 A penetrator’s trace relative to K  is one 
of the following, where Time321 ,,, tttt  and 321 ttt  : 

• Mg (text message): )],,[( gt  , where Tg . 

• KK (key): )],,[( Kt  , where KK . 

• Cgh (concatenation):  )],,,(),,,(),,,[( 321 hgthtgt  . 

• Sg,h (separation):   ,,(),,,(),,,,[( 321  tgthgt )]h . 

• Eh,K (encryption): ,,(),,,(),,,[( 321  thtKt   )]
K

h . 

• Dh,K (decryption):   )],,(),,,(),,,[( 32
1

1 hthtKt
K

  . 

• KCK,h (key-crack):   )],,(),,,[( 21 htht
K

 , where 

21 <)( tKcracktimet  . 
In our theory, if a strand s  belongs to a penetrator, 

namely, ( )attr s Bad , then s  must be a penetrator 
strand. If a strand is not a penetrator strand, then it is 
regular. A node is called regular if it is not in the pene-
trator strands. Except the key crack strand ( hKKC ,  ), our 
penetrator model is similar to the one in [1]. Here 

gM (or KK ) does not imply that a penetrator can issue 
any unguessable terms which are not in his initial 
knowledge such as nonces and session keys. Because 
when we introduce secrecy or authentication properties 
about an unguessable term t  for all penetrators, we 
usually assume that t  uniquely originates from a regu-
lar strand, and this implicitly eliminates the possibility 
that any penetrator can originate t . Intuitively, we use 
  to model regular agents to start a primary protocol 
session and then starts multiple parallel secondary pro-
tocol sessions, so a penetrator strand cannot be mixed 
with any other strand. To be more precise, for all pene-
trator strands s  and all strands 's , we have that 

'ss  and ss'  . This implies that a penetrator 
strand can only be composed with other strands by the 
relation  . 
 
3.4. Bundles 
 
The formal analysis based on strand spaces is carried on 
the notion of bundles, which represents the protocol 
execution under some configuration. A bundle is a caus-
ally well-founded graph, which sufficiently formalizes a 

session of a protocol. 
Definition 3 Suppose   ,, � N  ,  

and .    is a bundle if 
• N  and   and   are finite; 
• If the sign of a node n  is  , and Nn , then 

there is a unique positive node 'n  such that Nn'   
and nn'

 ; 
• If nn'   and Nn , then Nn'   and 

nn'
 ; 

•   is acyclic. 
Suppose   is a bundle, we say n  if n  is a 

node in N , and use   to denote the reflexive and 
transitive closure of the relation   and   in  . In 
a bundle, it must be ensured that a node is included only 
if all nodes that proceed it are already included. So a 
bundle   has the following properties: 

Lemma 1 (Bundle well foundedness) Let   be a 
bundle. Then   is a partial order, i.e. a reflexive, 
antisymmetric, transitive relation. Every non-empty sub-
set of the nodes in   has   minimal members.  

We have formalized the above extended strand space 
theory in the theorem prover Isabelle/HOL [9]. See [10] 
for details. 
 
4. Penetrator’s Knowledge Closure Property 
 
In this section, we will describe a useful property on 
penetrator strands. This property specifies what knowl-
edge can be obtained from some special message set. 
First we need to define a key is regular w.r.t. a node m  
in a bundle. 

Definition 4 A key K  is regular w.r.t. a node m  in 
a bundle  , denoted by  ,,mkregular , if and only if 
the following condition holds: for any node n  in  , if 

Knterm =)(  and )()( mtimentime  , then n  must be 
regular. 

This definition is about K ’s secrecy w.r.t. a node m  
in a bundle  , which means that K  cannot be penetrated 
before m  in the bundle. In most of the cases, we only 
consider security properties for a protocol in a given bun-
dle, so it is natural for us to just consider whether a key 
can potentially be penetrated in this bundle. Besides, we 
also need consider temporal restriction )()( mtimentime   
because we discuss K ’s secrecy a timed framework. 

Definition 5 Let m  be a node in a bundle .  A 
message ,t  is a component w.r.t. m  in bundle ,  
denoted by  ,, mtcomponent , if 

1) g(   );,. hgth   

2)      ,,=. 1 mkregularhtkh
k

  

Intuitively,  ,,mtcomponent  means that t  basic 
unit that can not be analyzed in   by penetrators. 
Namely, t  can not be detached because t  is not a 
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concatenated form; and if t  is an encrypted form of 
 

K
h  t  can not be decrypted before m  in   be-

cause 1k  can not be penetrated before m . 
Definition 6 Let m  be a node in a bundle .  a  is 

a message which uniquely originates at some node n . A 
message set M  is a test suite for a  w.r.t. m  in ,  
denoted by  ,,,, nmaMsuite  if 

1)  taMt .   ,, mtcomponent  

2) (.  taMt   
k

hthk =.    )(mtime    

))()( kcracktimentime   

3) ;. Mttat    
Intuitively,  ,,,, nmaMsuite  means that for any 
Mt  such that ,ta  t  can not be detached or de-

crypted before m  because such t  is a component w.r.t. 
m  in bundle  ; furthermore, if t  contains a  and is 
of the form  

K
h  for some k  and ,h  t  can not be 

cracked before m  because the duration between m  
and n  is less than k ’s crack time, and this is guaran-
teed by (2). Recall that )(ntime  is the first time when 
a  occurs because a  uniquely originates at .n  

Now we need introduce a function synth  on a mes-
sage set H , which captures the “building up” aspect of 
penetrator's ability [4,11].  Hsynth  is defined to be the 
least set that includes H , agents, timestamps and is 
closed under pairing, and encryption. 

Definition 7 Consider a message set ,H  )(Hsynth  
is a message set which is defined inductively as follows: 

1) )(HsynthA  if A  is an agent name; 

2) )(Hsyntht   if t  is a timestamp; 

3) )(Hsynthm   if Hm ; 

4)   ),(Hsynthh
k
  if )(Hsynthh  and ;Hk   

5)   ),(, Hsynthhg   if )(Hsynthg   and 

).(Hsynthh   

In the context of this paper, we usually assume that a  
is an unguessable atomic message such as a nonce, 
which is uniquely originated from a regular strand and 
encrypted in a message. Let },|{=0 MttatM   in 
later discussions we usually assume that 0M  is the set 
of messages which is emitted by some regular strands. f 
M  is a test suite for a  w.r.t. m  in b , then the set 
synth  M  is a knowledge closure which penetrators 
can synthesize in the bundle b  from .M  Namely, if 
the messages received in a penetror strand are in 
synth  M , then the messages sent in the strand must 
still be in synth  .M  

Before we prove the closure property, we need two 
useful lemmas, as shown below: 

Lemma 2 If M  is a test suite for a  w.r.t. m  in 
,  and  hg, synth  ,M  then g synth  M  and 
h synth  .M   
Lemma 3 If    ,Msynthh

K
  then  Msynthh  

or   .Mh
K
  

Let a  be an atomic message that uniquely originates 
at some node n , m  be a positive penetrator node in a 
bundle   such that and  .mterma  Suppose M  is 
a test suite for a  w.r.t. m  in the bundle  , if any 
message that the penetrator can receive in the strand is in 

 ,Msynth  then the penetrator can only send a term 
which is still in  Msynth . Figure 5 illustrates such 
behaviors of penetrators on knowledge, where (a) shows 
the cases for ,,hgC  ,,KhE  and ;,KhD  (b) shows the 
case for ;,hgS  and (c) shows the case for .,hKKC  

Lemma 4 Let m  be a positive penetrator node in a 

 

 

Figure 5. Penetrator’s knowledge closure property. 
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bundle ,  a  be an atomic message that uniquely ori- 
ginates at a regular node n , M  be a message set such 
that  ,,,,, nmaMsuite  and    Msynthmterm '   for 
any node such that ,mm'   then    .Msynthmterm    

Proof. For convenience, the assumption that 
   Msynthmterm   for any node such that nm   is 

referred as (1) in the proof as follows. 
By case analysis on the form of penetrator strand, we 

can easily exclude the cases when m  is in a strand 

gM , .KK  If thus, we can conclude that a  originates 
at .m  This contradicts with the fact that uniquely origi-
nates at a regular node .n  Therefore, m  is in a strand 
i  such that i  is hgC , , ,,hgS  ,,KhE  ,,KhD  or 

hKKC , . 
Case 1: i  is in ,,hgC  then   2,=mindex    ,=,0 giterm  
  ,=,1 hiterm  and    hgmterm ,=  for some g , ,h  

and   ,=,0 isign  and   =,1isign . From the assump-
tion (1), we have    Msynthiterm ,0  and  ,1iterm  

 ,Msynth  then  Msynthg  and  ;Msynthh  By 
the definition of synth  operator,    , ,g h synth M  
then    .Msynthmterm   

Case 2: i  is in ,,hgS  then   1,=mindex  or   2,=mindex  
   ,,=,0 hgiterm    ,=,1 giterm  and  =mterm  h  

for some g , .h  From the assumption (1),  we have 
   Msynthiterm ,0 ,  hg, synth  ,M  by Lemma 

4, we have  Msynthg   and  .Msynthh  So 
 mterm   .Msynth  

Case 3: i  is in ,,KhE  then   2,=mindex  
  ,=,0 Kiterm    ,=,1 hiterm  and    

K

' hmterm =  
for some K , ,h  and   ,=,0 isign  and   .=,1 isign  
From the assumption (1) ,    Msynthiterm ,0  and 

   ,,1 Msynthiterm   then  MsynthK   and 
 ;Msynthh  by the definition of synth , we have 

   ,Msynthh
K
  then    .Msynthmterm   

Case 4: i  is in ,,KhD  then   2,=mindex    ,=,0 1Kiterm  
    ,=,1

K
hiterm  and   hmterm =  for some K , ,h  

and   ,=,0 isign  and   .=,1 isign  From the assumption 
(1), we have    Msynthiterm ,0  and    ,,1 Msynthiterm   
therefore  MsynthK 1  and    ,Msynthh

K
  by 

Lemma 4, we have either (4-1)    Msynthhmterm =  
or (4-2)   .Mh

K
  From (4-1), the lemma can be 

proved at once. For the case (4-2), there are also two 
subcases, either (4-2-1)  

K
ha  or (4-2-2)   .

KK
ha  

From (4-2-1), we have ,ha  by M  is a test suite for 
a  in b , so ,Mh  then h    synth M , then term 

'm    synth .M  From (4-2-2), then by M  is a test 
suite for a  in b , we have component  

K
h  ,b  then 

we have  .,,1 mKregular   From this and   ,0i  
and   ,=,0 1Kiterm  then i  is regular, but this contra-
dicts with that m  is in a penetrator strand. 

Case 5: i  is in ,,hKKC  then   1,=mindex  
  ,=,1 hiterm      ,=,0

K
hiterm  (2)  

   .,1<)(,0 itermKcracktimeiterm   From the assump-
tion (1),  we have    .Msynthh

K
  From this, by 

Lemma 3, we have either (5-1)  Msynthh  or (5-2) 
  .Mh

K
  From (5-1), the lemma can be proved at once. 

For the case (5-2), there are also two subcases, either 
(5-2-1)  

K
ha  or (5-2-2)   .

K
ha  From (5-2-1), we 

have ,ha  by the definition of  ,,,, nmaMsuite , so 
,Mh  then  .Msynthh  From (5-2-2), then by the 

definition of  ,,,, nmaMsuite , we have (3) 
).()()( kcracktimentimemtime   From  ,,0iterma  and 

a  uniquely originates at ,n  we have ,0).()( itimentime   
Then we have  

),(,0)()()( kcracktimeitimekcracktimentime   
with (3), we have ).(,0)()( kcracktimeitimemtime   
But this contradicts with (2). 

On the other side, a strand’s receiving nodes get mes-
sages which are all in  ,Msynth  but a new message, 
which is not in  Msynth , is sent in the strand, then the 
strand must be regular because a penetrator strand can 
not create such a term. The result can be simply inferred 
from Lemma 4. 

Lemma 5 Let mbe a positive node in a bundle ,  a  
be an atomic message that uniquely originates at a regu-
lar node n , M  be a message set such that 

 ,,,,, nmaMsuite  and    Msynthmterm '   for any 
node such that ,mm'   and    ,Msynthmterm   then 
m  is regular .  

For Lemma 4 and 5, we have two comments: 
1) Lemma 4 characterizes the knowledge closure prop-

erties of a penetrator’s operations on messages. It says 
that if a penetrator only receives messages in  ,Msynth  
where M  is a test suite for some atomic message ,a  
then the augmented knowledge of the penetrator is still in 

 Msynth  after the receiving actions. 
2) Lemma 5 provides a key technique to prove the au-

thentication guarantee that m  is regular. Intuitively, 
condition (1) of suite  requires the secrecy of the in-
verse key 1k  for any key k  which is used to encrypt 
any message in M  containing a ; condition (2) of op-
erator suite  is a recency restriction that these encrypted 
messages containing a  can not be cracked until .m  
Therefore this lemma provides a means of using secrecy 
and recency restriction to prove authentication guarantee. 
We will see this result is very useful for us to check 
whether a strand is regular in the next sections. 

Note that the two lemmas relates the algebraic opera-
tor synth  in trace theory [4,11] with penetrator’s strand 
ability to deduce knowledge, which is the most important 
one which differs our work from the classical strand 
space theory. Such closure properties are not available in 
the classical strand space theory because message alge-
bra operators such as synth  are not formalized. 
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5. Unsolicited Tests 
 
In [12] (Subsection 4.2.3), a negative node n  is an un-
solicited test for  

K
h , if  

K
h  is a test component 

for any atomic text a  in n , and K  cannot be pene-
trated in the strand space. Then an unsolicited test for 
 

K
h  in a bundle   can guarantee the existence of a 

positive regular node of which  
K

h  is a component. 
We simplify this definition of unsolicited tests by the 
following two aspects: 

1) we consider a node n  is an unsolicited test for 
 

K
h  in a bundle  ; 
2) we only require that  

K
h  is a subterm of the 

term of n , and K  is regular w.r.t. n  in the bundle 
  instead of a strand space. 

In our formulation, unsolicited authentication test is a 
kind of regularity about an encrypted term  

K
h , which 

is a subterm of a node n  where K  cannot be pene-
trated before n  in a bundle  . Then it can be ensured 
that there is a positive regular node m  originating 
 

K
h  as a subterm, i.e., m  has  

K
h  as a subterm 

and it also holds that   )( '

K
mtermh   for any node 

mm'
 . Intuitively, the reason why m  must be regular 

lies in that K  cannot be penetrated before m  in  . 
So the penetrator cannot create  

K
h  by encrypting h  

with K . 
Definition 8 Given a bundle  . A node n  in   is 

an unsolicited test for  
K

h  if   )(ntermh
K
 , and 

K  is regular w.r.t. n  in  .  
Lemma 6 (Unsolicited authentication test)   is a 

given bundle. Let n  be an unsolicited test for  
K

h . 
Then there exists a positive regular node m  in   such 
that nm   and   )(mtermh

K
  and   )( '

K
mtermh   

for any node 'm  such that mm'
 .  

Proof. Let   )}(|{= xtermhnxxP
Kdf   . Obvi-

ously, Pm . By Lemma 1, there exists a node 'm  
such that 'm  is minimal in P , which means that 
  )( '

K
mtermh  , nm'

 , and for all y  such that 
'my  , Py . Hence,   )(ytermh

K
 . 

First, we prove that the sign of 'm  is positive by 
contradiction. If =)( 'msign , then by the upward- 
closed property of a bundle there must be another node 

''m  in   such that =)( ''msign  and ''' mm  . Then 
we have (a) ''' mm   and (b) )(=)( ''' mtermmterm . 
By (a) and nm'

 , we have nm ''
 . By (b) and 

  )( '

K
mtermh  , we have   )( ''

K
mtermh  . Hence, 

Pm ''   which contradicts with the minimality of 'm . 
Second, we prove that 'm  is regular. We show that a 

contradiction can be derived if 'm  is in a penetrator 
strand. Here, we only analyze cases when 'm  is in ei-
ther 'gg

C
,

 (concatenation strand), 'Kg
E

,
 (encryption 

strand), or 
g'K

KC
,

 (key crack strand). Other cases are 
either straightforward or can be analyzed in a similar 

way. 

• 'm  is in 'gg
Ci

,
 . 

By the form of the strand 'gg
C

,
 and the fact that 'm  

is a positive node, we have ,2)(= im' , 
 '' ggmterm ,=)( , giterm =,0)( , and 'giterm =,1)(  

for some g , 'g . By the upwards-closed property of a 
bundle, we have that nodes ,0)(i  and ,1)(i  must be in 
 . By    , '

K
h g g , we have either  

K
h g  or 

 
K

h g  , i.e.   ,0)(itermh
K
  or   ,1)(itermh

K
 . 

So either node Pi ,0)( , or node Pi ,1)( . Both cases 
contradict with the minimality of 'm . 

• 'm  is in 'Kg
Ei

,
 . 

By the form of the strand 'Kg
E

,
 and the fact that 'm  

is a positive node, we have ,2)(= im' , 
  'K

' gmterm =)( , 'Kiterm =,0)( , and giterm =,1)(  
for some g  and 'K . So    

K K
h g


 . Then it is 

straightforward that either (1)  
K

h g  or (2) gh =  
and 'KK = . For the first case, we have 
  ,1)(itermh

K
 . It is easy to derive a contradiction by 

the same argument as before. For the second case, by the 
definition of the relation  , we have (a) 

,2)(,0)( itimeitime  . And by definition of P , we also 
have (b) )()( ntimemtime '  . Hence, )(,0)( ntimeitime  . 
However, by the assumption that K  must be regular 
w.r.t. n  in  , ,0)(iterm  must be regular, and this 
contradicts with the fact that i  is a penetrator strand. 

• 'm  is in 
g'K

KCi
,

 . 

By the form of the strand 
g'K

KC
,

, and the fact that 
'm  is a positive node, we have ,1)(= im' , gmterm ' =)( , 

  'K
giterm =,0)(  for some g  and K  , and  

)(<)(,0)( 'mtimeKcracktimeitime  . 

By   gmtermh '

K
=)( , so     'KK

gitermh =,0)( . 
Obviously nmi '

 ,0)( . So Pi ,0)( , which contra-
dicts with the minimality of 'm . 

The proof totally depends on the well-founded induc-
tion principle on bundles, and we have formalized the 
proof of this lemma in Isabelle/HOL in our inductive 
strand space model, and the proof scripts are available at 
[10]. In fact, lemma 6 provides a useful proof method to 
reason about authentication properties basing on secrecy 
properties. Note that the premise that n  is an unsolic-
ited test for  

K
h  requires that K  is regular w.r.t. n  

in  , which is an assumption on the secrecy of K . 
And the conclusion is an authentication guarantee of the 
existence of a regular node m . Besides, compared with 
the original version of unsolicited test, our result also has 
two extensions that nm   and m  is minimal (i.e., 
  )( '

K
mtermh   for any node 'm  such that )mm'

 . 
We find that the extended version of unsolicited authen-
tication test is quite useful in many cases, especially in 
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the verification of authentication properties of symmetric 
key based protocols. In [13], we have used a version of 
unsolicited authentication test in the classical strand 
space theory to give new proofs of authentication proper-
ties of the Otway-Rees protocol. In this work, we have 
successfully applied unsolicited authentication test to our 
study of the Kerberos V protocol in the next paper. 
 
6. Conclusions and related Work 
 
This work is an extension of [14]. We have added two 
new semantical features in our new framework: time-
stamp and protocol mixture. In essence, our treatment of 
timestamps is to add a global clock to the underlying 
execution model, and to extend every action by a tempo-
ral annotation. This allows us to align the timestamps 
sent in the protocol messages with the actual occurrence 
times of the corresponding actions. Although it is quite 
straightforward, it gives a powerful mechanism to reason 
about recency of a message. For protocol mixture, we 
admit a realistic assumption that a regular agent can start 
multiple parallel secondary sessions once he has finished 
a primary protocol session, and he holds all the informa-
tion of the primary protocol session when he begins a 
secondary protocol session. So we introduce a causal 
relation   between strands to model the protocol de-
pendency. The above two semantical features are seldom 
discussed in previous works of strand space literature. 

Despite the aforementioned extensions in semantics, 
the definition of a bundle, which is the cornerstone of the 
strand space theory, remains unchanged. So the induction 
principle on the well-foundedness of a bundle is still ef-
fective in our model. Based on this principle, we have 
proved an extended result of the unsolicited authentica-
tion test. 

In the literature, most of the existing approaches for 
protocol analysis have not concentrated on timestamps 
and replay attacks. These include the CSP model- 
checking approach [15], the rank functions [16], and the 
Multi-Set Rewriting formalism (MSR) [17]. Paulson and 
Bella's inductive method [4,11] is one exception. They 
not only have extended their method to model replay 
attacks, but also have succeeded in applying their method 
to the Yahalom protocol and the Kerberos IV protocol. 
Recently, Bozga et al. [18] proposed an approach based 
on timed automata, symbolic verification techniques and 
temporal logic to analyze security protocols with time-
stamps. But they haven’t applied their approach to any 
real-world security protocols. 

For protocol mixture, there have been a few works to 
reason rigorously about protocol interactions. For in-
stance, Meadows studied the Internet Key Exchange 
protocol, emphasizing the potential interactions among 

its specific sub-protocols [19]. The analysis work was 
conducted in the NRL protocol analyzer. Recently, Cre-
mers discussed the feasibility of multi-protocol attacks, 
and his work is done in the operational semantical frame- 
work which considers a so-called type flaw attacks [20]. 
All these works, including [7], focus on protocol interac-
tions by message exchanging. Instead, our work empha-
sizes on the dependency between a primary protocol ses-
sion and a secondary protocol session. Here we assume 
that when a regular agent starts a secondary protocol 
session, he should be aware that he has finished a corre-
sponding primary protocol session, and he maintains all 
the information obtained in the primary protocol session, 
such as tickets and the creation time of the tickets. These 
modelling assumptions fit well with the real-world envi-
ronments where the Kerberos protocols run. 
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Abstract 
 
In this paper, we show how to use the novel extended strand space method to verify Kerberos V. First, we 
formally model novel semantical features in Kerberos V such as timestamps and protocol mixture in this new 
framework. Second, we apply unsolicited authentication test to prove its secrecy and authentication goals of 
Kerberos V. Our formalization and proof in this case study have been mechanized using Isabelle/HOL. 
 
Keywords: Strand Space, Kerberos V, Theorem Proving, Verification, Isabelle/HOL 

1. Introduction 
 
The first version of Kerberos protocol was developed in 
the mid eighties as part of project Athena at MIT [1]. 
Over twenty years, different versions of Kerberos 
protocols have evolved. Kerberos V (Figure 1 and 
Figure 2) is the latest version released by the Internet 
Engineering Task Force (IETF) [2]. It is a password- 
based system for authentication and authorization over 
local area networks. It is designed with the following 
aims: once a client authenticates himself to a network 
machine, the process of obtaining authorization to access 
another network service should be completely trans- 
parent to him. Namely, the client only needs enter his 
password once during the authentication phase. 

As we introduced in the previous paper [3], there are 
two novel semantic features in Kerberos V protocol. First, 
it uses timestamps to prevent replay attacks, so this 
deficiency of the strand space theory makes it difficult to 
analyze these protocols. Second, it is divided into three 
causally related multiple phases: authentication, 
authorization, and service protocol phases. One phase 
may be used to retrieve a ticket from a key distribution 

center, while a second phase is used to present the ticket 
to a security-aware server. To make matters more 
complex, Kerbeors uses timestamps to guarantee the 
recency of these tickets, that is, such tickets are only 
valid for an interval, and multiple sub-protocol sessions 
can start in parallel by the same agent using the same 
ticket if the ticket does not expire. Little work has been 
done to formalize both the timestamps and protocol 
mixture in a semantic framework. 

The aim of this paper is practical. We hope to apply 
the extended theory in [3] to the analysis of Kerberos V 
protocol. Kerberos V is appropriate as our case study 
because it covers both timestamps and protocol mixture 
semantical features. 

Structure of the Paper: Section 2 briefly introduces 
the overview of Kerberos V. Section 3 presents the 
formalization of Kerberos V. Sections 4 and 5 prove its 
secrecy and authentication goals. We discuss related 
work and conclude the paper in Section 6. 
 
2. An Overview of Kerberos V 
 
The protocol’s layout and its message exchanging are 
presented in Figure 1 and Figure 2 separately. In the 
infrastructure of the Kerberos V protocol, there is a 
unique authentication server, and some (not necessarily 
only one) ticket granting servers. The latter assumption is 
different from that in [4], where only a unique ticket 
granting server exists. 

*This is a revised and extended version of the homonymous paper ap-
pearing in the Proceedings the Eighth International Conference on Paral-
lel and Distributed Computing, Applications and Technologies (PDCAT
2007, IEEE Computer Society). The main modifications have been made
on the presentation of the technical material, with the purpose of having
full details. The first author is supported by grants (No.60496321, 
60421001) from National Natural Science Foundation of China.
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Figure 1. The layout of Kerberos V. 
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Figure 2. Kerberos V: message exchanging. 
 

In order to access some network service, the client 
needs to communicate with two trusted servers Kas  and 
Tgs. Kas is an authentication server (or the key distribution 
center) and it provides keys for communication between 
clients and ticket granting servers. Tgs  is a ticket 
granting server and it provides keys for communication 
between clients and application servers. The full protocol 
has three phases each consisting of two messages 
between the client and one of the servers in turn. 
Messages 2 and 4 are different from those in Kerberos 
IV [1,4] in that nested encryption has been cancelled. 
Later we will show that this change does not affect goals 
of the protocol. 

Detailed explanation about Kerberos V is delayed to 
Section 2, where the protocol is formalized in strand 
space model with our extensions. Here we only give an 

overview of the general principles to guarantee recency, 
secrecy and authentication in the design of Kerberos V. 
For recency, 

• A regular sender should attach a timestamp to 
indicate the time when the message is issued; usually 
such a message is of the form  , ,

K
t  , where t  is 

the time, K  may be either a session key or long-term 
key. 

• When a regular receiver the message  , ,
K

t   
first he need be ensured of K ’s secrecy to guarantee 
that the message is not froged by the penetrator. Second 
he check the recency of the message by comparing the 
timestamp t  with the reception time. More formally, if 
the receiving node is n , then )(ntime  should be no 
later than ( )cracktime K t , meaning that this message 
cannot be cracked at ( )time n , which in turn indicates 
that the message  , ,

K
t   is recent.  

For an encrypted message  
K

h , the secrecy of a 
part of the plain message h  also comes from both the 
secrecy of K  and the recency of the message  

K
h  

itself. That is to say, when a regular receives  
K

h  at 
time t , it must be ensured that the aforementioned two 
conditions must be guaranteed until t . From this, we 
can see that recency and secrecy are closely related with 
each other in a timed protocol framework. 

Unsolicited tests are the main mechanism to guarantee 
authentication. Because a guarantee of the existence of a 
regular node can be drawn from an unsolicited test, a 
regular agent uses unsolicited test to authenticate its 
regular protocol participant in Kerberos V. 

Now let us briefly review the main theoretical results 
in [3], which will be used in this work. For interesting 
readers, refer to [3] for preliminary definitions. 

If an agent is not a penetrator then his shared key 
cannot be penetrated, which is formalized as follows: 

Axiom 1 If ABad , then KAK .  
Lemma 1 is the main technique used to reason about 

authentication guarantee of a node n  which is an 
unsolicited test for an encrypted term of the form  

K
h  

(e.g., the tickets  , , ,
A

a K
A Tgs authK T ,  ,

authK
A t , 

and so on). That is to say, regular agents can use an 
unsolicited test with other properties of the protocol to 
guarantee that the agent who originates the term  

K
h  

should be an intended regular agent. 
Lemma 1 (Unsolicited authentication test)   is a 

given bundle. Let n  be an unsolicited test for  
K

h . 
Then there exists a positive regular node m  in   
such that nm   and   )(mtermh

K
  and   )( '

K
mtermh   

for any node 'm  such that mm'
 .  

Let a  be an atomic message that uniquely originates 
at some node n , m  be a positive penetrator node in a 
bundle   such that and  .mterma  Suppose M is a 
test suite for a  w.r.t. m  in the bundle  . A strand’s 
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receiving nodes get messages which are all in  ,Msynth  
but a new message, which is not in  Msynth , is sent in 
the strand, then the strand must be regular because a 
penetrator strand can not create such a term. 

Lemma 2 Let m  be a positive node in a bundle ,  
a  be an atomic message that uniquely originates at a 
regular node n , M  be a message set such that 

 ,,,,, nmaMsuite  and    'term m synth M  for any 
node such that ,'m m  and     ,term m synth M  
then m  is regular .   

We will illustrate these general principles in detail in 
the next sections when we formalize the semantics and 
prove secrecy properties of Kerberos V. 
 
3. Formalizing Kerberos V 

 
To model the time for a penetrator to break a message 
encrypted by a long-term shared key or a session key, we 
define two constants imeshrKcrackt  and ktimesessionKcr . 
The crack time of any regular agent’s long-term shared 
key is the constant shrKcracktime,  
Axiom 2 ( ) = shrKcracktimeAcracktime K ,  for any regular 
agent A  in Kerberos V.  

The crack time of any session key originated by an 
authentication server is the constant sessionKcrktime. 
Axiom 3 ( ) = sessionKcrktimecracktime authK , for any 
session key authK originated by Kas . 

The trace tr  specifications of the regular strands of 
Kerberos V (see Figure 2) are defined as predicates:1 
 
1) Part I (Authentication Phase)  
 

• Ag-I ],,,,,,,[ 101 ttauthTicketTauthKTgsAi a  iff  
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  
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 
 
  

 

where TGSsTgs  and imeshrKcrackt1  aTt . 
• AS ],,,,,[ 10 ttauthKTgsAas  iff 

 
 

  












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











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),,,

,,,,,,(

),,,,(

=)(

1

11

0

AK

TgsK

tauthKTgsA

tauthKTgsAt

TgsAt

astr  

where TGSsTgs .  
In the first phase, when Kas  issues the second 

message 

    , , , , , , ,
ATgs

a a KK
A Tgs authK T A Tgs authK T , 

authK  is the session key that will be used for the client 
A  to communicate with a ticket grant server Tgs , 

Kas  attaches aT  with the message to indicate when 

this message is sent; if A  receives this message at time 

1t , A  will check the condition 1 shrKcracktimeat T   

to ensure the recency of this message. At the end of this 
phase, A  obtains a ticket authTicket  and the session 
key authK  to communicate with Tgs . 

 
2) Part II (Authorization Phase)  
 
• Ag-II ,,,,,,,[ 2 STservKBauthTicketauthKAi  

],, 32 ttservTicket  iff  21101 .,,,, iittTTgsi a   

Ag-I ],,,,,,,[ 101 ttauthTicketTauthKTgsAi a  

 
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 


 

2

2

2

3

( , , ,

, , ),
=

( , , ,

, , , )

authK

S authK

t authTicket

A t B
tr i

t servTicket

A B servK T

 
 
 
 

 
 
 

 

where TGSsTgs  and imeshrKcrackt3  aTt  and 

ktime.sessionKcr3  STt  

• TGS aTBservKauthKTgsAtgs ,,,,,,[ , ],, 100 ttT  iff 
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0

authK

BK

authK

TgsKa

tservKBA

tservKBAt

BTA

TauthKTgsAt

tgstr  

where TGSs,Tgs  TGSs,B 1 sessionKcrktimet    
shrKcracktimeaT  .  

In the second phase, the situation is more complex. 
Both Tgs  and A  need to check whether their received 
messages are recent by the same mechanism. Furthermore, 
Tgs  also need ensure a side condition that  

1 sessionKcrktime shrKcracktimeat T    

to guarantee that the application server B  only receives 
a recent service ticket. Informally speaking, this condition 
means that Tgs  can guarantee any authK  that he 
receives can only be compromised later than servK  
which is associated with the authK . We will comment 
this side condition in analysis in the third phase. At the 
end of this phase, A  obtains a ticket servTicket  and 
the session key servK  to communicate with B . 

1For simplicity, we assume any trace of a regular agent always respects 
the time order in Kerberos V protocol, and we do not include this side
condition in the trace specifications. 
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3) Part III (Service Phase)  
 
• Ag-III 3 4 5[ , , , , , ]i A servK servTicket t t  iff 

1 0 1 2 2 3, , , , , , , , , , ,a Si Tgs authK T t t i authTicket B T t t . 

 3tr i =
   
  

4 4

5 4

, , , , ,

, ,

servK

servK

t servTicket A t

t t

 
  
   

 

Ag-I 1 0 1[ , , , , , , , ]ai A Tgs authK T authTicket t t   

Ag-II 2[ , , , , , , Si A authK authTicket B servK T , 

2 3 1 2 2 3, , ]servTicket t t i i i i    

where TgsTGSs , 5 shrKcracktimeat T   and 

5 sessionKcrktime.St T   

• Apps 4 0 1[ , , , , , , , ]Sapps A B servK T T t t  iff 

( ) =tr apps  
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where 0 sessionKcrktimeSt T  .  
In the last phase, it is subtle for the application server 

B  to check the recency of the message 

    4, , , , ,S servKKB
A B servK T A T . From the ticket 

 , , , S KB
A B servK T , B  knows that Tgs  must have 

issued     4, , , , , , , ,S SK authKB
A B servK T A B T servK T  

at time ST . The potential compromise of servK  is 

from the message  , , , S authK
A B servK T . A penetrator 

can either directly break  , , , S authK
A B servK T  to 

obtain servK , or have authK  first then decrypt the 

message  , , , S authK
A B servK T  to obtain servK . Since 

authK  is also a session key which is originated by 
Kas  in an earlier time than sT , the guarantee for the 

confidentiality of authK  is of extreme importance. The 

corresponding ticket  , , ,
Tgs

a K
A Tgs authK T  is not 

available for B , B  cannot know the creation time of 
authK . So B  cannot directly check whether authK  
has been compromised. Fortunately, if Tgs can guarantee 
that any authK  which it receives will be compromised 
later than servK , associated with the authK , then it is 

enough for B  to check 0 sessionKcrktimeSt T   to 

ensure that the authK  has not been compromised. At 
the end of this stage, A  and B  authenticate each 
other, and A  can access the service provided by B . 

The authentication server Kas must obey the following 
principles to generate a session key authK : 

• authK  must never be known initially to a 
penetrator, i.e., KauthK ; 

• authK  must be uniquely originated; 
• authK  is a symmetric key; 
• authK  must not be the same as an agent’s long- 

term shared key.  
We summarize these principles as the following 

axiom: 
Axiom 4 For any authentication server strand as  

such that 0 1[ , , , , , ]as A Tgs authK t tAS , we have 

KauthK , authK  uniquely originates in ( ,1)as , 
1=authK authK  , and BauthK K  for any agent B .  

A ticket grant server creates the session key servK  
by three principles, which are similar to those which the 
authentication server obeys to create the session key 
authK . 

Axiom 5 For any ticket grant server strand tgs  such 
that 0[ , , , , , , , ,atgs A Tgs authK servK B T TTGS  0 1, ]t t , 

KservK , servK  uniquely originates in ( ,1)tgs , 
1=servK servK  , and BservK K  for any agent B .  

In the following two subsections, we verify the 
secrecy and authentication properties of Kerberos V. We 
use similar ways for representing these security 
properties as in [5]. However, we may need formulate 
secrecy properties with temporal restrictions when we 
discuss them in a timed framework. A value v  is secret 
for a protocol if for every bundle   of the protocol the 
penetrator cannot receive v  in cleartext until some time 
t ; that is, there is no node n  in   such that 

( ) =term n v  and ( )time n t . For Kerberos V, we 
mainly discuss the secrecy of a long-term key of a 
regular agent, and ,authK  servK  issued by servers. 
Authentication properties are specified as usual: for a 
participant B  (e.g. acting as a responder), for a certain 
vector of parameters x


, if each time principal B  

completes a run of the protocol as a responder using x


 
supposedly with A , then there is a run of the protocol 
with A  acting as an initiator using x


 supposedly with 

B. And this is formalized as follows: there is a responder 
strand Resp  ( x


) and the i -th node of the strand is in a 

bundle  , then there is an initiator strand Init ( x


) and 
some j -th node of the initiator strand is in  . 

In order to prove the secrecy of a long-term key AK , 
we only need use the well-founded induction principle 
on bundles. But the knowledge closure property on 
penetrators is needed when we prove the secrecy of some 
session key authK  or servK . For instance, in order to 
prove the secrecy of authK , we construct a set  

    , , , , , , ,
A

df a aK KTgs
M A Tgs authK T A Tgs authK T  

 | .t authK t   
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We will show that for any node m  in a Kerberos 
bundle ,  if )(mtermauthK  and ( )time m    

shrKcracktime,aT   

then ( )term m  must be in ( ).synth M  Intuitively, this 
fact holds because both the penetrator and regular strands 
can only emit a message which is in ( )synth M . The 
penetrator can not decrypt or crack the messages  

 , , ,
A

a K
A Tgs authK T  and  , , , a KTgs

A Tgs authK T  

until time .shrKcracktime,aT  so it can only synthesize 
any messages which is in ( );synth M  except a unique 
authentication server strand, any other regular strand can 
not emit any message which has authK  as a subterm 
until that time. But for the authentication server strand,  
he can only emit  

   1 1, , , , , , ,
K KTgs A

A Tgs authK t A Tgs authK t
 
 
 

 

which is still in ( ).synth M  Our formal proof is by 
contradiction. If not so, by the well-founded induction 
principle on  , we have a minimal element m  such 
that )(mtermauthK  and ( ) ( ).term m synth M  By 
the knowledge closure property, we can exclude the 
cases when m  is in a penetrator strand. By case 
analysis on the form of the trace of regular strands, we 
can also exclude the case when m  is in a regular strand. 
Thus, a contradiction is concluded. 

In the following two sections, we give the detailed 
proof on the secrecy and authentication properties to 
show how to apply the proof techniques aforementioned. 
Note that we also have formalized all the proofs in 
Isabelle/HOL, and the proof scripts can be obtained at 
[6]. The paper proof here can be viewed as a text account 
of the mechanical proof scripts at [6]. 

 
4. Proving Secrecy Goals 

 
In Kerberos V, a long-term key of a regular agent is 
never sent in the network, so it cannot be compromised. 
Let   be a bundle of Kerberos V. For any node in the 
bundle, the long-term key of a regular agent cannot be a 
part of the term of the node. In order to prove this lemma, 
we only need the well-founded induction principle on 
bundles. 

Lemma 3 Let n . If BadA , then AKnterm )( .  

Proof. Let  

)}(|{= xtermKxxP Adf   

We show that P  is empty by contradiction. If there 
is a node Pn'  , then by the well-foundedness of a 
bundle, there exists a node m  such that m  is minimal 
in P . Namely, m , )(mtermK A , and for all  

'm , if mm'
  then )( '

A mtermK  . 

We prove that the sign of m  is positive. If =)(msign , 
then by upward-closed property of a bundle there must 
be another node ''m  in the bundle   such that 

=)( ''msign  and mm ''  . This contradicts with the 
minimality of m . Then m  is either in a regular strand 
or in a penetrator strand. 

• CASE 1: m  is in a regular strand. 
There are six cases. Here we only analyze the cases 

when m  is in an authentication server strand as AS 
],,,,,[ 10 ttauthKTgsAas  or m  is in a client strand 

i Ag-II ,[i ,A ,authK ,authTicket ,B ,servK ,ST  
,servTicket ,2t ]3t . The other cases are either straightforward 

or can be analyzed in a similarly. 
If m  is in an authentication server strand such that 
as AS ,[as ,A ,Tgs ,authK ,0t ].1t  By inspection on 

the trace form of the strand, we have ,1)(= asm , 
,1)(astermK A , and 

   1 1( ,1) = , , , , , , ,
K KTgs A

term as A Tgs authK t A Tgs authK t
 
 
 

, 

then 

 1, , ,A KTgs
K A Tgs authK t or  1, , ,A KA

K A Tgs authK t . 

In both cases, we can conclude that .= authKK A  But 
this contradicts with Axiom 4. If m  is in a client strand 
such that [ ,i i Ag II ,A ,authK ,authTicket ,B  

,servK ,ST ,servTicket ], 32 tt . By inspection on the trace 
form of the client strand, we have ,0)(= im , 

,0)(itermK A , and 

  2( ,0) = , , , ,
authK

term i authTicket A t B  

then .authTicketK A  But by the definition of the client 
strand, there exists some client strand 11 suchthatii    
i and Ag-I ,[ 1i ,A ,Tgs ,authK ,aT ,authTicket ]., 10 tt  
From the definition of the strand , we have 

,1).( 1itermauthTicket  From this and AK    
,authTicket  we have (1) ,1).( 1itermK A  From 1i    

,i  we have (2) ,1)( 1i    ,0).(i  From (1) and (2), we 
can conclude that m  is not minimal in P .  This 
contradicts with the minimality of m . 

• CASE 2: m  is in a penetrator strand p . 
Here we only analyze the cases when p  is either 

KK  (key strand) or hgC ,  (concatenation). Other cases 
are either straightforward or can be analyzed in a similar 
way. 

- p  is KK . We have ,0)(= pm  and KK A . 
Then KKK A = . This contradicts with Axiom 1. 

- p  is hgC , . We have ,2)(= pm'  and  hgK A , . 
By the definition of  , we have gK A , or hK A . If 

gK A , then ,0)( ptermK A . This contradicts with the 
minimality of m . The case when hK A  can be 
analyzed similarly. 
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If an authentication ticket  , , ,
A

a K
A Tgs authK T  or 

 , , ,
Tgs

a K
A Tgs authK T  occurs as a subterm of a node in 
 , A  is not compromised, and Tgs  is a ticket 
granting server, then it can be guaranteed that there must 
be an authentication server strand as  in which 
 , , ,

A
a K

A Tgs authK T  and  , , ,
Tgs

a K
A Tgs authK T  originate 

at time aT . Therefore, aT  is the earliest time when 
 , , ,

A
a K

A Tgs authK T  and  , , ,
Tgs

a K
A Tgs authK T  occur in 

 . With the specification of the origination of the key 
authK  by Kas  (formulated by Axiom 4), we also are 
ensured that aT  is the earliest time when authK  
occurs in  . The minimal property of aT  will be used 
in the proof of Lemma 5. 

Lemma 4 Let n , BadA , and TGSsTgs . If 
 , , ,

A
a K

A Tgs authK T  or  , , , ( )
A

a K
A Tgs authK T term n , 

then there exists an authentication server strand as  
such that ,,,[ TgsAasAS ],, 0 aTtauthK  for some 0t , 

,1)(as , and )(ntimeTa  .  
Proof.  
Here we only prove the case  , , ,

A
a K

A Tgs authK T  
  .nterm  The other case can be proved in a similar 
way. First we prove that (1) n  is an unsolicited test for 
the term  , , ,

A
a K

A Tgs authK T  We only need prove 
that AK  must be regular w.r.t. n . By Lemma 3, there 
is no node m  in   such that   ,= AKmterm  so AK  
must be regular w.r.t. n . 

From (1), by Lemma 1, there exists a positive regular 
node m in   such that nm   and  , , ,

A
a K

A Tgs authK T  
)(mterm  and  , , ,

A
a K

A Tgs authK T  )( 'mterm  for 
any node 'm  such that mm'

 . 
From nm   and   is a bundle, we can easily 

conclude )()( ntimemtime   and .m  
Now we prove that m  must be in an authentication 

server strand. From the fact that m  is regular, then we 
have six cases, here we select two cases when m  is in 
an authentication server strand as  such that AS as[ , 

'A , 'Tgs , 'authK , 0t , 1]t  or in an ticket granting server 
strand tgs  such that tgs[TGS , 'A ,Tg , 'authK , servK , 

'B , '
aT , 0T , 0t , ].1t  

• m  is in an authentication server strand as  such 
that AS as[ , 'A , 'Tgs , 'authK , 0t , ].1t  By inspection on 
the form of the strand,  ,1= asm  because m  is 
positive. Obviously 

   1 1

( )

, , , , , , ,
Tgs A

' ' ' ' ' '

K K

term m

A Tgs authK t A Tgs authK t
 



 
 
 

 

By , , ,
A

a K
A Tgs authK T   ),(mterm  we have either (2) 

 , , ,
A

a K
A Tgs authK T   1, , ,

Tgs

' ' '

K
A Tgs authK t


 or (3) 

 , , ,
A

a K
A Tgs authK T   1, , ,

A

' ' '

K
A Tgs authK t


. From (2), 

we have 'AA =  and 'TgsTgs =  and 'authKauthK =  
and 1= tTa , so AS ].,,,,,[ 0 aTtauthKTgsAas  Case (3) 
can be prove similarly. 

• m  is in an ticket granting server strand such that 

TGS ].,,,,,,,,,[ 100 ttTTBservKauthKTgAtgs '
a

'''  By 

inspection on the form of the strand,  ,1= tgsm  

because m  is a positive node. Obviously 

    1 1( ) , , , , , , , .
B

' ' ' '

K authK
term m A B servK t A B servK t

 
  

From  , , ,
A

a K
A Tgs authK T  ),(mterm  we have 

either (2)  , , ,
A

a K
A Tgs authK T   1, , ,

B

' '

K
A B servK t


 

or (3)  , , ,
A

a K
A Tgs authK T   1, , ,' '

authK
A B servK t


. 

From (2), we can prove that ,= 'BTgs  then by the 

assumption ,TGSsTgs  we have .TGSs'B  But by 

the definition of the ticket granting server, we have 

'B TGSs. Therefore a contradiction is obtained. Case 
(3) can be proved similarly. 

Once the authentication tickets  , , ,
A

a K
A Tgs authK T  

or  , , ,
Tgs

a K
A Tgs authK T  are created by the authentication 

server Kas  at aT , then the session key authK  will 

be not compromised until the time imeshrKcracktaT . 
Lemma 5 Let n , BadA , and TGSsTgs . If 

 , , ,
A

a K
A Tgs authK T  or 

 , , , ( )
Tgs

a K
A Tgs authK T term n , 

then for any node m  such that ( ) atime m T   
shrKcracktime , authKmterm )( .  

Proof. First we define two sets. 

 
   tauthKt

TauthKTgsA

TauthKTgsA
M

TgsKa

AKa

df 












 |
,,,

,,,,
 

= { . ( ) shrKcracktimedf aP m m time m T      

 ( ) }term m synth M . 

We show that for any node m  such that 
imeshrKcrackt)(  aTmtime ,  Msynthmterm )( . In 

order to prove this, we only need show P  is empty. We 
prove the assertion by contradiction. If P  is not 
empty ,  then by the well-foundedness of a bundle, (1) 
there exists a positive node m  such that m , 

 ,)( Msynthmterm   imeshrKcrackt)(  aTmtime , 
and for all 'm , if mm'

  then ( )term m   
 synth M . 

First from the fact that  , , ,
A

a K
A Tgs authK T  or 

 , , , ( )
Tgs

a K
A Tgs authK T term n  by the Lemma 4, then 
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there exists an authentication server strand as  such that 
,,,[ TgsAasAS ],, 0 aTtauthK  for some 0t , ,1)(as , 

and )(ntimeTa  . From the definition of AS  and 
Axiom 4 ,  we have (2) authK  uniquely originates at 

,1)(as  and .=,1)( aTastime  
Next we prove that (3) ,Msuite( ,authK ,m ,1),(as  
 ). Here we need show both  , , ,

A
a K

A Tgs authK T  and 

 , , ,
Tgs

a K
A Tgs authK T  are components in  . From 

A    Bad  and Tgs    TGSs , by Lemma 3, we 
have that neither AK  nor TgsK  is compromised, and 
they are symmetry, therefore ),,( 1 mKregular A

  and 
),,( 1 mKregular Tgs

 ; furthermore from )(mtime    aT    
,imeshrKcrackt  and by Axiom 2, )( AKcracktime  =  

ime,shrKcrackt  with (2), we have )(mtime    ,1)(astime  
,)( AKcracktime  similarly we have )(mtime  ,1)(astime  

( ),Tgscracktime K  so (3) is proved .  
From (1), we have for any 'm  such that mm'  , 

term  Msynthm' )( . With (2)(3), by Lemma 2, we 
have m  must be in a regular strand i , then there exist 
six cases. Here we analyze the cases when 
AS i[ , 'A , 'Tgs , 'authK , 't0 , ]1t , other cases are more 
simpler .  If m  is in an authentication server strand 
AS i[ , 'A , 'Tgs , 'authK , 't0 , ].1t  By inspection on the 
form of the strand,  ,1= im  because m  is positive. 
Obviously 

   1 1

( )

, , , , , , ,
Tgs A

' ' ' ' ' '

K K

term m

A Tgs authK t A Tgs authK t
 



 
 
 

.
 

Obviously authK    term ),(m  otherwise term )(m  

  .M  Therefore  1, , ,
A

' ' '

K
authK A Tgs authK t


  or 

 1, , ,
Tgs

' ' '

K
authK A Tgs authK t


  then .'authK authK  

From the definition of Axiom 4, we have authK  
uniquely originates from the strand i . Combining with 

(2), we have ias = , then 'AA = , 'TgsTgs = , aTt =1 , 

so 

   

( )

, , , , , , ,

( )

a aK KTgs A

term m

A Tgs authK T A Tgs authK T

synth M

   
 



 

This contradicts with the fact ).()( Msynthmterm   

Therefore for any node m  such that )(mtime  
imeshrKcracktaT ,  Msynthmterm )( . Next we 

only need prove that  MsynthauthK  . We prove by 
contradiction, if  ,MsynthauthK   by the rule inversion 
of definition of synth , we have ,MauthK   this 
contradicts with the definition of M . 

In order to prove the conclusion of Lemma 5, we need 

the conclusion of Lemma 4, which ensures us that a 

penetrator cannot crack the term  , , , a KA
A Tgs authK T  

(or  , , , a KTgs
A Tgs authK T ) to obtain .authK  Because 

the earliest time when authK  occurs in   is aT  and 

authK  can only occur in  , , , a KA
A Tgs authK T  (or 

 , , , a KTgs
A Tgs authK T ) the penetrator cannot crack 

such a term until imeshrKcracktaT , and what he can 

only do is to synthesize some term from M . Therefore, 

authK  must be safe until that time. Furthermore, the 

intermediate result of this proof tells us that )(mterm  

must be in  Msynth  for any node m  such that 

ime.shrKcrackt)(  aTmtime  
If both the tickets 

 , , , S authK
A B servK T

 
and

 
 , , , a KA

A Tgs authK T
  

occur as a part of the term of a node in  , A  and B  
are not compromised, and B  is not a ticket grant server, 
and authK  is still not compromised at the time when 
the above two tickets occur, then it can be guaranteed 
that A  must have passed the first and second phases of 
the protocol, and a ticket grant server strand tgs  must 
exist in  , where two tickets 

 , , , S KB
A B servK T  and  , , , S authK

A B servK T  

are issued for some session key authK . Similar to 
Lemma 4, this lemma ensures us that ST  is the earliest 
time when servK  occurs in  , and this minimal 
property is needed in the proof of Lemma 7. 

Lemma 6 Let nm, , BadA , TGSsTgs . If 
both 

 , , , ( )a KA
A Tgs authK T term m , 

and 

 , , , ( )S authK
A B servK T term n  

and imeshrKcrackt)(  aTntime , then there exists a 
ticket granting server strand tgs  such that ,,[ AtgsTGS  

],,,,,,, 00 Sa TtTTBservKauthKTgs for some 0T , 0t , 
,1)(tgs   and )(ntimeTS  . 

Here we only give the proof sketch of this lemma. 
First we need show that (1) n  is an unsolicited test for 

 , , , S authK
A B servK T  in  . We need prove 

 .,, nauthKregular  This can be ensured by Lemma 5. 
Because ime,shrKcrackt)(  aTntime  we have 

( )'term n authK for any node 'n such that 
( ) ( ).'time n time n  From (1), we can show that there is 

a regular node 'n  such that 'n n  and 

 , , , S authK
A B servK T  term )( 'n  and 
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 , , , S authK
A B servK T   term )( 'm  for any node 'm  

such that '' nm  . By the case analysis on the form of 
regular strands, we can prove that 'n  must be in a ticket 
granting server strand tgs  such that [ ,tgsTGS ,A  

,Tgs ,authK  ,servK ,B ,aT 0 ,T 0 ,t ]ST  for some 0T , 

0t , 'ntgs =,1)(  and )(= '
S ntimeT . 

Moreover, by the fact a ticket  , , , S authK
A B servK T  

is originated at time ST , then the session key servK  
will not be compromised until the time  

ktimesessionKcrST . 

Because during the interval from ST  to  

ktimesessionKcrST , 

neither  , , , S authK
A B servK T  will be cracked, nor the 

session key authK  can be obtained by a penetrator to 
decrypt the ticket  , , , S authK

A B servK T . 
Lemma 7 Let 0m , n , BadBA, , TGSsTgs . 

If both  , , , a K A
A Tgs authK T )( 0mterm  and 

 , , , ( )S authK
A B servK T term n , 

and imeshrKcrackt)(  aTntime , then for any node 
m  such that ktimesessionKcr)(  STmtime , 

servKmterm )( .  
Proof. First we define: 

 
   .|

,,,

,,,,
= tservKt

TservKBA

TservKBA
M

authKS

BKS

df 












 

We will show that for any node m  such that 
ktimesessionKcr)(  STmtime , term  .)( Msynthm   

We prove the assertion by contradiction. 
Let 

.{= mP df m    )(mtime  ST  ktimesessionKcr
term )(m     }.Msynth  If P  is not empty ,  then by 
the well-foundedness of a bundle, (1) there exists a 
positive node m  such that m , )(mtime    ST  
  ktimesessionKcr , term  ,)( Msynthm   and for all 

'm , if mm'
  then term  Msynthm' )( . 

From the fact  , , , a K A
A Tgs authK T  ),( 0mterm  

by Lemma 4, there exists an authentication server strand 
as  such that ,,,[ TgsAasAS ],, 0 aTtauthK  for some 0t , 

,1)(as . From the definition of AS , we know (2) 
authK  uniquely originates at ,1)(as  and 

aTastime =,1)( . 
From the fact that  , , , a KA

A Tgs authK T  )( 0mterm  
and  , , , a KA

A Tgs authK T  ),(nterm  by Lemma 6, 
then there exists a ticket granting server strand tgs  
such that ,[tgsTGS ,A ,Tgs ,authK ,servK ,B ,aT  ,0T  

,0t  ]ST  for  some 0T , 0t . From the definition of 
TGS  and Axiom 5, we have (3) servK  uniquely 
originates at ,1)(tgs , ,=,1)( STtgstime  

 , , , a KTgs
A Tgs authK T  term ,0),(tgs  

and imeshrKcracktktimesessionKcr  aS TT . From 
 , , , a KTgs

A Tgs authK T  term ,0),(tgs  by Lemma 4, 
we can easily conclude that ,0)(tgstimeTa  , then (4) 

,1).(tgstimeTa   
Next we prove that (5) ),1),(,,,( tgsmservKMsuite . 

Here we need show both  , , , a KB
A Tgs servK T  and 

 , , , S authK
A B servK T  are components in  . From 

BadB , by Lemma 3, we have BK  are never 
compromised, similar to counterpart in Lemma 5, we can 
prove that  .,,1 mKregular B

  From  

imeshrKcracktktimesessionKcr  aS TT  
and ktimesessionKcr)(  STmtime , we have (6) 

ime,shrKcrackt)(  aTmtime  with (4), we have 
)(mtime    ,1)(tgstime  ).( BKcracktime  From (6) 

and  , , , ( )a KA
A Tgs authK T term m  for any node 'n  

such that )( 'ntime  ),(mtime  we have 

ktimesessionKcr)(  S
' Tntime , 

then )( 'ntime  eshrKcrktimaT , by Lemma 5, 
term )( 'n  ;authK  by Axiom 4, authK  is symmetry, 
therefore 1authK = ,authK  so  .,,1 mauthKregular   
From ktime,sessionKcr)(  STmtime  and by Axiom 4 
again, we have )(authKcracktime = ktime,sessionKcr  
then  STmtime )( ),(authKcracktime  with (3), we 
have )( mtime ,1)(tgstime ).(authKcracktime  
Therefore (5) is proved .  

From (1), we have for any 'm  such that mm'  , 
term )( 'm synth  M . With (2)(5), by Lemma 2, we 
have m  must be in a regular strand i , then there exists 
six cases. Here we analyze the cases when ,[iAS ,'A  

,'Tgs ,'authK ,0
't ]1t  or ,[iTGS ,'A ,'Tgs ,'authK  

,'servK ,'B ,'
aT ,0

'T ,0
't ]'

ST , other cases are more 
simpler. 

If ,[iAS ,'A ,'Tgs ,'authK ,0
't ],1t  then by inspection 

on the form of the strand,  ,1= im  because m  is 
positive. Obviously  

   1 1

( )

, , , , , , ,
K 'Tgs

' ' ' ' ' '

KA

term m

A Tgs authK t A Tgs authK t


    
  

. 

Obviously servK  term ),(m  otherwise )(mterm  

.M  Therefore  , , ,
A

' ' '
a

K
servK A Tgs authK T


  or 

 , , ,
Tgs

' ' '
a

K
servK A Tgs authK T


  

then servK = .'authK  From Axiom 5, we have 
authK  uniquely originates from the strand i . 
Combining with (3), we can conclude i  is both an 
authentication server strand and a ticket granting server 
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strand, obviously this is a contradiction. 
If ],,,,,,,,,[ 00

'
S

'''
a

''''' TtTTBservKauthKTgsAiTGS , 
then by similar argument, we can prove that 'servK =  

,servK  from Axiom 5, we have servK  uniquely 
originates from i , with (3), we have i  =  tgs , we can 
prove that 

    
( )

, , , , , , ,S SK authKB

term m

A B servK T A B servK T
 

then term )(m synth ( )M  this contradicts with (1). 
At last we only need prove that term )(m synth  

( )M  implies that term servKm )( , this is similar to 
counterpart in Lemma 5. 

Both Lemma 6 and Lemma 7 have the assumption that 
 , , , a KA

A Tgs authK T  is a subterm of the node n , which 
can guarantee that authK  must be a session key originated 
by an authentication server strand. The assumption 

imeshrKcrackt)(  aTntime  is used to guarantee that 
authK  is still safe at )(ntime . Besides, the two terms 
 , , , S authK

A B servK T  and  , , , a KA
A Tgs authK T  are 

intelligible for the client A , so these two lemmas are 
secrecy properties in the view of A . 

In Lemmas 6 and 7, both  , , , S authK
A B servK T  and 

 , , , a KA
A Tgs authK T  are unintelligible for an application 

server B  because authK  and AK  cannot be known 
by B . So the two properties are not in B ’s view. B  
can only receive a message such as  , , , S KB

A B servK T , 
can it be ensured that servK  is confidential when he 
receives the message  , , , S KB

A B servK T ? The following 
two lemmas are about the confidential information 
inferred from the message  , , , S KB

A B servK T . They 
are secrecy properties in B ’s view. 

Once a server ticket such as  , , , S KB
A B servK T  occurs 

in a bundle, where A  and B  are not compromised, 
and B  is not a ticket granting server, then conclusions 
similar to those in Lemma 6 and Lemma 7 can be drawn. 

Lemma 8 Let n , BadBA, , and TGSsB . 
If  , , , ( )S KB

A B servK T term n , then there exists a 
ticket grant server strand tgs  such that ,,[ AtgsTGS  

],,,,,,, 00 Sa TtTTBservKauthKTgs  for some Tgs , authK , 

aT , 0T , ,0t ,1)(tgs  and )(ntimeTS  .  
Lemma 9 Let n , BadBA, , and TGSsB . 

If  , , , ( )S KB
A B servK T term n , then for any node 
m  such that ktimesessionKcr)(  STmtime , 

servKmterm )( .  
Here we summarize the main ideas used in the above 

proof of secrecy properties. 
• For a long-term key of a regular agent, its secrecy is 

easily inferred because it is never sent as a part of a 
message. We only need the well-founded induction 
principle on bundles to prove this. 

• But for a short session key authK  or servK , the 
cases are more complex because they are sent as a part in 
a message such as 

 , , , a KA
A Tgs authK T  or  , , , S authK

A B servK T . 

In kerberos V, a session key such as authK ( servK ) 
occurs as a part of a term of node n  which is of the 
form  

K
h  ,  where K  can be either a long-term key 

or another short session key, and h  also contains a 
timestamp t  such as )( Sa TT , which indicates the time 
when  

K
h  is .t  As mentioned before, both secrecy 

of K  and recency of  
K

h  should be guaranteed. 
Secrecy of K  can be directly drawn from other lemmas 
on K . But for recency checking, firstly we need prove 
that the timestamp t  indeed indicates the time when 
 

K
h  is originated. Lemmas 4, 6, 9 play a role in 

guaranteeing that t  is the first time when authK  
( servK ) is originated. From this and the assumption that 

cracktime)(  tntime ( K ), the recency of  
K

h  can 
be proved.  
 
5. Proving Authentication Goals 
 
For convenience, we call that a strand i  uses a term 
 

K
h  as an unsolicited test if there is a node n  is in 

the strand i  and is an unsolicited test for  
K

h  in a 
bundle .  Because a guarantee of the existence of a 
regular node can be drawn from an unsolicited test, a 
regular agent uses unsolicited test to authenticate its 
regular protocol participant in Kerberos V. 

The client strand in the authentication phase receives 
 , , , a KA

A Tgs authK T as an unsolicited test that authenti- 
cates the positive node of the authentication server strand. 
The intuition behind this authentication is quite straight- 
forward. By case analysis on the form of ,i  we have 
 , , , a KA

A Tgs authK T  ( ,1),term i  combining with the 
assumption that A  is not compromised, by Lemma 4, 
we have  , , , a KA

A Tgs authK T  can only be originated 
by an authentication server. For the sake of brevity, in 
the following discussion we use ],,,[ yxP   to denote 

],,,[. yxxPx ''  .   is a bundle of Kerberos V. 
Lemma 10 Let BadA . If i  is a client strand in 

the authentication phase such that Ag-I ,,,,[ authKTgsAi  
],,, 10 ttauthTicketTa  and ,1)(i , then there exists an 

authentication server strand as  such that ,,[ AasAS  
],*,, aTauthKTgs , ,1)(as .  

The ticket grant server strand uses  0,
authK

A T  as an 
unsolicited test to authenticate the client strand in the 
authorization phase. This guarantee is ensured from the 
secrecy of authK , which is in turn guaranteed by the 
ticket  , , , a KTgs

A B authK T . By the trace specification 
of a ticket grant server strand, we have that  
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   0, , , , ,a K authKTgs
A B authK T A T

 
 
 

 

is received by Tgs earlier than the time  

ktimesessionKcraT , 

by Lemma 5, authK  is safe at that time. 
Lemma 11 Let BadA , TGSsTgs . If tgs  is a 

ticket grant server strand such that [ , ,tgs ATGS  

0 0 1, , , , , , , ],aTgs authK servK B T T t t  and ,0)(tgs , then 
there exists a client strand i  in the authorization phase 
such that ,0)(i  and Ag-II ],,,,,,,,,,[ 0  TauthKAi .  

Proof. By analysis on the form of tgs  strand, we 
have (1)  0,

authK
A T  ,0),(tgs  (2)  , , , a KTgs

A B authK T  
 ,0)(tgsterm  and ,0)(tgstime  aT  imeshrKcrackt . 
From (2), by Lemma 5, we have that   mterm  authK  
for any m  such that  mtime    ,0)(tgstime , 
therefore ),0),(,( tgsauthKregular . With (1),  by 
Lemma 1, we have (3) there is a positive regular node 
m  such that ,0)(tgsm   and  0,

authK
A T  ( )term n   

and  0,
authK

A T  )( 'mterm  for any node 'm  such 
that .mm'

  Obviously m . 
Now we need prove that m  must be in a client strand 

i  in the authorization phase. From the fact that m  is 
regular, then we have six cases, here we select two cases 
when (4) m is in a strand i such that Ag-II ,[i ,'A ,'authK  

,'authTicket ,'B ,'servK ,'
ST ,'servTicket ,2t ]3t  or (5) 

m  is in a strand i  such that [ , , ,' 'i A servKAg_III  
].,, 54 ttservTicket'  Other cases are more simpler. 

If (4)  holds, then m  ,0= i  because m  is positive. 

From  0, ( )
authK

A T term n  and  

 mterm =   2, , , ,'

authK
authTicket A t B  

we have either (6)  0, '

authK
A T authTicket  or (7)  

   0 2, , .'
'authK authK

A T A t  

If (6) holds, then by the definition of the client strand, 
there exists some client strand 1 1such thati i    i and 
Ag-I ,[ 1i ,'A ,'Tgs ,'authK ,'

aT ,'authTicket ]., 10
'' tt  From 

the definition of the strand , we have  

 1( ,1) , , , , .' ' ' ' '
a

K 'A

term i authTicket A Tgs authK T
    
  

 

From this and (6),  we have (8)  0 1, ( ,1).
authK

A T term i  
From 1i  ,i  ,1)( 1i  ,0)(i , then (9) ,1)( 1i  ,0).(i  
But (8) and (9) contradicts with (3). If (7) holds, then 

,= 'AA  ,= 20 tT  .= 'authKauthK  So the conclusion 
is obtained. 

If (5) holds, then similar to the counterpart of the 
argument for case (4), we have either (10)  0,

authK
A T  

'servTicket  or (11)    0 4, , .'
'authK servK

A T A t  For 

case (10), its proof is similar to that of case (6). If (11) 
holds, then (12) ,= 'AA  ,= 40 tT  .= 'servKauthK  By 
the definition of Ag_III , (13) there is a client strand 

12 , ii  such that 1i  2i  and 2i  i  and Ag-II ,,[ 2
'Ai  

,'authK ,'authTicket ,'B ,'servK ,'
ST ,'servTicket ,2t

]3t  and Ag-I ,[ 1i ,'A ,'Tgs ,'authK ,'
aT ,'authTicket  

], 10
'' tt  for some 'Tgs  .TGSs  Obviously, 

 , , ,
A

' ' '
a

K
A Tgs authK T


 1( ,1),term i   

  2, , , ( ,1),' ' ' '
S 'authK

A B servK T term i  

and ime.shrKcrackt,1)( 2  '
aTitime  From 1i  2i  and 

2i  i  and ,0)(i , we have ,1)( 1i  and 
,1)( 2i . From (12), and the assumption Bad,A  by 

Lemma 6, (14) there is a ticket granting server strand 
'tgs  such that [ ,'tgsTGS ,'A ,'Tgs ,'authK ,'servK  
,'B ,'

aT ,0
'T ,0

''t ]'
ST  for some ., 00

''' tT  But from (2), by 
Lemma 4, we have (15) there is an authentication server 
as  such that ,,,[ TgsAasAS ,authK ],0 a

' Tt  for some 
.0

't  But from (12) and Axioms 4,5, we have astgs' =  
because authK ( 'servK ) uniquely originates from a 
strand ,  obviously this is a contradiction.  

A client strand 2i  in the authorization phase receives 
 , , , S authK

A B servK T  as an unsolicited test. Note that 
 , , , S authK

A B servK T  is received in the second node in 
the client strand; furthermore, from the definition of 
Ag-II, we have that there exists a client strand 1i  in the 
authentication phase such that 1i  2i , and the ticket 
 , , , a KA

A Tgs authK T  must be received at the second node 
of 1i ; from the definition of Ag-II,  , , , S authK

A B servK T  
must have been received at an earlier time than aT  

imeshrKcrackt , then by Lemma 5, it can be guaranteed 
that authK  must be safe at the time when the client 
strand receives  , , , S authK

A B servK T . 
Lemma 12 Let BadBA, . If i  is a client strand in 

the authorization phase such that Ag-II [ , , , ,ai A authK T  
auth - ,,1)(and],,,,,, 10 ittservTicketTservKBTicket S  
then there exists a client strand 0i  in the authentication 
phase, and a ticket grant server strand ,tgs  and some 
Tgs  such that ii 0  and Ag-I 0[ , , , , ,ai A Tgs authK T  

, , ]authTicket    and [ , , , , , ,tgs A Tgs authK servK BTGS  
, , , ]a sT T  , and ,1)(tgs , and TGSsB .  
The application server B  receives  4,

servK
A T , 

which is an unsolicited test to guarantee that the first 
received message must be from a client strand in the 
service phase. This guarantee is ensured from the secrecy 
of servK , which is in turn guaranteed by the ticket 
 , , , S KB

A B servK T . By the trace specification of an 
application server strand, we have that  

    4
, , , , ,S servKKB

A B servK T A T  
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is received by B earlier than the time  

ktimesessionKcrST . 

By Lemma 9, servK  is safe at that time. 
Lemma 13 Let BadBA, , TGSsB . If b  is an 

application server strand such that [ , , , ,b A B servKApps  

4 0 1, , , ],ST T t t  ,0)(and b , then there are two client 
strands 2i , 3i  and some servTicket  such that 

2 3i i  and ,0)( 3i  and 2[ , ,*,*, , ,i A B servKAg_II  
, ,ST servTicket *,*]  and 3[ , , , ,i A servK servTicketAg_III  

4 ,*]T .  
The client strand in the service phase uses  4 servK

T  
as an unsolicited test to authenticate the application 
server strand. This guarantee is also ensured from the 
secrecy of servK , which is in turn guaranteed by the 
ticket  , , , S authK

A B servK T , and  , , , a KA
A Tgs authK T . 

By the trace specification of an application server strand, 
we have that  4 servK

T  is received by A  earlier than 
the time ktimesessionKcrST  and imeshrKcracktaT . 
By Lemma 7, servK  is safe at that time. 

Lemma 14 Let BadBA, , TGSsB . If 3i  is a 
client strand in a service phase such that 3[ ,iAgent_III  

],,,,, 4 tservTicketservKA and ,1)( 3i , and 2i  is a 
client strand in the authorization phase such that 

2[ , , , , , , , ,Si A authK authTicket B servK T servTicketAgent_II

2 3, ]t t  and 2 3i i , then there exists an application 
server strand b such that 4,,,,,[ tTservKBAb SApps , 

],,   and ,1)(b .  
Proof. By analysis on the form of strand 3i  and ,2i  

we have (1) ,1)( 3iterm =  4 servK
t  and (2)  , ,A B  

,
authK

servK Ts   ,1)( 2iterm . By unfolding the 
definition of Agent_II,  there exists a client strand 1i  
such that 1i  2i  and Ag-I ,[ 1i ,A ,Tgs ,authK ,aT  

,authTicket ,0t ]1t  and Tgs  TGSs  for some 
,Tgs ,aT ,0t .1t  Obviously, (3)  , , , a KA

A Tgs authK T   
,1),( 1iterm  ,1)( 1itime  aT  imeshrKcrackt . From 

1i  2i  and 2i  ,3i  we can easily conclude that 
,1)( 1i

 ,1)( 3i  and ,1)( 2i
 ,1).( 3i  With 

,1)( 3i   , we have ,1)( 2i     and ,1)( 1i   . 
With (2)(3), by Lemma 7, (4)  mterm  servK  for any 
node m  such that )(mtime   ST ktimesessionKcr . 
By the definition of Agent_III  we have (5) 

,1)( 3itime  ST  ktime.sessionKcr  From (4)(5), we 
have  mterm  servK  for any node m  such that 

)(mtime  ,1),( 3itime  therefore regular  
 .,1),(, 3 iservK  So ,1)( 3i  is an unsolicited test for 
 4 servK

T  in .  By Lemma 1, (5) there is a regular 
positive node m  such that m ,1)( 3i  and  4 servK

t  
  mterm  and  4 authK

t  )( 'mterm  for any node 
'm  such that 'm .m  Obviously m . By simple 

case analysis, we have that m  must be in an application 
server b  such that ,[bApps ,'A ,'B ,'servK ,'

ST ,4
't  

, ],  ,1).(= bm  By the definition of Apps , 

,1)(bterm = .4 'servK
't With ,1)(4 btermt servK , we have (6) 

servKservK' =  and .= 44 tt'  

Let 
 
   .|

,,,

,,,,
= tservKt

TservKBA

TservKBA
M

authKS

BKS

df 












 

Obviously ,0)(btime ,1)(btime ,1)( 3itime  ST  

 ktimesessionKcr , by the proof of Lemma 7, we have 
,0)(bterm  ),(Msynth  i.e., 

    4, , , , ( )
B

' ' ' '
S ' servKK

A B servK T t synth M



  . 

By the definition of synth , we have  

 , , ,
B

' ' ' '
S 'K

A B servK T

 ),(Msynth  

then we have (7)  , , ,
B

' ' ' '
S 'K

A B servK T

 M  or (8) 

 , , ,' ' ' '
SA B servK T  ).(Msynth  If (7) holds, from (6) 

(7) and the definition of M , we have 

 , , , SA B servK T   , , ,' ' ' '
SA B servK T , 

then A = 'A  and B = 'B  and ST = .'
ST  Therefore, 

the conclusion holds. If (8) holds, by the definition of 

synth,  we have 'servK  ),(Msynth  with (6), we have 

servK  ),(Msynth  then by the definition of synth,  

we have servK  ,M  but this contradicts with the 
definition of M . 

Roughly speaking, we need two steps to prove an 
authentication goal that if there is a regular responder 
strand Resp ( r , x


) and the k -th node of the strand is in 

a bundle  , then there is an initiator strand Init ( i , x


) 
and some j -th node of the initiator strand is in  . 
First we prove that ),( kr  is an unsolicited test for some 
encrypted term  

K
h  in  , which requires the secrecy 

of K . This is can be easily proved by the secrecy results 
on keys in section 3. Therefore, we have that there exists 
some regular node m  in   by Lemma 2. Second, we 
need prove that m  indeed is the intended node ),( ji . 
In order to prove this, we need do case analysis on the 
form of the strand which m  possibly lies in. This proof 
needs unicity property of some session keys and the 
results of unsolicted tests, namely, the facts that  

K
h  

  )(mterm  and m  is minimal. 
 
6. Conclusions and Related Work 
 
Our main aim is to extend and mechanize the strand 
space theory to analyze Kerberos V, since mechanization 
in a theorem prover not only helps us model protocols 
rigorously and specify protocol goals without any 
ambiguity, it also guarantees a formal proof. Besides the 
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essential inherence from the classic strand space method, 
our work is deeply inspired by Paulson and Bella’s work. 
We have directly used their formalization of message 
algebra, and have learned a lot about the semantics of 
timestamps and replay attacks from [4]. However, we 
model and analyze protocols in strand space theory 
rather than in Paulson's trace theory. In detail, we model 
behaviors of all the agents by strands, and mainly use the 
well-founded induction principle to prove properties. So 
in our Isabelle formalization, main efforts have been 
devoted to definitions and lemmas about strand space 
theory. e.g., we formalize strands, bundles, unique 
originality, the well-founded principle on bundles, and 
use this principle to prove important results such as 
unsolicited authentication test and regularity of keys. 

In [4], the ability of a penetrator to crack a stale en-
crypted message is modelled by the Oops rule in the 
inductive definition of a trace, and the trace definition 
depends on the protocol under study. However, in the 
strand space theory, a penetrator’s abilities are modelled 
to be independent of the protocol, that is the main reason 
why we relate a key with a crack time, and model a 
penetrator’s ability of cracking a stale encrypted message 
by a new key cracking strand. The advantage of our 
method is that modelling a penetrator’s behavior remains 
independent and results such as the unsolicited authen-
tication tests can be generalized. 

Regarding verification of the Kerberos protocols, 
Mitchell et al. [7] analyzed a simplified version of the 
protocol by model checking, and Butler et al. [8] 
analyzed the Kerberos V protocol using MSR [9]. But 
they did not include timestamps and replay attacks in 
their model, in fact the former work ignored both nonces 

and timestamps, and the latter only considered the 
implementation of the Kerberos protocol basing on 
nonce. 
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Abstract 
 
For sustainable tourism, a novel method of security camera operation is proposed. In the method, security 
cameras, which encrypt the taken images and store them into the memory card inside, are used. Only when 
crimes occur, the memory cards are taken out from the cameras and the images are decrypted with the key 
and viewed by the city government and/or the police. When no crimes occur, images are overwritten by the 
new ones after a week automatically without being viewed by anyone. By using the stand-alone cameras 
without wiring to the control center, the installation cost and the operation cost are much lower than CCTV 
cameras. By using image encryption, the privacy of the tourists is protected. Using this system, high density 
installation of the security cameras with very low cost can be realized in encryption with image encryption 
privacy protection function. 
 
Keywords: Innovative Communication, Security Camera, Privacy, Safety, Sustainable Tourism,      

Crime Prevention 

1. Introduction 
 
In the sightseeing places, security camera systems, such 
as Closed-circuit Television (CCTV) system, are now 
widely used and can be found in ordinary shops and citi- 
zens’ houses. These systems sometimes play an impor- 
tant role in reducing crime and identifying suspects. 
However, many problems seem to arise with regard to 
such security camera systems because of the fact that 
they are introduced only for the benefit of the owners. 
One problem is that an expensive high-end security 
camera system is required for maintaining complete sur-
veillance of an owner’s property. The second problem is 
that a typical system usually keeps watch only inside the 
owner's property; therefore, it cannot be used for the 
overall safety of the community. The third problem is 
that if the system keeps a watch outside the owner’s 
property, it could amount to invasion of the privacy of 
neighbour. We argue that these problems can be solved if 
the camera systems are introduced within an altruistic, 
community-minded framework. 

Recently, many security camera systems have been in- 

stalled in some countries such as the United Kingdom 
and the United States of America, by the national and the 
local governments. Although, it is difficult to evaluate 
the effectiveness of the security camera system in pre- 
enting crime [1,2], which are obvious that they can cap- 
ture images of any person or car passing within their 
range. If a considerable number of security cameras are 
installed without any dead angles on every road, then 
every criminal who uses the roads can be captured and 
traced. 

However, a center-controlled real-time monitoring 
system such as the typical systems costs a considerable 
amount of money and cannot be introduced everywhere 
without any dead angles. Therefore, we propose a new 
concept according to which a community can effectively 
prevent crime if some residents keep watch on what 
happens around their houses with the aid of their own 
home computers, cheap commercially available cameras, 
and free software. Figure 1 shows the concept of the 
e-JIKEI Network. 

Many types of software applications for capturing 
video images are available; however, we could not find a  
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Figure 1. Concept of “e-JIKEI with privacy protection”. 

 
free one that could be used to implement our concept. 
Therefore, we have developed asoftware with the mini- 
mum necessary functions and distributed it free of charge 
through our website [3]. The software supports both Eng- 
lish and Japanese languages. The software simply selects 
relevant pictures and saves them to the hard disk [4]. 
This concept has been discussed from the viewpoints of 
social science [5], homeland security [6] and e-Govern- 
ment [7]. 
 
2. Personal Computer (PC)-Based System 

Using Free Software 
 
We have provided the first version of the free software 
“Dairy EYE standard.” Its functions are very limited but 
essential. The major features of the software are as fol- 
lows: 

• High stability: It can be run continuously for more 
than 300 days. 

• High operation of file storage: The file name and its 
path express time and location information.  

• Minimum necessary storage: Simple picture selec- 
tion software has been adapted. The software saves a 
picture only when the difference between two consecu- 
tive pictures exceeds the threshold. 

• Automatic delete: Folders that are older than the save 
period set by the owner are automatically deleted.  

• Compatibility with many types of cameras: The 
software can operate in the VFW mode (PC cameras and 
USB video adapters) and the FTP mode (network cam- 
eras). 

• Simultaneous operation: The software can operate 
several cameras connected to a PC. 

• No Internet connection: Because of concerns related 
to privacy, the function of connection to the Internet was 
disabled in the distributed version of the software. Even 
in this case, the e-JIKEI Network can be formed, where 
the word "Network" refers not to the Internet but to the 
personal network of the residents. 

We think that the e-JIKEI Network system should be 
easily installed in a D.I.Y. (Do It Yourself) manner at a 
low cost. Figure 2 shows the examples of camera set-  

 
(a) e-JIKEI Camera                (b) e-JIKEI Light 

Figure 2. Prototype of the e-JIKEI camera and e-JIKEI 
Light. 

 
tings. In one case, an inexpensive network camera is in- 
stalled outside a house. In the other case, an inexpensive 
USB PC camera is installed inside a house by using ad- 
hesive tape. 
 
3. E-JIKEI with Privacy Protection 
 
We propose a new concept regarding the management of 
security cameras, e-JIKEI with Privacy Protection, in 
which those who own and manage images (owners) and 
those who have the right to view these images (viewers) 
are separated by means of the encryption of the images 
[8]. On the basis of this concept, encrypted images are 
transferred from an owner to a viewer only when both 
the owner and the viewer consider it necessary, such as 
in the case of crimes; then, the encrypted images are re- 
stored for viewing by the viewer. By this method, the 
images can be viewed only when absolutely necessary. 
This concept has been proposed to prevent the risk of 
privacy violation, as well as to reduce the unnecessary 
psychological burden that third parties may be subjected 
to, with the aim of promoting the placement of security 
cameras throughout local communities. 

By managing the security camera system using our 
concept, it is possible to markedly reduce the negative 
effects associated with the introduction of security cam- 
eras, such as concerns over the violation of privacy, 
without reducing the positive effects, such as crime pre- 
vention at places other than those requiring high-level 
security and constantly manned surveillance, i.e., most 
communities, while providing recorded images to invest- 
tigating authorities in the case of crime. 

In a practical example carried out in Kiryu City, 
Gunma Prefecture, a PC-based security camera system is 
owned and managed by the owners of retail stores affili- 
ated with the merchant association “Suehirocho Shoten- 
gai Shinkokyokai,” and images are encrypted and stored 
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in the system. To view the stored images, special soft- 
ware installed in the PCs at the Police Department of 
Kiryu City must be used. Only when the owners of the 
retail stores and the police determine that it is necessary 
to view these images, are the stored images transferred 
from the owners of the retail stores to the police. Then, 
the stored images are viewed by the police and used as 
information for investigations. The encrypted images that 
are stored at retail stores are automatically deleted after 
30 days if no incidents or accidents have occurred. 

To prove that the software installed in the PC defi- 
nitely encrypts the images with the cipher-key owned by 
only the police, a paper on which the owner states the 
purpose of the camera system and allows the investiga- 
tions by the merchant association at any time is posted 
near the cameras. Because the owners of retail stores 
purely wish to safeguard their shopping street and the 
customers, and do not intend to violate the privacy of 
their customers, the installed system is ideal for them. 
 
4. All-in-One System “E-JIKEI Camera” 
 
In the experiments of the PC-based system, we have re- 
alized that the PC-based system is not very user-friendly 
since it is difficult for ordinary residents to maintain and 
operate PCs. In the near future, when home automation is 
widespread, this problem of PC operation will be solved. 
However, at this time, it is a serious obstacle for the wide- 
spread nationwide use of the e-JIKEI Network. There- 
fore, we decided to develop an all-in-one system without 
the use of a PC. 

We have developed a prototype of security camera 
systems “e-JIKEI Camera,” which can realize the con- 
cept of “e-JIKEI with Privacy Protection.” Figure 3 
shows the prototype of the e-JIKEI Camera. It only re- 
quires an AC power supply and can be attached outdoors 
just like a streetlamp. If it is mass produced, the cost per 
camera will be less than 200 USD. The features of the 
developed camera are as follows: 

1) It can realize the concept of “e-JIKEI with Privacy 
Protection.” 

2) All images are encrypted and stored in the mem- 
ory. 

3) To decrypt and view the image, both the special 
software and the secret key are required. 

4) It has a card-type memory of 16 GB, in which the 
images for the last 1 week are recorded. 

5) It can be placed outside. 
6) It requires an AC power supply of only 100-240 

ACV. 
7) The price of the prototype, the first 1000 pieces, is 

500 USD/piece. 
There are many types of security camera systems 

available; however, a system with the above features 
does not exist, except for the newly developed e-JIKEI 
Camera. 

The e-JIKEI Camera is used for realizing our concept 
of a security camera system in which those who own 
images (owners) and those who have the right to view 
the images (viewers) are separated by means of image 
encryption. This concept was suggested with the aim of 
preventing the risk of privacy violation, reducing the 
unnecessary psychological burden that third parties may 
experience, and promoting the placement of security 
cameras in local communities. 

In Kiryu city, Japan, a social experiment has been 
conducted since 30 May 2009, in which eleven cameras 
are installed on the poles of the street lamps in a residen- 
tial area, as illustrated in Figure 3(b). Figure 4 shows 
the location of the 11 e-JIKEI Cameras and the 411 street 
lamps in the area, where 2218 homes are located. In the 
experiment, the owner of the images is the PTA (Par- 
ent-Teacher Association) of the Higashi Elementary 
School, and the viewer is the Kiryu Police Station. 

 

 
(a) Setting of e-JIKEI Camera      (b) Setting of e-JIKEI Light 

Figure 3. Examples of camera installation in walking street 
in Pattaya City. 

 

 

Figure 4. Locations of e-JIKEI cameras and street lamps. 
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Figure 5 shows the procedure for using the e-JIKEI 
camera in the experiment. Before the experiment, we 
explained the concept of e-JIKEI with Privacy Protection 
to the residents of all the 2218 homes by circulating a 
notice for the same and in an explanation meeting held at 
the community hall. Our proposal for this experiment 
was granted by the residents without any negative opin- 
ions. During the first six months of the experiment, three 
crimes were committed. In each case, the police asked 
the PTA to provide the images, and the PTA decided to 
grant the police request. During the experiment, many 
residents expressed their opinion that the e-JIKEI Cam- 
eras were very effective in improving the safety of the 
community but the number of cameras was still very 
small compared to the number of street lamps. 

Recently, we held a discussion with the residents, PTA, 
and police. The residents and the PTA provided the fol- 
lowing opinions about the installed system: 

1) It seems very effective in improving the safety of 
the community. 

2) Number of cameras is very small. 
3) Privacy violation seems to be perfectly prevented. 
4) The cost is comparable to that of the usual street 

lamps and therefore affordable. 

 

 
(a) Picture taken by e-JIKEI Camera-1 

 
(b) Picture taken by e-JIKEI Camera-5 

Figure 5. Pictures taken by the cameras. 

The police had the following opinions: 
1) The reliability of the system is very high. (There 

has been no trouble for more than six months now.) 
2) The quality of the images is acceptable but can be 

improved. 
3) We hope this camera system spreads all over the 

city. 
If our concept on the security camera system with pri- 

vacy protection is accepted by society, then a consider- 
able number of cameras, which is comparable to the 
number of streetlamps, will be introduced in communi- 
ties throughout the country and the world. Then, every 
street will be watched by numerous cameras, and photo- 
graphs of suspects can be provided to the police once a 
crime occurs in a community. 

In the current all-in-one security camera in the e-JIKEI 
Network, the camera has to be opened to remove the 
memory card. However, this inconvenience is preferred 
from the viewpoint of privacy protection, especially in 
the initial stage of the society’s gradual acceptance of our 
concept. However, in the near future, the cameras will be 
connected to the Internet after the information security 
system between the owners and the viewers is estab- 
lished. Thereafter, online operations of solving crime, 
such as the rescue of kidnapped child CCTV camera 
system [11,12] is suitable for the real time monitoring of 
the very important points. However, the cost of installa- 
tion/maintenance/operation is high, Then the number of 
the cameras are strictly limited due to such costs.ren, can 
be implemented. 
 
5. Discussions 
 
Comparing to the existing the CCTV camera system in 
Pattaya City, the e-JIKEI Camera has the following fea- 
tures, 

1) Low installation cost: The wiring to the control 
room and control room itself are not necessary. Only AC 
power supply is required. 

2) Low maintenance/operation cost: The memory 
cards of the cameras are only taken, when the city gov- 
ernment thinks that necessary.  

3) Privacy Protection: Only crime occurs, only the 
certain officers of the city government can view the im- 
ages. 

In the case of the Pattaya City, we propose that the 
combination the existing CCTV system and the e-JIKEI 
Cameras. 300 pieces CCTV system watches for only the 
very busy points, and the huge number of the e-JIKEI 
Cameras watch the dead-angle of the CCTV in the busy 
area. In addition, if a huge number of the e-JIKEI Cam- 
eras are installed to the quiet residential area, the safety 
of the whole city will be increased significantly. 
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If the memory capacity is sufficiently large, the selec- 
tion of images, in which only the images that are suffi- 
ciently different from the previous ones are saved, is not 
necessary. If the memory capacity is small and memory 
needs to be conserved, then the selection of images is 
useful. However, in general, there is no selection algo- 
rithm that has a zero failure rate with respect to the se- 
lection of necessary images. If all the images are saved 
without image selection, then the failure of saving a nec- 
essary image is prevented. In addition, without this se- 
lection, the CPU power can be saved. 

At this moment, only the software and programmable 
stand-alone camera devices, which do not connect to the 
Internet, have been developed. If the system of security 
cameras connected to computers and to the Internet 
spreads nationwide, a very powerful and flexible social 
structure can be formed. In addition, the software in- 
stalled in each system can be easily upgraded. This 
means that this social structure can lead to very interest- 
ing research subjects and applications for software re- 
search, such as research involving image processing, 
security systems, and artificial intelligence. 

If the security cameras are to be connected to the 
Internet, the protection of the privacy of the ordinary 
citizen has to be considered very seriously. A different 
social structure, including increased social awareness and 
a revised legal system, will be required for the society; in 
this structure, every outdoor location will be monitored 
by security cameras, but the privacy of ordinary citizens 
will be highly protected, being understood and accepted. 

If the appropriate legal, social, and administrative sys- 
tems are established, most residents will allow appropri- 
ate third parties, such as the police department and the 
city hall, to access their PCs and the saved information 
through the Internet in the case of a community emer- 
gency. In such a case, it will be necessary to ensure that 
the access rights to the images saved on the PCs can be 
separately, strictly, and flexibly defined and given to the 
appropriate third parties by the owner of each system. 

If the security cameras are connected to the Internet 
and can be accessed by the police in the case of serious 
crimes, the real-time chasing of criminals and rescue of 
kidnapped children will be possible. A single control 
station manned by the police, where many operators can 
access images from cameras spread throughout the na- 
tion, is required to realize such a social system. 
 
6. Conclusions 
 
We are asking citizens to compare the responsibility of 
watching what happens around their houses with the risk 
of violation of their privacy. In the meanwhile, we are 
trying to increase the advantages of the security camera 

such as crime prevention and identification of suspects 
and to reduce its disadvantages such as violation of pri- 
vacy. We are now commencing tests to assess the true 
contribution of our concept toward the realization of a 
safer and more comfortable community. 
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Abstract 
 
The release of Apple’s iPhone was one of the most intensively publicized product releases in the history of 
mobile devices. While the iPhone wowed users with its exciting design and features, it also angered many for 
not allowing installation of third party applications and for working exclusively with AT & T wireless ser-
vices (in the US). Besides the US, iPhone was only sold only in a few other selected countries. Software at-
tacks were developed to overcome both limitations. The development of those attacks and further evaluation 
revealed several vulnerabilities in iPhone security. In this paper, we examine some of the attacks developed 
for the iPhone as a way of investigating the iPhone’s security structure. We also analyze the security holes 
that have been discovered and make suggestions for improving iPhone security. 
 
Keywords: iPhone, Wireless, Mobile, Smartphone, Jailbreaking, Reverse Engineering 

1. Introduction 
 
The release of Apple’s iPhone on June 29, 2007 was one 
of the most heavily publicized events in the history of 
mobile electronics devices. Thousands of people lined up 
outside Apple stores prior to its release. Approximately 
three and half million iPhones were sold within the first 
six months of its release in the U.S. alone [1]. By any 
measure, the iPhone has been a commercial successin 
spite of being a first-timer in the smart phone industry, 
Apple immediately outpaced traditional cell phone giants 
like Nokia, Motorola, and LG. The iPhone is an all-in- 
one package including a cell phone, a digital music and 
video player, a camera, a digital photo, music, and video 
library, and more [2]. It has helpful widgets for maps, 
weather, in addition to email and other Internet capabili-
ties [2]. 
 
1.1. Features 
 
The iPhone confirms that Apple understands consumers’ 
desires, not only in terms of functionality, but also in 
terms of appearance and style. While other smart phone 
companies have offered products that include features 
offered by the iPhone, none have approached the iPhone 
in terms of popularity and sales. Phone features include a 
soft keypad with the ability to easily merge calls and 
visually obtain voicemail information. Apple took ad-
vantage of iPod’s popularity by including complete iPod 

functionality in the iPhone. A full-functional web 
browser with zoom in/out functionality made internet 
surfing experience on a mobile phone better than ever. 
The Multi-Touch touch screen display allows for gliding 
and scrolling besides zooming. The accelerometer de-
tects the orientation of the phone. These features put 
iPhone above and beyond other smartphones such as 
Blackberry and Motorola Q. 
 
1.2. Hardware 
 
The iPhone uses the ARM 1176JZF-S processor, which 
offers good power management for superior battery life 
and powerful processing for 3D graphics. Further details 
regarding this processor are available on the ARM prod-
uct website [3]. Figure 1 shows how different functions 
within the iPhone interface with one another [4]. Figure 
2 shows an image of the board inside an iPhone. 
 
2. Motivation 
 
iPhones are supposed to only be used with AT & T wire-
less service (in the US). AT & T agreed to give a portion 
of its revenue to Apple per each new contract it signed 
with iPhone users. This agreement spawned outrage 
among users of other GSM-based wireless services such 
as T-Mobile since they could not offer services to iPhone 
customers. Many people viewed this as an “unfair” move 
by the two companies. People felt that they should be 
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Figure 1. iPhone architecture from a high level [4]. 

 

 

Figure 2. Board showing different parts in iPhone. 
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able to choose whatever wireless service they prefer and 
should not be forced to use a particular one. 

There was another reason that some iPhone users be- 
came irritated. Apple designed iPhone as a closed system 
that does not allow installation of third-party applications. 
Users can only access a very small subset of the file sys- 
tem, a “sandbox” where they can add and remove music 
and other files via iTunes. Users who wanted to install 
third-party applications such as widgets and games were 
unable to do so. 

These two limitations placed on iPhone users promp- 
ted a series of hack and attack efforts by iPhone enthuse- 
asts and hackers. “Jailbreak” is an iPhone hack that per- 
mits the addition of third-party applications or gadgets 
on the iPhone by permitting read/write access to the root 
file system. Without “jailbreaking” an iPhone, a cus- 
tomer is limited to the factory-installed tools included 
with it. “Unlock” is an attack on iPhone that allows it to 
be used with any wireless service offering the GSM stan-
dard, not just AT & T. Without “unlocking” an iPhone, 
one can only use AT&T’s wireless services. Perhaps 
surprisingly, jailbreaking is the more important of the 
two because it is the first step to unlocking. We look at a 
jailbreak attack in detail and also discuss different 
unlocking solutions. 

Due to the commercial success of the iPhone, it makes 
a good candidate for security analysis. Having close to a 
million iPhones jailbroken and unlocked within first six 
months of its release, iPhone security obviously has had 
significant financial implications. In addition, with more 
millions of users worldwide, any security holes in iPhone 
can jeopardize the privacy of millions of people. We 
believe that these issues make the security analysis of 
iPhone a worthwhile and important topic. 
 
3. Jailbreaking 
 
The process of gaining root access to the iPhone so that 
third party tools can be installed is called Jailbreaking [5]. 
Without gaining read-write access to the root system, one 
cannot install third party applications. Note that this 
limitation prevents users from doing what they want to 
do with their iPhones—products that they own. This is 
somewhat analogous to buying a computer and not being 
allowed to install new programs on it. There are several 
websites (see, for example, [6]) that provide interesting 
gadgets and games for iPhone. Some of the most popular 
games are iSolitaire, iZoo, Tetris, iPhysics, and NOIZ2SA. 
Beyond providing access to such applications, jailbreak-
ing is essential for another reason: it is the first step in 
unlocking. 

Without jailbreaking, one cannot install the necessary 
application to use a wireless service other than AT & T. 

Close to a million new iPhones were not activated with 
AT & T in the first six months after its release [1]. With- 
out jailbreaking, these iPhone owners would not be able 
to use the phone part of the iPhone unless they signed a 
contract with AT & T after switching from their existing 
GSM wireless service provider. Even for AT & T cus- 
tomers, jailbreaking is still necessary to enable the addi- 
tion of third party applications to the iPhone. 
 
3.1. Looking for Ideas 
 
Immediately after its release, iPhone enthusiasts and 
hackers all around the world were looking for a way to 
gain root access. A feasible solution has to be reasonably 
easy to use and should not take several hours to complete. 
Hackers investigated various techniques for meeting 
these requirements. They evaluated existing hacks for 
other phones and devices and searched for similar vul-
nerabilities in the iPhone [7,8]. 

A previous hacker success was using buffer overflow 
techniques on the Sony PSP. By exploiting vulnerability 
in the Tag Image File Format (TIFF) library, libtiff, used 
for viewing TIFFs, hackers were able to hack PSP to run 
homebrew games, which was otherwise prohibited [9]. 

Hackers inspected Apple’s MobileSafari web browser 
to see if it could be targeted for the same vulnerability. It 
turned out that for firmware version 1.1.1 of the iPhone, 
MobileSafari uses a vulnerable version of libtiff [10,11]. 
The exploitable vulnerability in libtiff is documented as 
entry CVE-2006-3459 in Commom Vulnerabilities and 
Exposures, a database tracking information security vul-
nerabilities and exposures [10]. This vulnerability is also 
documented and tracked in the U.S. National Vulnerabil-
ity Database [12]. A malicious TIFF file can be created 
to include the desired rogue code. When attempting to 
view the malicious tiff file in a vulnerable version of 
MobileSafari, the vulnerabilities in libtiff are exploited to 
create a stack buffer overflow, and the malicious code is 
injected and executed. 
 
3.2. Stack Buffer Overflow and Return-To-Libc 

Attacks 
 
The attack we review, which exploits the libtiff vulner-
ability, uses a stack buffer overflow to inject code and 
the “return-to-libc” technique to execute it. To illustrate 
how a stack buffer overflow can be created and how a 
return-to-libc attack works, we first consider a generic 
example. 

Consider the piece of code below [13]: 
void func (char *passedStr) { 
  char localStr[4]; // Note that only 4 bytes allo-

cated 
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  strcpy(localStr, passedStr); // length of pass-
edStr is not checked 

} 
int main (int argc, char **argv) { 
  func(argv[1]); 
} 
Suppose that we have a program is called myprog. 

Now, let us look at a simplified representation of the 
stack when myprog is executed with “hi” as the input 
parametersee Table 1 below. 

Now, consider the stack when myprog is executed 
with the string “goodsecurity.” 

As it is clear from the tables above(Table 1, 2), our 
program is only capable of handling a string with three 
characters plus NULL. When a string of more than three 
characters is passed, the extra characters cause stack 
buffer overflow and overwrite other sections of the stack 
[14]. Of course, the function func() should have per-
formed a string length check on passedStr to ensure that 
it has three characters or fewer before the NULL. Any 
piece of code that makes a mistake similar to this is po- 
tentially vulnerable to a stack buffer overflow [14,15]. 

Instead of entering “good security,” a carefully crafted 
string could be used. In the example above, suppose we 
replace “good security” with, say, “good secu\x12\x34\ 
x56\x78.” In little-endian, the last 4 bytes are 0x78563412, 
which might be the address of a function, say, system(). 
Then when the stack unwinds, instead of execution re-
turning to the calling function, the pre-existing function 
indicated by the overwrite bytes will be executedin 
this case, system(). Moreover, the stack could be over- 
written so that desired parameter values are passed to a 
pre-existing function [16]. Such an attack is generally 
known as the return-to-libc attack. By discovering the 
address of such a desirable function, an attacker can po- 
tentially exploit a buffer overflow to execute the function 
and thereby achieve the desired behavior. Furthermore, 

 
Table 1. Simplified stack representation with proper input. 

Parent function’s stack 

Return address (4 bytes) 

char* passedStr 

hi\0  (4 bytes allocated for localStr. so String up to 3 characters is 
a good input) 

 
Table 2. Simplified stack representation with corrupting 
input. 

Parent function’s stack 

“rity” (return address overwritten) 

“secu” (char* passedStr overwritten) 

“good”  (expected 3 characters + \0, got 12) 

by passing a carefully crafted malicious input that ex- 
ploits a stack overflow, an attacker can even inject mali- 
cious code that results in a chain of calls to such pre- 
existing functions. 
 
3.3. Libtiff Vulnerability 
 
A vulnerability similar to that in the example above is 
found in libtiff version 3.8.1 and earlieran area of 
memory is accessed without performing an out-of- 
bounds check. The vulnerability is in function TIFFFetch- 
ShortPair in the tif_dirread.c file [10]. That function 
fetches a pair of bytes or shorts, as the name implies. It 
should throw an error if the request is to fetch more than 
two bytes or shorts. Instead, it fetches any arbitrary 
number of bytes requested. This vulnerability was fixed 
in libtiff version 3.8.2. The source code for both versions 
of libtiff can be downloaded from the Maptools.org web- 
site [17]. Below we give excerpts of this function as it 
appears in libtiff versions 3.8.1 and 3.8.2. First, we look 
at the snippet from version 3.8.1: 

static int 
TIFFFetchShortPair(TIFF* tif, TIFFDirEntry* dir) 
{ 
  switch (dir->tdir_type) { 
   case TIFF_BYTE: 
   case TIFF_SBYTE: 
    { 
    uint8 v[4]; 
    return TIFFFetchByteArray(tif, dir, 

v) 
     && TIFFSetField(tif, 

dir->tdir_tag, v[0], v[1]); 
    } 
   case TIFF_SHORT: 
   case TIFF_SSHORT: 
    { 
    uint16 v[2]; 
    return TIFFFetchShortArray(tif, dir, 

v) 
     && TIFFSetField(tif, 

dir->tdir_tag, v[0], v[1]); 
    } 
   default: 
    return 0; 
  } 
} 
Now, let us look at the snippet from version 3.8.2, 

which has the fix for the vulnerability. The fix is obvious 
from the developer’s comments. 

static int 
TIFFFetchShortPair(TIFF* tif, TIFFDirEntry* dir) 
{ 
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  /* 
   * Prevent overflowing the v stack arrays be-

low by performing a sanity 
   * check on tdir_count, this should never be 

greater than two. 
   */ 
  if (dir->tdir_count > 2) { 
   TIFFWarningExt(tif->tif_clientdata, 

tif->tif_name, 
   "unexpected count for field \"%s\", %lu, 

expected 2; ignored", 
    _TIFFFieldWithTag(tif, 

dir->tdir_tag)->field_name, 
    dir->tdir_count); 
   return 0; 
  } 
 
  switch (dir->tdir_type) { 
   case TIFF_BYTE: 
   case TIFF_SBYTE: 
    { 
    uint8 v[4]; 
    return TIFFFetchByteArray(tif, dir, 

v) 
     && TIFFSetField(tif, 

dir->tdir_tag, v[0], v[1]); 
    } 
   case TIFF_SHORT: 
   case TIFF_SSHORT: 
    { 
    uint16 v[2]; 
    return TIFFFetchShortArray(tif, dir, 

v) 
     && TIFFSetField(tif, 

dir->tdir_tag, v[0], v[1]); 
    } 
   default: 
    return 0; 
  } 
} 
To take advantage of the vulnerability in the TIFF li-

brary, a malicious TIFF file must be constructed. To ac-
complish that requires a reasonable working knowledge 
of the TIFF file format. There are two important objec-
tives to keep in mind while constructing a malicious 
TIFF file: causing buffer overflow and injecting code. 
The iPhone is constructed around an ARM processor, 
thus some knowledge of it is required for successful code 
injection. Next, we discuss the TIFF format and give a 
brief overview of the ARM processor. 
 
3.4. TIFF 
 
The TIFF standard is owned and maintained by Adobe. It 
is tag-based format used primarily for scanned images 
[18]. A TIFF file has a header section and descriptive 
sections at the top of the file with offsets pointing to the 
actual pixel image data [19]. This means that a poorly 
constructed file may have tags pointing to incorrect off-
sets or offsets beyond the end of the file. Such aberra-
tions can be used to exploit a buffer overflow in poorly 
written programs that read and manipulate tiff images 
[19]. Some examples of tags include image height, image 
width, planar configuration, and dot range. Different tags 
give necessary information about the image including 
color, compression, dimensions, and location of data. 
Below is an example of a tiff file (“value” column) with 
corresponding descriptions [18]. 

 
Offset   Description    Value 
(hex)       (numeric values are expressed in hexadecimal notation) 
Header: 
0000   Byte Order    4D4D 
0002   42     002A 
0004   1st IFD offset    00000014 
IFD: 
0014   Number of Directory Entries  000C 
0016   NewSubfileType   00FE 0004 00000001 00000000 
0022   ImageWidth    0100 0004 00000001 000007D0 
002E   ImageLength    0101 0004 00000001 00000BB8 
003A   Compression    0103 0003 00000001 8005 0000 
0046   PhotometricInterpretation  0106 0003 00000001 0001 0000 
0052   StripOffsets    0111 0004 000000BC 000000B6 
005E   RowsPerStrip    0116 0004 00000001 00000010 
006A   StripByteCounts   0117 0003 000000BC 000003A6 
0076   XResolution    011A 0005 00000001 00000696 
0082   YResolution    011B 0005 00000001 0000069E 
008E   Software    0131 0002 0000000E 000006A6 
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009A   DateTime    0132 0002 00000014 000006B6 
00A6   Next IFD offset  00000000 
Values longer than 4 bytes: 
00B6   StripOffsets    Offset0, Offset1, ... Offset187 
03A6   StripByteCounts   Count0, Count1, ... Count187 
0696   XResolution    0000012C 00000001 
069E   YResolution    0000012C 00000001 
06A6   Software    “PageMaker 4.0” 
06B6   DateTime    “1988:02:18 13:59:59” 
Image Data: 
00000700      Compressed data for strip 10 
xxxxxxxx      Compressed data for strip 179 
xxxxxxxx      Compressed data for strip 53 
xxxxxxxx      Compressed data for strip 160 … 

 
The first two bytes in an Image File Directory (IFD) 

represent the number of directory entries (14 in the ex-
ample above). The IFD then consists of a sequence of 
tags, 12 bytes each, where the first two bytes identify the 
field, and the next two identify the field type: short int, 
long int, byte, or ASCII. The next four bytes specify the 
number of values, and the final four specify the value 
itself or an offset to the value [18]. Since TIFF files are 
not intended to be human-readable, their contents are 

best viewed in a hex editor. 
 
3.5. Arm Processor 
 
Since the ARM1176JZF-S processor is used in the 
iPhone, some working knowledge regarding its architec-
ture and instruction set is required for this study. ARM is 
a RISC-based processor. Figure 3 gives a high-level 
diagram of ARM1176JZF-S. 

 

 

Figure 3. ARM 1176JFZ-S processor [3]. 
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The ARM processor can be configured in either little- 
or big-endian modes to access its data [20]. The iPhone 
runs the ARM processor in little-endian mode. For ex-
ample, if a value in a register is 0x12345678, in lit-
tle-endian mode it appears in memory “byte-reversed”, 
that is, as 0x78 0x56 0x34 0x12. This is illustrated in the 
Figures 4 and 5 below. 

The ARM processor can be configured in either little- 
or big-endian modes to access its data [20]. The iPhone 
runs the ARM processor in little-endian mode. For ex-
ample, if a value in a register is 0x12345678, in lit-
tle-endian mode it appears in memory “byte-reversed”, 
that is, as 0x78 0x56 0x34 0x12. This is illustrated in the 
Figures 4 and 5 below. 
 
3.6. Dre And Niacin’S Tiff Exploit Jailbreak 
 

We now have accumulated the background required to 
understand and reverse-engineer the libtiff exploit for 
jailbreaking developed by two teenagers known as Dre 
and Niacin. The source code for the attack is available on 
Dre and Niacin’s website [23]. However, little explana-
tion is provided, so we found it necessary to reverse en-
gineer various aspects of the attack. 

First, we verify and demonstrate the overflow problem. 
Though the exploit was created for the iPhone, we dem-
onstrate the overflow on a Windows PC in cygwin to 
mimic a Unix-like environment. First the exploit source 
code was downloaded and compiled. Then, a malicious 
TIFF badDotRange.tiff was created. 

An interesting outcome occurred when we attempted 
to create the code badDotRange.tiff. The file creation 
was blocked by Norton AntiVirus software running on 
the machine, and it claimed the file was “Bloodhound. 
Exploit.166” [24]. Further information on the vulnerabil- 
ity shows Norton characterizing badDotRange. tiff as a 
Trojan and a Virus, as shown in Figure 6 [24]. 

 

 

Figure 4. Big-endian [22]. 

 

Figure 5. Little-endian [22]. 

 
Once the work area was put in the list of directories to 

be excluded by Norton AntiVirus, badDotRange.tiff was 
created; a hex editor view of the file is available in [25]. 

Next, we demonstrate the malicious TIFF file causing 
a buffer overflow in libtiff. We also show a well formed 
TIFF file being handled properly by libtiff. A program 
was written to simulate the stack buffer overflow. Below 
is a snippet from driver.cpp file. 

int main() { 
  cout << "Start!" << endl; 
  TIFF* tif = TIFFOpen("c:/thesis/tiffExp/t1.tiff", 

"r"); 
  if (tif) { 
    cout << "Opened file successfully" << endl; 
  } else { 
    cout  << "FAILED to open tiff file" << endl; 
   } 
  TIFFClose(tif); 
  cout << "End!" << endl; 
  return 0;   
} 
Next, badDotRange.tiff is copied to t1.tiff and 

driver.cpp is compiled, linked with libtiff.a, and run, 
which results in a segmentation fault, as shown below. 

$cp badDotRange.tiff t1.tiff 
$g++ -I /usr/local/include –g driver.cpp –c 
$g++ driver.o –L. –ltiff –o driver.exe 
$./driver.exe 
Start! 
Segmentation fault <core dumped> 
The program execution sequence is the following: 

TiffOpen() calls TIFFReadDirectory(), which upon en-
countering the DotRange tag calls TIFFFetchShortPair () 
as can be seen from the following snippet from tif_dir- 
read.c. 

case TIFFTAG_DOTRANGE: 
  (void) TIFFFetchShortPair(tif, dp); 
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Figure 6. Bloodhound.Exploit.166 trojan [24]. 

 
  break; 
case TIFFTAG_REFERENCEBLACKWHITE: … 
As seen earlier, that function allocates memory for two 

shorts, but instead receives the request to fetch 255 of 
them. Below is the corresponding line in the source code 
of the attack. 
0x50,0x01,0x03,0x00,0xff,0x00,0x00,0x00,0x84,0x00,0
x00,0x00, 

Since we are assuming little-endian representation, the 
first two bytes become 0x0150, which represents the 
DotRange tag. The next two bytes give us the value 
0x0003, which means the data type is SHORT. The next 
four bytes give us the number of different values for this 
tag, which is 0x000000ff or 255 in decimal. Finally, the 
final four bytes give us 0x00000084, which is the offset 
to the actual values for the tag [18]. 

By looking at the TIFF specification [18] and also 
looking at the code for the version of libtiff with sanity 
check [17], we see that the number of parameters ex-
pected by DotRange is two. As seen in the stack buffer 
overflow example, attempting to fetch 255 shorts causes 
a stack buffer overflow. In our example, the program 
overwrites the return value in the stack, changing it to 
some area in memory that is not accessible, resulting in a 
segmentation fault. Below, the line in badDotRange.tiff 

corresponding to the DotRange tag is shown, as it ap-
pears in Hex Editor. The twelve bytes corresponding to 
the DotRange tag appear from 0x74 to 0x7f. 
0000070: 0100 0000 5001 0300 ff00 0000 8400 0000
 ....P........... 

Thus far, we have solved half of the problem of creat- 
ing an attack by gaining control of the stack. Before we 
move on to injecting particular code and executing it, we 
first confirmed that a well-formed TIFF file is not recog- 
nized as a virus by Norton AntiVirus and does not cause 
a crash when opened with our program. 

We now consider the code that provides root access to 
the iPhone and observe how it is executed. As mentioned 
earlier, this exploit uses the return-to-libc technique to 
execute a sequence of pre-existing functions. These pre- 
existing functions come from the dynamically loaded 
libSystem. dylib, which can be disassembled and 
searched for blocks of code that perform desired tasks 
[26]. The iPhone only allows access to a small section of 
the file system to add and remove music and other files. 
This “sandbox” area is the directory /var/root/Media. The 
algorithm used in the exploit renames /var/root/Media to 
/var/root/OldMedia. It then creates a symbolic link with 
/var/root/Media pointing to root, “/” and next it remounts 
root with the “MNT_UPDATE” flag to make it writable 
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[23]. The malicious tiff file is crafted skillfully to set up 
the stack to call the necessary functions from libSys- 
tem.dylib. Each of those functions must be studied care- 
fully to discover how many values it reads from the stack 
and in what registers. The stack pointer must be set ap- 
propriately, and the link registers must be set properly 
for the next function call.  With this method the exploit 
uses pre-existing functions to make the iPhone root wri- 
tablein other words, it “jailbreaks” the iPhone. 
 
3.7. Summary of Jailbreaking 
 
Let’s recap the tools needed and the process taken for 
jailbreaking method used above. Vulnerability in tiff 
library was targeted to create a stack buffer overflow and 
inject desired code. Then return-to-libc technique was 
used to execute desired code to make the root directory 
of iPhone writeable – i.e. to jailbreak it. During the 
process knowledge of TIFF was necessary in order to 
construct a vulnerable TIFF file. Also, knowledge of 
ARM processor architecture and it’s deficiencies were 
required to ensure the attack works consistently on any 
given iPhone. Furthermore, knowledge of ARM instruc-
tions was required to construct the code for the attack. In 
summary, a great deal of research and learning was re-
quired in order to pick up the necessary tools to success-
fully create the Jailbreak attack. 
 
4. Unlocking 
 
The iPhone is considered unlocked when it is able to use 
a cellular service other than that of AT & T. There are 
several free and paid software unlocking solutions avail-
able on the Internet including AnySIM, TurboSIM, and 
SimFree. Among these solutions, AnySIM seems to be 
quite popular, likely because it is free.  It is developed 
by a group of people who call themselves the iPhone dev 
team. 

AnySim works by patching the firmware on the base-
band [27]. We can predict that somewhere in the base-
band firmware, there is code that checks whether the 
SIM card being used is AT & T’s. If the check passes, 
the baseband allows the phone part of the iPhone to work 
normally; conversely, if the check fails, the phone func-
tion does not work. AnySim performs a patch to the 
firmware so that it skips the above check and jumps to 
the section of code that executes when the check passes 
[27]. This procedure unlocks the iPhone because a SIM 
card from any GSM wireless carrier can then be used to 
make phone calls. If the baseband firmware is upgraded 
or downgraded, the iPhone gets “un-unlocked”, as the 
patch that skips the check will almost certainly no longer 
be part of the code. 

SimFree, also known as iPhone SimFree or IPSF, is 
unlocking software that currently sells for approximately 
$60, and at one point cost $99 [28]. Since it is a paid 
product, details about how it works are not revealed. It 
claims not to rely on firmware patching, so a phone 
unlocked with SimFree should remain unlocked even 
when a baseband upgrade is performed [27]. 

TurboSim is another paid solution for unlocking. It 
tricks the iPhone SIM card checking function into think-
ing it is an AT & T SIM card by providing an Interna-
tional Mobile Subscriber ID (IMSI) and an Integrated 
Circuit Card ID (ICC-ID)—also known as SIM Serial 
Number (SSN). For TurboSim to work, it must be pro-
grammed with a valid AT & T SIM, which it copies for 
later use [29]. 

Following table summarizes the above mentioned 
unlocking methods. 

Unlocking Method Technique used 

AnySim 
Patch the baseband to skip AT & T 
SIM card check. 

SimFree 
Proprietary software application that 
patches the iPhone firmware 

TurboSim 
Tricks iPhone into thinking that it’s 
SIM card is an AT & T SIM card 

 
5. Jailbreaking and Unlocking Newer   

Versions of Iphone 
 
As mentioned earlier, for the purposes of this project, 
iPhone firmware version 1.1.1 and baseband bootloader 
version 3.9 are assumed. As of 2008, Apple had released 
versions 1.1.2, 1.1.3, and 1.1.4 of the firmware. Also, the 
baseband bootloader version is 4.6 in some of the phones. 
Can these phones be jailbroken and unlocked? 

We use a simple approach: on newer versions of the 
iPhone, we downgrade the firmware to version 1.1.1 and 
the bootloader to version 3.9. Then we use the known 
attacks to jailbreak and unlock the iPhone. Several 
hacker websites, including iphone.unlock.no, offer in- 
structions on how to downgrade the firmware and boot- 
loader, and they also have different firmware files avail- 
able for download [27]. 

Unlocking is not possible if the iPhone has version 4.6 
or higher of bootloader because that version requires a 
secpack—a special password—to modify the baseband 
[30] and unlocking cannot be achieved without modify- 
ing the baseband. Since version 3.9 of the bootloader 
does not require any passwords, the baseband can be 
modified, and unlocking can be achieved. For that reason 
a “bootloader downgrader” tool gbootloader was devel- 
oped by George Hotz and made available to iPhone users 
[31]. The tool downgrades the bootloader from version 
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4.6 to version 3.9 so that a patch to the baseband can be 
made and the iPhone can be unlocked. 

Several other small utilities have been developed in 
addition to the ones mentioned here, which allows users 
to sort out different versions of firmware, baseband, and 
bootloader and make appropriate choices. Tools have 
been developed to upgrade the firmware on jailbroken 
phones to pick up some of the latest features developed 
by Apple for the iPhone. 
 
6. Other Malicious Attacks 
 
Attacks that we have examined so far do not carry the 
intention to be malicious, though the libtiff attack cer- 
tainly could be malicious, depending on the type of code 
injected. For jailbreaking, the code injected was non- 
malicious—both behavior and intention-wise. However, 
using the libtiff vulnerability, malicious code could cer- 
tainly be injected for a malicious attack. Now, let us 
examine a couple of malicious attacks created by a group 
of researchers at Independent Security Evaluators by 
exploiting other vulnerabilities; those attacks give us 
further insight into iPhone security. Details of the attacks 
discussed below are not revealed; the goal of the re- 
searchers was to make Apple aware of some of the issues 
and not to let the hackers find out the details of the vul- 
nerabilities and the attacks. The attacks expose well- 
known security weaknesses in the OS X operating sys- 
tem used in the iPhone, including lack of address ran- 
domization and an executable heap [32]. 

The first attack consists of an exploit written to attack 
Safari on the iPhone. When a malicious HTML docu- 
ment was visited using MobileSafari, the iPhone was 
forced to make a connection to an outbound compro- 
mised server controlled by the attackers. The attackers 
were then secretly and automatically able to obtain per- 
sonal data including contacts, call history, text message, 
and voice mail from the attacked iPhone. Attackers con- 
cluded that further personal information including pass- 
words and emails could have been obtained had they 
chosen to do so [32]. What makes this attack even more 
dangerous is the ease with which it can be carried out. A 
link to a compromised website could be sent via email, 
and the iPhone owner could be lured into visiting it. That 
is all it would take to capture all of the personal data of 
the iPhone owner. 

A second exploit was written to perform physical ac- 
tions on the phone such as making a system sound and 
vibrating [32]. This exploit was run on the iPhone when 
another malicious HTML was viewed using Safari 
browser. To make matters worse, certain API functions 
discovered during this exploit could have allowed it to 
send text messages, dial phone numbers, or even record 
audio and transmit it over the network [32]. This vulner- 
ability is particularly dangerous since the phone bill or 
text message bill could be increased by the attacker, 
which could cost the iPhone’s owner a significant sum. 
The attacker could also send maliciously provocative 
messages to the owner’s contacts, which could result in 
personal or professional relationship problems. 

These malicious exploits are, collectively, comparable 
to having one’s iPhone stolen. If attacks like these be- 
come widespread, there is a potential that customers 
would reconsider buying the iPhone. 

While details of the attacks above were not disclosed, 
let us look at the high level approach used in the above 
MobileSafari attacks. This information could certainly be 
used as a guideline for the attacks above, provided one is 
able to write appropriate payloads. The iPhone uses 
Webkit, an open source web browser engine used by 
Mobile Safari [33], which in turn uses the Perl Compati- 
ble Regular Expression Library (PCRE). One of the first 
versions of iPhone used a version of PCRE that was 
more than a year old. Several versions of PCRE had been 
released with several bug fixes since the version used by 
iPhone. One of the bug fixes found in the change log of a 
newer version 6.7 [34] follows. 

A valid (though odd) pattern that looked like a POSIX 
character class but used an invalid character after [ (for 
example [[,abc,]]) caused pcre_compile() to give the er-
ror “Failed: internal error: code overflow” or in some 
cases to crash with a glibc free() error. This could even 
happen if the pattern terminated after [[ but there just 
happened to be a sequence of letters, a binary zero, and 
a closing ] in the memory that followed. 

Now, one can review the bug fix and immediately get 
ideas for possible attacks on the iPhone. Attackers used 
the above vulnerability and constructed a regular expres- 
sion in an HTML file that attacked the vulnerability 
when the file was viewed in Safari. The HTML docu- 
ment used was constructed as below [35]: 

 
<SCRIPT LANGUAGE="JavaScript"><!-- 
var re = new RegExp("[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]] 
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]] 
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]] 
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]] 
[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]] 
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[[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]][[**]] 
[[**]][[**]]ABCDEFGHIJKLMNOPQRSTUVWXYZAB-

CDEFG[\x01\x02\x03\x04\x05\x06\x07\x09\x0b\x0e\x0f\x11\x12\x13\x14\x15\x17\x19\x1b\x1c\x1d\x1f\x20\x21\x22 
\x23\x25\x26\x27\x29\x2a\x2b\x2c\x2d\x2f\x30\x32\x33\x35\x37\x39\x3a\x3b 
\x3c\x3e\x3f]XYZABCDEFGHIJKLMNOPQR"); 
</script> 

 
To develop the exploit, attackers resorted to a tech-

nique called “fuzzing” [35], which involves passing dif-
ferent inputs that cause a given program to crash and 
then analyzing the crash to gain insight about the pro-
gram.  From the crash reports, they were able to get 
useful information such as the stack pointer and values in 
different registers. They then employed a technique to 
overwrite the return address on the stack to point to the 
heap area where shell code was injected [35]. The shell 
code then executed and did the job of stealing private 
information. The code consisted of typical socket con-
nect, open, read, and write functions. The researchers 
have revealed some of the functions they used to perform 
physical actions on the phone including making a system 
sound, dialing phone calls, and sending SMS text mes-
sages. Those functions include AudioServicesPlaySys-
temSound from the Audio Toolbox library and CTCall-
Dial, CTSMSMessageCreate, and CTSMSMessageSend 
from the Core Telephony library [35]. The purpose of 
each function is clear from its name. 

To summarize, vulnerabilities in PCRE were targeted 
by creating a malicious HTML file to create a buffer 
overflow, which facilitated injection and execution of 
malicious code. 
 
7. Security Analysis 
 
Having briefly examined several vulnerabilities in the 
iPhone and attacks that exploit those vulnerabilities, we 
now analyze the iPhone security structure from a high 
level. What was the approach Apple took while design- 
ing the security architecture for the iPhone? Were there 
flaws in this philosophy? What high-level approaches 
can be used to exploit the security flaws? What are some 
of the ways that Apple can either fix some of the vulner- 
abilities or at least make it difficult for an attacker to 
exploit them? Let us try to answer some of these ques- 
tions. 

It is clear that iPhone is a vulnerable device with sev- 
eral security holes. The iPhone security philosophy itself 
has a signifcant flaw. Apple’s approach to making the 
iPhone a secure device was to reduce “the attack surface 
of device” or “the device’s exposure to vulnerabilities” 
[32]. To achieve this, Apple allowed write access only to 
a sandbox area in the file system and disallowed installa- 
tion of third-party applications. Several features of Safari 

were removed in Mobile Safari, including the ability to 
use plug-ins like Flash and the ability to download cer- 
tain file types. Mobile Safari was restricted to only exe- 
cute Javascript code, and only do so in the sandbox area. 
In short, Apple’s approach was to make a controlled, 
essentially closed-box device. Apple’s security approach 
might be summed up by the following analogy: rather 
than teaching a child how to swim to prevent him from 
drowning, he is simply not allowed to jump in a lake. 

While the security philosophy is debatable, the archi- 
tecture has significant holes. Since Apple banked on 
preventing the iPhone from being compromised in the 
first place, it put very little effort into protecting different 
parts of the device individually. This conclusion is sup- 
ported by the fact that all significant processes run as a 
super user or with administrative privileges—a major 
mistake from a security perspective. A result of this con- 
figuration is that an attacker is likely able to control the 
entire iPhone if he is able to exploit any vulnerability in 
any of its applications [32]. For example if Mobile Mail 
were compromised by an attack, the attacker could also 
gain access to contacts and pictures. In simple terms, the 
iPhone’s security architecture looks like a home owner 
putting all effort for securing his or her home into buying 
a strong lock to stop an intruder from getting in. No ef- 
fort is made to, say, secure individual room, to put valu- 
ables in a safe-deposit box, to use a home security sys- 
tem, etc. While it may be difficult to enter the house, if a 
thief can do so, he can easily steal all its contents. 

A security hole is also created by the fact that the 
iPhone uses several applications including MobileSafari 
and MobileMail that are based on open source projects. 
While the use of open source is itself likely a good idea, 
using (and sharing) of open source projects with old and 
outdated versions of those projects is clearly a problem. 
Earlier we looked at examples of an old version of libtiff 
library facilitating the jailbreak attack, and an old version 
of the PCRE library allows another malicious attack. By 
using outdated versions of open source projects, Apple 
made it relatively easy for hackers to develop ideas and 
approaches for attacks attacks. 

Apple also failed to make the exploitation of vulner- 
abilities challenging for hackers. By not utilizing com- 
mon techniques such as Address Space Layout Ran- 
domization (ASLR) or non-executable heap in the ver- 
sion of OS X used for iPhone, Apple has not posed any 
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particular difficulties for hackers in the development and 
distribution of buffer overflow exploits [32]. 

The table below summarizes the attacks discussed in 
this paper. 

 

Attack Vulnerability targeted Tools used Effects 

Jailbreaking Vulnerable libtiff 
TIFF, buffer overflow, 

return-to-libc, ARM architecture and 
instructions 

Get root access 

Unlocking 
Jailbroken phones allow for installation 

of unauthorized applications 
Installation of unauthorized 

application 
Being able to use the iPhone with 

non-AT&T wireless services 

Mobile safari (malicious) Vulnerable PCRE 
Malicious HTML, fuzzing, 

buffer overflow 
Stolen personal data and other 

malicious effects 

 
Apple did employ some good practices and has shown 

more effort recently in making the iPhone more secure. 
That has not stopped the hackers, however, as they have 
found solutions to the obstacles presented by Apple. For 
example, the stack is non-executable in the iPhone, so an 
attacker cannot simply add payload to the stack via a 
buffer overflow and execute it. However, a non-execu-
table stack does not protect against the return-to-libc 
attack, which was employed in the jailbreaking attack, as 
we observed earlier. New versions of firmware have 
been released with certain vulnerabilities fixed to prevent 
jailbreaking. Unfortunately, these have been somewhat 
countered by the ability to downgrade the firmware. Ap-
ple also attempted to prevent unlocking by using a new 
version of the bootloader. That attempt failed because 
hackers found a way to downgrade the bootloader as 
well. 

After evaluating Apple’s security for the iPhone, one 
can safely conclude that overall the company failed to 
make the iPhone as secure as it could possibly have been. 
Looking at the security approach and the decisions the 
company made, it is no surprise that the initial iPhones 
were considered a fairly vulnerable device. 
 
8. Analysis of Sample Decisions by Apple 
 
Now that we have had a chance to analyze the iPhone’s 
security structure, we can ask several questions regarding 
different choices Apple has made. Why are they using 
versions of open-source based packages that are about a 
year out of date? Why did they choose to have almost all 
important processes run as super user? Why did they not 
use ASLR? Why did they use a vulnerable version of the 
tiff library? This final question is particularly important 
because even after three new versions of firmware and a 
new version of the bootloader, Apple was still paying for 
this mistake. 

It seems implausible that Apple had no knowledge of 
the vulnerability in libtiff that causes buffer overflow, 
since this vulnerability is well known in the hacking 
community and other mobile devices including Sony’s 
PSP had been hacked using it. We can only speculate as 

to why Apple used the vulnerable version of libtiff. Per- 
haps there was an existing version of Safari with the 
vulnerable version of libtiff ready to be used with iPhone. 
One can certainly see that there is some cost involved in 
using a new version of libtiff in Safari, which would 
have to be thoroughly tested prior to being deployed in a 
new version for iPhone. Perhaps Apple found that there 
were other known vulnerabilities in the version used 
anyway. Perhaps Apple performed a cost analysis of 
losses suffered by delaying the new version of firmware 
versus losses due to the number of people who would 
hack the iPhone to jailbreak it and eventually unlock it 
and use a wireless service other than that of AT & T. 
Such a decision would express disregard for consumer 
security, since the same vulnerability could be also used 
to perform truly malicious acts. 

From a short-term perspective, it is hard to argue with 
the success of the iPhone. However, from the consumer 
confidence or reputation perspective, the situation is not 
so clear. Apple is generally regarded as a company that 
delivers secure and robust products. They may have lost 
some of that sheen with the iPhone. 
 
9. Suggestions to Improve Security Structure 
 
We have pinpointed several flaws in the initial iPhone 
security structure. A large security hole would have been 
filled if most of the processes were not run with adminis-
trative privileges, or as the super user. This would gener-
ally make it more difficult for an attacker to gain full 
control of an iPhone. 

While using open-source based applications is a good 
idea, Apple needs to be more cognizant about using ver-
sions that do not have serious known bugs. Apple should 
also use a technique such as ASLR for heap and stack 
address randomization to make it more difficult for 
hackers to develop stable attacks and distribute them [32]. 
Moreover, it could develop a mechanism that prohibits 
both writing to and executing an area of the heap. Some 
attacks copy the exploit payload into the heap area that is 
both writeable and executable, and they execute it there. 
If an area in heap was not both writeable and executable, 
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such attacks would be thwarted. Also, if ASLR were 
employed, even if an attacker could successfully write an 
attack that relies on an address in the stack or heap, dis-
tribution of the attack would be difficult, as the target 
address is unreliable due to randomization. 
 
10. Conclusions 
 
In this paper, we considered the iPhone security structure 
and its vulnerabilities. The Jailbreaking attack analyzed 
here relied on a known vulnerability in the TIFF library. 
The analysis of the attack required some knowledge of 
the ARM architecture and the TIFF file format. We 
showed that using a vulnerable version of the TIFF li-
brary proved costly for Apple, in the sense that updates 
could not easily prevent “rollback” attacks. Interestingly, 
hackers found ways to jailbreak later iPhone without 
even losing the new features introduced in newer ver-
sions. Perhaps predictably, the attacks on the iPhone and 
the countermeasures by Apple quickly devolved into a 
cat and mouse game. 

The security problems discussed here have resulted in 
financial losses for both Apple and AT&T and, arguably, 
a reputation loss for Apple. For each iPhone that was 
unlocked to access an alternate wireless carrier, AT & T 
stood to lose about $1500 in revenue for the two-year 
contract period. As we noted earlier, the number of 
unlocked iPhones was estimated at nearly a million in 
just its first six months [1]. Apple too missed out on 
some gains, as it receives a certain amount from AT & T 
for each iPhone activated with AT&T. The security vul-
nerabilities of the iPhone have also affected Apple’s 
reputation as a company, as it had been generally be-
lieved to deliver relatively secure products. While Ap-
ple’s exclusive deal with AT & T and its decision to use 
a closed system undoubtedly increased the motivation to 
attack the iPhone.  

We have also explained that malicious attacks can be 
created for the iPhone. However, the significant attacks 
have not been malicious, but were instead focused on 
enabling people more freedom to do what they want with 
their telephone product. 

We conclude that Apple’s initial effort in making the 
iPhone a secure device was somewhat disappointing. 
While Apple worked to improve iPhone security, the 
initial release unnecessarily gave hackers the upper hand, 
which, to some extent, has continued to this day. 
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Abstract 
 
ARP-based Distributed Denial of Service (DDoS) attacks due to ARP-storms can happen in local area net-
works where many computer systems are infected by worms such as Code Red or by DDoS agents. In ARP 
attack, the DDoS agents constantly send a barrage of ARP requests to the gateway, or to a victim computer 
within the same sub-network, and tie up the resource of attacked gateway or host. In this paper, we set to 
measure the impact of ARP-attack on resource exhaustion of computers in a local area network. Based on 
attack experiments, we measure the exhaustion of processing and memory resources of a victim computer 
and also other computers, which are located on the same network as the victim computer. Interestingly 
enough, it is observed that an ARP-attack not only exhausts resource of the victim computer but also signifi-
cantly exhausts processing resource of other non-victim computers, which happen to be located on the same 
local area network as the victim computer. 
 
Keywords: ARP Attack, Computer Network Security, Computer Systems, Direct Attack, Distributed Denial of Ser-

vice Attacks (DDoS), Indirect Attack, Local Area Networks 

1. Introduction 
 
A Distributed Denial of Service (DDoS) attack [1,2] in-
volves multiple DoS agents configured to send attack 
traffic to a single victim computer. DDoS is a deliberate 
act that significantly degrades the quality and/or avail-
ability of services offered by a computer system by con-
suming its bandwidth and/or processing time. As a result, 
legitimate users are unable to have full quality access to 
a web service or services. A Denial of Service attack 
consumes a victim’s system resource such as network 
bandwidth, CPU time and memory. This may also in-
clude data structures such as open file handles, Trans-
mission Control Blocks (TCBs), process slots etc. Be-
cause of packet flooding in a DDoS attack that typically 
strives to deplete available bandwidth and/or processing 
resources, the degree of resource depletion depends on 
the traffic type, volume of the attack traffic, and the 
processing power of the victim computer.  

According to Computer Emergency Response Team 
Coordination Center (CERT/CC) [3], there has been an 

increase in use of Multiple Windows-based DDoS agents. 
There has been a significant shift from Unix to Windows 
as an actively used host platform for DDoS agents. Fur-
thermore, there has been an increased targeting of Win-
dows end-users and servers. To raise awareness of such 
vulnerabilities, the CERT/CC published a tech tip enti-
tled “Home Network Security” in July of 2001 [4]. Ac-
cording to the CERT/CC [3], there is a perception that 
Windows end-users are generally less security conscious, 
and less likely to be protected against or prepared to re-
spond to attacks compared to professional industrial sys-
tems and network administrators. Furthermore, large 
populations of Windows end-users of an Internet Service 
Provider are relatively easy to identify and hence the 
attackers or intruders are leveraging easily identifiable 
network blocks to selectively target and exploit Windows 
end -user servers and computer systems. 

In this paper, we consider a Distributed Denial of Ser-
vice (DDoS) attack that can be caused by a barrage of 
ARP-requests sent to a victim computer. In order to un-
derstand the intensity of the attack, we conduct experi-
ments in a controlled lab environment to measure the 

*Work of Dr. Kumar is supported in part by funding from CITeC, FRC, 
FDC, OBRR/NIH, digital-X Inc, and US National Science Foundation.
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availability of the processing power and memory re-
sources of the victim computer during an ARP-attack. 
Since, windows based servers are very commonly de-
ployed, we consider a Window-XP server with a 3.06 
GHz Pentium-IV processor and 512 Mbytes of RAM to 
be used as the victim computer in the ARP-attack ex-
periments. Section II presents a background on ARP and 
how it is used to exploit vulnerability of a computer sys-
tem; Section III presents detail on use of ARP requests, 
ARP format, types of ARP-request traffic, and the proc-
essing that needs to be done for ARP-request messages; 
Section IV presents the experimental-setup, systems con-
figuration for DDoS attacks in the controlled lab envi-
ronment, and attack measurement results under direct 
ARP attack traffic and Indirect ARP attack traffic; and 
Section V provides discussion on detection and preven-
tion schemes for ARP storm attacks, Section VI con-
cludes the paper. 

 
2. Arp-As an Attack Bullet 
 
The Address Resolution Protocol (ARP) requests are 
legitimate and essential for the operation of the network. 
However, ARP can be used in more than one way to ex-
ploit the vulnerability of a computer system or a network. 
Some of the security attacks involving ARP can cause 
Denial of Service (DoS) attack by sending a massive 
amount of ARP requests to a victim computer and tying 
up its resource [5]. ARP can also be used to create De-
nial of Service attack by sending a victim computer’s 
outgoing data to a sink by the technique of ARP cache 
poisoning. Other ARP based attacks can result in unau-
thorized sniffing of packets, or hijacking of secured 
Internet sessions. The Denial of Service attacks due to 
ARP storms can also be caused by worms such as code 
red due to their rapid scanning activity [6,7]. The worm 
initiated ARP storms have been commonly found in 
networks with high numbers of infected and active com-
puters and servers. In ARP storm, an attacked victim (the 
gateway or a server) may receive a constant barrage of 
ARP requests from attacking computers in the same 
sub-network, and this ties up not only the network band-
width but also the processing resource of the victim 
computer.  

The worm Code-Red’s rapid scanning activity can 
result in a denial-of-service attack against a Windows 
NT 4.0 IIS 4.0 server with URL redirection enabled [6]. 
The worm Code-Red can easily spread to new vulnerable 
systems, and there is a patch available for this vulner-
ability. Applying the patch can keep a server from being 
infected by the worm Code-Red. Nevertheless, it is still 
possible for the worm in other infected computers on the 
network to attack the same chain of IP addresses over 

and over again. This can generate a high-traffic overload 
due to massive amount of ARP requests generated in the 
network, which in turn can still affect the server’s per-
formance (despite the patch). 

In this paper, we investigate the brute force of ARP 
attack where a constant barrage of ARP requests is di-
rected to a victim computer. In this experiment, we set 
out to measure how bad the effect of the ARP attack was 
on the victim computer. Furthermore, we also measure 
the extent of resource exhaustion due to the ARP attack 
traffic on other computers located on the same LAN 
segment as the victim computer. To understand the de-
gree of resource exhaustion, we measure performance in 
terms of processor exhaustion, occupancy of systems’ 
memory and the page-file size. Since Microsoft Win-
dows-XP based computers and servers with high per-
formance Pentium-IV processors are becoming quite 
affordable and popular with small businesses, we use a 
Windows-XP based computer as a victim computer to be 
stress-tested for the extent of resource exhaustion under 
the ARP attack. 

 
3. Processing an Arp-Request Message 

 
3.1. Use of ARP-Request Message 

 
A gateway or a host on a local area network uses ARP 
request broadcast messages [8] for IP and hardware ad-
dress bindings. The ARP message contains the IP ad-
dress of the host for which a hardware address needs to 
be resolved (Figure 2). All computers on a network re-
ceive ARP message and only the matching computer 
responds by sending a reply that contains the needed 
hardware address. 

 
3.2. ARP Message Format 

 
ARP is used for a variety of network technologies. The 
ARP packet format varies depending on the type of net-
work being used. The ARP packet format used in 
Ethernet is shown in Figure 1. While resolving IP pro-
tocol address, the Ethernet hardware uses 28-octet ARP 
message format [8]. The ARP message format contains 
fields to hold sender’s hardware address and IP address, 
shown as SENDER-HA and SENDER-IP fields in Fig-
ure 1. It also has fields for the target computer’s hard-
ware and IP address, which is shown as TARGET-HA 
and TARGET-IP fields in Figure 1. When making an 
ARP request, the sender supplies the target IP address, 
and leaves the field for the target hardware address 
empty (which is to be filled by the target computer). 

In the broadcasted ARP request message, the sender 
also supplies its own hardware and IP addresses for the 
target computer to update its ARP cache table for future 
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correspondence with the sender. Other fields in the ARP 
packet format in Figure 2 are HARDWARE TYPE of 2 
Bytes (shown as 2B in Figure 1), which specifies the 
type of network being used such as Ethernet in this case. 
The PROTOCOL TYPE field of 2 Bytes specifies the 
high-level protocols address used such as the IP ad-
dresses. The fields HLEN and PLEN of one Byte each 
specify the length of hardware address and high-protocol 
address, in the case of ARP protocol use in the arbitrary 
networks. The OPERATION field of 2 Bytes specifies if 
the message is one of the four possible types i.e. 1 for 
ARP-request, 2 for ARP-reply, 3 for RARP-request and 
4 for RARP-reply. 
 
4. Types of ARP-Request Traffic on a LAN 
 
A computer on the LAN will receive two different types 
of ARP-request packets from the network. The first type 
of ARP request packets can be named as the direct ARP 
request traffic where the IP address in the ARP request 
packet matches the local IP address of the computer Pi. 
The second type of ARP request traffic that is received 
by the computer on a LAN can be named as indirect ARP 
request traffic where the IP address in the ARP request 
packets doesn’t match the local IP address of the com-
puter Pi. 

In other words, a computer i on a LAN with IP address 
 

Harware Type (2b) Protocol Type (2b) 

Hlen (1b) Plen (1b) Operation (2b) 

Sender Ha (Octets 0-3) 

Sender Ha (Octets 4-5) Sender Ip (Octets 0-1) 

Sender Ip (Octets 2-3) Target Ha (Octets 0-1) 

Target Ha (Octets 2-5) 

Target Ip (Octets 0-3) 

Figure 1. ARP mssage frmat 

 

 

Figure 2. Processor exhaustion under direct ARP- attack 
traffic with IP address = {χ | χ = Pi}. 

of Pi may receive one of the two possible types of ARP 
request traffic during an ARP-attack – 

a) Direct ARP traffic – it is a traffic comprising of 
ARP request messages with IP address = {χ | χ = Pi} 

b) Indirect ARP traffic – it is a traffic comprising of 
ARP request messages with IP address = {χ | χ ≠ Pi} 

The target or victim computer will primarily be inun-
dated with the direct-ARP attack traffic, whereas the 
other computers (non-victim computers) located on the 
same LAN segment will be inundated with the indirect 
ARP-attack traffic.  

The main task of the processor in the target computer 
after receiving the ARP request message is to make sure 
the ARP request message is for it. In the case of direct 
ARP frames, the processor proceeds to fill in the missing 
hardware-address in the ARP request format-header, 
swaps the target and sender hardware & IP address pair, 
and changes the ARP-request operation to an ARP-reply. 
Thus the ARP reply carries the IP and hardware ad-
dresses of both, the sender and the target computers. 
Unlike the ARP request message, the ARP replies are 
directed to just the sender computer and it is not broad-
casted. In the case of indirect ARP frames received, the 
computer still does some processing to determine if the 
ARP request message is for the local computer. In this 
case, once it is determined that the frame is not for the 
local computer, the indirect ARP message is simply 
dropped. 

The processing needed for an ARP-request message is 
fairly simple, however there is more processing involved 
when direct ARP request frames are received by a victim 
computer, compared to that of the indirect ARP-request 
frames received by non-victim computers present on the 
same LAN. Even though, there is comparatively less 
processing involved when an indirect ARP request mes-
sage is received, a barrage of such requests can still ex-
haust the processing power of a non-victim computer just 
because it happens to be sitting on the same LAN seg-
ment as the victim computer or server. The degree of 
processor exhaustion for a given computer will of course 
depend on the processor speed and the bandwidth con-
sumed by ARP-request messages. In the following sec-
tions, we discuss our experiment to measure the extent of 
resource exhaustion of two different types of computers 
on a LAN under an ARP attack – the first type of com-
puter, being the victim computer, which is inundated 
with direct ARP-request frames. We also measure the 
computing resource exhaustion of the second type of 
computers (the non-victim computers, which happen to 
be on the same LAN as the victim computer or server), 
when inundated with indirect ARP-request frames. 
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5. Performance Evaluation 
 

5.1. Experimental Setup 
 

In this experiment, an ARP-storm was generated in a 
controlled environment of the network security research 
lab at the UTPA by having different computers send a 
barrage of ARP-request messages to a victim computer 
on the same local area network. A Windows-XP based 
computer was used as the attack target of the ARP-storm. 
The computer under attack deployed a Pentium IV proc-
essor with a speed of 3.06 GHz with 533 MHz Bus, 512 
kb Cache, a physical memory of 512 Mbytes (RAM), 
and a NIC card from 3 Com. Furthermore, other com-
puters (that received indirect ARP request traffic) on the 
LAN deployed exactly the same resources as the victim 
computer on the LAN. Computers under attack on the 
LAN deployed Windows-XP Service-Pack 2 (SPK 2). 
We also used the network observer software to collect 
traffic detail and the applied load on the LAN.  

This experimental setup and results obtained in this 
paper are much more detailed compared to the one pre-
sented in [9] where a different system was used for the 
victim computer, which deployed a Pentium-4 processor 
with a speed of 2.66 GHz. Furthermore, the NIC card 
used in [9] were the Intel’s NIC card, which could not 
support full speed of 100 Mbps of network traffic. 
Whereas, in this experiment, the 3 Com’s NIC card was 
used that supported full speed of 100 Mbps. Furthermore, 
in [9] only the effect of direct ARP traffic was measured 
and no indirect ARP traffic was considered. 

 
5.2. Attack Measurements 

 
Parameters of performance evaluation considered for this 
attack experiment were the applied load of the ARP- 
attack traffic, processor exhaustion during the attack and 
memory occupied while processing the attack traffic by 
the target computer. The DDoS attack was simulated as 
ARP packets coming from multiple different attack-
ing-computers at a maximum aggregate speed of 100 
Mbps towards the target server. The attack traffic (while 
simulating ARP storm) load was started with 0 Mbps 
(the background condition) and was increased by 10 
Mbps i.e. from 0% load to 100% load (= 100 Mbps). In 
the ARP-storm experiment, the attacked target computer 
continued to receive a barrage of ARP-requests for a 
period of 60 minutes for a given load, and was obligated 
to process them by creating an ARP-reply. In this ex-
periment, a total of 10 different loads were generated, i.e. 
10% - 100%. A total of 10 hours of ARP attack traffic 
were experienced at the victim computer and another 
non-victim computer on the local network. The CPU 

time is termed as processor exhaustion in these meas-
urements, which gives an indication of the rate of proc-
essor exhaustion for a given bandwidth consumed by the 
attack-traffic during the ARP storm. It is observed that as 
the network bandwidth is increasingly consumed by the 
ARP-attack traffic, the processor is exhausted at a much 
faster rate, and hence this type of attack can be classified 
under computing-resource starvation attack. 

 
5.3. Resource Exhaustion of the Victim    

Computer Due to Direct-ARP          
Request Traffic 

 
Direct ARP request traffic comprises of ARP-request 
frames that have  

IP address = {χ | χ = Pi} 

In this experiment, we measure, processor exhaustion, 
memory used and the page file size under direct-ARP 
request traffic. Page file size gives indication of virtual 
memory activity, if any, during the attack. 

Figure 2 shows minimum and maximum CPU time 
observed (called processor exhaustion in the attack ex-
periments) for a given load of the direct ARP-attack traf-
fic. Average CPU time is also shown in the graph so that 
we can get an idea if the majority of observations are 
closer to the maximum CPU time or closer to the mini-
mum CPU time. It can be seen that a bandwidth con-
sumption of 40% by direct ARP-attack traffic in a fast 
Ethernet environment exhausts a Pentium-IV processor 
to up to 85% of its 3.06 GHz processing capacity. Due to 
the processing of a barrage of ARP-requests the CPU 
resource is easily consumed and this in turn can degrade 
the quality and availability of associated web services.  

Furthermore, it is obvious that if such servers are op-
erated in a Gigabit network deploying higher interfaces 
such as 1 Gbps then it will be easier for such CPU of 
3.06 GHz to be completely consumed by the Giga-
bit-flood of ARP-attack traffic, and attacks in such Giga-
bit environment can completely stall the system. Com-
plete stalling of system means that one cannot even move 
the cursor on the attacked computer, let alone running 
the security diagnostics. It is also obvious from this ex-
periment that a lower capacity (< 3.06 GHz) processor 
can easily be frozen (consumed 100%) by this type of 
ARP-storm in commonly available fast Ethernet envi-
ronment of local area networks.  

Figure 3 shows the memory-usage of the victim com-
puter under direct ARP-attack traffic, as the network 
bandwidth is increasingly consumed by the ARP-storm. 
The memory consumed due to direct ARP attack traffic 
is observed to be within a range of 6 Mbytes, which 
seems to be not much of an issue for a 3.06 GHz proces-
sor with 512 Mbytes of RAM. However, for a slower 
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Figure 3. Memory usage under the direct ARP-attack traf-
fic with IP address = {χ | χ = Pi}. 
 

 

Figure 4. Page-file size is visibly unaffected under direct- 
ARP-attack traffic with IP address = {χ | χ = Pi}. 
 
processor with processing power less than 3.06 GHz, a 
greater amount of computer’s memory resource can be 
wasted. Slower processing power in the fast Ethernet 
environment can cause the queue of ARP packets to 
build up waiting for address resolution and computer’s 
response. Hence a slower processor will exhaust a rela-
tively greater amount of memory resource of the victim 
computer under ARP storm. In any case, the memory 
usage is so insignificant that it is not really a problem in 
these ARP attacks. 

Another parameter of interest is the Page file size. 
Page File size is the current number of bytes that the ac-
tive processes have used in the paging file(s). We meas-
ure the page file size during the attack to observe for 
activities in the virtual memory.  

Figure 4 shows that there is no change in the page-file 
size before and during the direct ARP attack. Page-file 
size measurement at 0% load mainly provides the size 
due to the background processes running in the computer 
in the absence of any ARP request traffic. Furthermore, 
as the load of incoming direct ARP traffic is increased, 
there is really no impact on the virtual memory of the 
computer. 

5.4. Resource Exhaustion of a (Non-Victim) 
Computer Receiving Indirect Frames 

 
If ith computer in the broadcast domain has an IP address 
of Pi then the indirect ARP-request frames arriving to the 
computer can be described as the frames with  

IP addresses = {χ | χ ≠ Pi} 

Figure 5 shows minimum, maximum and average 
value for the processor exhaustion for a given load of the 
indirect ARP-attack traffic. It can be seen that a band-
width consumption of 40% by indirect ARP-attack traffic 
in a fast Ethernet environment exhausts a Pentium-IV 
based non-victim computer to up to 55% of its 3.06 GHz 
processing capacity.  Indirect ARP requests are still 
being processed by the computers on the network even 
though they are not directed towards them. Due to the 
processing of a barrage of indirect ARP-request mes-
sages, the CPU resource is still getting significantly 
consumed, however the processor exhaustion rate is rela-
tively less intense compared to the one under direct ARP 
attack traffic. This is understandable as there is relatively 
more processing involved in direct ARP attack traffic 
compared to that of indirect ARP attack traffic. 

Figure 6 shows the memory-usage of a non-victim 
computer, which is located on the same LAN segment as 
that of the victim computer, as the network bandwidth is 
increasingly consumed by the indirect ARP attack traffic. 
The memory consumed due to such indirect-ARP attack 
traffic is observed to be within 3 Mbytes, which is com-
paratively less than that consumed by the direct ARP 
attack traffic in Figure 3. Consumption of physical 
memory in the range of 3 Mbytes is not much of an issue 
for a 3.06 Hz computer with 512 Mbytes of RAM. 

In this experiment, we also measure the page-file size 
before the onset of indirect ARP attack, and during the 
indirect ARP attack (Figure 7). The page-file size at 0% 
ARP traffic indicates the page-file size before the onset 
 

 

Figure 5. Processor exhaustion under the indirect ARP- 
attack traffic with IP address = {χ | χ ≠ Pi}. 
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Figure 6. Occupancy of the computer’s memory under in-
direct ARP-attack traffic with IP address = {χ | χ ≠ Pi}. 
 

 

Figure 7. Page-file size is visibly unaffected under the indi-
rect ARP-attack traffic with IP address = {χ | χ ≠ Pi}. 

 
of the ARP-attack, which is mainly due to the processes 
running in the background. The page-file size of the vic-
tim computer is measured as the network bandwidth is 
increasingly consumed by the indirect ARP-attack traffic. 
Figure 7 shows that the page-file size is not affected by 
the indirect ARP attack traffic, as it stays the same before 
and after the onset of the indirect ARP attack. This is 
obviously due to the fact that the memory-consumed by 
the indirect ARP traffic (Figure 6) is quite minimal, and 
stays within the range of 3 Mbytes (out of a total 512 
Mbytes) of RAM space, and hence no incoming ARP 
messages spill to the page-file. 
 
6. Detection and Prevention 
 
It can be seen from the prior experiments that the ARP 
storms can consume the computing resources rapidly for 
all the computers on the affected LAN segment. Hence it 
is important to detect the ARP storms immediately and 
raise alarm for its possible prevention before the entire 
LAN segment is brought down by such ARP storms. In 

order to detect these types of ARP attacks, it is important 
to monitor the ARP traffic on each LAN segments. Pro-
grams such as ARPwatch [10] can be used to monitor 
ARP traffic on each LAN segments and raise alarm when 
ARP storms or ARP poisoning tools are detected. One 
can also use SNMP to monitor changes in ARP table in 
routers and switches to raise alarm for onset of such ARP 
attacks.  

One way to prevent ARP storm is to involve layer-2 
switches in controlling the ARP broadcast floods at the 
source where the storm starts building up. This can be 
achieved by allowing for threshold limits for broad- 
cast/multicast traffic on a per-port basis. Furthermore, 
these thresholds per-port basis should be set up by limit-
ing the bandwidth consumed by ARP broadcasts on a 
switch port.  

In order to support multiple layers of prevention, the 
routers can also be used in controlling ARP storm from 
spreading to others LAN segments. A network manager 
can configure the router (using its control policy) to im-
pose a limit on the rate of ARP requests that can be al-
lowed for the associated LAN segments. When the im-
posed threshold for the ARP requests is exceeded then 
the ARP request packets are dropped by the router. The 
router hardware should be fast enough to examine and 
drop the ARP request packets that exceed the imposed 
threshold, otherwise it is possible for the router to crash 
or experience slowdown of its operation and itself be-
come a bottleneck resulting in eventual denial of service 
(DoS).  

 
7. Conclusions 

 
According to Computer Emergency Response Team 
(CERT/CC), there has been an increased targeting of 
Windows end-users’ computer systems and servers for 
security attacks. Distributed Denial of Service (DDoS) 
attacks due to ARP-storms can be found in local area 
networks where many computer systems are infected by 
worms such as Code Red or by DDoS agents. In this 
paper, we present results of our experiments to measure 
the impact of ARP-storms on systems resource exhaus-
tion of a Window-XP based computer system deploying 
a high performance Pentium-IV processor. It is observed 
that ARP-storms not only waste the communication 
bandwidth but also exhaust a processor’s resource of a 
victim computer even more rapidly by forcing it to reply 
to a barrage of ARP-request messages. It is also observed 
that when the network bandwidth is consumed 40% by 
the ARP-attack traffic in a fast Ethernet environment, a 
computer system with a high-performance Pentium-IV 
processor of 3.06 GHz speed wastes up to 85% of its 
(victim computer) raw CPU-time in processing direct 
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ARP attack traffic and 55% of its (non-victim computers) 
raw CPU-time in processing indirect ARP attack traffic. 
This attack is found to be more processor intensive 
which means that it exhausts processor resource more 
rapidly than other computing resources such as memory. 
The memory exhaustion is found to be not significant 
when compared with the corresponding processor ex-
haustion. Memory usage is observed to be quite insig-
nificant compared to the memory resource deployed in 
the system. The virtual memory or the page file of the 
victim computer is observed to be completely unaffected.  
Based on these experimental results, the ARP-attack can 
be categorized as the attack that causes computing re-
source starvation more rapidly than the bandwidth star-
vation, especially that of the processor of the victim and 
non-victim computer systems on the affected network. It 
is interesting to notice the collateral damage done by this 
attack on a given LAN, according to which it not only 
exhausts the resource of the victim computer but also 
exhausts computing resource of other non-victim com-
puters present on a given LAN where the victim com-
puter resides. The rate of resource exhaustion in this type 
of experiment can help network security engineers de-
sign efficient flow-control and threshold based attack 
prevention schemes at the switches and routers used in 
the LAN. 
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