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ABSTRACT 

As CO2 is injected into pore spaces of water-filled reservoir rocks, it displaces much of the pore fluids. In short terms 
(several to tens of years), the greater part of the injected CO2 is predicted to stay as free CO2, i.e. in a CO2 rich dense 
phase that may contain some water. This paper investigates the sorption characteristics for rocks (quartzose arenite, 
greywacke, shale, granite and serpentine) and minerals (quartz and albite) in the CO2 rich dense phase. The measure-
ments were conducted at 50˚C and 100˚C, and pressures up to 20 MPa. Our results demonstrated that significant quan-
tities of CO2 were sorbed with all the samples. Particularly, at 50˚C and 100˚C, quartzose arenite showed largest sorp-
tion capacity among the other samples in higher pressures (>10 MPa). Furthermore, comparison with model prediction 
based on the pore filling model, which assumed that CO2 acts as filling pore spaces of the rocks and minerals, sug-
gested the importance of the sorption mechanism in the CO2 geological storage in addition to the pore-filling mecha-
nism. The present results should be pointed out that the sorption characteristics may have significant and meaningful 
effect on the assessment of CO2 storage capacity in geological media. 
 
Keywords: Sorption Characteristics, Rocks, Minerals, Storing CO2 Processes, CO2 Geological Storage 

1. Introduction 

It is a well-established fact that the concentrations of CO2 
in the atmosphere have been increasing steadily and has 
increased globally by about 100 ppm (36%) over the last 
250 years, from a range of 275 to 285 ppm in the 
pre-industrial era to 379 ppm in 2005 [1], and predictions 
are that, if continuing in a business-as-usual scenario, by 
the end of this century, humankind will be facing sig-
nificant climate change, which may affect human health 
[2]. Thus, a major challenge in mitigating the climate 
change is a deep reduction of anthropogenic CO2 emis-
sions to the atmosphere, which hopefully will lead to a 
stabilization of CO2 concentration at around 550 ppm 
(i.e., double of the pre-industrial level). However, the 
challenge of stabilizing atmospheric CO2 levels becomes 
increasingly difficult as the problem matures because 
fossil fuels, which today provide about 75% of the 
world’s energy, are likely to remain a major component 
of the world’s energy supply for at least the next century.  

In recent years, there are a number of ways by which 
CO2 emissions can be reduced, among them being CO2 
capture and geological storage (CCGS) technology. CCGS  

technology is an enabling technology that will allow the 
continued use well into this century of fossil fuels for 
power generation and combustion in industrial processes 
and also has the potential of the deepest cuts in anthro-
pogenic CO2 emissions from large stationary sources 
(e.g., power generation, iron and steel production, ce-
ment manufacture). The technology involves the de-
ployment of a set of technologies for capturing CO2 
emitted from the large stationary sources, transporting it 
usually by pipeline and injecting it into geological stor-
age reservoirs, including depleted oil and gas reservoirs, 
unminable coal seams, and deep saline aquifers, which is 
filled with water (most commonly formation brine) into 
pores spaces of reservoir rocks.  

In terms of CO2 migration process in the deep saline 
aquifers, if CO2 moves into, or invades a porous medium 
saturated with formation brine, the latter is displaced 
from some of the pore space (a process referred to as 
drainage) [3], and then the injected CO2 stays in the in-
jection zone for a long time, is dissolved in the formation 
brine, and becomes trapped by mineralization. The extent 
of CO2-water-rock interaction during migration of the 
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injected CO2 is the main control on the fate of the CO2. 
Johnson et al. [4] has reported that reactive transport 

modeling of a Sleipner-like storage reservoir, which is 
the world’s first saline-aquifer CO2 storage site that the 
fate and transport of injected CO2 has been successfully 
monitored by seismic time-lapse surveys, suggested that 
15-20% was still dissolved in the formation brine after 20 
years. The remainder stayed as an immiscible condition, 
i.e. in a CO2 rich dense phase that may contain little wa-
ter. Consequently, the result from this study indicates 
that, through the CO2 migration process within the deep 
saline aquifers, the fate of injected CO2 would be pre-
dicted to be mostly the immiscible condition in the order 
of short term storage (e.g. several years or ten years). 

Many researchers have investigated about mineral 
trapping processes among CO2, water, and rock in 
CO2-water-rock system [5-9]. However, interactions 
among CO2 and rock that simulates the CO2 rich dense 
phase have only been conducted by Lin et al. [10].  

Up to now, gas sorption isotherm experiments in 
CO2/rock or CO2/water/rock systems have been con-
ducted using shale at 45-50˚C and pressures up to 20 
MPa [11] and sandstone and granite at 33-200˚C, and 
pressures up to 20 MPa [12-14]. Fujii et al. [13,14] indi-
cates that at high pressures (> 10MPa), the amount of 
CO2 sorbed by granite is comparable to that by sandstone, 
but the sorption mechanisms and processes for sandstone, 
shale, and granite has not been elucidated. Therefore, 
knowledge of CO2 sorption characteristics for various 
rocks will be required for the screening and assessment 
of suitable CO2 storage sites for sequestration of CO2 in 
geological reservoirs. Thus, for this comparison, in addi-
tion to the rock samples reported in the previous litera-
tures, we included samples from other types of rocks 
(e.g., sedimentary rock, volcanic rock, metamorphic rock) 
in this experiment. Additionally, to better understand the 
mechanisms related to sorption of CO2 on rocks, CO2 
sorption measurements for silica and silicate minerals, 
which are main component of reservoir rocks, were also 
conducted. 

The purpose of this study is to evaluate sorption char-
acteristics of CO2 for rocks (sedimentary rocks, meta-
morphic rocks, and volcanic rocks) and minerals (silica 
and silicate minerals) in the CO2 rich dense phase at 
geological-relevant temperatures and pressures. 

2. Experimental 

2.1. Samples and Preparation 

Samples from five different blocks of rocks (quartzose 
arenite, greywacke, shale, granite, and serpentine) were 
used in the experiments. Quartzose arenite and grey-

wacke are well known as quartz-rich sandstone and feld-
spar-rich sandstone, respectively. In this study, Berea 
sandstone (from Ohio, USA) and Kimachi sandstone 
(from Shishido-cho, Shimane, Japan) were chosen as the 
representation of quartzose arenite and greywacke, re-
spectively. 

Berea sandstone composition was determined by point 
counting (500 points) under a polarizing microscope 
(OLYMPUS, A6400BX). Berea sandstone consisted 
mainly of quartz (= 90.7 vol. %), and the observation was 
in agreement with the results of Wang and Nur (1989). 
Kimachi sandstone consisted mainly of plagioclase (= 
89.9 vol. %) [15]. A sample of shale was obtained from 
Tedori-group, Niigata, Japan. A sample of granite was 
obtained from Iidate, Fukushima, Japan. The granite 
consisted mainly of quartz (= 37.1 vol. %), plagioclase (= 
34.0 vol. %) and K-feldspar (= 21.8 vol. %) [15]. A sam-
ple of serpentine was obtained from Okaya, Nagano, 
Japan. Examination of the serpentine using X-ray dif-
fraction verified the abundance of chrysotile and lizardite. 
Additionally, natural single crystals of quartz (from Alto 
de Cruzes Santander, Colombia) and albite (from Kotaki, 
Itoigawa, Niigata, Japan) were used in the experiment. 
These rock and mineral specimens were shown in Figure 
1. 

The American Society for Testing and Materials 
(ASTM) procedure [16] was used to determine density 
and porosity of the samples based on the fundamental 
Archimedes principle. Specific surface areas were deter-
mined by low-pressure nitrogen sorption measurements 
using the Brunauer-Emmett-Teller (BET) method [17]. 
The nitrogen sorption measurements were performed at 
77 K using a Quantachrome NOVA 2000 series auto-
mated volumetric instrument. Prior to each analysis, the 
samples were degassed at 105˚C under vacuum. The ob-
tained values were listed in Table 1.  

Core specimens of Berea sandstone, Kimachi sand-
stone, and Iidate granite were cored from these blocks 
with a thin-wall diamond bits and were cut with a dia-
mond saw. All cores were drilled perpendicular to the 
bedding plane. These core specimens were each about 16 
mm in diameter and about 10 mm in length. The speci-
men of shale was broken into angular fragments ap-
proximately 5 to 10 mm in largest dimension. The 
specimen of serpentine was cut into approximately 10 × 10 
mm2 in cross-section and 15 mm in length. The speci-
mens of quartz and albite with dimensions of 65 × 20 
mm3 and 10 × 10 × 10 mm3, respectively, were prepared 
from each natural single crystals.  

These cut specimens were washed with distilled water 
and were dried under vacuum in an oven for at least 24 
hours at 105˚C using a rotary vacuum pump.  

Copyright © 2010 SciRes.                                                                                   NR 
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Figure 1. Photographs of rock and mineral specimens tested in the experiment. (a) Berea sandstone; (b) Kimachi sandstone; 
(c) Shale; (d) Serpentine; (e) Granite; (f) Quartz; (g) Albite. 
 

Table 1. Rocks and minerals properties for CO2 sorption measurement. 

Materials Specific surface area (m2/g) Bulk density (g/cm3) Porosity (vol. %) 

Kimachi sandstone 2.80 2.51 20.0 

Berea sandstone 0.84 2.11 19.0 

Granite - 2.62 1.1 

Shale 0.65 2.60 3.4 

Serpentine - 2.51 4.9 

Quartz - 2.60 < 0.1 

Albite - 2.60 0.9 
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2.2. Apparatus and Procedure 

The magnetic suspension balance (MSB) from Rubotherm 
Präzisionsmesstechnik GmbH [18] rated at 350˚C and 35 
MPa was used to measure the CO2 sorption capacity of 
rocks and minerals, as illustrated in Figure 2. The MSB 
consisted of a sorption chamber that was used to expose 
the sample to CO2 at elevated temperatures and pressures, 
and microbalance, which was isolated from the sample 
and existed at ambient conditions. All of the details for 
the MSB and its operational procedures have been de-
scribed in previous literatures by Sato et al. [19] and 
Blasig et al. [20]. A schematic of the experimental appa-
ratus was shown in Figure 3. The experimental apparatus 
consisted of a high CO2 pressure supply system, which 
was used to pressurize CO2 up to 20 MPa, a data acquisi-
tion system and a MSB system.  

In the experiment, the sorption measurements were 
performed at 50˚C and 100˚C, and pressures up to 20 
MPa.  

In a typical experiment, a sample was weighed and 
placed in a sample basket suspended by a permanent 
magnet through an electromagnet, as shown in Figure 2. 
After closing the sorption chamber, the sample was de-
gassed by evacuating the sorption chamber at elevated 
temperatures until the weight measured by the microbal-
ance remained unchanged over time. A heating circulator 
(Julabo, model F25) was used to control the temperature 
of the chamber, which was measured with a calibrated 
platinum resistance thermometer to an accuracy of ± 0.05  

 

Figure 2. Principle of the magnetic suspension balance 
(MSB). 

 

 

Figure 3. Schematic diagram of the experimental apparatus for CO2 sorption measurement by using the MSB system (source: 
ato et al. [19]). S 
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K. The sample weight, read from the microbalance under 
vacuum and at temperature T, was recorded as w (vac, T) 
prior to CO2 injection into the sorption chamber. 

CO2 was introduced into the sorption chamber by the 
following way. At low pressure up to 5 MPa, the sorption 
chamber was flooded with CO2 from a gas cylinder and 
the pressure was controlled by a regulator. Whereas, at 
the pressures above 5 MPa, CO2 was introduced by 
passing through a high-performance liquid chromatog-
raphy (HPLC) pump (Jasco 880PU). CO2 pressure inside 
the sorption chamber was measured by using Paroscien-
tific pressure transducer (46KR, 41.4 MPa F.S., accuracy 
0.01% F.S.). 

The change in the mass of the sample as well as the 
temperature and pressure were measured continuously 
until the thermodynamic equilibrium was reached. 
Eventually, an equilibrium sorption was reached, that is, 
the mass of the sample stopped increasing. The equilib-
rium sorption was achieved in about 90 minutes at every 
pressure steps. At this final saturation stage, the weight 
reading from the microbalance at pressure P and tem-
perature T was recorded as w (P, T).  

The mass of the sorbed CO2 on the rock and mineral 
samples was calculated based on the consideration of a 
buoyancy of instruments, which was housed in the sorp-
tion chamber, at different gas pressures and different 
densities as shown in the Equation (1). 

Where ng
ex (P, T) was CO2 sorbed amount on the sample 

and was termed excess CO2 sorption capacity. ρCO2 (P, T) 
was CO2 phase density at P and T. mCO2 was the molecular 
weight. Vr and Vb were the volumes of the sample and of 
the sample basket, respectively. The last term of the above 
equation, ρCO2 (P, T)･(Vb + Vr) represented the buoyancy 
force caused by the compressed gas, which lifted the sam-
ple and sample basket. CO2 phase density, ρCO2 (P, T), was 
calculated from the Wagner EOS [21]. 

The volume of the sample basket, Vb, was determined 
using Equation (2) from a buoyancy experiment, that is, 
the MSB experiment was performed without a sample in 
the sample basket at the experimental temperature and    
pressure. 

     
2

, ,bV w vac T w P T P T  ,CO      (2) 

The result obtained from the buoyancy experiment in-
dicated that, at 50˚C and 100˚C, the values of the sample 
basket were constant within limited pressure ranges (~20 
MPa) and were 1.69 cm3 at 50 ˚C and 1.71 cm3 at 100˚C, 
respectively. The volume of the sample, Vr, was calcu-
lated from mass and density of the sample.  

After the experiment, the samples were reweighed un-
der vacuum condition in the sorption chamber. 

3. Results and Discussion 

The excess sorption data of CO2 obtained on the five 
rock samples (Berea sandstone, Kimachi sandstone, ser-
pentine, shale, granite) and the two mineral samples 
(quartz and albite) are shown in Figure 4 under the pres-
sures up to 20 MPa at 50˚C in Figure 4(a) and 100˚C in 
Figure 4(b), respectively.  

The excess sorption data are shown on a sample vol-
ume basis in Figure 4. It has been shown that shale [11] 
and sandstone and granite [12-14] have a certain degree 
of sorption capacities for CO2 under air-dry conditions. 
The experimental data obtained in this study confirm the 
results of the previous literatures. Figure 4 reveals that 
the Berea sandstone samples show significantly larger 
weight changes compared with the other types of rocks, 
in particular with the Kimachi sandstone samples. The 
maximum sorption capacity of Berea sandstone for CO2 
exhibits 3.7 mmol/cm3 (= 82.9 cm3 STP/cm3) at 50˚C and 
20 MPa and 2.8 mmol/cm3 (= 62.7 cm3 STP/cm3) at 
100˚C and 20 MPa, respectively. It should be mentioned 
here that the pore volume of Berea sandstone (porosity: 
 17.9 vol.%) is slightly smaller than that of Kimachi 
sandstone (porosity:  20.0 vol. %). As mentioned in the 
section of Experimental, B.E.T. tests were carried out to 
evaluate the specific surface area of the rock samples 
using N2 sorption isotherms. Valid experimental data for 
specific surface area were obtained only for Berea sand-
stone, Kimachi sandstone, and shale, which showed no 
dependence of the sample sizes used for the B.E.T. tests. 
In contrast, the other types of rocks exhibited specific 
surface areas which varied with the sample size used. In 
view of the B.E.T. results, the excess sorption data per 
unit surface area are given only for Berea sandstone, 
Kimachi sandstone, and shale in Figures 5(a) and 5(b). It 
is apparent that Berea sandstone outperforms Kimachi 
sandstone and shale in the CO2 sorption capacity. 

Coal studies on sorption revealed that maximum ex-
cess CO2 sorption values were approximately 2.0 mmol/g 
for various coal samples on dry basis at around 50˚C 
[22-24]. Based on CO2 gravimetric capacity for the rock 
and mineral samples, at 50˚C, maximum CO2 excess 
sorption values were approximately 1.8 and 0.5 mmol/g 
for Berea sandstone and the other rock and mineral sam-
ples, respectively. It can, therefore, be said that Berea 
sandstone exhibits comparable capacity as coals and has 
a significantly sorption capacity. 

 

          2
, , , ,ex

2g CO b r COn P T w P T w vac T P T V V m                          (1)
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(a)                                                  (b) 

Figure 4. Gravimetric CO2 excess sorption uptake per unit volume for rocks and minerals under air-dry condition in 
CO2/rock or CO2/mineral systems: (a) at 50˚C and (b) at 100˚C. 
 

         
(a)                                                  (b) 

Figure 5. Gravimetric CO2 excess sorption uptake per unit surface area for rocks and minerals under air-dry condition in 
CO2/rock or CO2/mineral systems: (a) at 50˚C and (b) at 100˚C. 
 

It is also shown in Figure 4 that the two mineral sam-
ples (quartz and albite) are capable of sorbing CO2 in the 
CO2 rich dense phase. Both quartz and albite is a com-
mon and fundamental constitutes of most types of rocks. 
The above result for the quartz and albite samples sug-
gests that the CO2 sorption capacity of the rocks tested in 
this study can be attributed to the sorption of CO2 onto 
silica and silicate minerals. 

It is shown in Figure 4(a) that the sorption isotherms 
at 50˚C exhibit a rapid increase in the excess CO2 sorp-
tion for more or less all the rocks and minerals tested, 
even though the increasing trend is unclear except for 
Berea sandstone. The rapid increase in the excess CO2 
sorption takes place when the pressure exceeds the criti-
cal point of CO2 (31.0˚C, 7.38 MPa) for 50˚C. In contrast, 
the results for 100 ˚C show a nearly linear increase trend 
with increasing pressure for the majority of the rocks and 

minerals. It is interesting to note that the results may 
correlate with the pressure dependence of CO2 density. In 
fact, the CO2 density shows a sharp jump at the critical 
point of CO2 for 50˚C, whereas an approximately linear 
increase is observed for 100˚C [21]. 

The amount of CO2 sorbed at 50˚C decreases with in-
creasing pressure in the higher pressure range (> 10 
MPa), except for Berea sandstone. This trend is in 
agreement with the result reported by Romanov et al. 
[22], who have shown for coal samples that at high pres-
sures above 10 MPa, the amount of CO2 sorbed reduced 
as increasing pressure.  

The decreasing trend of the sorption isotherms for 
50˚C in the high pressures may be due to the buoyancy 
force acting on the volume of sorbed CO2 phase. The 
sorbed CO2 phase may alter the buoyancy of the sample 
in the ambient CO2 pressures and temperatures during 

Copyright © 2010 SciRes.                                                                                   NR 
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the experiment, in addition to the volume of the sample, 
Vr, the sample basket, Vb, and the other measurement 
instrument. However, the calculation of the excess CO2 
sorption capacity based on Equation (1) ignores the 
buoyancy effect of the volume of the sorbed CO2 phase, 
thus introducing error. Therefore, the error caused by the 
above-mentioned buoyancy force would be larger at the 
high pressure range (above the critical pressure) than the 
low pressure region (~5 MPa) because the CO2 density 
and the sorbed phase volume usually increases as the 
CO2 pressure increases. The observation suggests that the 
buoyancy effect may cause the reduction in the excess 
sorption for the high pressure range. 

The amount of sorbed CO2 for Berea sandstone, how-
ever, showed a monotonous increase with increasing CO2 
pressure, even in the higher pressure range. The com-
parison suggests that the sorption mechanism may form a 
denser CO2 sorbed phase in the case of Berea sandstone. 
The reason for this is unclear and requires further inves-
tigation. 

As shown in Figure 4(b), the sorption capacity for 
100˚C is lower compared with the results for 50˚C and 
shows an approximately linear increase up to 20 MPa, 
except for Kimachi sandstone.  

In contrast, no decreasing trend in the excess sorption 
is observed for 100˚C. Reason for this may be attributed 
to the decrease of the buoyancy force due to the tem-
perature increase. The buoyancy force associated with 
sorbed phase volumes was mainly determined by the 
density of CO2 phase and CO2 sorbed phase, and the CO2 
sorption amount. The value of CO2 density calculated by 
the Span and Wagner EOS [21] for 100˚C and 20 MPa is 
shown to be approximately half as much as that at 50˚C. 
In addition, the sorbed phase density predicted by 
Dubinin (1965) [25] decreases with increasing tempera-
ture. These results indicates that the buoyancy effect for 
100˚C is smaller that than for 50˚C. Consequently, the 
error induced by the buoyancy effect for 100˚C may be 
smaller than that for 50˚C. 

Sorption and desorption isotherms are shown for Berea 
sandstone and serpentine at 50˚C in Figure 6. The de-
sorption isotherms coincide approximately with the sorp-
tion data. Furthermore, weight measurements for the 
samples have shown almost no change after the CO2 
sorption experiment. These results indicate the reversible 
nature of CO2 sorption-desorption process at 50˚C. The 
same trend has been observed for 100˚C. 

4. Comparison with Prediction Value Based 
on Pore-Filling Model 

Based on the above discussion, the experimental excess 
sorption data are corrected for the buoyancy force for the 
sorbed phase volume using the following equation [26]: 

 
(a) 

 

 
(b) 

Figure 6. Excess sorption and desorption isotherms of CO2 
at 50˚C for (a) Berea sandstone and (b) Serpentine under 
air dry condition in CO2/rock system. 
 

 
2

,
c ex a
g g

a CO

n n
P T


 

 
   

            (3) 

where nc
g is the CO2 sorption capacity corrected for the 

buoyancy effect, nex
g is the sorbed amount without cor-

rection (as measured by the MSB method), ρCO2(P,T) is 
the CO2 density of the gas phase, and ρa is the CO2 den-
sity of the sorbed phase. In this study, we used the sorbed 
phase density, ρa, calculated by Dubinin-Nikolaev for-
mulation [25]. The value of ρa is usually assumed to be 
constant over the entire pressure range at temperatures 
above the critical temperature (31.1˚C). The calculated 
values of ρa at 50 ˚C and 100 ˚C were 0.994 g/cm3 and 
0.912 g/cm3, respectively. The CO2 phase density, ρCO2 
(P, T), was calculated from Span and Wagner EOS [21]. 
The data for the corrected sorption amount are shown in 
Figures 7 and 8. In addition to the corrected CO2 sorption  
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(a)                                                (b) 

 

         
(c)                                                 (d) 

 

 
(e) 

Figure 7. Comparison of the predicted values based on the pore-filling model, with corrected sorption capacity, 
considering CO2 sorbed phase density for three sedimentary rocks (Berea sandstone, Kimachi sandstone, and 
shale), one ultramafic rock (serpentine) and one volcanic rock (granite) at 50˚C and 100˚C. The solid and dashed 
lines represent the corrected experimental data and the calculated data, respectively. ( ) is the porosity of rock 
specimens. (a) Berea sandstone ( 19.0); (b) Kimachi sandstone ( 20.0); (c) Serpentine ( 4.9); (d) Shale ( 3.4); 
(e) Granite ( 1.1). 
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(a)                                                     (b) 

Figure 8. Comparison of the predicted values based on the pore-filling model, with corrected sorption capacity, considering 
CO2 sorbed phase density for quartz and albite at 50˚C and 100˚C. The solid and dashed lines represent the corrected ex-
perimental data and the calculated data, respectively. ( ) is the porosity of mineral specimens. (a) Quartz ( 0.1); (b) Albite 

( 0.9). 

 
data, the results predicted from the pore-filling model are 
plotted in these figures. The pore-filling model assumes 
that the CO2 storage capacity of the rock mass is equal to 
the amount of CO2 used to fill the pore volume in the 
rock, which is given by the following equation: 

2pore filling rock CO COn m
2

             (4) 

where  rock is the porosity of the rock sample, and mCO2 

is the molecular weight of CO2. It is seen that the sorp-
tion capacity corrected for the buoyancy effect shows a 
steady increase with respect to pressure at the higher 
pressure regime, except for the data of the granite and 
albite at 50˚C. The reason for this result probably may be 
due to the error in estimating the sorbed phase density, 
and needs to be further investigated in the future. In the 
lower pressure range (< 5 MPa), the corrected sorption 
capacity appears to give a value close to that computed 
based on the pore-filling model. It is demonstrated that 
the corrected sorption capacity is significantly higher 
than the model predicted data for the rocks and minerals, 
except for Kimachi sandstone. For Kimachi sandstone, 
the corrected result is relatively close to the model pre-
dicted data over the entire pressure range. For example, 
the corrected sorption capacity is shown to be approxi-
mately 5 times higher than the model prediction in the 
case of Berea sandstone, and about 10 times higher for 
the granite. The comparison may suggest the importance 
of the sorption mechanism in the CO2 geological storage 
in addition to the pore-filling mechanism. The sorption 
process may provide an additional CO2 storage mecha-
nism and contribute to the significant part of the CO2 
storage capacity of a rock mass. The effect of water and 
salinity on the CO2 sorption capacity is now under inves-

tigation. 

5. Conclusions 

This paper presents the CO2  sorption capacities of the 
five rock samples (Berea sandstone, Kimachi sandstone, 
shale, serpentine and granite) and the two mineral sam-
ples (quartz and albite), measured at 50˚C and 100˚C, 
and under pressures up to 20 MPa in CO2-rock or 
CO2-mineral systems that simulate the CO2 rich dense 
phase. The CO2 sorption capacities have been determined 
by a gravimetric method and corrected for the buoyancy 
effect. In higher pressure region (> 10 MPa), Berea sand-
stone has shown a significantly higher CO2 sorption ca-
pacity compared to the other rocks and minerals at both 
50˚C and 100˚C and exhibited a maximum sorption ca-
pacity of 3.7 mmol/cm3（= 82.9 cm3 STP/cm3）at 50 ˚C 
and 20 MPa and 2.8 mmol/cm3 (= 62.7 cm3 STP/cm3) at 
100˚C and 20 MPa. Thus, arkosic sandstone such as 
Berea sandstone may provide a significant potential for 
CO2 geological sequestration for a suitable reservoir rock. 
It is also shown that the major constituent minerals for 
the rocks tested in this study (quartz and albite) have a 
CO2 sorption behavior. 

It has been demonstrated that the CO2 sorption capac-
ity measured in this study is significantly higher than that 
predicted by the pore-filling model for the rocks and 
minerals. The comparison suggests that the CO2 sorption 
characteristic may provide an important mechanism in the 
assessment of CO2 storage capacity in geological media. 
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ABSTRACT 

In this paper, downscaling models are developed using various linear regression approaches namely direct, forward, 
backward and stepwise regression for downscaling of GCM output to predict mean monthly precipitation under IPCC 
SRES scenarios to watershed-basin scale in an arid region in India. The effectiveness of these regression approaches is 
evaluated through application to downscale the predictand for the Pichola lake region in Rajasthan state in India, 
which is considered to be a climatically sensitive region. The predictor variables are extracted from (1) the National 
Centers for Environmental Prediction (NCEP) reanalysis dataset for the period 1948–2000, and (2) the simulations 
from the third-generation Canadian Coupled Global Climate Model (CGCM3) for emission scenarios A1B, A2, B1 and 
COMMIT for the period 2001–2100. The selection of important predictor variables becomes a crucial issue for devel-
oping downscaling models since reanalysis data are based on wide range of meteorological measurements and obser-
vations. Direct regression was found to yield better performance among all other regression techniques explored in the 
present study. The results of downscaling models using both approaches show that precipitation is likely to increase in 
future for A1B, A2 and B1 scenarios, whereas no trend is discerned with the COMMIT. 
 
Keywords: Backward, Forward, Precipitation, Regression, Stepwise 

1. Introduction 

Global circulation models (GCMs) are important tool in 
assessment of climate change. These are numerical mod-
els that have been designed to simulate the past, present, 
and future climate [1]. These models remain relatively 
coarse in resolution and are unable to resolve significant 
subgrid scale features. In most climate change impact 
studies, such as hydrological impacts of climate change, 
impact models are usually required to simulate sub-grid 
scale phenomenon and therefore require input data at 
similar sub-grid scale. The methods used to convert 
GCM outputs into local meteorological variables re-
quired for reliable hydrological modeling are usually 
referred to as “downscaling” techniques [2,3]. Precipita-
tion is an important parameter for climate change impact 
studies. A proper assessment of probable future precipi-
tation and its variability is to be made for various water 
resources planning and hydro-climatology scenarios. 

A number of papers have previously reviewed down-

scaling concepts, including 1) low-frequency rainfall 
events [4] 2) daily precipitation [5] 3)seasonal precipita-
tion [6] 4) daily and monthly precipitation [7] 5) monthly 
precipitation [8] 6) monthly precipitation [9] 7) monthly 
precipitation [10] 8) monthly precipitation [11] 9) annual 
precipitation [3].  

In this paper, we explore four linear regression ap-
proaches; namely, (a) direct regression, (b) forward re-
gression, (c) backward regression and (d) stepwise re-
gression as a downscaling methodology to study climate 
change impact over Pichola lake basin in an arid region. 
Apparently, in the literature, there appears no evidence of 
any study dealing with simultaneous evaluation of vari-
ous regression approaches. In the light of this, the objec-
tive of this study is to 1) to rank various regression ap-
proaches 2) to downscale mean monthly precipitation 
using best available regression approach from simula-
tions of CGCM3 for latest IPCC scenarios. The scenarios 
which are studied in this paper are relevant to Intergov-
ernmental Panel on Climate Change’s (IPCC’s) fourth 
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assessment report (AR4) which was released in 2007. 

2. Study Region 

The area of the this study is the Pichola lake catchment in 
Rajasthan in India that is situated from 72.5°E to 77.5°E 
and 22.5°N to 27.5°N. It receives an average annual pre-
cipitation of 597 mm. It has a tropical monsoon climate 
where most of the precipitation is confined to a few 
months of the monsoon season. The south–west (summer) 
monsoon has warm winds blowing from the Indian 
Ocean causing copious amount of precipitation during 
June–September months.   

The Pichola watershed, located in Udaipur district, 
Rajasthan is one of the major sources for water supply 
for this arid region. During the past several decades, the 
streamflow regime in the catchment has changed consid-
erably, which resulted in water scarcity, low agriculture 
yield and degradation of the ecosystem in the study area 
[12]. Regions with arid and semi-arid climates could be 
sensitive even to insignificant changes in climatic char-
acteristics [13]. Temperature affects the evapotranspira-
tion [14], evaporation and desertification processes and is 
also considered as an indicator of environmental degra-
dation and climate change. Understanding the relation-
ships among the hydrologic regime, climate factors, and 
anthropogenic effects is important for the sustainable 
management of water resources in the entire catchment 
hence this study area was chosen because of aforemen-
tioned reasons. The location map of the study region is 

shown in Figure 1. 

3. Data Extraction 

The monthly mean atmospheric variables were derived 
from the National Center for Environmental Prediction 
(NCEP/NCAR) (hereafter called NCEP) reanalysis data 
set [15] for a period of January 1948 to December 2000. 
The data have a horizontal resolution of 2.5° latitude X 
longitude and seventeen constant pressure levels in ver-
tical. The atmospheric variables are extracted for nine 
grid points whose latitude ranges from 22.5 to 27.5 °N, 
and longitude ranges from 72.5 to 77.5 °E at a spatial 
resolution of 2.5°. The precipitation are used at monthly 
time scale from records available for Pichola Lake which 
is located in Udaipur at 24° 34’N latitude and 73°40’E 
longitude. The data is available for the period January 
1990 to December 2000 [12].The Canadian Center for 
Climate Modeling and Analysis (CCCma) provides 
GCM data for a number of surface and atmospheric 
variables for the CGCM3 T47 version which has a hori-
zontal resolution of roughly 3.75° latitude by 3.75° lon-
gitude and a vertical resolution of 31 levels. The data 
comprise of present-day (20C3M) and future simulations 
forced by four emission scenarios, namely A1B, A2, B1 
and COMMIT. The nine grid points surrounding the 
study region are selected as the spatial domain of the 
predictors to adequately cover the various circulation 
domains of the predictors considered in this study. The 
GCM data is re-gridded to a common 2.5° using inverse  

 

 

Pichola lake

 

Figure 1. Location map of the study region in Rajasthan State of India with NCEP grid.  
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square interpolation technique [16].The utility of this 
interpolation algorithm was examined in previous down-
scaling studies [17,18]. 

4. Regression Approaches  

In statistical methods, the order in which the predictor 
variables are entered into (or taken out of) the model is 
determined according to the strength of their correlation 
with the criterion variable.  

In direct regression, all available predictor variables 
are put into the equation at once and they are assessed on 
the basis of proportion of variances in the criterion vari-
able (Y) they uniquely account for.  

In Forward selection, the variables are entered into the 
model one at a time in an order determined by the 
strength of their correlation with the criterion variable. 
The effect of adding each is assessed as it is entered, and 
variables that do not significantly add to the success of 
the model are excluded [19]. 

In Backward selection, all the predictor variables are 
entered into the model. The weakest predictor variable is 
then removed and the regression re-calculated. If this 
significantly weakens the model then the predictor vari-
able is re-entered–otherwise it is deleted. This procedure 
is then repeated until only useful predictor variables re-
main in the model [20,21]. 

Stepwise is the most sophisticated of these statistical 
methods. Each variable is entered in sequence and its 
value assessed. If adding the variable contributes to the 
model then it is retained, but all other variables in the 
model are then re-tested to see if they are still contribut-
ing to the success of the model. If they no longer con-
tribute significantly they are removed. Thus, this method 
should ensure that one end up with the smallest possible 
set of predictor variables included in one’s model [22]. 

5. Selections of Predictors 

For downscaling predictand, the selection of appropriate 
predictors is one of the most important steps in a down-
scaling exercise. Various authors have used large-scale 
atmospheric variables, namely air temperature (at 925, 
500 and 200mb pressure levels), geopotential height (at 
500 and 200mb pressure levels), zonal (u) and meridional 

(v) wind velocities (at 925 and 200mb pressure levels), 
as the predictors for downscaling GCM output to mean 
monthly precipitation over a catchment [8,10,23]. 

Predictors have to be selected based both on their rele-
vance to the downscaled predictands and their ability to 
be accurately represented by the GCMs. Cross-correlations 
are in use to select predictors to understand the presence 
of nonlinearity/linearity trend in dependence structure 
[23,24]. These cross-correlations between each of the 
predictor variables in NCEP and GCM datasets are use-
ful to verify if the predictor variables are realistically 
simulated by the GCM. Cross-correlations are computed 
between the predictor variables in NCEP and GCM 
datasets (Table 1). The cross correlations are estimated 
using three measures of dependence namely, product 
moment correlation, Spearman’s rank correlation and 
Kendall’s tau Scatter plots and cross-correlations be-
tween each of the predictor variables in NCEP and GCM 
datasets are useful to verify if the predictor variables are 
realistically simulated by the GCM. Cross-correlations 
between each of the predictor variables in NCEP and 
GCM datasets are useful to verify if the predictor vari-
ables are realistically simulated by the GCM. 

6. Development of Downscaling Models 

For downscaling precipitation, the probable predictor 
variables that have been selected to develop the models 
are considered at each of the nine grid points surrounding 
and within the study region. In this study, various linear 
regression approaches are used to downscale mean 
monthly precipitation in this study. The data of potential 
predictors is first standardized. Standardization is widely 
used prior to statistical downscaling to reduce bias (if any) 
in the mean and the variance of GCM predictors with 
respect to that of NCEP-reanalysis data [24]. Standardi-
zation is done for a baseline period of 1948 to 2000 be-
cause it is of sufficient duration to establish a reliable 
climatology, yet not too long, nor too contemporary to 
include a strong global change signal [24].  

A feature vector (standardized predictor) is formed for 
each month of the record using the data of standardized 
NCEP predictor variables. The feature vector is the input 
to the linear regression models, and the contemporaneous  

 
Table 1. Cross-correlation computed between probable predictors in NCEP and GCM datasets. 

 Ta925 Ua925 Va925 Va200 Ta20 Zg200 Ua200 Ta500 Zg500 

P 0.83 0.79 0.67 -0.18 0.66 0.81 0.23 0.81 0.60 

S 0.68 0.56 0.43 -0.14 0.46 0.64 0.57 0.64 0.39 

K 0.87 0.76 0.61 -0.20 0.68 0.85 0.73 0.85 0.59 

H ere P, S and K represent product moment correlation, Spearman’s rank correlation and Kendall’s tau respectively. 
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value of predictand is the output. To develop down-
scaling models, the feature vectors which are prepared 
from NCEP record are partitioned into a training set and 
a validation set. Feature vectors in the training set are 
used for calibrating the model, and those in the validation 
set are used for validation. The 11-year mean monthly 
observed precipitation data series were broken up into a 
calibration period and a validation period. Four models 
M1, M2, M3 and M4 were developed corresponding to 
regression approaches namely stepwise, forward, back-
ward and direct respectively for predictand (Precipita-
tion). The models were calibrated on the calibration pe-
riod 1990 to 1995 and validation involved period 1996 to 
2000. The various error criteria are used as an index to 
assess the performance of the model. Based on the latest 
IPCC scenario, models for mean monthly precipitation 
were evaluated based on the accuracy of the predictions 
for validation data set. 

7. Results and Discussions 

Downscaling models were developed following the 
methodology as discussed in preceding section. The re-
sults and discussion are presented in this section. 

7.1. Potential Predictor Selection 

The most relevant probable predictor variables necessary 
for developing the downscaling models are identified by 
using the three measures of dependence following the 
procedure. The cross-correlations enable verifying the 
reliability of the simulations of the predictor variables by 
the GCM, are shown in Table 1. In general, the most of 

predictor variables are realistically simulated by the 
GCM. It is noted that air temperature at 925mb (Ta 925) 
is the most realistically simulated variable with a CC 
greater than 0.8, while meridional wind at 200mb (Va200) 
is the least correlated variable between NCEP and GCM 
datasets (CC = -0.17). It is clear from Table 1 that air 
temperature at 925mb (Ta 925), air temperature at 500 
mb (Ta500), air temperature at 200 mb (Ta200), merid-
ional wind at 925mb (Va 925), zonal wind at 925mb 
(Ua925), zeo-potential height at 200mb (Zg200) and 
zeo-potential height at 500mb (Zg500) are better corre-
lated than meridional wind at 200mb (Va200) and zonal 
wind at 200mb (Ua200). 

7.2. Downscaling and performance of GCM 
Models 

Seven predictor variables namely air temperature at 925 
mb, 500 mb and 200 mb, zonal wind (925 mb); merido-
inal wind (925 mb); zeo-potential height 500 mb and 200 
mb at 9 NCEP grid points with a dimensionality of 63, 
are used as the standardized data of potential predictors. 
These feature vectors are provided as input to the various 
regressions downscaling model. Results of the different 
regression models (viz. M1 to M4) as discussed in previ-
ous section are tabulated in Table 2. Some of the pre-
cipitation values using this technique resulted in negative 
precipitation. However, this is physically not possible to 
have negative precipitation on a basin. Hence, these 
negative values are considered zero to compute various 
errors. 

For predictand precipitation, coefficient of correlation  
 

Table 2. Various performance statistics of model using various regression approaches. 

CC SSE MSE RMSE 
Model 

Training Validation Training Validation Training Validation Training Validation 

M1 0.90 0.79 111573.52 125884.77 1549.63 2098.08 39.37 45.80 

M2 0.91 0.79 111304.52 125884.77 1545.90 2098.08 39.32 45.80 

M3 0.94 0.65 73875.77 182400.92 1026.05 3040.02 32.03 55.14 

M4 0.95 0.60 55529.22 204162.48 771.24 3402.71 27.77 58.33 

NMSE N-S Index MAE   
 

Training Validation Training Validation Training Validation   

 0.19 0.46 0.81 0.53 0.63 0.37   

 0.19 0.46 0.81 0.53 0.63 0.37   

 0.13 0.67 0.87 0.32 0.70 0.25   

 0.09 0.75 0.90 0.24 0.72 0.23   

Here CC, SSE, SSE, MSE, RMSE, NMSE, N-S Index, MAE indicate Coefficient of Correlation, Standard Error of Estimate, Mean Square Error, Root Mean 
Square Error, Normalized Mean square Error, Nash–Sutcliffe Efficiency Index and Mean Absolute Error respectively. 
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(CC) was in the range of 0.65-0.95, RMSE was in the 
range of 27.77-58.33, N-S Index was in the range of 
0.24-0.90 and MAE was in the range of 0.23-0.72 for 
regression based models (viz. M1 to M4) for training and 
validation set. It can be observed from Table 2 that the 
performance of direct regression models for mean 
monthly precipitation are clearly superior to that of for-
ward, backward and stepwise regression based models in 
training data set while the performance of stepwise and 
forward regression models for predictand are clearly su-
perior to that of backward and direct regression based 
models in validation data set. Results of forward and 
stepwise regression are quite similar. It can be inferred 
that model M4 using direct regression performed best for 
predictand precipitation. 

A comparison of mean monthly observed precipitation 
with precipitation simulated using forward regression 
models M4 has been shown from Figure 2 for calibration 
and validation period. Calibration period is from 1990 to 
1995, and the rest is validation period. 

Once the downscaling models have been calibrated 
and validated, the next step is to use these models to 
downscale the control scenario simulated by the GCM. 
The GCM simulations are run through the calibrated and 
validated direct regression model M4 to obtain future 
simulations of predictand. The predictand patterns are 
analyzed with box plots for 20 year time slices. Typical 
results of downscaled predictand obtained from the pre-
dictors are presented in Figure 3. In part (i) of Figure 3, 
the precipitation downscaled using NCEP and GCM 

datasets are compared with the observed precipitation for 
the study region using box plots. The projected precipita-
tion for 2001–2020, 2021–2040, 2041–2060, 2061–2080 
and 2081–2100, for the four scenarios A1B, A2, B1 and 
COMMIT are shown in (ii), (iii), (iv) and (v) respec-
tively. 

From the box plots of downscaled predictand (Figure 
3), it can be observed that precipitation are projected to 
increase in future for A1B, A2 and B1 scenarios. The 
projected increase of precipitation is high for A1B and 
A2 scenarios whereas it is least for B1 scenario. This is 
because among the scenarios considered, the scenario 
A1B and A2 have the highest concentration of atmos-
pheric carbon dioxide (CO2) equal to 720 ppm and 850 
ppm, while the same for B1 and COMMIT scenarios are 
550 ppm and ≈ 370 ppm respectively. Rise in concentra-
tion of CO2 in the atmosphere causes the earth’s average 
temperature to increase, which in turn causes increase in 
evaporation especially at lower latitudes. The evaporated 
water would eventually precipitate [10,25]. In the 
COMMIT scenario, where the emissions are held the 
same as in the year 2000, no significant trend in the pat-
tern of projected future precipitation could be discerned. 
The overall results show that the projections obtained for 
precipitation are indeed robust. 

8. Conclusions 

This paper investigates the applicability of the various 
linear regression approaches such as direct, forward, 
backward and stepwise to downscale precipitation from  

 

 

Figure 2. Typical results for comparison of the monthly observed Precipitation with Precipitation simulated using direct re-
gression downscaling model M4 for NCEP data. In the Figure calibration period is from 1990 to 1995, and the rest is valida-
tion period. 
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(a)                                                    (b) 

 

   
(c)                                                    (d) 

 

 
(e) 

Figure 3. Box plots results from the direct regression-based downscaling model M4 for the predictand Precipitation.  
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GCM output to local scale. The effectiveness of this 
model is demonstrated through the application of lake 
catchment in arid region in India. The predictand is 
downscaled from simulations of CGCM3 for four IPCC 
scenarios namely SRES A1B, A2, B1 and COMMIT. 
Four regression models are developed and the perform-
ance of the models is evaluated using the statistical 
measures CC, SSE, MSE, RMSE, NMSE, η and MAE. 
The overall conclusions of this evaluation study are as 
follows: 

1) Overall direct regression performed best followed 
by backward regression method. Backward regression 
was followed by forward regression and stepwise regres-
sion which yielded the similar results.  

2) Direct regression yielded better results for training 
data set while forward regression performed better for 
validation data set.  

3) The results of downscaling models show that pre-
cipitation is projected to increase in future for A2 and 
A1B scenarios, whereas it is least for B1 and COMMIT 
scenarios using predictors. 
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ABSTRACT 

Reservoir fluids frequently reveal complex phase behaviors in hydrocarbon columns owing to the effects of gravity, 
thermal diffusion, biodegradation, active charging, water washing, seals leaking, and so on. In addition, the formation 
compartmentalization often causing discontinuous distributions of fluid compositions and properties makes the proper 
fluid characterization and reservoir architecture even more challenging yet compelled. The recognition of composi-
tional grading and flow barriers becomes a key to accurate formation evaluation in a cost effective manner. Downhole 
fluid analysis (DFA) of asphaltene gradients provides an excellent method to delineate the complexity of black oil col-
umns. In this paper, a methodology was developed to estimate downhole asphaltene variations with depths using an 
equation-of-state (EOS) approach coupled with DFA measurements. DFA tools were used to determine fluid composi-
tions of CO2, C1, C2, C3-C5, C6+, gas-oil ratio (GOR), density and the coloration (optical density) associated with as-
phaltene contents at downhole conditions. The delumping and characterization procedures proposed by Zuo et al. 
(2008) were employed to obtain the detailed compositions excluding asphaltenes. In addition, a molar mass distribution 
of asphaltenes was described by a three-parameter Gamma probability function. The Gaussian quadrature method was 
used to generate asphaltene pseudocomponents. Five pseudocomponents were employed to represent the normal as-
phaltene nanoaggregates. Asphaltene distributions in oil columns were computed by tuning the molar mass of asphal-
tene nanoaggregates against the DFA coloration logs at a reference depth. The methodology was successfully applied 
to investigate black oil reservoir connectivity (or flow barriers) for offshore field cases. The analysis results were con-
sistent with the subsequent production data and analytical chemistry. Furthermore, for simplicity, it is reasonable to 
assume that asphaltenes have average properties such as molar mass in entire oil columns. The results obtained in this 
work demonstrate that the proposed method provides a useful tool to reduce the uncertainties related to reservoir com-
partmentalization and to optimize the DFA logging during acquisition. 
 
Keywords: Reservoir Connectivity, Asphaltene Gradients, Equations of State, Downhole Fluid Analysis 

1. Introduction 

In the past few decades, fluid homogeneity has often 
been assumed in a reservoir. Reservoir fluids frequently 
reveal complex phase behaviors in single oil columns 
owing to gravity, thermal gradients, biodegradation, ac-
tive charging, water washing, seals leaking, and so on. In 
addition, reservoir compartmentalization often leads to 
discontinuous compositional distributions at least of one 
fluid analyte, which is the biggest risk factor in deepwa-
ter oil production. A density inversion (higher density 
fluids are in the shallower oil column) usually implies a 
likely sealing barrier. Knowing actual fluid profiles in the 
reservoir enables identification of corresponding com-
partments. Consequently, the family of DFA measure-

ments is expanding in part to enable greater efficacy in  
reservoir characterization. Consequently, identifying con- 
tinuous fluid gradients in the reservoir provides a method 
to suggest connectivity of the reservoir. In particular, 
since continuous gradients are generally produced by 
time dependent mechanisms, the existence of fluid gra-
dients implies connectivity albeit with an unknown time 
scale. Nevertheless, if considerable fluid flow is required 
to yield such a gradient, this suggestion of connectivity is 
much more powerful than that of pressure communica-
tion where little fluid flow is required. In particular, if the 
asphaltenes are observed to have been equilibrated across 
a reservoir, laterally and vertically, this is a strong con-
nectivity because 1) asphaltenes necessarily charge into 
the reservoir in a much nonequilibrated state and 2) to 



Modeling of Asphaltene Grading in Oil Reservoirs 20 

equilibrate the component of crude oil with by far the 
least mobility necessitates substantial permeability. We 
note that measurements of fluid gradients are a far better 
way to detect connectivity than measurement of homo-
geneous properties of a fluid. One could easily imagine a 
single reservoir charged with a homogeneous fluid, 
where the reservoir subsequently develops a sealing bar-
rier either from compaction or faulting. Maintaining con-
tinuous gradients in evolving separate compartments is 
much harder to justify. DFA has been used to measure 
continuous fluid profiles and stair-step discontinuous 
fluid properties addressing reservoir connectivity and 
compartmentalization. Fluid compositional variations are 
very useful to identify sealing barriers or compartments 
in hydrocarbon columns [1,2].  

Downhole fluid analysis (DFA) measurements provide 
a useful tool to determine the insitu compositional gra-
dients in real time. Recently, Zuo et al. [3] integrated the 
equation of state (EOS)-based DFA log predictions with 
DFA measurements to delineate the complexity of res-
ervoir fluids and reservoir architecture. This methodol-
ogy is the most suitable for the reservoirs that exhibit 
significant compositional grading of at least one chemi-
cal analyte. As mentioned by Hoier and Whitson [4] and 
Mullins [5], for equilibrium fluid distributions, the varia-
tions of fluid compositions and properties are usually 
small with depth if the reservoir conditions are far away 
from the critical point and the saturation point (e.g. 
highly undersaturated black oil). This especially applies 
to the alkane distributions [5]. For example, a case study 
showed that in an undersaturated black oil reservoir, the 
gas-oil ratio (GOR) and compositional gradients were 
small for large sand bodies in Gulf of Mexico (GoM) 
[1,2]. Nevertheless, the asphaltene gradient was rather 
substantial considering the 1000 meters vertical offset of 
the tilted sheet reservoir. The flow connectivity in the 
reservoir might not be identified according to the infor-
mation of bulk fluids such as compositions, GOR and 
density. Fortunately, the DFA tools not only measure 
bulk fluid properties like compositions of C1, C2, C3-C5, 
C6+ and CO2, GOR and density but also coloration which 
is associated with asphaltene contents.  

Asphaltenes are defined by a solubility classification, 
for example, soluble in toluene, insoluble in n-heptane. 
The asphaltenes are the heaviest components of crude 
oils with the least diffusivity and have the greatest grad-
ing with depth due to a gravitational force. In the cases 
shown by Mullins et al. [1], Betancourt et al. [2] and 
Indo et al. [6], the detailed DFA and laboratory analyses 
of asphaltene contents indicated the evident asphaltene 
gradient with depth while the resin gradients are much 
smaller than asphaltenes. The asphaltenes are dispersed 
in crude oils as nanoaggregates. This information pro-

vides us a new powerful method of determining flow 
connectivity (barriers) in the reservoir by measuring as-
phaltene (coloration) contents with depth at downhole 
conditions, especially when bulk fluid property and 
compositional gradients are not observable.  

Continuous and equilibrium asphaltene gradients have 
been observed in deepwater oil fields [1,2,7]. In order to 
establish the asphaltene gradient that is in equilibrium, it 
is required to establish the colloidal nature of asphaltenes 
in crude oil [1]. It has been established that asphaltenes 
are nanocolloidally dispersed in a laboratory setting as 
well as a field setting. We note that higher aggregation (a 
cluster of nanoaggregates) exists in the reservoir for ei-
ther large asphaltene mass fractions such as heavy oils 
and/or unstable crude oils, but there is a class of black 
oils with asphaltenes dispersed as ~2nm nanoaggregates. 
With this knowledge equilibrium distributions of asphal-
tenes across a field can be established. Asphaltenes in 
reservoir crude oils, dispersed as asphaltene nanoaggre-
gates, have by far the lowest rate of diffusion compared 
to any crude oil components. Consequently, when they 
are in equilibrium throughout a column, then massive 
fluid flow is indicated thereby positively constraining 
connectivity. Nevertheless, the time frame is still un-
known in these novel analyses. Still the constraint indi-
cates greater connectivity than simply pressure commu-
nication which requires almost no fluid flow at geologi-
cal time scales.  

Current DFA tools can measure the coloration of res-
ervoir fluids which is associated with the asphaltene con-
tents. Mullins et al. [1] developed a method to calculate 
asphaltene gradient combining DFA data with the 
Boltzmann gravitational equation. However, as men-
tioned by Hirschberg [8], the Boltzmann equation is valid 
only for ideal solutions. The non-ideality should be taken 
into account by either the activity coefficient model like 
a Flory-Huggins type solubility model or the EOS.  

Up to now, no one has applied EOS approach to de-
scribe an asphaltene gradient in reservoirs although there 
have been a lot of publications on modeling asphaltene 
precipitation (onset) using EOS approach in the open 
literature except for work in the references [9]. Following 
the traditional EOS approach which has been broadly 
used for modeling reservoir fluids, Nghiem et al. [10,11] 
arbitrarily split the heaviest component (C31+ fraction) in 
the crude oil into two parts: non-precipitating and pre-
cipitating components. The precipitating component was 
considered to be an asphaltene component. Qin et al. [12] 
implemented the model of Nghiem in their compositional 
model. They treated asphaltenes as a pure component 
with the same critical properties as heavy hydrocarbons, 
except for the binary interaction parameters. Pedersen 
and Christensen [13] treated the aromatic fraction of C50+ 
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as asphaltenes. The authors mentioned above assumed 
that asphaltenes are monomers and part of Cn+ fraction 
(e.g, C31+, C36+) in crude oils, which is contradicted with 
the recent observations in advanced asphaltene science 
that asphaltenes are dispersed as nanoaggregates in crude 
oils [1,2,6]. Most recently, the EOS approach was em-
ployed to account for the nonideality of oils [9] and a 
methodology for interpreting downhole fluid analysis 
was developed for estimating downhole asphaltene varia-
tions with depth. The methodology can be integrated into 
the new workflow [3,9,14] as one useful analysis means 
in analyzing asphaltene coloration gradients. However, 
the EOS approach developed by Zuo et al. [9] treated 
asphaltenes to be a single pseudocomponent which is too 
simple because asphaltenes are defined as the crude oil 
components soluble in toluene but insoluble in n-alkanes 
such as n-heptane. The asphaltenes are mixtures which 
have components in a wide range of molar masses. 
Therefore, distribution functions and proper characteriza-
tion of asphaltenes are highly demanding to describe 
asphaltene components in the EOS approach.  

In this work, the EOS approach was employed to ac-
count for asphaltene gradients in reservoirs. A three-pa-
rameter Gamma distribution function was used to de-
scribe asphaltenes. Two field case studies were presented. 
The results in both case studies were proved by the sub-
sequent production data and analytical chemistry. The 
results show that the developed methodology can be in-
tegrated into the new workflow [14] as one useful means 
in analyzing asphaltene coloration gradients and in dis-
cerning reservoir connectivity. 

2. Asphaltene Molar Distributions and  
Asphaltene Characterization 

Recently, Pomerantz et al. [15] determined molar mass 
distributions of asphaltene monomers using two-step 
laser mass spectrometry. The results show that petroleum 
asphaltenes without aggregation have a peak at every 
nominal mass under an envelope beginning at 200 g/mol, 
peaking at ~600 g/mol and extending to 1000~1500 
g/mol. Mullins et al. [16] reviewed the open literature on 
asphaltene molar mass measured by different methods 
and concluded that petroleum asphaltenes have a number 
average molar mass of ~750 g/mol ( 200 g/mol) with a 
range of 500–1,000 g/mol. As mentioned by Mullins in 
his new book [17] and the references [1,2], asphaltenes 
are dispersed in crude oil as nanoaggregates with 4~10 
monomers and ~2 nm in diameter. Hence, the molar 
masses of asphaltenes in black oil are in a range of 
500–7,500 g/mol from molecules to nanoaggregates 
(precluding clusters). On the other hand, asphaltenes may 
differ at different depths because asphaltenes are defined 
as a solubility class. Therefore, distribution functions are 

required in characterizing asphaltene components in the 
EOS approach because a single component may not be 
good enough for asphaltenes. 

The three-parameter Gamma function is chosen for 
describing molar mass distribution of asphaltene nano-
aggregates [18-20]. The probability density function, p(x), 
is given by 
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where ,  and Mmin are the three parameters defining the 
distribution. Mmin can be set to the average molar mass of 
asphaltene monomers [16] for asphaltene nanoaggregates 
since it represents the minimum molar mass to be in-
cluded in asphaltene nanoaggregates (e.g., 500 g/mol). If 
 is given,  can be estimated by 

 minavgM M
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The parameter  can be determined by fitting experi-
mental data of asphaltene distributions. For most asphal-
tenes and bitumens,  = 3.5 is suitable [21]. Therefore, 
the average molar mass of asphaltene nanoaggregates is 
only one adjustable parameter in the distribution function, 
which can be determined by matching the DFA color 
gradient data in oil columns. The average molar mass of 
asphaltene nanoaggregates is adjusted to match DFA 
color gradient data (typically, Mavg = ~2,000 g/mol) with 
~2 nm in an average diameter.  

The Gaussian quadrature method is used to discretize 
the continuous Gamma distribution using N quadrature 
points [19]. Number of pseudo-components (N) can be 
from one to 30 for representing asphaltenes (typically 5). 

The asphaltene molar mass distribution function can 
be incorporated into the generalized asphaltene gradient 
formula described below using the equation of state 
(EOS). 

3. Generalized Formula for Compositional 
and Asphaltene Grading with Depth 

Compositional grading in reservoir columns has been 
studied by many researchers [3,4,22,23] since 1980s. For 
a mixture of reservoir fluids with N-components, a set of 
mass flux equations for all components are expressed as 

Pr 1, 2,...,Chem Grav Therm es
i i i i iJ J J J J i     N ,  (3) 

where Ji is the mass flux of component i. The super-
scripts Chem, Grav, Therm and Pres stand for the fluxes 
owing to chemical, gravitational, thermal and pressure 
forces, respectively.  

To calculate compositional gradients with depth in a 
hydrocarbon reservoir, it is usually assumed that all the 
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components of the reservoir fluids have zero mass flux, 
which is a stationary state in absence of convection [4]. 
At the stationary state, the fluxes in Equation (3) are 
equal to the external flux at the boundary of the system. 
The external flux could be an active charge [22], Ji

e. It is 
assumed that the external mass flux is constant over the 
characteristic time scale of filing mechanisms in the for-
mation. 

By taking into account the driving forces due to 
chemical, gravitational, pressure, thermal impacts and the 
external flux, the resulting equations are given by 
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where i, xi, vi, Mi, Di, g, R,  and T are the chemical 
potential, the mole fraction, the partial molar volume, the 
molar mass and diffusion coefficient of component i, the 
gravitational acceleration, universal gas constant, the 
density, and the temperature, respectively. FTi is the 
thermal diffusion flux of component i and nj is the mole 
number of component j. 

The thermal diffusion flux of component i (FTi) can be 
calculated by the different thermal diffusion models. An 
example is the Haase expression [23] 
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where subscripts m and i stand for the property of the 
mixture and component i, respectively. H is the molar 
enthalpy. Pedersen and Lindeloff [23] developed expres-
sions for calculating enthalpy. However, the values of 
ideal gas enthalpy for C3 and n-C4 are determined by 
optimizing absolute ideal gas enthalpy at 273.15 K and 
that for C1 was arbitrarily set to zero. The H values can 
be treated as adjustable parameters for pseudo-components 
to match DFA data in this work. The chemical potential 
is calculated through the calculation of fugacity. The 
resulting equations are given by 

 ln 0,

1, 2,...,

e
i m i i

i i
m i i i

M g h H H JT
f M

RT M M T x D

i N


  

      
 



 

(6) 

where fi is the fugacity of component i and h stands for 
the vertical depth. An EOS can be used to estimate the 
fugacity of component i.  

The critical properties, acentric factors of components 
are required for the EOS to calculate fugacity coeffi-
cients. The delumping and characterization procedures of 

Zuo and Zhang [24] and Zuo et al. [25] are applied to 
characterize single carbon number and plus fractions of 
reservoir fluids at a reference depth. The asphaltene 
components are characterized by the method described in 
the previous section. The EOS is used to estimate fuga-
city. The DFA and/or PVT data are matched by tuning 
the EOS parameters to establish a reliable fluid EOS 
model. The compositions at depth h are obtained by 
solving Equation (6) numerically based on the data at the 
reference depth. 

In the reference [9], the EOS was used to estimate as-
phaltene grading (profiling) in oil columns. However, 
asphaltenes are simply treated to be a single pseu-
docomponent. It is known that asphaltenes are a mixture 
whose molar masses vary over a wide range. Therefore, 
the asphaltene molar mass distribution function men-
tioned previously is introduced into the EOS approach. 
By doing this, everything is kept the same as described in 
the reference [9] but asphaltenes are treated as multiple 
pseudocomponents using the molar mass distribution 
function documented in the previous section to obtain 
mole fractions and molar masses.  

The properties of the asphaltene pseudocomponents 
such as their critical temperatures (Tc) in K, critical pres-
sures (Pc) in atm and acentric factors () are computed 
by the correlations in terms of asphaltene molar masses. 
It is assumed that asphaltene properties follow the same 
trend as the pseudocomponents. The correlations were 
then obtained by fitting the pseudocomponent data char-
acterized by the procedures of Zuo and Zhang [24] and 
Zuo et al. [25] for more than 10 different crude oils. The 
correlation are given by 

0.274953.6746ci iP M              (7) 

173.3101ln 439.9450ci iT M           (8) 

0.343048ln 1.26763i iM            (9) 

The density of asphaltene pseudocomponents in kg/m3 
can be calculated by the expression from [26,27] 

0.0639670i iM              (10) 

where Mi is the molar mass of asphaltene pseudocompo-
nent i. We can also set it as a fixed value of 1200 kg/m3 

for all asphaltene pseudocomponents as done by Mullins 

[1] and Wang and Buckley [28]. 
The asphaltene properties are dependent on molar 

mass and density just like typical hydrocarbon pseu-
docomponents. The volume translation parameter is es-
timated by matching the specific gravity of asphaltene 
components at standard conditions. 

4. Results and Discussions 

Case 1 
The Tahiti field was studied by Betancourt et al. [2] and 

Copyright © 2010 SciRes.                                                                                   NR 



Modeling of Asphaltene Grading in Oil Reservoirs 23 

Mullins et al. [1] using the Boltzmann distribution equa-
tion. The reservoir has a 1,000-m vertical column of 
highly undersaturated black oil with GOR in a range of 
90 to 116 m3/m3, which slightly decreases with depth. 
The formation has two main sands: M21A and M21B, 
but are not in pressure communication, so are not in flow 
communication. Pressure communication is a necessary 
but not sufficient condition to establish flow communica-
tion. However, pressure is in communication in each 
primary sand body. The case was used to test the meth-
odology proposed in this work.  

The composition (analyzed to C30+) as well as saturate, 
aromatics, resin, and asphaltene (SARA) analysis data 
were measured at different depths in the laboratory. The 
laboratory-measured compositions were then lumped into 
the DFA-like five components/groups (CO2, C1, C2, 
C3–C5 and C6+, referred to as pseudo-DFA data). The 
weight percentages of the five lumped components/ 
groups were the inputs of the EOS model. The SARA 
analysis and the DFA coloration (optical density, OD) 
data were applied to determine the relationship between 
asphaltene contents in stock-tank oil (STO) and DFA 
coloration measured at downhole conditions. The linear 
relation was obtained by Betancourt et al. [2]: OD = 0.38 
 wt% + 0.0059, with a small offset at the origin due to 
some coloration of the resin fraction. 

Based on the compositions of the five lumped compo-
nents/groups and asphaltene content at a relative depth of 
1,555 m in the M21B sand (reference DFA station), as 
well as the delumping and characterization method of 
Zuo et al. [25], the pseudo-DFA data were delumped and 
characterized to full C30+ compositions. The delumped 
composition is compared with the gas chromatography 
(GC) data as shown in Figure 1. The agreement is good 
between the deplumed and GC data. The physical prop-
erties and binary interaction parameters were generated 
which are required in the EOS calculation. 
 

 

Figure 1. Comparison of GC and delumped compositions at 
the reference depth for Case 1. The delumped compositions 
are in good agreement with the GC data. The delumped 
compositions are used as inputs to the asphaltene gradient 
analysis. 

The predicted phase envelope of this fluid as depicted 
in Figure 2 indicates the formation condition is far away 
from its critical and bubblepoints (the formation pressure 
is ~1400 bar). According to the observation of Hoier and 
Whitson [4], it is expected that the fluids have slight 
compositional and property grading with depth because 
the fluids are hardly compressible and highly undersatu-
rated. 

It is assumed that the reservoir is isothermal and there 
is no external flux. Compositional gradients with depth 
were estimated in terms of the pseudo-DFA data at a 
relative depth of 1,555 m (reference depth) by solving 
Equation (6) without external fluxes and temperature 
gradients. The predicted formation and bubblepoint pres-
sures are compared in Figure 3 with the pretest and 
laboratory data. The results show that the predicted for-
mation and bubblepoint pressures agree very well with 
the measurements. 
 

 

Figure 2. Phase envelope for fluid in Case 1. The predicted 
bubble point is close to the experimental data. The forma-
tion conditions (P = ~1400 bar) is far away from the critical 
and bubble points. Slight compositional gradients are ex-
pected according to the Hoier and Whitson [4] theory. 
 

 

Figure 3. Comparison of predicted and measured bubble 
point and formation pressure for Case 1. The predictions 
are in accord with the measurements. The formation pres-
sures are much higher than the bubble points. Slight com-
positional gradients are anticipated according to the Hoier 
and Whitson [4] theory. 
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The predicted compositions are compared with the 
measurements as shown in Figure 4. Good agreement is 
obtained between the measurements and the predictions. 

The compositional gradients of the reservoir fluids 
with depth are small in the Tahiti reservoir. Therefore, it 
is difficult to determine whether the fluid is in equilib-
rium or in different compartments using the traditional 
compositional grading method [3] because the variation 
of bulk fluid properties (except asphaltenes) is not evi-
dent. However, the asphaltene gradient in the column can 
be used for determining whether the reservoir is in equi-
librium or is disconnected because asphaltenes are the 
heaviest components in crude oil and appear in nanoag-
gregates (<10 monomers). In the equilibrium model, as-
phaltenes have the greatest grading in crude oil owing to 
a gravitational segregation, although other components 
do not have significant gradient with depth. Furthermore, 
asphaltene contents are usually low in crude oil and have 
little impact on the bulk fluid properties such as GOR, 
light-end composition, and/or density. As viscosity soon 
joins the pantheon of DFA measurements, asphaltene 
content can be crosscorrelated to viscosity. 

Since the Tahiti fluids are highly undersaturated black 
oil with very high formation pressure (~1400 bar) which 
is much greater than asphaltene onset pressure and rela-
tive low asphaltene content (<5 wt%), there is no asphal-
tene precipitation/deposition (i.e., asphaltenes are stabi-
lized) at downhole conditions. Therefore, there exist no 
clusters of asphaltene nanoaggregates but asphaltene 
nanoaggregates. The average molar mass of the asphal-
tene nanoaggregates in the distribution function at the 
reference depth was adjusted to match the coloration 
variation data measured by DFA. The adjusted average 
molar mass of the asphaltene nanoaggregates is 1,602 
g/mol corresponding to ~2 nm in diameter.  

Figure 5 shows the predicted optical density (OD) 
variations and DFA measurements with depth. The re-
sults are similar to those obtained by Betancourt et al. [2] 
using the Boltzmann distribution equation. The colora-
tion analyses also indicate that the sands of M21A (cen-
ter), M21A North, and M21B are in different compart-
ments. In the paper of Betancourt et al. [2], detailed dis-
cussions were given with regard to reservoir connectivity 
and coloration log predictions. The ideas are employed in 
this work as well. 

The same fitted molar mass of the asphaltene nanoag-
gregate component is suitable for the entire reservoir. 
This means that asphaltenes have the same average size 
in nanoaggregates in the oil column. Most of the data 
from the field lies on the theoretical fit curves obtained 
from the EOS model of asphaltene nanoaggregates. The 
GOR of the crude oil is low so relatively uniform. There- 
fore, the entire field has the same asphaltene gradient, but  

 

Figure 4. Compositional variations with depth for Tahiti 
fluids in Case 1. The predictions are in good agreement with 
the experimental data. The compositional gradients are 
small with depth, which has confirmed the Hoier and 
Whitson [4] theory. 
 

 

Figure 5. Optical density variations with depth for Case 1. 
The lines denote the EOS calculations using an average 
asphaltene molar mass of 1602 g/mol. The symbols stand 
for the measurements by Live Fluid Analyzer (LFA). Sand 
M21A is disconnected with Sand M21B. Sand M21A North 
is not connected with main Sand M21A. The subsequent 
production data confirmed that the reservoir connectivity is 
implied when the reservoir asphaltenes are in equilibrium. 
 
the north part of M21A has a much lower asphaltene 
concentration than the south and centric parts of M21A. 
As mentioned by Betancourt et al. [2], after a careful 
review of the seismic data, it is plausible that the north 
part of M21A is disconnected from the M21A sand (cen-
ter). The M21B sand is in a different compartment than 
the M21A sands as determined by the formation pressure 
gradient and geochemistry fingerprinting of the crude oil 
samples; the coloration analysis is consistent in this as-
sessment, as seen in Figure 5. The subsequent produc-
tion data from this field confirmed that the reservoir 
connectivity is implied when the reservoir asphaltenes 
are in equilibrium. 
Case 2 

Recently, Betancourt et al. [7] reported that black oil 
in a 200-m vertical column was analyzed by DFA and 
advanced laboratory analytical chemistry methods. The 
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oil samples were taken from two wells with low and 
similar GOR of ~125 m3/m3; the shallower sample 
PER-1 is from a depth of x674 m, the deeper sample 
PER-2 is from x874 m. This is also highly undersaturated 
black oil whose critical point and bubble point is far 
away from formation conditions. The asphaltene content 
in stock tank oil (STO) was analyzed by a standard 
n-heptane precipitation method. This case was also used 
to test the methodology proposed in this work. Similar to 
the Tahiti field, the compositional and property gradients 
are small according to both the laboratory measurements 
and the EOS model. The fluids are highly undersaturated 
and rather incompressible; therefore, the hydrostatic head 
pressure in the reservoir does little to impact a composi-
tional variation. Instead of the absolute pressure, it is the 
relative pressure difference in the 200-m vertical column 
of oil that plays an important role in generating gradients. 
It is impossible to conclude whether or not the oil col-
umn is connected in terms of the traditional composi-
tional grading method. Again, coupling the asphaltene 
gradient analysis with the other advanced chemical 
analyses could give a conclusion. 

If it is assumed that the reservoir is isothermal and 
there is no external flux, the average asphaltene molar 
mass is adjusted to the DFA coloration data. The ad-
justed value is 2070 g/mol. Figure 6 shows coloration 
variations with depth. The EOS coloration analysis 
shows the sands in the oil column are connected and the 
black oils are in equilibrium. The two sands were shown 
to be in pressure communication, a necessary but insuffi-
cient condition to establish flow communication on pro-
duction time scales. The two black oils have similar low 
GORs, which is consistent with their being in equilib-
rium. Furthermore, the reservoir sand properties are con-
sistent with the contained fluids being in equilibrium. 
The primary reservoir sand has permeability of ~ 1 darcy, 
which favors convective mixing (much faster than diffu-
sive mixing). These conditions are very similar to those 
in the Tahiti reservoir, which also appeared to be in equi-
librium. The other advanced chemical analyses gave the 
same conclusion as described by Betancourt et al. [7]. 

Figure 7 shows the molar mass distribution of asphal-
tenes at the top and bottom of sands for both case studies. 
It can be seen that more heavy asphaltenes distributed at 
the bottom of sands in both cases. Nevertheless, the dis-
tribution changes are relatively slight even in a reservoir 
with as much as ~1000 m vertical depth. Therefore, for 
simplicity, it is reasonable to assume that asphaltenes 
have average properties such as molar mass in entire oil 
columns. 

5. Conclusions 

This paper presented a methodology to analyze asphaltene  

 

Figure 6. Optical density variations with depth for Case 2. 
The solid line represents the EOS calculation using an as-
phaltene average molar mass of 2070 g/mol at the reference 
depth. The squares are the measurements by Live Fluid 
Analyzer (LFA). The equilibrium nanoaggregate asphaltene 
profiling indicates that the reservoir is connected. The re-
sults are confirmed by the advanced chemical analysis (2-D 
GC) as shown in [7]. 
 

 

Figure 7. Molar mass distributions of asphaltenes for both 
Cases I and II. The bottom of reservoirs consists of more 
heavy asphaltenes than the top. The reservoir vertical 
thickness is ~1000 m in Case I and ~200 m in Case II. Both 
cases show variations of average asphaltene molar masses 
from top to bottom are small. For simplicity, it is reason-
able to assume that asphaltenes have average properties 
such as molar mass in entire oil columns. 
 
grading with depth using the EOS approach and the DFA 
tools. The inputs are the DFA measurements such as CO2, 
C1, C2, C3–C5, C6+, and the coloration associated with 
asphaltene contents. The delumping and characterization 
procedures proposed by Zuo et al. (2008) were applied to 
obtain the detailed compositions including asphaltenes 
and the parameters of the EOS model. Fluid-profile and 
coloration logs were computed by tuning the molar mass 
of asphaltenes against the DFA coloration logs. The 
methodology has been successfully applied to two cases. 
The results obtained in this work demonstrate that the 
proposed method provides a useful tool to reduce the 
uncertainties related to reservoir compartmentalization 
and to optimize the DFA logging during acquisition. 

In addition, the results show that the treatment of part 
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of the Cn+ fraction as an asphaltene component (mono- 
mer) in the traditional cubic EOS approach is contra- 
dicted by the recent observations that asphaltenes are 
dispersed as nanoaggregates in crude oils. For simplicity, 
it is reasonable to assume that asphaltenes have average 
properties such as molar mass in entire oil columns. 
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ABSTRACT 

In a previous study [1] the authors had developed a methodology for predicting global oil production. Briefly, the 
model accounted for disruptions in production by utilising a series of Hubbert curves in combination with a polynomial 
smoothing function. Whilst the model was able to produce predictions for future oil production, the methodology was 
complex in its implementation and not easily applied to future disruptions. In this study a Generalized Bass model ap-
proach is incorporated with the Hubbert linearization technique that overcomes these limitations and is consistent with 
our previous predictions. 
 
Keywords: Generalized Bass Model, Hubbert Curve, Oil Production 

1. Introduction 

It has been reported that world oil production will peak 
between 1996 and 2048 [2-16]. Typically, the modelling 
analysis is based on the Hubbert curve, which is defined 
as: 
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where Q(t) is cumulative production, QT is the ultimately 
recoverable resource (URR), defined as the sum of all 
historical and future production, r is a rate constant, and t 
is time. Equation (1) can be integrated to obtain: 
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where tp is the year when annual production is expected 
to peak. Differentiation of Equation (2) gives: 
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The Hubbert curve, as described by Equation (3), has 
been widely used for modelling oil production as the 
constants r, QT and tp can be readily quantified by apply-

ing Hubbert linearization techniques to historical produc-
tion data. The disadvantage with the Hubbert approach, 
however, is that while it is possible to include disruptions 
the methodology for doing so is very tedious [1]. 

A recent alternative to the Hubbert curve is the Gener-
alized Bass model, and is defined as [15]: 
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where r1 and r2 are rate constants,  is the URR, and 
x(t) is an intervention function used to insert a disruption. 
Equation (4) has the general solution: 
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which can be differentiated to obtain: 
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(6) 
Guseo et al. [15] modelled the intervention function as a 
summation of disruptions, i  {1,...,n}: 
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     1 21 nx f f f          ,      (7) 

with each disruption having an exponential form, i.e.: 
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where tdi, bi and ci are the commencing year, rate con-
stant and constant of the i-th disruption, respectively. 

 diH t t  is the unit step function, commencing in year 
tdi, and is defined as: 
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The advantage of the Generalized Bass model ap-
proach is that disruptions can be readily accommodated 
by the intervention function x(t). However, unlike the 
Hubbert approach, the generalized Bass model constants 
r1 and r2 are not readily quantified from existing produc-
tion statistics. 

2. Results and Discussion 

World oil production has been modelled using the Gen-
eralized Bass model (GBM), given by Equation (6), with 
the inclusion of the following three disruptions: 

1) 1973, OPEC crisis, 
2) 1979, OPEC crisis, and 
3) 1990, collapse of the former Soviet Union (FSU). 
In applying the GBM, the functions fi(t) have been 

modified1 so that they linearly decrease for tr years be-
fore exponentially decaying back to zero. Mathematically, 
this is given by:  
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Numerical values for the constants, c, b, td, and tr were 
obtained by fitting Equation (10) to the historical data. 
The actual value of these constants depends on the cho-
sen URR value, as indicated in Table 1. 

The comparison between the GBM (this study) and the 
corresponding Hubbert-based model (MHM) by Mohr 
and Evans [1] for the two URR scenarios is given in Fig-
ure 1. It can be seen that in both cases the GBM and 
MHM curves are similar, Quantitatively, for a URR of 
2234 Gb (Figure 1(a)), the GBM projects a peak in 
global oil production of 29 Gb/y to occur in 2009; with 
90 percent depletion by 2047. The corresponding peak in  

Table 1. Fitted values for constants used in Equation (10). 

Constant
1973 OPEC 

crisis 
1979 OPEC  

crisis 
1990 collapse 

FSU 

TQ


(Gb) 2234 2734 2234 2734 2234 2734

1c (-) -0.100 -0.130 -0.240 -0.270 -0.040 -0.065

1b (y-1) -0.015 -0.020 -0.001 -0.001 -0.060 -0.001

1dt (y)
 1974 1974 1979 1979 1990 1990

1rt (y) 1 1 4 4 1 1 

 

 
(a) 

 

 
(b) 

Figure 1. GBM and MHM [1] Comparison. (a) URR = 2234 
Gb; (b) URR = 2734 Gb. 
 
production for the MHM is 30 Gb/y at 2012; with 90% 
depletion by 2045. Similarly, for a URR of 2734 Gb 
(Figure 1(b)), the GBM shifted the oil production peak 
to 2017 at 32 Gb/y, with 90 percent depletion taking 
place by 2060. By comparison, for the MHM the pre-
dicted peak year was 2024 at 34 Gb/y, with 90 percent 
depletion occurring in 2053. 1The original exponential function, Equation (8,9) assumed by Guseo 

et al. [15] had a positive rate constant, b, which meant that the disrup-
tion, f, increased with time. In reality, any disruption must eventually 
dissipate over time. 

In producing the Generalized Bass Model predictions, 
values for the rate constants r1 and r2 needed to be de-
termined. Usually, these two terms are varied arbitrarily 
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[5] I. S. Nashawi, A. Malallah and M. Al-Bisharah, “Fore-
casting World Crude Oil Production Using Multicycle 
Hubbert Model,” Energy and Fuels, Vol. 24, No. 3, 2010, 
pp. 1788-1800.   2
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[6] K. S. Deffeyes, “World’s Oil Production Peak Reckoned 
in Near Future,” Oil and Gas Journal, Vol. 100, No. 46, 
2002, pp. 46-48.  

which relates r1 and r2 to the constants r and tp, used in 
the Hubbert analysis. By doing this, the Hubbert Lin-
earization technique can then be applied to the produc-
tion data, from 1857 up to the year of the first disruption 
in 1973, to obtain r and tp, and ultimately r1 and r2. From 
the historical data, r was determined to be 0.075 y-1, with 
tp values of 141 and 144 years, for URRs of 2234 and 
2274 Gb, respectively. Substitution of these values into 
Equations (11) and (12) resulted in an r2 value2 of 0.075 
y-1, and corresponding r1 values of 1.916 and 1.530 x10-6 
y-1, URRs of 2234 and 2274 Gb, respectively.  

[7] H. W. Parker, “Demand, Supply Will Determine When 
Oil Output Peaks,” Oil and Gas Journal, Vol. 100, No. 8, 
2002, pp. 40-48.  

[8] P. R. A. Wells, “Oil supply challenges – 2: What Can 
OPEC Deliver?” Oil and Gas Journal, Vol. 103, No. 9, 
2005, pp. 20-30. 

[9] P. R. A. Wells, “Oil Supply Challenges-1: The 
Non-OPEC Decline,” Oil and Gas Journal, Vol. 103, No. 
7, 2005, pp. 20-28.  

The approach described above has two advantages. 
Firstly, the use of Hubbert analysis, and in particular the 
linearization methodology, is adopted to obtain constants 
r1 and r2 for the Generalised Bass model. Secondly, the 
Generalized Bass Model approach is applied, which is 
readily able to include disruptions. The use of Hubbert 
analysis, however, does rely on the validity of Equations 
(11) and (12) and the justification for the use of these 
equations is given in appendix 1. 

[10] S. M. Al-Fattah and R. A. Startzman, “Forecasting World 
Natural Gas Supply,” Journal of Petroleum Technology, 
Vol. 52, No. 5, 2000, pp. 62-72.  

[11] A. Imam, R. A. Startzman and M. A. Barrufet, “Multi-
cyclic Hubbert Model Shows Global Conventional Gas 
Output Peaking in 2019,” Oil and Gas Journal, Vol. 102, 
No. 31, 2004, pp. 20-28.  

[12] C. J. Campbell and J. H. Laherrere, “The End of Cheap 
Oil,” Scientific American, Vol. 278, No. 3, 1998, pp. 78- 
83.  

3. Conclusions [13] M. Höök and K. Aleklett, “Historical Trends in American 
Coal Production and A Possible Future Outlook,” Inter-
national Journal of Coal Geology, Vol. 78, No. 3, 2009, 
pp. 201-216. 

The study has demonstrated that a Generalized Bass 
Model with Hubbert analysis can be used to include dis-
ruptions in oil production. The predictions are consistent 
with previous work based on a more tedious approach of 
using a combination of Hubbert curves and smoothing 
functions. The advantage of the new approach is that 
Hubbert Linearization can be readily applied to obtain 
values for Generalised Bass model constants based on 
historical data. 

[14] W. Zittel and J. Schindler, “Crude Oil the Supply Out-
look,” Technical Report EWG-Series No 3/2007, Energy 
Watch Group, 2007.  

[15] E. Guseo, A. Dalla Valle and M. Guidolin, “World Oil 
Depletion Models: Price Effects Compared with Strategic 
or Technological Interventions,” Technology Forecasting 
& Social Change, Vol. 74, 2007, pp. 452-469.  

[16] P. Bauquis, “Reappraisal of Energy Supply-Demand in 
2050 Shows Big Role for Fossil Fuels, Nuclear but Not 
for Non-Nuclear Renewables,” Oil and Gas Journal, Vol. 
101, No. 7, 2003, pp. 20-29.  
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Appendix 1 

Proof that the derivatives, corresponding to annual pro-
duction, of the Generalized Hubbert and Bass Models are 
equal. 

The Generalized Bass model is able to account for dis-
ruptions by introducing an intervention function, x(t), 
into the Bass model. Following the same analogy, the 
Generalized Hubbert Model is defined by introducing an 
intervention function, x(t), into the Hubbert model, given 
by Equation (1), in the same way, i.e.: 
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Upon integration it can be shown that: 
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and by differentiating, leads to: 
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The Generalized Hubbert Model (GHM), can be com-
pared with Equation (5), the Generalized Bass Model 
(GBM). To do this, Equation (A2) can be multiplied3 by 
1 as:  
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Equation (A4) can be rearranged to obtain: 
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which in turn, can be simplified to become: 

 
   

        
0

0

exp( ) exp 1

1 exp1 exp 1 exp

t

p p

T Tt
p

p p

rt r x d t
Q t Q Q

rtrt r x d t

 

 

      
  

  


           




                (A6) 

To the first term on the rhs of Equation (A6), multiply top and bottom by exp(-rtp), then Equation (A6) becomes: 
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To the first term on the rhs of Equation (A7), multiply top and bottom by r (1 + exp(-rtp)), then Equation (A7) be-
comes: 
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To the first term on the rhs of Equation (A8), multiply 

by 1 expressed in the form exp(rtp)exp(-rtp), then Equa-
tion (A8) becomes: 
3Albeit a rather complicated expression for 1. 
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The first term on the rhs of Equation (A9) is the Gen-

eralised Bass model as expressed in Equation (5). This 
can be demonstrated explicitly, by allowing: 
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Substiuting Equation (A10-12) into Equation (A9), 
produces: 
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Now, the second term on the rhs of Equation (A13) is 
the constant4 Q(0), hence Equation (A13) can be rewrit-
ten as:  

 
    
      
1 2 0

1 2 1 2 0

1 exp
ˆ 0

exp

t

T t

r r x d
Q t Q Q

r r r r x d

 

 

      
    




. 

(A14) 

Finally, substitute Equation (5) into Equation (A14) to 
obtain: 

     ˆ 0Q t Q t Q  .           (A15) 

Since Q(0) is a constant, differentiating Equation 
(A15), leads to: 

   ˆdQ t dQ t

dt dt
 .             (A16) 

which shows that the annual production for the General-

ized Hubbert and Bass Models are equal, when the rela-
tionships, given by Equations (A10-12), are applied and 
that the cumulative production curves of the Generalized 
Hubbert and Bass Models, differ by the constant Q(0). 

Note: The Equations (A10-12) can be rearranged to 
obtain: 

1 2r r r                  (A17) 
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(b) 

Figure A1. Comparison between Generalized Bass and 
Hubbert models. (a) Annual production; (b) Cumulative 
production. 

4To see this substitute t = 0 into Equation (A2). 

Copyright © 2010 SciRes.                                                                                   NR 



Combined Generalized Hubbert-Bass Model Approach to Include Disruptions when Predicting Future Oil Production 33 

1 2

2

ˆ
T T

r r
Q Q

r


              (A19) 

The following example is given to demonstrate that 
the Generalized Hubbert and Bass models provide 
equivalent predictions. Arbitrarily let r = 0.05 y-1, tP = 
200 y and QT = 1000 Gb, then from Equations (A10-12), 
r1 = 2.27x10-6 y-1, r2 = 0.05 y-1 and  = 999.95 Gb. 

Suppose there is one disruption in year 150, and that tr = 
10 y, c = -0.5 and b= -0.01 y-1. The plots of annual and 
cumulative production for both the Generalized Hubbert 
and Bass models are shown in Figure A1. It can be seen 
that annual production is identical, while the cumulative 
production is different only by a constant value of Q(0) = 
0.05 Gb. 

ˆ
TQ
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ABSTRACT 

The Ord River Irrigation Area (ORIA) is located within northern Western Australia near the Northern Territory border. 
Since the beginning of irrigated agriculture in the ORIA the groundwater levels have been continuously rising and are 
now close to the soil surface in some parts of ORIA in northern Western Australia. The groundwater is now saline 
throughout most of the ORIA and soil salinity risks are high where the watertables are shallow. This research evaluated 
irrigation and salinity management strategies for sugarcane and maize crops grown over deep and shallow, non-saline 
and saline watertables in the ORIA. The LEACHC model, calibrated using field data, was used to predict the impacts of 
various irrigation management strategies on water use and salt accumulation in the root zone. This study concluded 
that irrigation application equal to 100% of total fortnightly pan evaporation applied at 14 day intervals was a good 
irrigation strategy for the maize grown over a deep watertable area. This strategy would require around 11 ML/ha of 
irrigation water per growing season. Irrigation application equal to 75% of total fortnightly pan evaporation, applied 
every fortnight during first half of the growing season, and 75% of total weekly pan evaporation, applied on a weekly 
basis during second half of the growing season, would be the best irrigation strategy if it is feasible to change the irri-
gation interval from 14 to seven days. This irrigation strategy is predicted to have minimal salinity risks and save 
around 40% irrigation water. The best irrigation strategy for sugarcane grown on Cununurra clay over a deep watert-
able area would be irrigation application equal to 50% of the total fortnightly pan evaporation, applied every fortnight 
during first quarter of the growing season, and irrigation application amounts equal to 100% of total weekly pan 
evaporation, applied every week during rest of the season. The model predicted no soil salinity risks from this irrigation 
strategy. The best irrigation strategy for sugarcane over a non-saline, shallow watertable of one or two m depth would 
be irrigation application amounts equal to 50% of total fortnightly pan evaporation applied every fortnight. In the case 
of a saline watertable the same irrigation strategy was predicted to the best with respect to water use efficiency but will 
have high salinity risks without any drainage management. 
 
Keywords: Irrigation Modelling, Salinity Modelling, Saline Shallow Watertable, Irrigation Management, Ord River 

Irrigation Area 

1. Introduction 

Hydrological conditions change with the introduction of 
irrigated agriculture in almost any landscape. Increased 
accession to groundwater starts at the commencement of 
irrigated agriculture and over time it brings groundwater 
levels closer to the soil surface and leads to the develop-
ment of shallow watertables. Evapotranspiration from 
increased availability of water from shallow watertables 
is the main cause of soil salinisation in irrigated areas 
throughout the world [1] and Australia [2]. Availability 
of abundant water, low population pressures and lack of  

awareness of the long term implications of excessive use 
of water has led to the problems of waterlogging and 
irrigated salinity in a vast majority of the old irrigation 
systems of the world. Today because of changing climate, 
high population pressures, water scarcity and increased 
awareness of the long term implications of excessive use 
of water every effort should be made to use this resource 
optimally to enable more production from less water thus 
reducing wastage via groundwater accession and runoff. 

In the Ord River Irrigation Area (ORIA) in northern 
Australia (Figure 1) the groundwater levels were deeper   
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Figure 1. Map showing the location of the study area in northern Western Australia. 
 
before clearing the native vegetation for irrigated agri-
culture. With the introduction of irrigated agriculture, the 
groundwater levels started rising with increased deep 
drainage below irrigated fields due to excessive use of 
irrigation water, and leakage from unlined supply chan-
nels and drains servicing the area. The groundwater lev-
els continued to rise at 0.3 to 0.5 metres per year beneath 
most of the central and northern parts of Ivanhoe Plain 
over time [4]. Until 1990s the groundwater levels were 
sufficiently deep to prevent any significant capillary 
aided evapotranspiration and soil salinsation risks [3]. 
They are now relatively close to the soil surface in some 
parts of the Ivanhoe and packsaddle plains (Figure 2). 
Due to the changed hydrological conditions, the chemis-
try of groundwater probably changed over time [5]. The 
shallow groundwater electrical conductivity (EC) varies 
throughout most of the ORIA with levels ranging from 
50 to 2160 mS/m [6]. In some parts of the Ivanhoe and 
Packsaddle plains, the shallow groundwater salinity (EC) 
is at extreme levels. Because the groundwater is shallow 
and saline in the ORIA, the risk of developing soil root 

zone salinity is high. Saline watertables shallower than 
two metre below ground surface often lead to the devel-
opment of soil root zone salinity [7] and [8]. 

This study was aimed at evaluating water and salinity 
management strategies for maize and sugarcane crops 
grown on Cununurra clay in the ORIA. The impacts of 
both fresh and saline shallow watertables on the water 
demands and soil root zone salinity were evaluated 
through modelling. The objectives were to: 

2. Ord River Irrigation Area 

The ORIA is located at Kununurra in the East Kimberley 
region of Western Australia near the Northern Territory 
border (Figure 1). It occupies around 16,000 ha along 
the palaeo-alluvial flood plain of the lower Ord River. 
The land surface in this irrigation area varies by only 
about 10 m with the surrounding sandstone and basalt 
ranges outcropping up to around 400 m above the allu-
vial plain. Presently Stage 1 of the ORIA consists of 
around 12,000 ha of irrigated agriculture serviced by 
approximately 135 km of clay-lined supply channels and   
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Figure 2. Mean observed watertable depth beneath Ivanhoe and Packsaddle plains between July 2003 and June 2004 [4]. 
 
155 km of surface drains. The return flow from flood and 
furrow irrigation systems discharges back into the lower 
Ord River. 

2.1. Climate 

The climate of this region is semi-arid with summer 
monsoonal rains. Around 90% of the annual rain is re-
ceived between November and March. Average wet-season 
rainfall (July-June) is around 800 mm but is highly vari-

able. Pan evaporation is around 3000 mm per year [9]. 
Mean monthly pan evaporation exceeds rainfall through- 
hout the year except February. The mean minimum and 
maximum temperatures are around 14°C and 30°C in 
July and 25°C and 39°C in November. 

2.2. Ord Soils 

The dominant soil types include cracking clays from the 
Cununurra and Aquitaine families. Levee type soil and 
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sands also exist. The Cununurra clays occur in normal, 
alkaline and leached phases. Detailed information relat-
ing to soils in the Ord River area can be found in [10-12]; 
and [13]. The normal phase of Cununurra Clay occurs in 
large areas of the Packsaddle Plain and has a dark colour 
with medium texture and poor drainage. The alkaline 
phase consists of imperfect to poorly drained brown 
clays with fine topsoil and exists in a large area south of 
the Kimberly Research Station on Ivanhoe Plain. The 
leached phase occurs in the north and east. It generally 
has a coarser structure and higher clay content and poor 
to very poor drainage. Aquitaine soils are bluish-grey to 
yellow cracking clays and exist in areas subjected to 
prolonged inundation, such as swamps, and have very 
poor drainage. Smaller areas of the alkaline and acid 
phases also occur. Packsaddle loamy sands exist adjacent 
to the Cununurra clays. These are better drained and well 
suited to intensive horticultural activities. The light tex-
tured Ord loamy sands are located near the river. Sand 
and gravel beds of the old palaeochannel of the Ord 
River underlie more than 60 percent of the ORIA. These 
beds form extensive interconnected aquifers under irri-
gated areas of the Packsaddle and Ivanhoe plains. 

2.3. Main Crops and Irrigation Methods 

To identify irrigable areas in the Ivanhoe and Packsaddle 
plains, a detailed survey of the area was conducted in 
1944. The irrigation development project was imple-
mented in stages. Initially, only five farms on Ivanhoe 
Plain were released for irrigation in 1962. By 1969, a 
total of 30 farms (5,540 ha) were released. The irrigated 
area increased by 200% to around 11,000 ha between 
1990 and 1999. More than half of over 100 active farms 
are small and rely on off-farm income. About 40 farms 
are large-scale where a variety of crops are grown. The 
main crops include sugarcane, maize, chickpea, sun-
flower and horticultural including melons, pumpkin, 
mangoes, bananas citrus and sandlewood. Recently irri-
gated sandlewood plantations have increased substan-
tially. Sugarcane introduced during 1990s is one of the 
major crops in the ORIA and has more than double the 
water requirements of most other crops [14]. Irrigated 
crops are generally grown during the dry season when 
growing conditions are best [15]. The irrigated fields are 
mostly fallow during the wet season except annual crops 
such as sugarcane.  

The value of the main crops ranges between $60 and 
$80 million per annum. The sugarcane, melons and 
sandlewood produce the highest values. The average 
output values per hectare of cropped area range from 
$2,500 to over $17,000. Three high value crops include 
bananas ($17,200 per ha), melons ($13,600 per ha) and 
pumpkin ($18,800 per ha). The sugarcane has a relatively 

low value ($4,200 per ha). Although bananas produce the 
highest per hectare values their production has almost 
ceased recently. The sandlewood values almost three 
times the value of sugarcane; increasing areas of sandle-
wood plantations are indicative of their high returns. 

Common irrigation methods are furrow, sprinkler and 
drip. Intensive tree crops and bananas, grown on sandier 
soils, are irrigated using sprinkler and drip irrigation 
methods. The clay soils are better suited for broad acre 
farming. On these clay soils, the furrow irrigation is used 
for most broad acre crop production including sugarcane 
and maize. Fields are laser levelled to a gradient ranging 
between 1:800 and 1:2,000. The furrow lengths are often 
200 m long and rarely longer than 500 m. The beds are 
mostly 1.8 m wide and 0.16 m high above furrow. The 
height between the surface water in the water course and 
the tumble area of the furrow is called irrigation head and 
typically ranges between 100 and 250 mm. The water 
supply from the water course to the furrow is through 
siphon whose diameter ranges between 25 mm and 50 
mm depending on the furrow length and water supply 
rate.  

Irrigation interval and application amounts vary de-
pending on crop type, growing stage, weather and farmer. 
They typically range from one week to more than a 
month and are not optimal. Usually irrigation application 
amounts are significantly larger than the required amounts 
determined based on soil moisture deficit. This results in 
excessive deep drainage and groundwater accessions and 
runoff from irrigated fields. This also results in applica-
tion of irrigations when either too much moisture is still 
available from an earlier irrigation or the crop is under 
stress due to insufficient soil moisture. 

2.4. Irrigation Water Availability 

The water allocation for Stage 1 (about 11,000 ha irri-
gated area) is 350 GL per year. An allocation of 400 GL 
per year is set for irrigation of new area of about 14,000 
hectares in Stage 2. The irrigation water is supplied by 
constructing a Kununurra diversion dam on the Ord 
River and M1 supply channel network. The Kununurra 
diversion dam, a 20 m high structure that forms Lake 
Kununurra of 101 GL storage capacity, holds water in 
the Ord River water course for approximately 50 km up-
stream. The Ord River Dam, located approximately 60 
km upstream in the Carr Boyd Ranges, was constructed 
to store water in Lake Argyle to ensure a reliable supply 
of irrigation water to the ORIA.  The water is released 
from Lake Argyle and stored in Lake Kununurra which 
provides the head necessary to divert water to irrigation 
areas in the ORIA. Water levels in Lake Argyle therefore 
dictate any restriction policies for water demands. 

The average annual water availability from Lake Ar-
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gyle is 4257 GL. The Lake Argyle water is diverted for 
irrigation use, hydropower generation and environmental 
releases. Currently only about 8 percent of the available 
water is used for irrigation in Stage 1 of the ORIA. With 
the introduction of Stage 2 irrigation area the level of use 
for irrigation is projected to increase to about 17 percent. 
If all controlled releases such as irrigation, environmental 
and power generation are included the level of use in-
creases to about 57 percent of the available water. Under 
a wet future climate increased inflows into Lake Argyle 
are expected and the annual water availability is pro-
jected to increase to about 5110 GL and the relative level 
of use for controlled releases is projected to reduce to 
about 50 percent. Under a dry future climate, due to de-
creased inflows into Lake Argyle, the annual water 
availability is expected to reduce to about 3320 GL and 
relative level of water use for controlled releases is likely 
to increase to about 64 percent of the total available wa-
ter [16].  

The water availability for irrigation is not a major is-
sue in the ORIA since relatively secured supplies are 
likely to be available in the future for existing Stage 1 
and future Stage 2 irrigation areas. In the ORIA an effi-
cient on-farm irrigation water management through an 
optimal irrigation scheduling is mainly required to 
maximise crop production and minimise excessive deep 
drainage. Deep drainage fluxes can vary from negative 
flux [17] to 119 mm per year [18] under irrigated sugar-
cane. Reduction in deep drainage fluxes through an op-
timal irrigation scheduling will help control rising wa-
tertables and the development of soil salinity in ORIA. 

3. Model Description 

The LEACHC version of LEACHM was selected for 
irrigation scheduling and assessing the impacts of various 
fresh and saline shallow watertables on soil salinity built 
up when the maize and sugarcane are grown on the 
Cununurra Clay. This model has previously been used 
for irrigation scheduling under saline shallow watertable 
conditions [7] and [8]. LEACHM (Leaching Estimation 
And CHemistry Model) is one of the more complex and 
comprehensive models for simulating processes in crop 
root zones [19]. It can also be categorised as a complex 
model with respect to its approach to soil chemistry be-
cause it considers the independent movement of individ-
ual ions, including equilibrating the soil solution phase 
with the solid phase using precipitation-dissolution of 
lime and gypsum, significant ionic-pairing, and cation 
exchange. However it tends to under predict reactive 
ions. 

LEACHC uses a finite-difference solution of the 
one-dimensional Richard's equation for unsaturated flow. 

To approximate the hydraulic conductivity, matric poten-
tial and moisture content (K-h-θ) relationships, the model 
uses either the expressions developed by [20] or fits the 
two-part retentivity functions developed by [21]. If this 
retentivity function is selected, various regression equa-
tions are available [19,22,23] and [24]. In this study the 
equations developed by [20] were used for estimating 
soil retention relationships based on input of soil textural 
properties, bulk density, organic carbon and saturated 
hydraulic conductivity in various layers of the soil profile. 
To approximate evapotranspiration the model uses the 
method of [25]. From the input of weekly pan evapora-
tion totals (P), the model calculates daily potential 
evapotranspiration (ETd). To determine daily potential 
transpiration (Td), ETd is multiplied by the crop cover 
fraction (Ccf). The equation developed by [26] was used 
to approximate the crop cover during various growing 
stages of the maize and sugarcane. The daily potential 
surface evaporation (Ed) is the difference between ETd 
and Td. The equations used for maize and sugarcane root 
growth and root density distribution as a function of time 
in this study are based on those given by [27]. The water 
uptake rate by the maize and sugarcane roots is approxi-
mated by using equation developed by [28]. 

A number of upper and lower boundary conditions are 
provided in the model. The upper boundary conditions 
include ponded or non-ponded infiltration and evapora-
tion or zero flux. The five different lower boundary con-
ditions are: a) fixed watertable depth; b) free draining 
profile; c) zero flux; d) lysimeter tank; and e) fluctuating 
watertable. A fixed watertable boundary condition was 
used for this study. Use of Richard's equation for unsatu-
rated flow assumes that the soil is: homogeneous hori-
zontally, rigid and incompressible, non-hysteretic and 
iso-thermal, and that there is no preferential flow.  

After the solution of Richard's equation for unsaturated 
flow, including sinks, the movement and distribution of 
solutes are modelled by solving numerically the convec-
tion-diffusion equation (CDE). The model can handle the 
movement and distribution of Ca, Mg, Na, K, Cl, SO4, 
CO3, HCO3, H, OH and their major ion pairs. 

4. Material and Methods 

Two experimental sites (Figure 2) were selected to col-
lect the field data about soil physical properties; irriga-
tion frequency and application amounts; soil moisture, 
watertable depth, and soil and water chemistry. The pur-
pose was to monitor temporal changes in soil moisture 
and salinity profiles over the growing period to assess 
any water or salt stress under current irrigation practice 
and calibrate LEACHC to enable its use for evaluating 
various irrigation management strategies. 
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4.1. Kimberly Research Station Site–KRS 7A 

This 6.6 ha site was located near the Kimberly Research 
Station (KRS) in block 7A (Figure 2). The soil in this 
block belongs to the Cununurra Clay and a maize crop 
grown during 2004 was selected for the study. To deter-
mine the soil physical and textural properties, soil sam-
ples were collected from two locations (7A-1 and 7A-2). 
At each location, the soil samples were collected from 
various segments up to 2 m depth. Each soil sample was 
analysed for soil texture, bulk density, organic carbon, 
and soil moisture. The saturated paste extracts of soil 
samples were analysed in the laboratory for major ions, 
EC and pH. Soil textural and chemical data were used as 
the initial soil moisture and soil chemical compositions 
during model calibration. Textural properties of the soil 
at KRS 7A-1 and KRS 7A-2 (Table 1) were averaged 
and used as input in the LEACHC model for estimating 
the soil retention properties. A total soil profile depth of 
2 m was divided into 10 segments of 200 mm each seg-
ment. The soil textural properties varied across its vari-
ous segments as listed in Table 1 and so were the esti-
mated retention properties. The soil retention properties 
estimated by the model were similar to those determined 
through laboratory experiments by [29] for the 
Cununurra Clay (Table 2). The amount of soil water 
available for extraction by the maize plant roots from 
various segments of a 2 m soil profile was averaged 
around 220 mm. 

Additional soil samples, collected on June 11, 2004, 
July 12, 2004 and October 08, 2004, were analysed for 
soil moisture and soil chemical properties (EC and pH) 
and then compared with model predictions during the 
model calibration. The watertable in the experimental 

block, monitored by taking regular water level readings 
from an existing bore hole at this site, varied around 4 m 
below ground surface throughout the growing season and 
accordingly its depth was fixed at 4 m in the model. A 
groundwater sample, collected from the bore hole and 
analysed for major ions, EC and pH, indicated that the 
shallow groundwater was saline; EC around 400 mS/m 
(Table 3); major ions were used as input in the model to 
represent the initial chemical composition of the watert-
able. 

The maize was sown during the last week of April 
2004 which germinated during the first week of May and 
developed its full canopy during the last week of July 
2004. It was harvested during the first week of October 
2004. These dates were used for simulating the maize 
crop growth in the LEACHC. The fertilizer application 
rates were 250 kg/ha Di-Ammonium Phosphate (DAP), 
50 kg/ha Zinc Sulphate Monohydrate, 50 kg/ha Sulphate 
of Potash and 460 kg/ha Urea. The maize roots can de-
velop up to 2 m below the ground surface [30]. However 
most of the maize roots are concentrated within the top 
parts of the soil profile according to many researchers 
[31,32] and [33]. For this study a 2 m root zone was as-
sumed. The relative fraction of maximum root length 
density followed that described by [34]. Using this ge-
neric distribution the root zone was subdivided into four 
quarters with 40, 30, 20 and 10 percent of the roots in 
each quarter starting from top of the soil profile. 

Total irrigation and rainfall amounts applied to the 
crop and used as input into the model were 1300 mm and 
15 mm, respectively during the growing season (Table 4). 
The irrigation applications remained uniform throughout 
the growing period. During each watering, 9.5 ML was 
applied in 12 hours to irrigate 6.6 ha of the maize. Because  

 
Table 1. Soil textural properties at KRS 7A-1 and KRS 7A-2 near Kimberley Research Station. 

KRS 7A-1 
Depth (mm) 

Sand % Silt % Clay % OC* % 
KRS 7A-2 

Depth (mm) 
Sand % Silt % Clay % OC* % 

0-100 39.2 16.0 44.8 1.1 0-100 35.9 9.7 54.4 1.0 

100-200 39.8 10.1 50.1 0.8 100-200 39.2 10.7 50.1 0.8 

200-400 36.6 14.9 48.5 0.5 200-400 35.2 12.4 52.4 0.7 

400-800 32.5 15.1 52.4 0.4 400-800 38.6 13.1 48.3 0.4 

800-1100 36.3 14.2 49.5 0.4 800-1100 36.3 14.4 49.3 0.4 

1100-1500 29.6 18.7 51.7 0.3 1100-1500 42.1 14.7 43.2 0.2 

1500-1700 31.2 16.4 52.4 0.2 1500-1700 36.7 19.8 43.5 0.8 

1700-2000 41.1 16.0 42.9 0.1      

*Organic carbon. 
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Table 2. Soil retention properties of cununurra clay. 

Pore water pressure (bars) 

0.001 0.1 0.33 0.67 1 3 15 Depth (mm)  
Bulk density 

(g/cm3) 

Water content (cm3/cm3) 

0-100 1.40 0.42 0.36 0.32 0.31 0.31 0.27 0.17 

100-200 1.42 0.41 0.35 0.32 0.31 0.31 0.27 0.20 

200-300 1.44 0.39 0.35 0.33 0.32 0.32 0.28 0.22 

300-400 1.48 0.41 0.37 0.34 0.33 0.32 0.29 0.23 

400-500 1.52 0.45 0.40 0.37 0.35 0.34 0.30 0.24 

500-600 1.51 0.43 0.39 0.36 0.34 0.34 0.30 0.25 

600-700 1.51 0.43 0.40 0.36 0.35 0.34 0.30 0.26 

700-800 1.52 0.45 0.41 0.38 0.36 0.36 0.31 0.27 

800-900 1.52 0.47 0.42 0.39 0.37 0.36 0.32 0.27 

900-1200 1.52 0.45 0.41 0.38 0.36 0.36 0.31 0.28 

1200-1500 1.52 0.47 0.42 0.39 0.37 0.36 0.32 0.28 

1500-2000 1.52 0.47 0.42 0.39 0.37 0.36 0.32 0.28 

 
Table 3. Groundwater and irrigation water quality. 

 Ca Mg Na K Cl S HCO3 EC pH TDS 

 mg/L mS/m  Mg/L

Groundwater quality at KRS-7A 68 104 495 3 960 19 475 400 7.78 - 

Groundwater quality at CUM55 13 16 28 3 27 3 123 46 7.89 - 

Irrigation water quality (Diversion Dam) 25 12 20 3 14 3 183 30 8.06 178 

 
Table 4. Irrigation and rainfall amounts for the Maize crop at KRS-7A. 

Date 02/05/04 13/05/04 26/05/04 03/06/04 12/06 

Irrigation/rainfall (mm) 144 144 144 13.5* 144 

Date 27/06/04 14/07/04 25/07/04 07/08/04 19/08/04 

Irrigation/rainfall (mm) 144 144 144 144 144 

*Denotes rainfall. Only rainfall amounts of 10 mm or more were used in the model 

 
irrigation water quality was not expected to change in the 
short term, only three irrigation water samples were col-
lected during cropping season and analysed for major 
ions, EC and pH. These values were used as input to 
represent the irrigation water quality in the LEACHC 
model (Table 3). The weather data were obtained from 
KRS weather station. The daily pan evaporation and 

temperature data were used to determine the weekly total 
pan evaporation and mean weekly temperatures and the 
amplitudes. Figure 3 shows the weekly total pan evapo-
ration and maximum and minimum temperature data 
from KRS weather station between April 2004 and July 
2005. For the maize crop these data between April and 

ctober 2004 were used. O 
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Figure 3. Total weekly pan evaporation and mean weekly minimum and maximum temperatures at KRS during 2004 and 2005. 
 

The saturated past extracts of the soil samples were 
analysed in the laboratory for the chemical analysis. The 
major ions obtained from this analysis of the soil samples 
collected from KRS 7A-1 and KRS 7A-2 were averaged 
and used as input in the model to represent the initial 
chemical composition of the soil profile (Table 5). Al-
though LEACHC can handle the movement of all major 
ions but for this study only EC values as representative 
of overall salinity, obtained from analysis of the soil 
samples collected during and after the growing period, 
were used for model calibration. 

4.2. Cummings Farm Site-CUM 55 

The second site was selected at Cummings farm in block 
55 (CUM 55), which has soil type belonging to the  

Cununurra clays (Figure 2). Sugarcane grown on this 
block during 2004-05 was selected for the study. To de-
termine the soil physical and textural properties, initial 
soil samples were collected from various segments of the 
soil profile up to 2 m depth at two locations (CUM 55-1 
and CUM 55-2) immediately before the start of the 
growing season. The samples were analysed for soil tex-
ture, bulk density, organic carbon, soil moisture and soil 
chemistry (Table 6). These properties at the two loca-
tions (CUM55-1 and CUM55-2) were averaged and used 
as input to the LEACHC model for estimating the soil 
retention parameters. The total amount of soil water 
available for extraction by the sugarcane plant roots from 
various segments of a 2 m soil profile was averaged 
around 210 mm. 

 
Table 5. Major ions used as initial chemical composition of the soil profile for KRS site (maize crop). 

Major ions (mg/L) 

Depth (mm) Na Mg S Cl K Ca HCO3 
pH 

0-100 2.9 3.9 20.6 44.9 0.2 4.7 70.2 6.8 

100-200 2.4 1.1 12.6 32.3 0.2 1.0 103.2 7.4 

200-400 3.5 0.8 16.9 64.0 0.2 0.7 128.0 7.9 

400-800 9.2 0.7 29.0 230.0 0.2 0.6 160.3 8.2 

800-1100 15.7 0.8 53.8 414.0 0.2 0.6 157.9 8.3 

1100-1400 24.6 1.4 89.9 701.5 0.2 1.0 126.9 7.8 

1400-1700 12.6 0.6 56.0 272.0 0.2 0.2 186.5 8.3 

1700-2000 10.1 0.5 31.1 227.2 0.2 0.1 196.5 8.4 
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Table 6. Soil textural properties in Block 55 at CUM 55-1 and CUM 55-2 at Cummings farm. 

CUM 55-1 CUM 55-2 

Depth (mm) Sand % Silt % Clay % OC* % Depth (mm) Sand % Silt % Clay % OC* % 

0-100 26.0 10.6 63.4 1.12 0-100 23.1 19.3 57.6 0.93 

100-200 25.3 16.0 58.7 1.04 100-200 27.2 8.1 64.7 1.16 

200-400 27.3 11.5 61.2 0.60 200-400 25.0 14.6 60.4 0.42 

400-800 23.4 17.7 58.9 0.47 400-800 23.6 13.6 62.8 0.41 

800-1100 22.9 18.8 58.3 0.43 800-1100 25.9 12.2 61.9 0.41 

1100-1500 22.2 22.0 55.8 0.53 1100-1500 24.0 13.4 62.6 0.32 

1500-2000 22.2 34.1 43.7 0.22 1500-1700 54.9 12.3 32.8 0.15 

 
Additional soil samples, collected on June 11, 2004, 

July 12, 2004, October 08, 2004, March 12, 2005 and 
July 01, 2005, were analysed for soil moisture and soil 
chemical properties (EC and pH) and compared with the 
simulated data during model calibration. The watertable 
in the experimental block varied between 3.8 and 4.2 m 
below ground surface during the simulation period. It 
was assumed at a fixed depth of 4 m in this study. A 
groundwater sample, collected from the bore hole, and 
analysed for major ions, EC and pH, indicated that the 
shallow groundwater quality was relatively fresh with EC 
46 mS/m (Table 3); major ions were used as input into 
LEACHC to represent the initial chemical composition 
of the watertable. A sugarcane crop was planted during 
second week of May 2004. It emerged from the ground 
during the fourth week of May 2004. The crop developed 

full canopy by the second week of August 2004 and its 
harvest started during the last week of June 2005. Fertil-
izer application rates were 250 kg/ha DAP, 10 kg/ha Zinc, 
15 kg/ha Sulphur and 325 kg/ha Urea. These dates were 
used in the model to simulate the sugarcane crop growth 
in the model. A rooting depth of 2 m was assumed for the 
sugarcane crop. The root zone of 2 m was subdivided 
into four quarters with 40, 30, 20 and 10 percent of the 
roots in each quarter starting from top of the soil profile. 
About 1900 mm (946 ML) was applied through 14 irri-
gations and around 700 mm was received from rainfall 
during the growing season (Table 7). The irrigation ap-
plication amounts varied between 106 and 168 mm (53- 
84 ML applied as one irrigation to the 50 ha crop). These 
irrigation application and rainfall data were used as input 
in the model. The chemical composition of the irrigation  

 
Table 7. Irrigation and rainfall amounts for the Sugarcane crop at CUM 55. 

Date 08/05/04 03/06/04 20/06/04 22/07/04 17/08/04 24/09/04 28/10/04 

Irrigation/rainfall* (mm) 168 10.5* 120 148 120 120 168 

Date 06/11/04 08/11/04 13/11/04 15/11/04 22/11/04 09/12/04 09/12/04 

Irrigation/rainfall (mm) 12.5* 15* 106 21.5* 106 144 144 

Date 22/12/04 26/12/04 27/12/04 01/01/05 02/01/05 03/01/05 06/01/05 

Irrigation/rainfall (mm) 16.7* 13.4* 43.1* 17* 130.2* 42.8* 14* 

Date 12/01/05 13/01/05 18/01/05 20/01/05 31/01/05 03/02/05 15/02/05 

Irrigation/rainfall (mm) 20* 13* 168 24.6* 28.8* 34.1* 140 

Date 06/03/05 16/03/05 17/03/05 04/04/05 18/04/05 05/05/05  

Irrigation/rainfall (mm) 33* 52.6* 74* 120 144 120  

*Denotes rainfall. Only rainfall amounts of 10 mm or more were used in the model. 
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water (Table 3) was used to represent irrigation water 
quality. The weekly pan evaporation and maximum and 
minimum temperature data from KRS weather station 
between April 2004 and July 2005 were used as input in 
the LEAHC model for calibration of the sugarcane crop 
(Figure 3). 

The soil samples collected from various depth seg-
ments at CUM55-1 and CUM55-2 before the start of 
growing season of the sugarcane crop were analysed for 
chemical composition. The chemical composition at each 
depth segment from two locations was averaged and used 
as input in the LEACHC to represent the initial chemical 
composition of the soil profile (Table 8). The EC values 
obtained from analysis of the soil samples collected dur-
ing and after the growing period were used for model 
calibration. 

5. Results and Discussion 

5.1. Model Calibration 

5.1.1. Maize Crop at Kimberly Research Station  
Site—KRS 7A 

To calibrate the LEACHC model for the maize crop, 
field data about soil textural, physical and chemical 
properties, crop growth, irrigation amounts and quality, 
watertable depth and quality, total weekly pan evapora-
tion, mean weekly temperatures, and watertable depth 
and quality were used. The total soil profile depth con-
sidered for modelling was 2 m with 20 segments of 100 
mm each. The simulation started on 01/04/04, about one 
month before the crop sowing date, to enable equilibra-
tion of soil moisture in the soil profile before the start of 
the growing season. The simulation end date was on No-
vember 30, 2004, approximately 20 days after the crop 
was harvested on October 07, 2004. 

Soil samples, collected during the growing season and 

analysed for soil moisture and soil chemistry, were used 
for comparison with the model results. The two parame-
ters (α and β) in Campbell’s equation [20] were slightly 
adjusted to achieve a reasonable agreement between the 
observed and predicted soil moisture content and salinity 
profiles. The comparison between the observed and pre-
dicted soil moisture content at three dates; April 27, 2004, 
July 12, 2004 and October 08, 2004 shows that the 
agreement between observed and predicted soil moisture 
was reasonable except in the top layers of the soil profile 
where the model over-predicted the soil moisture content 
(Figure 4). The Willmott’s d-index [35], a measure of 
the degree of agreement between the observed and pre-
dicted values, was above 0.5. Given the inherent diffi-
culty in estimating the soil retention properties in various 
layers by either using Campbell’s equation or various 
regression equations, this level of agreement between the 
observed and predicted water content was viewed as suf-
ficiently accurate for simulating the soil moisture in vari-
ous irrigation management scenarios. 

The predicted soil profile electrical conductivity (EC) 
at the predicted moisture content was converted to ECe 
(electrical conductivity of the saturated paste extract) 
based on field and saturated water content [36] for a 
meaningful comparison with the observed ECe. The ECe 
will be termed as EC hereafter for simplicity. The 
LEACHC tends to under predict reactive ions according 
to [7] and [8]. For this reason the comparison of the ob-
served and modelled reactive ions was not included in 
the study. Comparison of the observed and predicted soil 
profile EC at three different dates shows that the agree-
ment between the observed and predicted EC was good 
except in one layer located just below the middle of the 
soil profile where it was under-predicted by the model 
(Figure 5). There was an unusual sudden increase  

 
Table 8. Major ions used as initial chemical composition of the soil profile for CUM55 site (Sugarcane crop). 

Major ions (mg/L) 

Depth (mm) Na Mg S Cl K Ca HCO3 
pH 

0-100 4.9 2.6 18.0 336 0.2 3.1 80.0 7.4 

100-200 3.4 3.2 18.0 324 0.1 4.1 27.4 7.0 

200-400 5.1 5.1 21.4 558 0.1 7.8 45.8 6.8 

400-800 8.8 7.8 37.2 854 0.1 12.1 56.1 7.0 

800-1100 14.4 10.2 48.1 1230 0.2 14.3 70.8 7.2 

1100-1400 16.3 11.9 54.8 1418 0.2 17.0 95.2 7.7 

1400-1700 9.3 4.7 29.5 678 0.2 6.4 80.2 7.5 

1700-2000 30.7 13.6 78.1 2037 0.3 20.4 98.7 7.6 
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Figure 4. Comparison of the observed and predicted soil profile water content at KRS 7A on 27/04/04 (left), 12/07/04 (middle) 
and 08/10/04 (right). 
 

 

Figure 5. Comparison of the observed and predicted soil profile EC at KRS 7A on 27/04/04 (left), 12/07/04 (middle) and 
8/10/04 (right). 0 
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Comparisons between the observed and predicted soil 

moisture contents, depicted in Figure 6 for three dates 
during 2004 and Figure 7 for two dates during 2005 
show that the agreement between the observed and pre-
dicted water content was good except on July 08, 2004, 
when the model under-predicted the soil moisture content 
in the middle part of the profile which may be due to the 
use of an incorrect irrigation event in the model. As ex-
pected, both the observed and predicted water contents in 
the surface layers were relatively drier. In the remaining 
profile the water content was relatively uniform at most 
dates. The Root Mean Square Error (RMSE) ranged be-
tween 0.01 and 0.03 in various segments of the soil pro-
file. The Willmott’s d-index, a measure of goodness of fit, 
ranged between 0.45 and 0.55, which was reasonable 
considering the variation of soil structure and physical 
properties expected in the various soil layers. 

in the observed EC of this layer at two dates that can not 
be explained. However, in general, the model did a very 
good job of predicting the soil profile EC. The Willmot’s 
d-index, a measure of the level of agreement between the 
observed and predicted EC, was averaged around 0.5. 
The inability of the model to accurately predict EC of the 
middle soil layers at one occasion (October 2004) re-
sulted in a lower average d-index. A reasonable agree-
ment between the observed and predicted water content 
and salinity data suggested that this calibrated model can 
be used to simulate both water content and salinity pro-
files for the maize crop grown on the Cununurra clay. 

5.1.2. Sugarcane Crop at Cummings Site—CUM 55 
To calibrate the LEACHC model for the sugarcane 
grown on Cununurra clay required field data collected 
from CUM 55 and climate data from KRS weather sta-
tion were used. The simulated depth and depth segments 
were the same as for the maize. The simulation started on 
April 01, 2004, about one month before sowing to enable 
equilibration of soil moisture in the soil profile before the 
start of the growing season and ended on July 31, 2005, 
approximately 40 days after the crop was harvested on 
June 22, 2005. Slight adjustments to the two parameters 
(α and β) of Campbell’s equation [20] were made to 
achieve a reasonable agreement between the observed 
and predicted soil moisture content and salinity profiles. 

Comparison between the observed and predicted soil 
profile ECs on the three dates during 2004 and two dates 
during 2005 shows that the agreement between the ob-
served and predicted EC was reasonable (Figure 8 and 
Figure 9). At some dates (July 08, 2004, March 12, 2005 
and July 01, 2005) the model slightly over-predicted EC 
in the middle layers. The prediction was relatively good 
in the lower layers of the soil profile at most dates. The 
predicted EC also was close to the observed EC in the 
top layers of the soil profile except on April 27, 2004,  

 

 

Figure 6. Comparison of the observed and predicted soil profile soil moisture content during 2004 on 27/04/04 (left), 11/06/04 
(middle) and 08/07/04 (right). 
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Figure 7. Comparison of the observed and predicted soil moisture content of the soil profile at CUM 55 on 12/03/05 (left) and 
01/07/05 (right). 
 

 

Figure 8. Comparison of the observed and predicted soil profile EC at CUM 55 on 27/04/04 (left), 11/06/04 (middle) and 
08/07/04 (right). 
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Figure 9. Comparison of the observed and predicted soil profile EC at CUM 55 on 12/03/05 (left) and 01/07/05 (right). 
 
when it was over-predicted, and July 01, 2005 when it 
was under-predicted. 

A reasonable agreement between the observed and 
predicted water content and salinity values suggested that 
the calibrated model is able to simulate soil moisture 
content and salinity profiles reasonably well if it is used 
to devise irrigation management strategies for the sugar-
cane crop grown on the Cununurra clay soil for various 
watertable depths and salinity conditions. 

5.2. Model Application 

5.2.1. Irrigation Scheduling of Maize Crop—Deep 
Watertable 

To evaluate various irrigation management strategies for 
the maize crop grown on Cununurra clay all together six 
simulations, three irrigation application amounts and two 
irrigation intervals, were considered. In the first three, 
irrigation application amounts equal to 100%, 75% and 
50% of the total fortnightly pan evaporation from the 
past 14 days were applied every fortnight as irrigation. 
These simulations will be called IPF100ET, IPF75ET 
and IPF50ET, where IP stands for irrigation practice, F 
represents a fortnightly irrigation interval, and 100ET 
indicates the percent of total fortnightly pan evaporation 
applied as irrigation. In the other three simulations, the 
irrigation interval was changed from 14 days to 7 days 
during the second half of the growing season. Weekly 
irrigation application amounts equal to 100%, 75% and 
50% of the total weekly pan evaporation from the past 7 

days were applied every week as irrigation. These simu-
lations will be called IPM100ET, IPM75ET and 
IPM50ET, where M indicates a mixed irrigation interval 
of 14 days during the first half of the growing season and 
7 days during second half. The model simulation using 
the actual observed irrigation data was termed as CIP 
(current irrigation practice). 

Total irrigation and rainfall application was largest 
under CIP and lowest under IPF50ET (Figure 10). The 
ET was maximum under IPF100ET and lowest under 
IPF50ET. The total amount of water used as ET in the 
IPF100ET (825 mm) and IPF75ET (771 mm) was sig-
nificantly higher than CIP (740). The maximum ET will 
therefore be likely if IPF100ET is adopted as irrigation 
practice. In fact, both IPF100ET and IPF75ET seem at-
tractive with respect to total ET. The runoff and drainage 
losses were highest under CIP and lowest under IPF50ET 
(Figure 10). The total water lost as runoff under 
IPF100ET (255 mm) was significantly lower than that 
under CIP (640 mm). It was much lower for both 
IPF75ET and IP50ET than CIP. The same was true for 
the total amount lost to drainage (Figure 10). Most of the 
extra water applied as irrigation under CIP was either lost 
as runoff or drainage. In addition to evaluation of the 
distribution of total applied irrigation water into ET, run-
off and drainage the availability of soil moisture between 
irrigations and the impacts on soil salinity were also as-
sessed to enable the selection of an optimal irrigation 
strategy. 
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Figure 10. Water balances for the simulated irrigation op-
tions at KRS 7A; proportions of total applied irrigation 
water, ET, runoff and drainage. 
 

The soil moisture profiles for CIP, IPF100ET, IPF75ET 
and IPF50ET, shown in Figure 11, represent the soil 
moisture content on the day before each irrigation date 
for seven irrigation events of the maize crop. The soil 
moisture content on the day before irrigation for the re-
maining four irrigation events, not shown in Figure 11, 
was above allowable depletion (AD). The wilting point 
and allowable depletion water content profiles also are 
shown in this Figure. The allowable depletion water 
content was assumed to be 0.5 of the total available water 
between field capacity and wilting point. The predicted 
soil moisture profiles for all irrigation strategies and 
monitoring dates always remained above the wilting 
point. Under CIP, the soil moisture content was less than 
the allowable depletion on September 15, 2004 and Sep-
tember 30, 2004 (Figure 11). For IPF100ET, there were 
three occasions when soil moisture in middle parts of the 
soil profiles was less than the AD. For IPF75ET and 
IPF50ET there were four and five occasions, respectively, 
when the soil moisture profiles were lower than AD 
(Figure 11). The soil moisture content was always above 
AD during first half of the growing season because of 
relatively small ET demand. 

The soil moisture profiles of CIP were similar to 
IPF100ET with respect to the water availability for the 
crop. If it is assumed that the maize crop was already 
mature during the month of September and ready for 
harvest (no irrigation was applied during this month in 
CIP) then the impact of the last two soil moisture profiles 
on the crop water availability can be ignored; both of 
these were less than the AD. Accordingly, the CIP may 
appear to be the best irrigation practice with respect to 
soil water availability but, as discussed earlier, it caused 
the largest amount of wastage in the form of runoff and 
drainage. The predicted amount of water used as ET in 

the CIP also was less than that in the IPF100ET. The 
IPF100ET is therefore a better strategy with respect to 
both crop water availability and water saving. It would 
require around 11 ML/ha and deliver a net saving of 330 
mm (23%) over one growing season without any signifi-
cant crop water stress. The predicted water savings are 
likely to be achieved from reductions in the runoff and 
drainage. The IPF75ET would require around 8.4 ML/ha 
and deliver a net saving of around 40%; however, the 
crop would be under minor stress for a few days. This 
water requirement of 8.4 ML/ha is slightly higher than 
7.5 ML/ha determined by [44] for the same crop in 
semi-arid tropical environments of Northern Territory 
(Katherine, Douglas Daly, Dalywaters, Mataranka, and 
Larrimah), Western Australia (Kununurra, Derby, and 
Broome) and Queensland (Gordonvale). In IPM75ET the 
level of stress was reduced by decreasing the irrigation 
interval from fortnightly to weekly in last half of the 
growing season (Figure 12). This resulted in wetter soil 
profiles than those under the IPF75ET during second half 
of the growing season. There was no significant build up 
of soil salinity and differences in the predicted soil salin-
ity profiles over time among the various irrigation strate-
gies. 

It is important to maintain water availability above AD 
level especially during vegetative growth, flowering and 
reproductive stage of the maize crop because of its sensi-
tivity to both water deficit and its timing. A significant 
reduction in yield can occur due to water deficit during 
both vegetative and reproductive period [37].  Both [37] 
and [38] conclude that the water deficit during flowering 
stage in particular has a devastating effect on maize yield. 
The IPM75ET irrigation strategy maintains favourable 
soil moisture conditions or water availability throughout 
the growing season thus saving water as well as ensuring 
an optimal yield. 

Based on the above model predictions, it is concluded 
that irrigation application equal to 100% of total fort-
nightly pan evaporation at 14 days interval is a better 
irrigation strategy (IPF100ET) and would save around 
23% water. An irrigation application amount equal to 
75% of total fortnightly and weekly pan evaporation at 
14 day interval during the first half of the growing season 
and 7 day interval during the second half would be the 
best irrigation option (IPM75ET) if it is practicable to 
change the irrigation interval. This irrigation strategy 
would save around 40% water. 

5.2.2. Irrigation Scheduling of Sugarcane 
Crop—Deep Watertable 

The irrigation intervals and amounts used to irrigate sug-
arcane in the experimental block CUM 55 during 
2004-05 were applied to simulate the current irrigation    
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Figure 11. Soil moisture profiles the day before irrigations for the Maize crop at KRS 7A: CIP (top left), IPF100ET (top 
right), IPF75ET (bot. left) and IPF50ET (bot. right). 
 
practice (CIP). Five irrigation application strategies, in 
addition to the CIP, were simulated to determine an irri-
gation schedule that would produce the maximum soil 
moisture availability, minimum runoff and drainage, 
maximum ET, and minimum salinity accumulation in the 
soil profile.  

The first irrigation strategy is IPF100ET as used for 
maize. The second irrigation strategy (IPF75-100ET) 
uses an irrigation amount equal to 75% of the total fort-
nightly ET from previous two weeks applied every fort-
night for the first quarter of the growing season and 
100% of total fortnightly ET applied during the rest of 
the growing season. In the third irrigation strategy 
(IPF50-100ET) the irrigation amounts were 50% of the 
total fortnightly ET during first quarter of the growing 
season and 100% during rest. In the fourth irrigation 

strategy (IPM50-100ET), an irrigation application 
amount equal to 50% of total fortnightly ET was applied 
every fortnight during first quarter of the growing season 
and 100% of total weekly ET was applied every 7 days 
during remainder of the growing season. The fifth irriga-
tion strategy (IPM50-75ET) was the same as the fourth, 
except the irrigation amount was 75% of total weekly ET 
during the final three-quarters of the growing season.  

The total irrigation and rainfall amount was smallest 
for IPM50-75ET, largest for IPF100ET, and was similar 
for IPF50-100ET and IPM50-100ET (Figure 13). The 
total ET was lowest under CIP and largest under 
IPF100ET. It was significantly larger in all irrigation 
strategies than CIP. Its variation between irrigation 
strategies was small (2375-2265 mm), except CIP. The 
model predicted the highest runoff under CIP and lowest  
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Figure12. Soil moisture profiles the day before IPM75ET 
irrigations for the Maize crop at KRS 7A. 
 

 

Figure 13. Water balances for the simulated irrigation op-
tions at CUM 55; total applied irrigation amount, ET, run-
off and drainage. 
 
under IPM50-75ET. The total drainage was largest under 
IPF100ET and lowest under IPM50-75ET. Considering 
total ET, runoff and drainage together, IPM50-100ET 
and IPM50-75ET gave the best results; both had compa-
rable total ET and less runoff and drainage than CIP. 
Assessments of the soil moisture availability and salt 
accumulation in the root zone also are required to iden-
tify the best irrigation strategy. 

The soil moisture profiles on the day before each irri-
gation for CIP (Figure 14) show that there were only few 
dates when the soil moisture was above the allowable 
depletion level indicating that the sugarcane crop was 
under soil moisture stress. On some dates, the soil mois-
ture was very close to the wilting point, and it is expected 
that the crop experienced moisture stress at least during  

 

Figure 14. Soil moisture profiles the day before CIP irriga-
tions for the Sugarcane crop at CUM 55. 
 
these days. A small total ET under CIP also indicates that 
the crop was under moisture stress at least some days 
during the growing season. Neither the irrigation 
amounts nor the irrigation intervals were appropriate. 
The irrigation amounts were large, which resulted in ex-
cessive runoff; and the irrigation intervals were too long, 
which resulted in soil moisture stress. 

Soil moisture stress or water deficits have varying ef-
fects on sugarcane crop development, biomass accumu-
lation and partitioning of biomass to millable stalk and 
sucrose, both during the season and at final harvest [39]. 
Water deficits during the tillering phase significantly 
affects leaf area, tillering and biomass accumulation but 
have relatively little effects on final yield. However wa-
ter deficits, after the leaf area index is reached over 2, 
have more deleterious effects on final yield of total bio-
mass, stalk biomass and stalk sucrose [39]. Therefore it is 
highly likely that the water deficit occurred during the 
growing season under CIP had significant impacts on 
final yield of sugarcane. The predicted soil moisture pro-
files for the IPF100ET, IPF75-100ET, IPF50-100ET, 
IMP50-75ET were below AD level on some dates. The 
soil moisture profiles for IPM50-100ET, shown in Fig-
ure 15, were always above the AD level, except one date. 
This irrigation strategy (IPM50-100ET) is recommended 
for the sugarcane crop grown on the Cununurra clay in 
the ORIA. This strategy ensures to maintain favourable 
soil moisture conditions throughout the growing season 
which is a prerequisite for the maximum crop productiv-
ity. A total of about 2200 mm of water will be required 
for irrigation where crops are irrigated after half the soil 
water supply is depleted. Thi  amount equates to about  s 
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Figure 15. Soil water content profiles the day before IPM50-100ET irrigations for the Sugarcane crop at CUM 55; 13/04/04 
(left) to 07/06/05 (right). 
 
22 ML/ha. About 78% of the total applied water will be 
used as ET, 12% will be wasted as runoff, and around 
10% will be lost to drainage. This water requirement of 
22 ML/ha is close to lower end of the range (22.7 to 23.8 
ML/ha) estimated by [40] using the APSIM-sugarcane 
model for the sugarcane crop grown over Cununurra clay 
in ORIA. According to [41] the observed and modelled 
water requirement of the sugarcane crop in the Burdekin 
Delta, located on the dry-tropical coastal strip in North 
Queensland, was 20.5 to 20.3 ML/ha which is only 
slightly lower than 22 ML/ha estimated in this study. 
This comparison shows findings from this study are 
similar to those by [40] and [41]. This also confirms the 
suitability of the LECHC for irrigation scheduling of 
crops with an added advantage of salinity modelling. The 
salinity modelling for IPM50-100ET suggested that there 
was salt accumulation over time in some parts of the soil 
profile however, the accumulation was well below the 
threshold (170 mS/m) that would affect sugarcane crop 
productivity. 

5.2.3. Irrigation Scheduling of Sugarcane  
Crop—Non-Saline Shallow Watertables 

The calibrated LEACHC model was used to assess the 
impacts of non-saline shallow watertables on irrigation 
water requirements, irrigation scheduling and soil salinity 
risks. Two shallow watertable depths (1 and 2 m) with 
EC of 50 mS/m were considered in the modelling. It was 

assumed that a sugarcane crop grown on Cununurra clay 
was present throughout a total simulation period of three 
years. For each watertable depth, four simulations were 
conducted; IPF75ET, IPF50ET, IPW75ET and IPW50ET, 
where F indicates a fortnightly irrigation interval, as 
above, and W indicates a weekly irrigation interval. Thus, 
IPW75ET denotes that the irrigation interval was seven 
days and the irrigation application amount was 75% of 
total fortnightly pan evaporation (ET). One year (May 
2004 to April 2005) of pan evaporation and temperature 
data, obtained from the KRS weather station, were re-
peated in the subsequent two years of simulation. The 
model predicted significant ET contributions from the 
two shallow watertables; the shallower the watertable the 
greater the groundwater contribution to ET for a particu-
lar irrigation strategy (Figure 16). The groundwater con-
tribution was maximum (60% of the total ET) from a 1 m 
deep watertable for IPF50ET and was minimum (26% of 
total ET) from a 2 m watertable for IPW75ET. Accord-
ing to [43] a 1 m deep watertable in a sandy loam soil 
provided 65% of sugarcane ET in India which is similar 
to that estimated in this study under IPF50ET. The study 
by [42] concluded that nearly all ET requirements of the 
sugarcane crop grown on light medium and medium clay 
or sandy loam soil in Australia can be met from watert-
able if it is within 1 m of the soil surface. This study con-
firms the findings from other studies conducted in Aus-
tralia [42] and elsewhere [43] and suggests that at least  
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Figure 16. Predicted groundwater contributions to total ET 
for Sugarcane crop grown over non-saline (50 mS/m) 1 and 
2 m deep watertables. 
 
60% of ET requirements of the sugarcane crop can be 
met from shallow watertables which is not only a sub-
stantial water saving but also helps control watertables. 

The predicted average soil EC profiles for both wa-
tertable depths increased slightly over time (Figure 17). 
The variation in the predicted average EC profiles among 
the simulated irrigation strategies and between two wa-
tertable depths was small. Although the average soil pro-
file EC increased during the simulation period from the 
initial levels it remained well below the threshold for any 
adverse impacts on the sugarcane crop. 

Based on the simulated results, the IPF50ET irrigation  

strategy is recommended for sugarcane crops for non-saline 
shallow watertables of one to two m depth. The model 
predicted that this irrigation strategy will result in the 
maximum irrigation water use efficiency because a 
greater proportion of shallow groundwater is used for ET 
requirements. The model also predicted that this irriga-
tion strategy will cause the accumulation of salts in the 
root zone during the simulation period but well below the 
threshold for any adverse impacts on the crop yield. 

5.2.4. Irrigation Scheduling of Sugarcane 
Crop—Saline Shallow Watertables 

The same eight simulations, as above for the non-saline 
watertables, were conducted except that the shallow wa-
tertables were assumed saline. In the first four, a saline 
watertable with an EC of 200 mS/m was fixed at 1 m 
depth. In the second four, the watertable was fixed at 2 m 
depth with an EC of 300 mS/m. The initial average soil 
profile EC was around 55 mS/m.  

There was no significant difference between ground-
water contributions to ET for crops grown over saline 
and non-saline watertables. The soil moisture availability 
between irrigations was similar in all irrigation strategies 
and was always above the AD level. The use of saline 
groundwater for ET requirements resulted in salt accu-
mulation in the soil profile and average EC of the soil 
profile increased significantly over time for all irrigation 
strategies and watertable depths. At both watertable 
depths the predicted average soil profile EC over time 
was largest (> 900 mS/m) for irrigation strategy IPF50ET 
(Figure 18 and 19). Low irrigation application caused  

 

 

Figure 17. Predicted average soil profile EC for Sugarcane crop grown over a non-saline (50 mS/m) 1 m deep watertable. 
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Figure 18. Predicted average soil profile EC for Sugarcane crop grown over a saline (200 mS/m) 1 m deep watertable. 
 

 

Figure 19. Predicted average soil profile EC for Sugarcane crop grown over a saline (300 mS/m) 2 m deep watertable. 
 
withdrawal of more water from the watertable which 
resulted in the highest average soil profile EC over time. 
The lowest average soil profile EC (> 500 mS/m) re-
sulted from IPW75ET at both watertable depths but it 
was well above the level tolerable by the sugarcane crop. 

In summary, the modelling suggests that the soil pro-
file salinity risk will be high if a saline watertable exists 
for long periods at or above 2 m depth which is consis-
tent with an earlier finding by [8]. Over irrigations may 
reduce the build up of soil profile salinity through flush-
ing but it will result in excessive accessions to the wa-
tertable causing groundwater to rise even further. The 
recommended management strategy for a saline shallow 

watertable is to lower its level below 2 m by artificial 
deep open or sub-surface drainage first and then apply 
regular leaching applications to flush excessive salts 
from the root zone area into the drainage system [8]. 
Without this intervention, it is likely that high evapora-
tive demands, extended fallow periods and low irrigation 
application will cause excessive accumulation of salts in 
the soil profile. 

5.3. Application of Recommended Irrigation 
Strategies 

This study identified irrigation strategies that ensure effi-
cient water use, optimal crop water availability and mini-
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mal salinity risks for the maize and sugarcane crops in 
the ORIA. The practical application and feasibility of the 
recommended irrigation strategies including irrigation 
intervals and their variation within a growing season 
were confirmed through discussions with the Ord Irriga-
tion Cooperative and farming community. New irrigation 
areas are being developed under Ord Stage 2, adjacent to 
the existing Stage 1 irrigation area, where large areas are 
likely to be allocated for sugarcane. Because of similar 
climate, soil and other conditions, the irrigation strategies 
identified for the sugarcane crop in the Stage 1 area will 
be applicable to this crop to be grown in Stage 2 area. 
Also because the Ord Stage 2 is largely a closed ground-
water flow system it will be even more important to con-
trol deep drainage in this area. Any deep drainage in ex-
cess of irrigation requirements is likely to cause a rise in 
groundwater levels and increase the risk of soil salinity 
development.  

Water resource availability for irrigation of the exist-
ing and new irrigated areas in the Ord is not likely to be a 
major issue as enough water resource is expected to be 
available to meet the current and likely future water de-
mands by the irrigation industry. The practical applica-
tion of the preferred irrigation techniques is therefore less 
important with respect to water saving in the ORIA and 
more important for achieving an optimal yield and con-
trolling or reducing deep drainage especially under Ord 
Stage 2 to avoid the development of shallow watertables 
and soil salinity. An inefficient irrigation strategy that 
allows excessive deep drainage in Ord Stage 2 in par-
ticular will necessitate the installation of subsurface 
drainage systems to control rising watertables if crop 
productivity is to be maintained. Such drainage installa-
tions, whether open deep drains or subsurface systems 
often require significant investments and have associated 
problems of safe disposal of drainage waters.  

The irrigation water requirements assessed using 
LEACHC were compared with findings from other stud-
ies to test the applicability of the LEACHC model for 
irrigation scheduling and salinity management and ex-
tending the results to other regions in Australia. The wa-
ter requirements assessed in this study were similar to 
those of the maize crop estimated by [44] at Kununurra 
(Ord), Derby and Broome in Western Australia; Kathe-
rine, Douglas Daly, Dalywaters, Mataranka, and Larri-
mah in Northern Territory; and Gordonvale in Queen-
sland. This confirms both the applicability of these find-
ings to other regions of Australia and the suitability of 
LEACHC for such a purpose.  Similarly the sugarcane 
water requirements of 20.5 ML/ha to 23 ML/ha deter-
mined by [40] in the Ord and by [41] in the Burdekin 
Delta are similar to the water requirements of 22 ML/ha 
determined here. It means that the water requirements of 

the maize and sugarcane crops are similar in the Austra-
lian semi-arid tropical environments and therefore the 
irrigation water requirements determined in this study are 
applicable in these other environments of Australia. 

6. Conclusions 

This study found that the irrigation application amounts 
equal to 100% of the total fortnightly pan evaporation, 
applied at 14 days interval, would be a better irrigation 
strategy for maize crop grown on Cununurra clay over a 
deep watertable. The predicted irrigation water use 
would be around 23% less than the exiting practice. Irri-
gation application amounts equal to 75% of the total 
fortnightly pan evaporation, applied every fortnight dur-
ing first half of the growing season, and 75% of the total 
weekly pan evaporation, applied every week during the 
second half of the growing season, would be the best 
irrigation strategy if it is feasible to change the irrigation 
interval from 14 days to 7 days. The irrigation water use 
for this irrigation strategy was predicted to be around 
40% less than the existing irrigation practice. 

The study found that the best irrigation strategy for the 
sugarcane crop grown on Cununurra clay over a deep 
watertable would be irrigation application amounts equal 
to 50% of the total fortnightly pan evaporation, applied 
every fortnight during first quarter of the growing season, 
and irrigation application amounts equal to 100% of total 
weekly pan evaporation, applied every week during rest 
of the season. This irrigation strategy would require 
around 22 ML/ha of irrigation water for a single sugar-
cane crop.  

The best irrigation strategy for the sugarcane crop 
grown over a non-saline shallow watertable of ≤ 2 m 
depth would be irrigation application amounts equal to 
50% of the total bi-weekly pan evaporation, applied 
every 14 days. The model predicted that this irrigation 
strategy would result in the best water use efficiency by 
encouraging plants to use groundwater to meet the crop 
ET requirements. The modelling results indicated that the 
soil salinity risks would be high if the sugarcane crop 
was grown for long periods over a saline shallow wa-
tertable (≤ 2 m). The best management strategy would be 
to lower the watertable below 2 m depth by artificial 
drainage first and then apply regular leaching applica-
tions to flush excessive salts into the drainage system. 
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