

J. Software Engineering & Applications, 2010, 3, 517-627
Published Online June 2010 in SciRes (http://www.SciRP.org/journal/jsea/)

Copyright © 2010 SciRes. JSEA

TABLE OF CONTENTS

Volume 3 Number 6 June 2010

The Topological Conditions: The Properties of the Pair of Conjugate Tress

L. Hernandez-Martinez, A. Sarmiento-Reyes, M. A. Gutierrez de Anda…………………………………………………………517

New Approach for Hardware/Software Embedded System Conception Based on the Use of
Design Patterns

Y. Manai, J. Haggège, M. Benrejeb…………………………………………………………………………………………………525

Testability Models for Object-Oriented Frameworks
D. Ranjan, A. K. Tripathi………………………………………………………………………………………………………536

User Session-Based Test Case Generation and Optimization Using Genetic Algorithm
Z. S. Qian……541

Tabu Search Solution for Resource Confidence Considered Partner Selection Problem in
Cross-Enterprise Project

H. C. Xu, X. F. Xu, T. He………………………………………………………………………………………………………548

On Some Quality Issues of Component Selection in CBSD
J. Pande, R. K. Bisht, D. Pant, V. K. Pathak………………………………………………………………………………………556

MDA (Model-Driven Architecture) as a Software Industrialization Pattern: An Approach for
a Pragmatic Software Factories

T. Djotio Ndie, C. Tangha, F. Ekwoge Ekwoge…………………………………………………………………………………561

Object-Oriented Finite Element Analysis of Metal Working Processes
S. Kumar……572

The Exploratory Analysis on Knowledge Creation Effective Factors in Software Requirement
Development

J. P. Wan, R. T. Wang………580

A Neuro-Fuzzy Model for QoS Based Selection of Web Service
A. Missaoui, K. Barkaoui………………………………………………………………………………………………………588

Scalable Varied Density Clustering Algorithm for Large Datasets
A. Fahim, A.-E. Salem, F. Torkey, M. Ramadan, G. Saake………………………………………………………………………593

Dynamic Two-Phase Truncated Rayleigh Model for Release Date Prediction of Software
L. F. Qian, Q. C. Yao, T. M. Khoshgoftaar………………………………………………………………………………………603

An Optimal Shape Design Problem for Fan Noise Reduction
B. Farhadinia……610

An Interactive Method for Validating Stage Configuration
A. O. Elfaki, S. Phon-Amnuaisuk, C. K. Ho………………………………………………………………………………………614

Journal of Software Engineering and Applications (JSEA)

Journal Information

SUBSCRIPTIONS

The Journal of Software Engineering and Applications (Online at Scientific Research Publishing, www.SciRP.org) is published

monthly by Scientific Research Publishing, Inc., USA.

Subscription rates:
Print: $50 per issue.

To subscribe, please contact Journals Subscriptions Department, E-mail: sub@scirp.org

SERVICES

Advertisements

Advertisement Sales Department, E-mail: service@scirp.org

Reprints (minimum quantity 100 copies)

Reprints Co-ordinator, Scientific Research Publishing, Inc., USA.

E-mail: sub@scirp.org

COPYRIGHT

Copyright©2010 Scientific Research Publishing, Inc.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as described below, without the

permission in writing of the Publisher.

Copying of articles is not permitted except for personal and internal use, to the extent permitted by national copyright law, or under

the terms of a license issued by the national Reproduction Rights Organization.

Requests for permission for other kinds of copying, such as copying for general distribution, for advertising or promotional purposes,

for creating new collective works or for resale, and other enquiries should be addressed to the Publisher.

Statements and opinions expressed in the articles and communications are those of the individual contributors and not the statements

and opinion of Scientific Research Publishing, Inc. We assumes no responsibility or liability for any damage or injury to persons or

property arising out of the use of any materials, instructions, methods or ideas contained herein. We expressly disclaim any implied

warranties of merchantability or fitness for a particular purpose. If expert assistance is required, the services of a competent

professional person should be sought.

PRODUCTION INFORMATION

For manuscripts that have been accepted for publication, please contact:

E-mail: jsea@scirp.org

J. Software Engineering & Applications, 2010, 3, 517-524
doi:10.4236/jsea.2010.36059 Published Online June 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

The Topological Conditions: The Properties of the
Pair of Conjugate Tress

Luis Hernandez-Martinez, Arturo Sarmiento-Reyes, Miguel A. Gutierrez de Anda

Electronics Department, National Institute for Astrophysics, Optics and Electronics, P.O. Puebla, Pue. Mexico.
Email: {luish,jarocho,mdeanda}@inaoep.mx

Received November 29th, 2009; revised January 4th, 2010; accepted January 6th, 2010.

ABSTRACT

This paper presents some important properties emanating from the pair of conjugate trees. The properties are obtained
by resorting to the fundamental loops and cutsets in the circuit topology. The existence of such a pair is one of the
conditions for a nonlinear resistive circuit to have one and only one DC solution.

Keywords: Pair of Conjugate Trees, Topological Conditions, Fundamental Cutsets and Loops, Analogue Circuits

1. Introduction

Graph Theory is used for the study of real-world Systems
possessing a binary relation between elements of a cer-
tain set within the system description. Among other dis-
cipline (Circuit Theory) has received outstanding contri-
butions from the study of graphs. Some of the contribu-
tions may be found in the solution to specific problems
related to electrical network analysis, nonlinear circuit
theory, circuit diagnosis and circuit synthesis [1,2].

A line of research developed in recent years has at-
tempted to determine the relationships between the to-
pology of a circuit and its functionality, which has de-
rived in a deeper knowledge in the general problem of
nonlinear circuits [3,4]. One important work has been
reported in [5] and [6], where a topological criterion for
the existence and uniqueness of the solution of linear cir-
cuits has been proposed. This criterion is based on two
definitions of Graph Theory: the pair of conjugate trees
and the uniform partial orientation of the resistors.

In this paper, the attention is focused on several prop-
erties of the pair of conjugate trees; these are highlighted
by looking at the resulting loop and cutset matrices.

2. Preliminary Considerations

The scope of the work is restricted to certain types of
basic circuit elements: resistors (R), voltage sources (V),
current sources (I), nullators (O) and norators (P). How-
ever, it must be emphasised that these circuit components
are used to model the original circuit through an equiva-
lent circuit denoted as the nonlinear resistive circuit struc

-ture. Besides, an important condition concerning singu-
lar elements must be fulfilled: nullators and norators
must appear in the circuit in equal numbers.

Other devices can be used by building up equivalent
schemes consisting of models containing the set of basic
elements. As an example, the Figure 1 shows the equiva-
lent circuit of a bipolar transistor.

Herein, we retake two definitions from [3] in order to
set up the further development of the diagnostic method:

Definition 1
A nonlinear resistive circuit structure is a graph whose

branches are labeled with the following six element types.

 Independent voltage sources
 Independent current sources
 V-resistors (voltage controlled)
 I-resistors (current controlled)
 Nullators
 Norators

A circuit C has a structure S if the graph of C and S
coincide and if C has elements of the type prescribed by
S on each branch.

A nonlinear resistor can be substituted by one of the
following equivalents:

1) The element is converted into a linear resistor if it is
strictly increasing.

2) The element is converted into a voltage source if it
is voltage-controlled.

3) The element is converted into a current source if it
is current-controlled. As shown in the Figure 2.

The Topological Conditions: The Properties of the Pair of Conjugate Tress 518

Figure 1. Equivalent circuito of a bipolar transistor

Figure 2. Equivalent of the nonlinear resistor

Definition 2
Two trees t' and t'' of a nonlinear resistive circuit struc-

ture constitute a pair of conjugate trees if:
 t is composed of all norators, all voltage sources

and a subset of the resistors, and
 t  is composed of all nullators, all voltage sources

and the same resistors as $ t $.
The subsets of the resistors may also be empty or con-

tain all resistors.
The Figure 3 shows the pair of conjugate trees formed

according to the Definition 2. On one hand, the tree t' is
formed by the norators, both voltage sources and the re-
sistor R1, as given in the Figure 3(a). On the other hand,
the tree t'' is formed by the nullator, both voltage sources
and the same resistor as given in the Figure 3(b).

3. Properties of the Pair (t ,)  t 

From the definitions above, two associated graphs of the
same linear structure can be derived, namely g  and

. It yields: g

 ' ' cg t t   cg t t    (1)

These graphs are depicted in Figure 4. However, it
must be noticed that in fact, apart from the consideration
of different trees, the relationship holds:

g g   (2)

As a result of the definitions given in Section 2, the
pair of conjugate trees is formed as:

(a) Tree t

(b) Tree t 

Figure 3. The pair of conjugate trees

Figure 4. The graphs of a linear structure associated to the
pair (t’, t’’)

},,{ RVP t  (3) },,{ aRVO t 

where P , , and are the branches of all norators,
all nullators and all voltage sources respectively. In addi-
tion, is the set of branches of the common resistors

 t' and t". Furthermore, two pairs of conjugate co-trees
(t ,) arise. They are formed as:

O V

aR

 t

},{ ~
bROt  } (4) ,{ ~

bRP t 

Copyright © 2010 SciRes. JSEA

The Topological Conditions: The Properties of the Pair of Conjugate Tress 519

where is the set of branches of those resistors not in

t' nor in t''. It clearly results that the complete set of re-
sistors , is formed by:

bR

R

ba RRR  (5)

Some dimensions may be mentioned now:

p total number of norators

o total number of nullators
v total number of voltage sources
a total number of resistors aR
b total number of resistors bR

r total number of resistors R
i.e. bar 

l total number of fundamental loops
c total number of cutsets

with the additional requirement of p = o. Besides,
some variables must be defined:

pu norators voltages

ou nullator voltages

vu voltage sources

au resistor voltages of aR

bu resistor voltages of bR

pi norators currents

oi nullators currents

vi current sources

ai resistor currents of aR

bi resistor currents of bR

4. Properties

Hereafter, the properties of the pair of conjugate trees (t ,
) are obtained by resorting to the fundamental loops

and fundamental cutsets of the associated graphs. Be-
cause only one branch of the co-tree may be present in a
fundamental loop, the structure of the fundamental loop
matrix has the form:

t 

][][LTLT ICCCC  (6)

where is the tree-part of the fundamental loop ma-

trix, and LL is the co-tree part. Because only one

branch of the tree may be present in a fundamental cutset,
the structure of the fundamental cutset matrix has the
form:

TC

C I

   LTLT DIDDD  (7)

where is the tree-part of the fundamental cutset

matrix, and is the co-tree part. In the following,

Kirchoff's Laws for both graphs are analyzed in order to
determine the properties of the loops and cutsets.

TT ID 

LD

4.1 KVL for g 

Since the co-tree branch present in a fundamental loop
must belong either to O or , then the matrix in
Equation (6) can have the form:

Rb














b

o
T I

I
 CC

where and are identity matrices of order o and b

respectively. Two types of loops arise:
oI bI

ol a loop in g  having a link

from O

 bl a loop in g  having a link

from bR

Furthermore, can also be partitioned, which

yields:
T C














b

a

babvbp

oaovop

I

I

 C CC

 C C C
 C

where every submatrix denoted as is a matrix of

size
xyC

x y . Since o p , is a square matrix.

Moreover, the size of
opC

T C is)av() pb(o   . KVL

is given as:

0 u C

The partitioning above allows us to establish KVL as:

0



































b

o

a

v

p

b

o

babvbp

oaovop

u

u

u

u

u

I

I

 CC C

 C C C (8)

which is a system of loop equations in)(bo 
)(boavp  branch voltages. For the nullors,

0oU , then KVL can be re-written as:

0































b

a

v

p

bbabvbp

oaovop

u

u

u

u

I C C C

 C C C (9)

4.2 KCL for g 

Since the tree branch present in a fundamental cutset
must belong either to P or V or , then the matrix in

Equation (7) can have the form:
aR

















 L

a

v

p

 D

I

I

I

 D

where , and are identity matrices of order pI vI aI

Copyright © 2010 SciRes. JSEA

The Topological Conditions: The Properties of the Pair of Conjugate Tress 520

p , v and respectively. Three types of cutsets arise: a

 p c a cutest in having a twig g 

from P
vc

ac

 a cutest in having a twig g 
from V

 a cutest in having a twig g 

from aR

Furthermore, can also be partitioned, which

yields:
LD



















abao

vbvo

pbpo

a

v

p

D D

 D D

 D D

I

I

I

 D

where every submatrix denoted as is a matrix of

size . Since , is a square matrix.

Moreover, the size of is . KCL is

given as:

xyD

)a 

x y po 

LD
poD

(vp )(bo 

oi D 

The partitioning above allows us to establish KCL as:

0







































b

o

a

v

p

ab

vb

pb

ao

vo

pa

a

v

p

i

i

i

i

i

 D

 D

 D

 D

 D

 D

I

I

I

 (10)

which is a system of)(bvp  cutset equations in

 branch currents. For the nullors,

, then KCL can be re-written as:

)ba 


(p

oi

o v
0

0



































b

a

v

p

ab

vb

pb

a

v

p

T
opC

T
bpC 

i

i

i

i

 D

 D

 D

I

I

I
 (11)

Based on the orthogonality relationship:

T
TT DC 

where stands for the transpose of (see the

Figure 5), the following equalities arise:

T
TD TD

po D vo
T

ov DC 
av

T
oa DC 

pbD  (12) vb
T

bv DC 
ab

T
ba DC 

In order to illustrate the properties of the work, con-
sider the linear circuit given in Figure 6, the fundamental
loop and cutset matrices are given by:

 P1 V1 V2 R1 O1 R2 R3

 l'1 1 1 1 1 1

C'= l'2 1 1 1 1

 l'3 1 1

 P1 V1 V2 R1 O1 R2 R3

 c'1 1 1 1 0

D'= c'2 1 1 1 0

 c'3 1 1 0 1

 c'4 1 1 1 0

Figure 5. Orthogonality in g 

Figure 6. Case of study

where the columns have been labelled with the element
names and the rows with the loop and cutsets respec-
tively. The labels however, do not belong to the matrix.

4.3 KVL for g 

Since the co-tree branch present in a fundamental loop
must belong either to P or , then the matrix in Equ-

ation (6) can have the form:
bR

Copyright © 2010 SciRes. JSEA

The Topological Conditions: The Properties of the Pair of Conjugate Tress 521














b

p
T I

I
C"C"

where and are identity matrices of order pI bI P

and respectively. Two types of loops arise: b
pl a loop in having a link g 

from P
bl a loop in having a link g 

from bR

Furthermore, can also be partitioned: TC 














b

p

"
ba

"
bv

"
bo

"
pa

"
pv

"
po"

I

I

CCC

CCC
C

where every submatrix denoted as is a matrix of

size
xyC"

yx .

Since, is a square matrix. Moreover, the size of

is . KVL is given as:
poC"

)bp TC")((avo 

0uC"

The partitioning above allows us to establish KVL as:

0



































b

p

a

v

o

b

p

babvbo

papvpo

u

u

u

u

u

I

I

C"C"C"

C"C"C"
 (13)

which is a system of)(bo  loop equations in

 branch voltages. For the nullors,

, then KVL can be re-written as:

)(bpavo 
0ou

0































b

p

a

v

b

p

babv

papv

u

u

u

u

I

I

C"C"

C"C"
 (14)

4.4 KCL for g 

Since the tree branch present in a fundamental cutset
must belong either to or V or , then the matrix

in Equation (7) can have the form:

O aR

















 L

a

v

o

D"

I

I

I

D"

where , and are identity matrices of order ,

 and a respectively. Three types of cutsets arise:
oI vI aI o

v

oc a cutset in g  having a twig from O

vc a cutset in g  having a twig from v

ac a cutset in g  having a twig from aR

Furthermore, can also be partitioned: LD"



















abap

vbvp

obop

a

v

o

D"D"

D"D"

D"D"

I

I

I

D"

where every submatrix denoted as is a matrix of

size
xyD"

yx . Since po  , is a square matrix.

Moreover, the size of is
opD"

(oLD")(bp)av  . KCL

is given as:

0iD"

The partitioning above allows us to establish KCL as:

0







































b

p

a

v

o

abap

vbvp

obop

a

v

o

i

i

i

i

i

D"D"

D"D"

D"D"

I

I

I

 (15)

which is a system of cutset equations in

 branch currents. For the nullors,

)(bvo 
)(bpavo 

0oi , then KCL can be re-written as:

0



































b

p

a

v

abap

vbvp

obop

a

v

i

i

i

i

D"D"

D"D"

D"D"

I

I

 (16)

Based on the orthogonality relationship:
T
TT D"C" 

where stands for the transpose of (see the

Figure 7), the following equalities arise:

T
TD" TD"

op
T
po D"C"  ov

T
vo D"C"  oa

T
ao D"C" 

bp
T
pb D"C"  (17) bv

T
vb D"C"  ba

T
ab D"C" 

For the small circuit shown in Figure 6, the funda-
mental loop and cutset matrices are given as:

 O1 V1 V2 R1 P1 R2 R3

 l"1 1 1 1 1 1

C"= l"2 1 0 1 0 1

 l"3 0 0 1 0 1

Copyright © 2010 SciRes. JSEA

The Topological Conditions: The Properties of the Pair of Conjugate Tress 522

 P1 V1 V2 R1 O1 R2 R3

 c"1 1 1 1 0

D"= c"2 1 1 0 0

 c"3 1 1 1 1

 c"4 1 1 0 0

Figure 7. Orthohonality in g 

where the columns have been labelled with the element
names and the rows with the loop and cutsets respec-
tively. The labels however, do not belong to the matrix.

4.5 Loop Equations of and g  g 

The KVL Equations (8) and (13) are repeated here for
easy reading:

0



































b

o

a

v

p

b

o

babvbp

oaovop

u

u

u

u

u

I

I

 C C C

 C C C

0



































b

p

a

v

o

b

p

babvbo

papvpo

u

u

u

u

u

I

I

C"C"C"

C"C"C"

Although these equations correspond to the funda-
mental loops of the graphs g  and , under the sele-

ction of t’ and t” respectively, these equations refer in
fact to the same graph and handle the same set of vari-
ables.

g 

This means that both KVL equations contain redun-
dant information. As can be observed schematically in
the Figure 8, where the fundamental loop 1l" in g 
results from the combination of loops 1l and  2l  in

. Therefore, it is possible to establish the next: g 

Statement 1
A fundamental loop in (resp.) may result

from a combination of one or more fundamental loops in

 g  g 

g  (resp. g ).

E.0 A digression on the dimensions
The considerations above lead us to define some spe-

cial loops that may exist, namely:
L the longest loop(s) in g 

λ the shortest loop(s) in g 

L the longest loop(s) in g 

 the shortest loop(s) in g 
The maximum lengths of longest loops are given as:

1)() (max  avpLD

1)()"(max  avoLD

where stands for “the minimum length of”. Be-
cause,

Dmax
po  then both bounds are the same, i.e.:

1)()"(max) (max)(max  avoLDLDLD (18)

In the case that the longest loops have the maximum
length, it occurs that:

L"L  (19)

i.e., a fundamental loop that appears in both graphs.
The minimum lengths of the shortest loops are given

by:

1)min() (min  av,p,λD

1)min()"(min  av,o,D 

where minD stands for “the minimum length of”.
Because po  , then both bounds are the same, i.e.:

1),,min()"(min) (min)(min  avoDDD  (20)

The minimum value for min may be 2, i.e.,

a loop formed by a parallel combination of two elements,
then chances are that more than one shortest loop exist
and also that a longer loop can be the result of a linear
combination of several short loops. For example, these
bounds are:

1),,(avo

Figure 8. Redundant fundamental loops

Copyright © 2010 SciRes. JSEA

The Topological Conditions: The Properties of the Pair of Conjugate Tress

Copyright © 2010 SciRes. JSEA

523

5)(max LD Statement 3
The linearly independent loop equations are deter-

mined by:
2)(min D

and the longest loops are given as:











































bbo

pbpo

b

o

babvbp

papvp

babvbp

oaovop

IC"

0C"

I

I

C"C"0

C"C"I

 C C C

 C C C

Basis (23)

},,,,{ 112111 ORVVPl L 

},,,,{"" 112111 PRVVOlL 

In addition, the shortest loops are given as:

},{ 323 RVI 
which constitutes in fact the row space of the matrix.

},{" 323 RVI"  For the example of the previous section, the composed
matrix of the Equation (21) is given as:

i.e., in fact, the same shortest and longest loops arise in
both graphs.

 P1 V1 V2 R1 O1 R2 R3

 l'
1 1 1 1 1 1 0 0

 l'
2 1 1 0 1 0 1 0

Cboth = l'
3 0 0 1 0 0 0 1

 l"
1 1 1 1 1 1 0 0

 l"
2 0 0 1 0 1 1 0

 l"
3 0 0 1 0 0 0 1

Because the Equations (8) and (13) refer in fact to the
same graph, they can be combined in a single KVL. By
re-ordering this equation according to the tree branches
in t’, it yields:

0











































b

o

a

v

p

bbo

pbpo

b

o

babvbp

papvp

babvbp

oaovop

u

u

u

u

u

IC"

0C"

I

I

C"C"0

C"C"I

 C C C

 C C C

 (21)

 which is a system of loop equations, some of

them being linearly dependent. Roughly speaking, some
row-vectors in the equation above are wasted.

bp 22 
where the labels do not belong to the matrix. The Figure
9 shows the graph with both trees and the set of linearly
independent loops. It clearly results that:

The number of linearly independent equations is given
by the following: 11 ll"  and 33 ll" 

i.e., the shortest and longest loops. Therefore, the row
basis of the matrix above is given as:

Statement 2
The number of linearly independent loop equations is

determined by:

 P1 V1 V2 R1 O1 R2 R3

 l'
1 1 1 1 1 1 0 0

 l'
2 1 1 0 1 0 1 0

Cbase= l'
3 0 0 1 0 0 0 1

 l"
2 0 0 1 0 1 1 0











































bbo

pbpo

b

o

babvbp

papvp

babvbp

oaovop

IC"

0C"

I

I

C"C"0

C"C"I

 C C C

 C C C

Rank (22)

Besides, the linearly independent loop equations are
given by the following:

Figure 9. Combined graph & independent loops

The Topological Conditions: The Properties of the Pair of Conjugate Tress 524

5. Conclusions

A set of properties of the pair of conjugate trees of within
the graph emanating from nonlinear resistive circuits has
been presented. This approach is obtained by lookinkg at
the resulting loop and cutset matrices.

REFERENCES

[1] A. F. Schwarz, “Computer-Aided Design of Microelec-
tronic Circuits and Systems,” Academic Press, Cambridge,
Vol. 1, 1987.

[2] J. Vlach and K. Singhal, “Computer Methods for Circuit
Analysis and Design,” Van Nostrand Reinhold Company,
New York, 1983.

[3] M. Hasler, “Stability of Parasitic Dynamics at a dc-

Operating Point: Topological Analysis,” Proceedings of
the IEEE International Symposium on Circuits and Sys-
tems, Singapore, 1991, pp. 770-773.

[4] N. Tetsuo and C. Leon~O, “Topological Conditions for a
Resistive Circuit Containing Negative Non-Linear Resis-
tors to Have a Unique Solution,” International Journal on
Circuit Theory and Applications, Vol. 15, Vol. 2, July
1987, pp. 193-210.

[5] M. Fosseprez, M. Hasler and C. Schnetzler, “On the Num-
ber of Solutions of Piecewise-Linear Resistive Circuits,”
IEEE Transactions on Circuits and Systems, Vol. 18, No. 3,
March 1989, pp. 393-402.

[6] M. Fossèprez and M. Hasler, “Resistive Circuit Topolo-
gies that Admit Several Solutions,” International Journal
on Circuit Theory and Applications, Vol. 18, No. 6, Dece-
mber 1990, pp. 625-638.

Copyright © 2010 SciRes. JSEA

J. Software Engineering & Applications, 2010, 3, 525-535
doi:10.4236/jsea.2010.36060 Published Online June 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

New Approach for Hardware/Software Embedded
System Conception Based on the Use of Design
Patterns

Yassine Manai, Joseph Haggège, Mohamed Benrejeb

LA.R.A, Ecole Nationale d'Ingénieurs de Tunis, Tunis, Tunisie.
Email: yacine.manai@gmail.com, {joseph.haggege, mohamed.benrejeb}@enit.rnu.tn

Received February 5th, 2010; revised April 25th, 2010; accepted April 27th, 2010.

ABSTRACT

This paper deals with a new hardware/software embedded system design methodology based on design pattern approach
by development of a new design tool called smartcell. Three main constraints of embedded systems design process are
investigated: the complexity, the partitioning between hardware and software aspects and the reusability. Two
intermediate models are carried out in order to solve the complexity problem. The partitioning problem deals with the
proposed hardware/software partitioning algorithm based on Ant Colony Optimisation. The reusability problem is
resolved by synthesis of intellectual property blocks. Specification and integration of an intelligent controller on
heterogeneous platform are considered to illustrate the proposed approach.

Keywords: Embedded Systems, Design Patterns, Smartcell, Hardware/Software Partitioning, Intellectual Property

1. Introduction

There are two main orientations in embedded system
research, the technological field and the methodological
one [1]. The first is characterized by the increasing revo-
lution in integration, the second tries to develop the em-
bedded system design process by examining new design
tools in order to front the complexity of embedded sys-
tems. There are three main problems during system de-
sign: the complexity, the hardware/software (HW/SW)
partitioning and the reusability.

To simplify the design process, designers are recurring
to raise the abstraction level, from Register Transfer
Level (RTL) to system level. As a consequence, a gap
between application development and architecture syn-
thesis appears. In order to solve this problem, many
frameworks are developed like transactional environ-
ments between application development and architecture
synthesis [2,3], or many design tools are developed in
order to improve embedded system performances [4,5].
In the domain of control system processor implementa-
tion, architecture and design framework for processor,
solutions have been developed for linear time invariant
(LTI) control and embedded real time control applica-
tions [6-8]. In [9], a design methodology based on a
transactional model which is inserted between the appli-

cation and the architecture is presented. In this way, the
application is refined in an intermediate level which con-
tains the architecture parameters. From this level, the im-
plementation step is achieved in order to generate the
RTL architecture.

Our contribution to resolve the complexity problem
consists to develop two intermediate environments in
order to minimize the gap between application develop-
ment and architecture synthesis.

The second problem is the hardware/software parti-
tioning. The HW/SW co-design is evolved in a way to
automate all phases of design flow coming from physical
phase to design one passing through the HW/SW parti-
tioning and synthesis phases [10]. Our contribution to
resolve HW/SW partitioning problem, based on ant col-
ony algorithm development, presented in [11]. The work
of [12] considers the hardware/software partitioning
problem of the embedded system design of reconfigur-
able architecture. An automatic hardware/software parti-
tioning methodology is proposed in order to develop the
dynamically reconfigurable architecture. First, the system
specification is developed with the SyncChart formalism
based on the Esterel language. Next, the proposed parti-
tioning method is applied, and the generated (C, Java)
code is implemented on the heterogeneous target. To
give a reusable solution of hardware/software partition-

New Approach for Hardware/Software Embedded System Conception Based on the Use of Design Patterns526

ing, this paper presents a solution based on Composite
design pattern development.

The third problem is the reusability in design process.
Design patterns [13] have been operated in order to de-
velop reusable design tools in different engineering fields.
Many researches in this field are performed. The work of
[14] developed an object analysis pattern for embedded
system, further; a requirement pattern with design pattern
approach was developed in [15]. A wrapper design pat-
tern for adapting the behaviour of the soft IPs was pro-
posed in [16]. The reusability of Intellectual Property (IP)
blocks have been performed extensively for design hard-
ware applications and IP blocks synthesis [16-18]. The
development of IP blocks based on design pattern use
Unified Modelling Language (UML) as specification lan-
guage, [19] present design pattern modelling in UML.
Many researches are performed for the reusability prob-
lem in order to develop new design tools that encapsulate
all co-design phases in order to implement intellectual
property (IP) blocks. One attempt proposed in [20,21]
have as aim to develop the smartcell design tools in order
to implement HW and SW IP blocks for heterogeneous
platforms. This smartcell is developed with design pat-
tern approach and oriented-object concept based on UML
language. Our contribution to resolve the reusability
problem consists in the synthesis of IP blocks for hard-
ware and software solutions from direct acyclic graph
(DAC). The proposed approach examines the Builder
design pattern to produce IP blocks.

The remainder of this paper is organized as follows.
Section 2 introduces the proposed hardware/software
approach for embedded system design. A case study is
discussed in next section which validates the proposed
approach by design of induction motor controller system.
The conclusion and the future works are presented in the
last section of this paper.

2. The Proposed Hardware/Sotware
Approach

2.1 Requirements of Proposed Approach

Three main problems are targeted by this paper: the first
concerns the complexity mastering of embedded system;
our contribution is to raise the abstraction level by inves-
tigating an object-oriented approach with the design pat-
tern concept. The second is the reusability of IP blocks in
order to minimize the time-to-market. Finally, the hard-
ware-software partitioning is solved with a proposed al-
gorithm, based on ant colony optimisation, in order to
optimise task’s deadline of a direct acyclic graph that
models the embedded system. Further, this paper demon-
strates the use of a design pattern concept for all phases
in design flow.

The proposed hardware/software embedded system
design process is presented in Figure 1. The proposed

co-design flow operates in two levels, the system level
and the smartcell one. First step consists to decompose
the embedded system in a set of subsystems. Each sub-
system is developed in the smartcell level.

The proposed approach considers the smartcell as a
design agent that encapsulates the design process com-
posed by specification, application development, archi-
tecture synthesis, the HW/SW partitioning, integration
and validation phase. In the system level, we model the
embedded system by the “smartcell system level”, which
have the following actions: the decomposition of the
main system into subsystems, HW/SW partitioning pro-
cess, the integration and the global validation of the main
system.

In the second level of abstraction, each subsystem is
modelled with a smartcell which have the following steps:
the application development, the architecture synthesis,
and the hardware/software partitioning.

2.2 Complexity Problem

The first step for smartcell system level is the decom-
position of the system into a set of subsystems. We de-
velop the design pattern smartcell Factory in order to do
this. The decomposition’s automation is guaranteed with
this design pattern. Its intent is to allow an interface for
creating a family of dependent objects without need to
specify their concrete classes. The global system is de-
composed into four subsystems, the input, the output, the
physical subsystem and the controller one. Each one of
these subsystems is managed by a smartcell (e.g., SCell_
Input in Figure 2).

We define the following actions: the application de-
velopment, the architecture synthesis the communication
management and the HW/SW partitioning. We define for
each action an actor modelled with a class diagram in
UML. Each actor has four missions corresponding to its
smartcell.

Figure 2 presents the smartcell Factory. To implement
each subsystem, the design pattern Factory_Method al-
lows making use of the subsystem structure. It is named
also virtual constructor and it defines an interface for
creating an object instantiated from subclasses (concrete
classes) [13]. The design pattern combined with abstract
factory in order to decompose the global system into a
class of subsystems.

2.2.1 Application Development
The application development is composed of two phases,
the application modelled and the direct acyclic graph
(DAG) development. First, the application model is de-
veloped with state space approach in order to extract the
main block of the disturbances blocks. Second, the DAG
is developed with the proposed MAC_Builder environ-
ment which builds application’s graph. The application

Copyright © 2010 SciRes. JSEA

New Approach for Hardware/Software Embedded System Conception Based on the Use of Design Patterns

Copyright © 2010 SciRes. JSEA

527

Embedded System

Smartcell1 Smartcell2 Smartcelln

MAC_DAG

for Smartcelln

MAC_DAG

for Smartcell1

Smartcell1

 
1

, 
Smartcell2
 

2
, 

Smartcelln
 ,

n
 

 2 n  1 2 

MAC_DAG

for X

MAC_DAG

for X

T1 T2 T3

T4

Tn

T1 T2 T3

T4

Tn

T1 T2 T3

T4

Tn

T2

T1

T4

T3

Tn DSP

FPGA

time

Resources

C
om

po
si

te

D
es

ig
n

pa
tte

rn

IP_Smartcell1 IP_Comm<1- n> IP_Smartcelln

F
ac

to
ry

_M
et

ho
d

A
bs

tr
ac

t_
Fa

ct
or

y

IP
_B

ui
ld

er

D
es

ig
n

pa
tte

rn

S
ys

te
m

 D
ec

om
po

si
tio

n
H

_M
od

el

M
A

C
_B

ui
ld

er

H
W

/S
W

 P
ar

ti
tio

ni
ng

IP

 B
lo

ck
s

Sy
nt

he
si

s

Figure 1. Proposed design process

development consists to following functionalities:

‐ the analytic model development,
‐ the MAC_Builder development.

1) The Analytic Model H
In this section, we present the analytic model corres-

ponding to smartcell design pattern. This model allows
developing the mathematical representation of subsys-
tems with state space approach in order to characterise
the corresponding subsystem.

The proposed analytic model H encapsulates the

necessary information in order to carry out the smartcell.
This model is a hybrid model that comports heterogene-
ous elements, presented by the Equation (1).

H { , , , }X ΔX Γ Y (1)

where X is the nominal system model, XΔ is the

distur-bances model, : the monitoring system,

: the communication protocol system.


n

i
iyY

0




n

i
if

0



New Approach for Hardware/Software Embedded System Conception Based on the Use of Design Patterns528

Application

Embedded Systems

InApp CmdApp PhApp OutApp

Architecture

Communication

SmartCell_Factory

CreateApp()
CreateArch()
CreateInterface()
CreatePartition()

InArch CmdArch PhArch OutArch

InCom CmdCom PhCom OutCom

InPt CmdPt PhPt OutPt

CreateApp()
CreateArch()
CreateInterface()
CreatePartition()

CreateApp()
CreateArch()
CreateInterface()
CreatePartition()

CreateApp()
CreateArch()
CreateInterface()
CreatePartition()

CreateApp()
CreateArch()
CreateInterface()
CreatePartition()

HW/SW Partitioning

SCell_PlantSCell_Input SCell_OutputSCell_Controller

Figure 2. System decomposition with smartcell factory

In this equation, X encapsulate the system model de-
scribed in state space in addition to state vector, input
vector and output vector. The XΔ function represents the
disturbances applied on the system. This function is rep-
resented with sensitivity functions in order to model the
disturbances.

The communication protocols are encapsulated with
the function, and the fault-handler control laws to be
integrated in target architecture are encapsulated with

function. Three phases must be distinguished for ana-
lytical model H; first, we elaborate the model with trans-
fer function of smartcell. Next, we transform each trans-
fer function in the state space using of compagnon form.
Third phase consists in determination of the smartcell
with delta representation.



Y

The Strategy design pattern is developed in order to
simplify the control law coding, and the choice of the
correspondent control law for application. The control

Copyright © 2010 SciRes. JSEA

New Approach for Hardware/Software Embedded System Conception Based on the Use of Design Patterns 529

law chooses is carried out through activation of Con-
trolLaw() function of Model class. This function acti-
vates the ControlLaw() function of AbstractLaw class.
Considering a linear system defined by Equation (2),





































)(

)(

)(

)(

)(

)(

24

14

23

13

2221

1211

pD

PD

PD

PR

FT

FT

FT

FT

FTFT

FTFT

PU

PY

m

o

i (2)

we define an operator that allow extracting the col-
umn of matrix , we note this operator . To ex-

tract the main part of system, i.e. the output vector
and the control vector each one in function

of reference vector , we apply the operator

thi
)(FT  .X

)Y(P)U(P

)(PR  .X

to first column of equation, and we obtain:

   11

21

0 0 0
1

0 0 0

FT
X FT

FT


 
 


 (3)

Otherwise, the operator allows extracting the dis-

turbance information, like input or output system distur-

bance, the

 .X

XΔ function of H model, is given with  .X

operator as follow,






















)(

)(

)(

)(

}))(({Δ
4

2

pD

PD

pD

PR

.FTixX

m

o

i

i
 (4)

where    
4

12 13 14

2 22 23 24

0

0i

X X X
i FT

X X X




    
   

     


The second phase of H model is the transformation of
transfer functions in state space. The main part of the
system is given by Equation (5):

 
 

 

   
 
   

11

21
1

G p C p

Y p C pX
X R p

G p C pU p X

 
 

                  

 (5)

Each component of X vector is described with state
space approach, as follow:

 
 

 
 

1
; 1, 2 1

ij ijij ij
ij

ij ijij ij

X k X kA B
X i and j

C Dy k U k

     
      
       

 (6)

where, the matrix A, B, C and D are given with a ca-
nonical representation like compagnon form. To model
the disturbances parts of smartcell, we compute each

ijXΔ vector as presented in Equation (7):

 
 

 
 

1
;

1, 2 2, , 4

ij ijij ij
ij

ij ijij ij

X k XA B
X

C D

Then, we can develop the discrete model with delta op-
erator, defined by Equation (8):

       1 - f t f k f k f    k (8)

Through delta representation of system, we can develop
the reccurent equations as describe by Equation (9).

       1 1 1 1[] n n uy k c x k c x k c x k c u k     (9)

where,

     
     

     
    

1 2

1 1 1 2

2 2 2 3

-1 -1 -1

1

1

1

1 -

t n

n n n n

n n n t n

x x x x

x k x k a x k

x k x k a x k


x k x k a x k

x k x k a x a u

   

  

  

  

  





k

 

2) The MAC Builder Model
An embedded system is modelled with a set of task

graphs. Each task graph is composed by a set of nodes
each one representing a task, and a set of edges that links
between nodes. Each task can be implemented with
software IP or hardware IP. An important property that
characterizes the task graph building is the node granu-
larity. There are three categories of granularity: the fine,
the gross and the variable granularity. This paper intro-
duces a new approach to building a task graph, that
model an embedded system, based on a MAC_Operation
granularity.

The MAC operations are composed of arithmetic op-
erations, multiply and accumulate. The MAC builder
environment consists in building graphs task from recur-
rent equations given by H model. Consider a recurrent
equation; we can transform this in the list of MAC opera-
tions, for example, a fourth order linear system can mod-
elled with MAC operation environment as present Fig-
ure 3. We use 13 MAC units for this system develop-
ment. T0 and TN are fictive tasks, which indicate the start
and end point respectively.

After modelling with task graph, the next step consists
to realize the tasks partitioning into hardware and soft-
ware targets. Indeed, the partitioning phase comports two
main stages, space allocation and times scheduling.

Consider the fourth order linear system. The schedul-
ing tasks of this system conduct to result presented in
Figure 4. In this example, the time execute of one MAC
operation is taken equal to 3 cycles.

The proposed MAC_Builder environment can be used
to determine a task graph corresponding to any other type
of system. For example, consider a non linear system
given by the following equations: k

y k

i and j

    
     

     
  

U k





 (7)

            2
0 0 cos 1 cos 2 cos ;

3
y u i u j u k      

Copyright © 2010 SciRes. JSEA

New Approach for Hardware/Software Embedded System Conception Based on the Use of Design Patterns530

              2
1 - 0 sin - 1 sin - 2 sin ;

3
y u i u j u     k

This system uses sinusoidal functions. In order to im-

plement these functions, we develop new operations
called MAC_cos and MAC_sin.

Consider the “cos” function development for example.
First, we determine the approximation of “cos” by a
polynomial of degree 12 on [0, π/4],

2
4 6 8 10

1 2 3 4 5cos 1-
2

x 12x C x C x C x C x C x      where,

 , 1, ,5iC i   are the given constants. The proposed

task graph of “cos” function is given in Figure 5.
The register R is initially loaded by the C5 constant.

Six iterations are needed to compute the function “cos”.
The last example demonstrates how we can apply the
proposed MAC_Builder for non linear applications.

For a generic aspect of a proposed approach, a “Com-
posite” design pattern is carried out in order to building a
task graph corresponding to this subsystem. The next

0T

NT

 2x k

MAC

13 MAC Units

 1x k  3x k

 1 1x k   2 1x k   3 1x k   4 1x k   y k

 4x k

MAC MAC

MAC MAC

MAC

MAC

MAC
MAC

MAC

MAC

Figure 3. Task graph of four order system

Figure 4. Scheduling in two processors

Figure 5. MAC_cos operation

section presents the hardware/software partitioning by
use of this design pattern.

2.3 Hardware/Software Partitioning

The hardware/software partitioning problem consists to
respect a deadline of tasks in direct acyclic graph. The
optimisation of this factor is function of the parallelism
between tasks, and the good management of allocation
tasks to hardware and software targets.

The partitioning problem is an NP-complete problem
which it hasn’t a polynomial resolution algorithm, but we
can verify in polynomial time if S is a solution (S is a
proposition of resolution).

2.3.1 MAC Operation as an Estimation Unit
An embedded system modelled with a smartcell, can be
designed with state space models. This search examines
the determination of MAC operation unit as an elemen-
tary block to represent a granularity of embedded system.
The state vector, for example, can be represented with
the MAC operation structure from its recurrent function.

2.3.2 Problem Formulation
Consider an embedded system modelled with a task
graph G = {E, V}, E is edges set which rely two nodes
and V is a set of nodes. Each node is defined with a start
execution date and end of execution date.

An embedded system is a set of smartcells each one is
modelled with a state space representation. For each
smartcell, state vector is programmed with a recursive
functions based on MAC operation.

Each node of task graph has a list of parameters, the
time execution in DSP, the time execution in FPGA, and
the silicon area. Figure 6 presents the task graph param-
eteri-sation. Later on estimation parameters, we apply the
proposed algorithm. Each node can be implemented ei-
ther on DSP board or on FPGA one, then the complexity

is equal to if n is the number of node. 2n

The design pattern Composite is used for hardware/
software partitioning problem formulation as a task graph.
All successors’ tasks are viewed as children tasks in rela-
tion to precedent task. The last task is viewed as a leaf by

Copyright © 2010 SciRes. JSEA

New Approach for Hardware/Software Embedded System Conception Based on the Use of Design Patterns 531

the Composite design pattern. Figure 7 present this de-
sign pattern.

2.4 IP Blocks Reusability

After the hardware/software partitioning phase, the next
step in design process is to synthesise the intellectual
property IP blocks. We distinguish two families of IP
blocks, the Soft IP and the Hard IP. Figure 8 presents the

texe_dsp texe_fpga area_fpga

texe_dsp texe_fpga area_fpga

texe_dsp texe_fpga area_fpga

texe_dsp texe_fpga area_fpga

texe_dsp texe_fpga area_fpga

Direct Acyclic Graph

Figure 6. Resources estimation

Composite

Client

Leaf

Operation()

Add(Component)

Component

Operation()

Add(Component)

Operation()

Children

Figure 7. Composite design pattern

IP_Hard
IP_HardBuilde

+ target_hard()

+ model()

builder

IP_HardBuilder is the Matlab/RTW

Product

Construct()

builder.target_hard()

IP_Soft
IP_SoftBuilder

+ target_soft()

+ model()

Product

Construct()

builder.target_soft()

IP_SoftBuilder is the Matlab/RTW

ConcreateBuil

+ target_soft()

+ model()

ConcreateBuild

+ target_hard()

+ model()

Figure 8. Hardware & software IP blocks

in the development of C/C++ code to be implemented in
proposed IP design pattern. The synthesis of soft IP con-
sists software target like DSP. In the other hand, for hard
IP, we use the VHDL/Verilog code to be implemented in
hardware target like FPGA. Each control law allows
generating the C/C++ code in floating or fixed point im-
plementation. This research investigates the development
of IP soft and IP hard in order to synthesis the architec-
ture of controller systems implemented in heterogeneous
hardware/software target.

2.4.1 The IP Soft Development
The soft IPs blocks reusability in the design process, led
us to introduce improvements in the development process
of these blocks by investigating the aptitudes of design
pattern approach. The IP soft development consists to
convert a state space representation into a C/C++ file
which can be implemented on software target. The “Bui-
lder” design pattern assumes the building of complex ob-
ject by the specification of its type. The building details
are hidden to user. The main motivation to use “Builder”
design pattern is to simplify the code generation for
building a complex object. The Builder pattern encapsu-
lates the composite objects building, because this action
is hard, repetitive and complex.

2.4.2 The IP Hard Development
The hardware synthesis of an application consists in the
generation of VHDL/Verilog code to be implemented on
target. We investigate two kinds of hardware architecture,
FPGA and ASIC circuits. As seen for IP soft develop-
ment, the IP hard development consist to model a sub-
system with the state space approach and coding this mo-
del with corresponding hardware language. Each IP hard
represent one MAC operation generated with MAC
builder environment. We distinguish two kinds of MAC
operation implementation, either hardware or software.

3. Case Study

This section presents the design of a control system in
such a way that justify how our approach can be applied,
in order to implement a hardware/software solution of
embedded system by use of IP blocks.

The studied system, given in Figure 9, is an induction
machine and we intend to implement its speed control
system with our proposed approach. Then, we present the
development of Hard/Soft IP blocks, and the HW/SW
partitioning of this embedded system with smartcell de-
sign approach.

The induction machine control system is carried out
with park transformation technique. Two blocks are de-
veloped with S-function, park_dq_abc function, and
park_abc_dq fucntion. The variable measurement is car-
ried out with estimator. The dynamic of the study system
is presented in Figure 10.

Copyright © 2010 SciRes. JSEA

New Approach for Hardware/Software Embedded System Conception Based on the Use of Design Patterns532

iphi _ref

Speed Reference

Signal 1

Induction Machine

iphi_ref

isq_ref

Cr

vitesse

Gain

K2v

Composite fuzzy -PI

wref

KT

Iref

Cr

Figure 9. Induction machine control system

Figure 10. Speed response

3.1 Complexity Problem

We decompose the global system into four subsystems.
The first subsystem composed with the input vector that
contains the speed reference, the courant reference and
the load torque. The control subsystem contains the flow
controller, the torque controller and the speed controller.
The second subsystem is the induction machine model
composed with park transformation modules and induc-
tion machine model. The output subsystem contains the
output vector, the courant estimator, and the speed esti-
mator.

The control system is modelled as a smartcell in order
to apply the proposed approach. First, the system is de-
composed into four subsystems presented before with the
SmartcellFactory design pattern. The development of
task graph that model the embedded system is carried out
in two phases, the H_model determination and the
MAC_Builder development. From given recurrent equa-
tion we develop the task graph correspondent to each
subsystem. The synthesis of Hard/Soft IP blocks is de-
veloped with VHDL and C/C++ code respectively by the
mean of “Builder” design pattern. The HW/SW parti-
tioning is carried out after development of each task
graph with “composite” design pattern. The generated
C/C++ code is implemented in DSP TMS320F2812 tar-
get, whereas the VHDL/Verilog code is integrated in
FPGA Spartan 3 target.

The system decomposition is made with a developed
abstract factory design pattern, the SmartCellFactory.
This design pattern assumes the system decomposition
and gives four main missions to each subsystem, the ap-
plication development, the architecture synthesis, the

hardware/software partitioning and the communication
management.

Given that in oriented object concept the object crea-
tion is based on constructor function, the smartcell tool
uses the Factory Method design pattern so that this func-
tion supports the heritage management by the mean of
virtual property.

Indeed, the smartcell investigates the couple {Ab-
stract_Factory, Factory_Method} design patterns in or-
der to assume the decomposition process with oriented
object approach. Listing 1 presents the proposed Smart-
CellFactory that decomposes the initial system specifica-
tion into a set of subsystems and presents the control
subsystem development.

3.1.1 Analytic Model H of System
Consider the speed control system of induction drive. To
extract the system from vector, we apply the  . op-

erator

 
 

 11

21

Y p X
X R p

U p X

   
     

     
 (10)

The process is modelled with transfer function

 G p  - pe G p ,  G p is the system model

/* System decomposition with SmartCellFactory */

Class SmartCellFactory

{

Public :

 virtual Application CreateApp() const

 {return new Application ;}

 virtual Architecture CreateArch() const

 {return new Architecture;}

 virtual Communication CreateInterface() const

 {return new Communication ;}

 virtual Partitionnement CreatePartition() const

 {return new Partitionnement ;}

} ;

SmartCellControl*

SmartCell.Design ::CreateApplication(SmartCell.Factory &

factory)

{

 SmartCellControl *

UnifiedStructure=factory.CreateU.S() ;

Listing 1. Embedded system decomposition

Copyright © 2010 SciRes. JSEA

New Approach for Hardware/Software Embedded System Conception Based on the Use of Design Patterns 533

   
   

-
11 1

p G p C p
X e

G p C p
    

 (11)

The time delay represent the duration between control
signal sending and its reception by the physical system.
Its expression is approximated with first order Taylor
series, then,

   
   11

1- 2

1 2 1

G p C pp
X

p G p C p




      
 (12)

This fractional equation of 11X has the form,

 
 

-1
-1 1 0

11 -1
-1 1 0

n n
n n

n n
n n

B p b p b p b p b
X

A p a p a p a p a

           



 (13)

where A(p) and B(p) are polynomials that have n as
maximum order. The next step consists to transform this
equation with delta operator in order to discrete it. From
this model, we can develop the corresponding recurrent
equations.

3.1.2 MAC_Builder Environment
From recurrent equations given by the H model, the pro-
posed MAC_Builder environment allows task graph de-
velopment with MAC granularity. We propose to de-
velop a task graph for the Park transformation function
presented in Listing 2.

This function use trigonometric functions as sine func-
tion. We have developed a MAC structure corresponding
to sinusoidal functions called MAC_sin and MAC_cos in
order to develop a task graph corresponding to nonlinear
elements. The Figure 5 illustrates the proposed structure
of MAC_cos. The task graph corresponding to Park
Transformation function is given by Figure 11.

The process starts by computing the trigonometric
functions of input vector by use of MAC_cos and
MAC_sin functions; next we compute the output vector
through investigation of elementary MAC operations.

3.2 Hardware/Software Partitioning

After the task graph development with MAC_Builder
environment, the next step of proposed approach is the

void park_abc_dq_Outputs_wrapper

(const real_T *u, real_T *y)

{

const double pi=3.1416;

double i, j, k;

i=0; j=0; k=0;

i=u[3];

j=u[3]- 2*pi/3;

Listing 2. Park transformation function

partitioning of these tasks between hardware and soft-
ware platforms. With the aim to apply this approach on
the induction motor control system, we can implement
the developed task graph with the Composite design pat-
tern. The advantage of this approach is to give an object
which we can be reusable for several embedded system
application just by modifying some parameters. In fact,
each task is modelled with Composite design pattern
given by Figure 7.

In order to affect tasks to hardware/software targets,
we have developed a partitioning algorithm based on ant
colony optimisation. We use the following notation, the
visibility between two nodes of task graph and the
pheromone’s constants given by matrixes  nnh and

 nn respectively:

 
11 12 1

21 22 2

1 2

n

n
nn

n n nn

  
  



  

 
 
 
 
 
 




  


  
11 12 1

21 22 2

1 2

n

n
nn

n n nn

  
  



  

 
 
 
 
 
 




  


The transition rule is computed by a probability given
by Equation (14), where and  are parameters that

control the visibility and pheromone respectively.

 
 
 

k

ij ijk
ij

il il
l S

t
p t

t

 

 

 

 


      
     

 (14)

The pheromone matrix is updated by the function,

     1- ij ij ijt t        where 0 1  and

       

   

 ,

0 ,
ij

Q
si i j T t

L tt

si i j T t


 

  
 

; Q constant.

3.3 Complexity Problem

This section presents the synthesis of a hardware IP

 
 
 

0

1

2

u

u

u

 MAC

MAC_sinMAC_cos

 i j k

    0 1y y

Figure 11. Park transformation DAG_MAC

Copyright © 2010 SciRes. JSEA

New Approach for Hardware/Software Embedded System Conception Based on the Use of Design Patterns

Copyright © 2010 SciRes. JSEA

534

block that implements the fuzzy controller in FPGA tar-
get. Figure 12 illustrates three signals, the error, the
delta_error and the control signal.

The application of partitioning algorithm contributes

to affect the tasks into hardware aspect or software one.
Figure 13 present an obtained result for this phase. Fur-
ther, a part of the logic circuit of this IP hard is presented
in Figure 14.

Figure 12. Simulation of fuzzy control system

4. Conclusions
0T

NT

   0 5D Dx x

   0 4u u

   0 7y y  

   0 5D Dx x

 MAC

MAC_sinMAC_cos

MAC

MAC_sinMAC_cos

 MAC

MAC_sinMAC_cos



Task implemented in FPGA

Task implemented in DSP

In this work we carried out a multilevel design flow for
embedded system through investigating the design pat-
tern concept. In system level, the system decomposition
is realised with the Smartcell_Factory design pattern. In
the second level, each smartcell realises the model devel-
opment, the DAG development, the hardware/software
partitioning and the IP_hard/IP_soft blocks synthesis.

Three problems are resolved: the complexity, the hard-
ware/software partitioning, and the reusability. Indeed,
two intermediate models are developed in order to model
the subsystem and to develop the task graph, the
H_model that encapsulates the principal and the distur-
bances information of system in addition to communica-
tion protocol and control laws. The MAC_Builder is the
second environment that allows developing a task graph
corresponding to subsystem from the recurrent equation
given by the H_model. The hardware/software partition-
ing problem deals with proposed Component design

Figure 13. HW/SW partitioning

pattern which model the task graph given by the
MAC_Builder in order to simplify the application of the
proposed Ant Colony Optimisation algorithm. The IP
blocks reusability is carried out through the result given
by the partitioning phase, the IP_soft blocks are devel-
oped with C/C++ language and the IP_hard blocks are
developed with VHDL/Verilog language.

As future work, the development of paradigm envi-
ronment to execute the proposed approach is very re-
quired. In addition, we propose the development of com-
plex control laws as fuzzy or neuronal control by the
mean of the proposed MAC_Builder environment. Figure 14. Logic circuit of fuzzy control system

New Approach for Hardware/Software Embedded System Conception Based on the Use of Design Patterns 535

REFERENCES

[1] R. C. Dorf, “Systems, Controls, Embedded Systems,
Energy, and Machines,” Taylor & Francis, New York,
2006, pp. 486-511.

[2] K. Virk and J. Madsen, “A System-Level Multiprocessor
System-on-Chip Modeling Framework,” Proceedings of
SOC, 2004.

[3] A. D. Pimentel and C. Erbas, “A Systematic Approach to
Exploring Embedded System Architectures at Multiple
Abstraction Levels,” IEEE Transactions on Computer,
Vol. 55, No. 2, February 2006, pp. 99-112.

[4] B. Zhou, W. Qiu and C. Peng, “An Operaing System
Framework for Reconfigurable Systems,” Proceedings of
CIT, Salt Lake, 2005.

[5] S. Pasricha, N. Dutt and M. B. Romdhane, “Using TLM
for Exploring Bus-Based SoC Communication Architec-
tures,” Proceedings of ASAP, Atlantic, 2005.

[6] R. Cumplido, S. Jones, R. M. Goodall and S. Bateman, “A
High Performance Processor for Embedded Real-Time
Control,” IEEE Transactions on Control Systems Tech-
nology, Vol. 13, No. 3, May 2005, pp. 485-492.

[7] X. Wu, V. A. Chouliaras, J. L. Nunez and R. M. Goodall,
“A Novel DS Control System Processor and its VLSI
Implem-Entation,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, Vol. 16, No. 3, March
2008, pp. 217-228.

[8] D. L. Sancho-Pradel and R. M. Goodall, “Targeted
Processing for Real-Time Embedded Mechatronic Sys-
tems,” Control Engineering Practice, Vol. 15, 2007, pp.
363-375.

[9] Y. Atat and N. E. Zergainoh, “Automatic Code Generation
for MPSoC Platform Starting From Simulink/Matlab: New
Approach to Bridge the Gap between Algorithm and
Architecture Design,” Conference of ICTTA, Bali Island,
2008.

[10] G. Wang, W. Gong and R. Kastner, “Application Parti-
tioning on Programmable Platforms Using the Ant Colony
Optimization,” Journal of Embedded Computing, Vol. 2,
No. 1, 2005, pp. 1-18.

[11] Y. Manai, J. Haggège and M. Benrejeb, “HW/SW Parti-
tioning in Embedded System Conception Using Design
Pattern Approach,” Conference of JTEA, Hammamet,
2008.

[12] K. B. Chehida, “Méthodologie de Partitionnement Logi-
ciel/Matériel Pour Plateformes Reconfigurables Dynami-
Quement,” PhD Thesis, Université de Nice-Sophia Anti-
polis, France, 2004.

[13] E. Gamma, et al., “Design Patterns: Elements of Reusable
Object-Oriented Software,” Addison-Wesley, Massachu-
setts, 1995.

[14] S. Konrad, H. C. Cheng and L. A. Campbell, “Object
Analysis Patterns for Embedded Systems,” IEEE Transac-
tions on Software Engineering, Vol. 30, No. 12, December
2004, pp. 970-990.

[15] S. Konrad and B. Cheng, “Requirement Pattern for
Embedded System,” Proceedings of the IEEE Joint Inter-
national Conference on Requirements Engineering,
Atlanta, 2002.

[16] R. Damasevicius, G. Majauskas and V. Stulikys, “Appli-
cation of Design Patterns for Hardware Design,” Pro-
ceedings of DAC, Anaheim, 2-6 June 2003, pp. 48-53.

[17] F. Rincon, F. Moya and J. Barba, “Model Reuse through
Hardware Design Patterns,” Proceedings of Design,
Automation, and Test in Europe, 2005.

[18] P. Coussy, et al., “Constrained Algorithmic IP Design for
System-on-Chip,” Integration, the VLSI Journal, Vol. 40,
No. 2, 2007, pp. 94-105.

[19] J. K. Mak, C. S. Choy and D. P. Lun, “Precise Modeling of
Design Patterns in UML,” Proceedings of International
Conference on Software Engineering, 2004.

[20] Y. Manai, J. Haggège and M. Benrejeb, “PI-Fuzzy Con-
troller Conception with Design Pattern Based Approach,”
14th IEEE International Conference on Electronics, Cir-
cuits and Systems, Marrakech, 2007, pp. 483-489.

[21] Y. Manai, “Contribution à la conception et la synthèse
d’architecture de systèmes embarqués utilisant des plates-
formes hétérogènes,” Ph.D. Dissertation, Ecole Nationale
d’Ingénieurs de Tunis, Tunisia, 2009.

Copyright © 2010 SciRes. JSEA

J. Software Engineering & Applications, 2010, 3, 536-540
doi:10.4236/jsea.2010.36061 Published Online June 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Testability Models for Object-Oriented
Frameworks

Divya Ranjan1, Anil Kumar Tripathi2

1Department of Computer Science, Faculty of Science, Banaras Hindu University, Varanasi, India; 2Department of Computer Engi-
neering, Institute of Technology, Banaras Hindu University, Varanasi, India.
Email: ranjan_divya@yahoo.co.in, aktripathi.cse@itbhu.ac.in

Received April 10th, 2010; revised April 21st, 2010; accepted April 23rd, 2010.

ABSTRACT

Frameworks are time-tested highly reusable architectural skeleton structures. They are designed ‘abstract’ and ‘inco-
mplete’ and are designed with predefined points of variability, known as hot spots, to be customized later at the time of
framework reuse. Frameworks are reusable entities thus demand stricter and rigorous testing in comparison to one- time
use application. The overall cost of framework development may be reduced by designing frameworks with high
testability. This paper aims at discussing a few metric models for testability analysis of object-oriented frameworks in an
attempt to having quantitative data on testability to be used to plan and monitor framework testing activities so that the
framework testing effort and hence the overall framework development effort may be brought down.

Keywords: Object-Oriented Frameworks, Complexity, Framelet-Based Design and Testability

1. Introduction

Frameworks represent semi-codes for defining and im-
plementing time-tested highly reusable architectural ske-
leton design experiences and hence become very useful in
development of software applications and systems. The
object-oriented paradigm provides a promising set of so-
lutions to attain reusability with the help of objects, class-
es, templates, inheritance, overloading and genericity [1,2]
so object-oriented frameworks are much more com- mon
than non object-oriented frameworks and have become a
synonym for software frameworks. It should be noted that
a framework without object-orientation is also possible.
As per Gamma et al. [3], famous in reuse literature as
gang of four, an object-oriented framework is a set of
cooperating classes that make up a reusable design for a
specific class of software which provides architectural
guidance by partitioning the design into abstract classes
and defining their responsibilities and collaborations. The
five elements of an object-oriented framework, as identi-
fied by Gurp and Bosch [4], are design documents, inter-
faces, abstract classes, components and classes. An ab-
stract class usually has at least one unimplemented ope-
ration deferred to for its implementation during frame-
work reuse.

Applications are built from frameworks by extending or
customizing the framework, while retaining the original

design. The framework-centered development lifecycle
broadly consists of following three phases [5]: 1) the
framework development phase aims at producing re-
usable design in a domain, consisting of domain analysis,
architectural design, framework design, framework im-
plementation, framework testing activities; 2) the frame-
work usage phase is also referred to as the framework
instantiation phase or application development phase.
Once framework is developed, it is deployed for the de-
velopment of framework-based applications that include
the core framework designs or part of it and new classes
need to be developed to fulfill the actual applications
requirements and 3) the framework evolution and main-
tenance phase.

One has to be very careful about developing fault free
reusable frameworks because if the framework contains
defects, the defects will be passed on to the applications
developed from the framework during framework usage
phase [6]. The reusable framework thus demands stricter
and rigorous testing in comparison to a one-time use ap-
plication [7,8]. It would be advisable to guaranty the pro-
duction of high quality frameworks without incurring
heavy costs for rigorous testing. This calls for analyzing
testability of reusable artifacts so as to reduce the overall
cost of framework-based development [9].

Bache and Mullerburg [10] define testability as the
minimum number of test cases required to provide total

Testability Models for Object-Oriented Frameworks

Copyright © 2010 SciRes JSEA

537

test coverage, assuming that such coverage is possible.
Several definitions of software testability are available in
literature but intuitively, a software component that is test-
able has the following desirable properties [11]:

 test sets are small and easily generated,
 test sets are non-redundant,
 test outputs are easily interpreted and
 software faults are easily locatable.

In spite of wide importance and promotion of frame-
works, over the last decades, a widely accepted set of
measures to quantify its characteristics has not been es-
tablished. Moreover, there is a complete lack of frame-
work testability metrics related studies in literature that
could produce quantitative data on testability to be used to
plan and monitor framework testing activities so that the
framework testing effort and hence the overall framework
development effort may be brought down. A recent work
[9] proposed models for testability analysis of framework
that particularly consider that the frameworks are inher-
ently abstract and variable in nature. This paper proposes
few more models for testability analysis of object-oriented
frameworks, considering few design related aspects of
frameworks.

Some obvious reasons for rigorous testability analysis
of a framework could be summarized as [9]:

1) A testable framework ensures low testing cost and
helps in reduction of overall development cost of a
framework which has been designed and implemented as
a semi-code.

2) Frameworks are reusable entities and hence high
testability is essential. As testable system is known to pro-
vide increased reliability.

3) High testability brings high reusability. Many a
times a framework reuser will want to test few features to
assess its quality. If testing a framework is tough then
framework reuser will hesitate in testing and using the
framework and will seek to choose another framework or
go for development without deploying a framework.

4) To calm obvious scientific curiosity that while writ-
ing test cases for frameworks why it is tougher in some
case than the other cases or, so to say, why for one
framework we had to think very hard before we were able
to write a meaningful test suite, whereas for other frame-
works we could generate test cases in a straightforward
way.

5) Testability holds a prominent place as part of the
maintainability characteristic in ISO 9126 quality model
ISO, 1991, so this study also increases our understanding
of software quality in general.

6) Framework testability analysis creates a base for
formulating the strategy for designing highly testable
frameworks, i.e., framework design for test (FDFT).

The paper is organized in three sections. Proposed
testability models for software frameworks appear in Sec-

tion 2 and Section 3 presents conclusions.

2. Models for Testability Analysis of
Object-Oriented Frameworks

This section aims at discussing various metric models for
testability analysis of object-oriented frameworks con-
sidering few design related aspects of frameworks. Fol-
lowing discussion takes into account the factors that affect
the testability of an object-oriented framework, as identi-
fied by Ranjan and Tripathi in [12]. They identified va-
rious factors and sub factors that affect the testability of
frameworks so as to take care of those factors to bring
high testability in frameworks. As per their observations,
the factors that affect the testability of a framework are
related to the characteristics of documentation of a frame-
work, domain of a framework, design of a framework and
the test support available for the framework testing like
test tools, environments, reusable test artifacts and built-in
tests etc.

2.1 A Testability Model Considering the
Structural Complexity of a Framework

It is empirically proved that complexity metrics are good
predictors of testing effort [13]. An interesting model of
OO system complexity, proposed by Tegarden and Sheetz
[14], consists of the system complexity, structural com-
plexity, and perceptual complexity constructs. System
complexity represents aspects of OO techniques and cha-
racteristics inherent to the problem. This construct influ-
ences the structural aspects of the system and the per-
ceptual complexity of the OO system. Structural com-
plexity deals with the measurable characteristics of the
resulting OO system such as the number of classes and the
interconnections between the classes whereas perceptual
complexity deals with the ability of the developer to un-
derstand the problem, the structural components of the
OO system, the use of OO techniques, and how to inte-
grate these ideas to create an OO system.

As per this model, structural complexity identifies four
levels of describing complexity of OO systems: variable,
method, object, and system. At each level, measures are
identified that account for the cohesion (Intra) and cou-
pling (Inter) aspects of the system. Thus, the structural
complexity of object-oriented framework may be ex-
pressed as:





N

i

Inter

N

i

IntraFr ii COCOSC
11

 (1)

where,

IntraIntraIntra CMCVCO  (2)

and

InterInterInter CMCVCO  (3)

Testability Models for Object-Oriented Frameworks

Copyright © 2010 SciRes JSEA

538

where,

N = Total number of objects in the framework
SCFr = Structural Complexity of the framework
COIntra = Intra Object Complexity in the framework
COInter = Inter Object Complexity in the framework
CVIntra = Intra Variable Complexity in an object
CVInter = Inter Variable Complexity in an object
CMIntra = Intra Method Complexity in an object
CMInter = Inter Method Complexity in an object

It is very clear that framework testability is inversely
proportional to its structural complexity. Therefore, using
Equation (1) we can write,

 
 




N

i

N

i
InteriIntrai

Fr

COCO
Tb

1 1

1
 (4)

It for sure that and  , in the above

model, will never be zero together. Because total number
of objects in the framework will always be >= 1. In case

when N = 1, the value of may become zero but

the value of will not be zero then also.




N

i

Intra iCO
1




N

i 1

Intra i



N

i

InteriCO
1

InteriCO




N

i

CO
1

2.2 A Testability Model Considering Complexity
of Framework Interfaces

A framework may have its interfaces linked to external
entities like other frameworks, components, or library
functions etc. [15], known as external interfaces. More the
number of other entities to be integrated with the frame-
work, the more effort are required for their integration
testing. This effort increases with the number and com-
plexities of the constituent interfaces.

A framework testability model, considering complexity
of framework interfaces, may be expressed as


















LInf

i

i LInf

CInf

i

 CInf

FItf

i

 FItf

Fr
N

C
N

C
N

C1

Tb

ii

111

1 (5)

where,

FItfiC = Complexity of framework’s ith interface with

other framework

CInfiC = Complexity of framework’s ith interface with

component

LInfiC = Complexity of framework’s ith library interface

FItfN = Total number of interfaces with other frameworks

CInfN = Total number of interfaces with component

2.3 A eaviness of

ing , i.e. consisting

of how much time and
ef

LInfN = Total number of library interfaces

 Testability Model Considering H
Framework in Terms of its Size

Size happens to be an obvious influencing factor for test-
 effort [16]. A framework of huge size

of large number of classes, methods, attributes and depth
of inheritance etc., is considered heavy. We here make use
of (a subset of) object-oriented metrics proposed by
Chidamber and Kemerer [17].

The number and complexities of the methods involved
in the framework is a predictor

fort is required to test. We define WMFr (the consoli-
dated weighted method per framework in line with WMC
proposed in [17]) as follows:





CN

i

WWMFr
1

iMC (6)

where





MiN

j

iji cWMC
1

 (7)

and

= Sum of weighted methods of all classes in FUT WMFr

iWMC = Weighted method per class of th class in FUT

Total number of classes in FUT

i

=
=

Nc

ijC Complexity of jth method in ith class of FUT

MiN = Total number of methods in ith class

heaviness oF f
fram follows:

ramework testability model considering
ework in terms of its size may be defined as

1 1

1
Mi

Fr
Nc N

Tb 
()ij

i j

c
 
 

because,

 (8)

WMFrTEFr  (9)

M appearing in Equation 8
panded as below in Equations 10 and
Nc and N may further be ex-

 11

FrFrC NOACNOCCN  (10)

where,
Nc = Total number of classes in FUT

 = Number of concrete classes in the FUT
in the FUT

e con-
 meth-

od

NOCCFr

NOACFr = Number of abstract classes
And, methods in a class shall comprise of all th

crete methods, abstract methods, and overridden
s. Thus,

OMAMCMM NNNN  (11)

where
N = Total number of methods in FUT

otal number of concrete methods in FUT
 in FUT

M

NCM = T
NAM = Total number of abstract methods
NOM = Total number of overridden methods in FUT

Testability Models for Object-Oriented Frameworks

Copyright © 2010 SciRes JSEA

539

2.4 A Testability Model Considering
Framelet-Based Design of Frameworks

Fra endent melets are the small, flexible, relatively indep
and reusable assets, which are designed based on the
concept of frameworks. They are mini-frameworks that
usually contain less than ten classes and have a simple,
clearly defined interface [18]. They evolved as a means
of modularizing the frameworks where a family of inter-
related framelets is an alternative to complex frameworks.
It is basically a design principle that instead of designing
one full fledged and complex framework, design it with a
family of related framelets with lean interfaces [19]. De-
signing a framework in framelet-based fashion promotes
reducing overall complexity of the framework and is like
using divide and conquers approach to facilitate both, the
design and testing of the framework.

Understanding a framelet-based framework is easier
than a full fledged and complex framework because a
framelet-based framework is made up of loosely coupled
small frameworks, known as framelets. Testability of a
framelet-based framework depends upon the testability
of constituent framelets and the coupling among them.
So, we may write,










 Fr

N
Tb

Fmlt

i

Fmlt
Fmlt

Tb
COUP

i

i1

1
 (12)

where
ility of the framework

amelets
ith framelet

t a small framework,

hat the quality of the software system

TbFr = Testab
NFmlt= Total number of constituent fr
COUPFmlti = Sum of measure of coupling of

her with ot framelets
TbFmlti = Testability of ith framelet

inS ce, a framelet is nothing bu
consisting of not more than ten classes and very lean
interfaces with other framelets [19], so any discussion or
metric model regarding framework’s testability will be
applicable for estimating testability of a framelet.

Each of the testability metric models, discussed above,
has different intention or applicability which is discussed
in the following Table 1, however, more than one model
may also be employed at the same time.

3. Conclusions

It is quite obvious t
which has been developed with reuse depends heavily
upon the quality of the underlying reusable artifacts.
Frameworks are an important reusable artifact and are
believed to be at the core of leading-edge software tech-
nology in the twenty first century [20]. Software frame-
works and design patterns make reuse of design experi-
ences possible but unlike design patterns (that may not
have any code) software frameworks are semi-codes and
hence call for thorough testing before they can be de-
ployed as reusable entities. Although the technology for

Table 1. Applicability of framework testability metric models

Framework
S.No. Category Testability

Applicability of
the Model

Metric Model

1.

m
s

ering the Struc-

structural com-

Testability
odels con-

idering vari-
ous kinds of

complexities of
frameworks

Testability
Model Consid-

tural Complexity
of a framework

When framework

plexity is of con-
cern for testabil-

ity.

2. -- do--
Model Consid-

eri ty

integration with

3.

Testability
models con-

b

Model Consid-
ering Heaviness

Whe ork
size is of concern

4. -- do-- er -

W
has framelet-

Testability

ng Complexi
of Framework

Interfaces

Testability

When framework

other frame-
works, compo-

nents and library
functions is of

concern for test-
ability.

n framew
sidering size
and framelet-
ased design of

the framework

of Framework in
terms of its Size

Testability
Model Consid-

for testability.

hen framework

ing Framelet
based design of

frameworks

based design and
the testability of
framelets are of

concern.

constructing frameworks ork-ba ware

 relatively advanced, we comparatively lack a sufficient

[1] J. W. Hoope Software Reuse:
Guidelines and ishing, Cambridge,

s, Prospects,” Journal of Computing and Infor-

ented

ed Frameworks: Concepts and

Problems and Experiences,”

and framew sed soft
is
theoretical basis for testing them. This paper attempted to
discuss a few metric models for testability analysis of
object-oriented frameworks in an attempt to having quan-
titative data on testability to be used to plan and monitor
framework testing activities so that the framework testing
effort and hence the overall framework development ef-
fort may be brought down. The framework testability
models presented here takes into account few design re-
lated aspects of object-oriented frameworks.

REFERENCES

r and R. O. Chester, “
 Methods,” Perseus Publ

1991.

[2] M. Smolarova and P. Navrat, “Software Reuse: Principles,
Pattern
mation Technology, Vol. 5, No. 1, 1997, pp. 33-49.

[3] E. Gamma, R. Helm, R. Johnson and J. M. Vlissides,
“Design Patterns: Elements of Reusable Object-Ori
Software,” Addison-Wesley Professional Computing Se-
ries, Massachusetts, 1994.

[4] J. Gurp and J. Bosch, “Design, Implementation and
Evolution of Object-Orient
Guidelines,” Software - Practice and Experience, Vol. 31,
No. 3, 2001, pp. 277-300.

[5] J. Bosch, P. Molin, M. Mattsson and P. Bengtsson, “Ob-
ject-Oriented Framework-

Testability Models for Object-Oriented Frameworks

Copyright © 2010 SciRes JSEA

540

orks Using Hook Technology,” Procee-

se Program,” IEEE Computer Society Inter-

IEEE Software, Vol. 15, No. 5, 1998, pp.

ability Analysis of Frameworks,” Journal of Soft-

lity Assurance,” Software Engineering Jour-

eering, Vol. 17, No.

eworks,” The Journal of Defense

n and S. D. Sheetz, “Object-Oriented System

Approach to Software Engi-

or

Software

oskimies, “Framelets—Small and

. C. Schmidt, “Object-Oriented

Research Report, University of Karlskrona/Ronneby,
Sweden, 1997.

[6] J. Al-Dallal and P. Sorenson, “System Testing for Object-
Oriented Framew
dings of the 17th IEEE International Conference on Auto-
mated Software Engineering, Edinburgh, September 2002,
pp. 231-236.

[7] J. S. Poulin and J. M. Caruso, “Determining the Value of a
Corporate Reu

Comp

national Software Metrics Symposium, Baltimore, May
1993, pp. 16-27.

[8] E. J. Weyuker, “Testing Component-Based Software: A
Cautionary Tale,”
54-59.

[9] D. Ranjan and A. K. Tripathi, “Variability-Based Models
for Test neer

ware Engineering and Applications, Vol. 3, No. 6, 2010,
pp. 455-459.

[10] R. Bache and M. Mullerburg, “Measures of Testability as a
Basis for Qua
nal, Vol. 5, No. 2, 1990, pp. 86-92.

[11] R. S. Freedman, “Testability of Software Components,”
IEEE Transactions on Software Engin
6, 1991, pp. 553-564.

[12] D. Ranjan and A. K. Tripathi, “Testability Analysis of
Object-Oriented Fram

Loos

Software Engineering, accepted for publication.

[13] H. M. Olague, L. H. Etzkorn, S. L. Messimer and H. S.

Delugach, “An Empirical Validation of Object-Oriented
Class Complexity Metrics and their Ability to Predict
Error-Prone Classes in Highly Iterative, or Agile Software:
A Case Study,” Journal of Software Maintenance and
Evolution: Research and Practice, Vol. 20, No. 3, 2008,
pp.171-197.

[14] D. P. Tegarde
lexity: An Integrated Model of Structure and Per-

ceptions,” Presented at OOPSLA 1992. http://www.acis.
pamplin.vt.edu/faculty/tegarden/wrk-pap/OOPSLA92.pdf

[15] M. Mattsson and J. Bosch, “Framework Composition:
Problems, Causes and Solutions,” Proceedings of Techno-
logy of Object-Oriented Languages and Systems, Nether-
lands, 1997, pp. 203-214.

[16] P. Jalote, “An Integrated
ing,” Narosa Publishing House, Darya Ganj, 2009.

[17] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite f
Object-Oriented Design,” IEEE Transactions on Software
Engineering, Vol. 20, No. 6, 1994, pp. 476-493.

[18] W. Pree, “Design Patterns for Object-Oriented
Development,” Addison-Wesley Publishing Company,
Massachusetts, 1995.

[19] W. Pree and K. K
ely Coupled Frameworks,” ACM Computing Surveys,

Vol. 32, No. 6, 2000.

[20] M. E. Fayad and D
Application Frameworks,” Communications of the ACM,
Vol. 40, No. 10, 1997, pp. 32-38.

J. Software Engineering & Applications, 2010, 3, 541-547
doi:10.4236/jsea.2010.36062 Published Online June 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

User Session-Based Test Case Generation and
Optimization Using Genetic Algorithm*

Zhongsheng Qian

School of Information Technology, Jiangxi University of Finance & Economics, Nanchang, China.
Email: changesme@163.com

Received March 22nd, 2010; revised April 12th, 2010; accepted April 13th, 2010.

ABSTRACT

An approach to generating and optimizing test cases is proposed for Web application testing based on user sessions using
genetic algorithm. A large volume of meaningful user sessions are obtained after purging their irrelevant information by
analyzing user logs on the Web server. Most of the redundant user sessions are also removed by the reduction process.
For test reuse and test concurrency, it divides the user sessions obtained into different groups, each of which is called a
test suite, and then prioritizes the test suites and the test cases of each test suite. So, the initial test suites and test cases,
and their initial executing sequences are achieved. However, the test scheme generated by the elementary prioritization is
not much approximate to the best one. Therefore, genetic algorithm is employed to optimize the results of grouping and
prioritization. Meanwhile, an approach to generating new test cases is presented using crossover. The new test cases can
detect faults caused by the use of possible conflicting data shared by different users.

Keywords: User Session, Genetic Algorithm, Test Case, Test Suite, Reduction, Prioritization

1. Introduction

Incapable Web applications can have far-ranging conse-
quences on businesses, economies, scientific progress,
health, and so on. Therefore, all the entities of a Web
application, in essence, must be tested adequately to en-
sure that the application meets its original design speci-
fications.

In Web application testing, some test methods and
techniques were presented [1-4]. Kung, et al. [2] depicted
an object-oriented Web Test Model to support Web ap-
plication testing. Hieatt, et al. [1] introduced a method of
acceptance testing, and developed a testing tool to show
the system operations and the expected output results in
XML. The approaches proposed by Kung and Hieatt, et al.,
however, focus primarily on unit testing without con-
cerning the whole testing for Web applications. Liu, et al.
[4] presented a data flow-based approach to testing Web
applications. Most of these methods of testing Web ap-
plications are achieved through extending the testing
methods for traditional software. Additionally, none of

these methods [1-4] yields test data according to user
sessions.

Elbaum, et al. [5] demonstrated the fault detection ca-
pabilities and cost-effectiveness of user session-based
testing. Increment concept analysis [6] is used to analyze
user sessions dynamically and minimize continuously the
number of user sessions maintained. Khor, et al. [7] com-
bined the genetic algorithm with formal concept analysis
to trace the relationship between test data and corres-
ponding test run.

Sthamer [8] analyzed deeply the test case optimization
efficiency of different coding schemes and fitness func-
tions of genetic algorithm for different structure-based
software in his doctoral dissertation. Some researchers
also studied on test case generation techniques using
genetic algorithm [9-10]. However, they aimed for sim-
plex optimization focusing on one-off optimization com-
putation, while the testing is continuous and iterative. So,
dynamically continuous optimization computation is
more propitious to improve test performance. Jia, et al.
[11] discussed the key problems of producing test data of
covering designated paths using genetic algorithm, and
introduced deeply the factors of influencing the gene-

This research has been partly supported by the National High-
Tech Research and Development Plan of China under Grant No. 2007
AA01Z144; the Science and Technology Plan Project of the Education
Department of Jiangxi Province of China under Grant Nos. GJJ10120
and GJJ10117; Shanghai Leading Academic Discipline Project of Chi-
na with Project No. J50103; and the School Foundation of Jiangxi Uni-
versity of Finance & Economics of China under Grant No. 04722015.

tic algorithm’s efficiency through experimental results.
Berndt and Watkins [12] summarized the advancement in
generating data for generic algorithm-based testing re-
cently. These studies [5,7-12] used genetic algorithm to

User Session-Based Test Case Generation and Optimization Using Genetic Algorithm542

analyze test problems with the exception of [5], but not
focusing on Web application testing. In [5], the authors
discussed user session-based Web application testing, but
not concerning deeply the optimization of test cases.

Different from them, this paper investigates a key pro-
blem in Web application testing: test case generation and
optimization. It delves into an approach to testing and
optimizing Web applications based on user sessions us-
ing genetic algorithm. When converting a user session to
a corresponding test case, we preserve the user input
data.

2. Collecting and Reducing User Sessions

In the logs on each Web server, each access record cor-
responds to a request by a user each time. The contents of
the record include request source (user IP address), re-
quest time, request mode (such as GET, POST), the URL
of requested information, data transport protocol (such as
HTTP), status code, the number of bytes transferred and
the type of client, etc. It needs to scan the logs only once
to resolve the original active historic records from current
access logs. However, it is difficult to organize these
original records directly, which must be preprocessed. We
first purge irrelevant data including the records whose
status codes are erroneous (the code 200 for success, 400
for error), embedded resources such as script files and
multimedia files whose extension names are .gif, .jpeg
or .css, etc., to obtain the set of user sessions for primitive
analysis. Then, we create user sessions through scanning
the logs on Web servers. Once a new IP address occurs, a
new user session is created. The sequential requests sent
from this IP address are appended to the new session
under the condition that the time interval of two con-
tinuous requests is not greater than max-session-idle-time
pre-determined, or else another new user session begins.
The set of all the user sessions is finally achieved.

There are often large volumes of user sessions collected
and a user session is converted to a test case transmitted to
Web server. Therefore, we can eliminate redundant user
sessions using reduction techniques, and then preserve
necessary user sessions. For the convenience of discus-
sion, some important concepts are given first.

Definition 1 (URL trace). URL trace is the URL se-
quence requested by a user session.

Let α be a URL trace. Its length is the number of URLs
requested in the trace, denoted by |α|.

Definition 2 (prefix). A trace α is the prefix of another
trace β, if and only if α is the subsequence of β and they
have the same initial symbol.

Definition 3 (common prefix). If a trace is the prefix of
several traces, then this trace becomes their common prefix.

Definition 4 (greatest common prefix). The longest
common prefix in all the common prefixes of two traces is
their greatest common prefix.

The longer the greatest common prefix of two traces is,

the more similar the two traces are, i.e., their similarity is
higher. Let we have four traces that are γ1 = abcdefg, γ2 =
abcdeh, γ3 = abcd and γ4 = cde. Then, γ3 is the common
prefix of γ1 and γ2, but not the greatest one. The greatest
common prefix of γ1 and γ2 is abcde. Although γ4 is the
subsequence of γ1 and γ2, it is not their prefix, for the
initial symbol of γ4 is not the same as that of γ1 and γ2. We
define a function isPrefix(α, β), which decides whether or
not α is the prefix of β, i.e., whether or not the URL trace
requested by a user session is redundant corresponding to
that requested by another user session. If there is a prefix,
then the function returns a BOOLEAN value TRUE, or
else returns FALSE. The URL trace-based user session
algorithm ReduceUSession is shown in Figure 1. Note
that, an HTTP request here is regarded as a symbol of a
trace.

The ReduceUSession algorithm decides whether or
not a URL trace α requested by a user session is the pre-
fix of β requested by another user session. If it is true,
then the user session corresponding to α is removed. The
number of user sessions obtained using this algorithm
will be reduced greatly.

The ReduceUSession algorithm is different from other

Algorithm: ReduceUSession
input:

The set of user sessions Λ = {s1, …, sk}, where k is the number
of user sessions;
The URL trace U1, …, Uk, which are requested by s1, …, sk

respectively;
output:

The reduced set of user sessions denoted by Γ;
begin

Γ = Ф;
while (another user session that is not marked in Λ exists)

tag1 = FALSE;
tag2 = FALSE;
Select a user session si that is not marked in Λ, and then
mark it with “USED”;
for (the URL trace Uj requested by each user session sj in
Γ)

 if isPrefix(Uj, Ui) //the URLs requested by si is
//more, so sj is redundant

 Γ = Γ-{sj};
tag1 = TRUE;

 endif;
if isPrefix(Ui, Uj) //here, Γ keeps unchanged,

//and si is redundant
tag2 = TRUE;
break; //exit for cycle

 endif;
endfor;
if tag1 || (!tag1 && !tag2) //si is necessary
 Γ = Γ∪{si};
endif;

endwhile;
Output the reduced set of user sessions Γ;

end.

Figure 1. The URL trace-based user session reduction algo-
rithm ReduceUSession

Copyright © 2010 SciRes JSEA

User Session-Based Test Case Generation and Optimization Using Genetic Algorithm

Copyright © 2010 SciRes JSEA

543

user session reduction algorithms. Most other reduction
algorithms analyze each test case in the test suites one by
one and remove those test cases that cannot change or
affect test requirements, i.e., they distinguish redundant
and necessary test cases, as is too difficult to manage in
practice, for it is very intractable to discriminate that the
test requirements satisfied by some test cases (i.e., re-
dundant ones) are also satisfied by other test cases before
the test execution using the existential algorithms. While
our ReduceUSession algorithm decides whether or not a
URL trace requested by a user session is the prefix of
another URL trace requested by another user session.
Based on this, we can identify the redundant test cases,
as can be easily done in practice. Besides, it covers all
the URLs requested by the original set of user sessions
and keeps the sequence of URL requests, i.e., it guaran-
tees that the original test requirements are satisfied.

3. Grouping and Prioritizing User Sessions

The user sessions reduced by the ReduceUSession algo-
rithm are divided into subgroups, each of which is re-
garded as a test suite. The goal of grouping is to reuse test
cases and the testing can be executed at different plat-
forms in parallel (or concurrently), to lessen test time and
improve test efficiency. Moreover, the interacting test can
be conducted between a pair of user sessions in each
group (see Subsection 4.4 for the details). We try our best
to keep the property for the user sessions in the same
group that the URL traces requested bear greatest com-
mon prefix of a certain length. Several discontinuous
integral threshold values, denoted by ζ1, ζ2, …ζk (ζi ≥ 1, 1
≤ i ≤ k), are defined. The user sessions, the lengths of
whose greatest common prefix of URL traces requested
fall in between a certain threshold values, are grouped
together. Fox example, let we have three threshold values
ζ1 = 2, ζ2 = 4 and ζ3 = 7, then the user sessions are divided
into four groups that are S1, S2, S3 and S4, the lengths of
whose greatest common prefix (denoted by α) are |α| ≤ 2,
2 < |α| ≤ 4, 4 < |α| ≤ 7 and |α| > 7 respectively. The test
cases in these four groups can be executed at different
platforms in parallel (or concurrently), and the greatest
common prefix is also reused in each group. Notice that
this is not the unique grouping way. For example, in the
four traces γ1 = abcdefg, γ2 = abcdeh, γ3 = abcd and γ4 =
cde, we can divide them into two groups {γ1, γ2} and {γ3,
γ4}, the lengths of whose greatest common prefix are 4 <
|α| ≤ 7 and |α| ≤ 2 respectively, or another two groups {γ1,
γ2, γ3} and {γ4}, the lengths of whose greatest common
prefix are 2 < |α| ≤ 4 and |α| ≤ 2 respectively. Of course, it
is unnecessary to require that the greatest common prefix
of URL traces requested by any two user sessions in each
group fall in between a certain threshold values; it is
recommended that most of them satisfy this property (a

percentage can be pre-designed or generated randomly for
the measurement). A compromise way needs to be found
to classify these URL traces (or test suites), i.e., a tradeoff
should be found between grouping and concurrent testing
and test reuse. Suppose that N user sessions are divided
into K groups. In general, there is almost the same number
of user sessions in one group as that in another, i.e., the

number equals approximately to N

K

 
 
 

. Additionally, this

way of grouping is preparatory, called elementary
grouping.

The common prefix indicates the users’ common
events, or the same or similar operations. It also shows
that the users bear the same or similar interests. The
longer the common prefix is, the more evident it is, as is
the case of most users. In addition, there is a special group
of user sessions, the length of whose greatest common
prefix of URL traces requested is shortest. This group of
user sessions often indicates different URL requests,
which represent distinct requirements for a Web applica-
tion. In these sessions, many aberrant events often occur
with unwonted input data. They belong to boundary cases,
which are very easy to go wrong for the Web application.
Herein, we prioritize test suites. The test suite with short-
est length of common prefix ranks first, then all the other
test suites are arranged according to their lengths of
common prefix in descending order. So, the test suite in
final position is that whose length of common prefix is
last but one. In the test suites S1, S2, S3 and S4, the lengths
of whose common prefixes are |α| ≤ 2, 2 < |α| ≤ 4, 4 < |α| ≤
7 and |α| > 7 respectively, if we prioritize them, then the
test executing sequence for those test suites are S1, S4, S3,
S2. That is to say, the test cases in S1 are executed first,
then the test cases in S4 and S3 are executed respectively
and finally, the test cases in S2 are executed. In each test
suite, the test cases are prioritized according to the cov-
erage ratios of URLs requested, i.e., the test case with
longer URL trace requested is executed earlier. If the
lengths of URL traces of several test cases in the same test
suite are equal, then they are randomly executed.

Our approach of prioritization is different from others.
The existing methods of prioritization add the strongest
test case, which is of the maximal use for the coverage
ratio of test requirements, to the new test suite. Those
methods aim to execute earlier the test cases of high pri-
ority than those of lower priority, to satisfy some test re-
quirements as soon as possible. These methods, however,
are often difficult to find the (nearly) strongest test case
each time before test run, while our approach divides test
cases into several groups according to the idea of common
prefix before prioritizing them. It is more convenient for
the testers to selectively execute the test cases of some
group by grouping all the test cases first, to detect some

User Session-Based Test Case Generation and Optimization Using Genetic Algorithm544

types of faults, for the same or similar types of errors are
often detected by those test cases in the same groups. In
addition, test cases can be reused by grouping and the
testing can be executed at different platforms in parallel
(or concurrently), to lessen test time and improve test
efficiency. Moreover, we have considered a special type
of user sessions, the length of whose greatest common
prefix of URL traces is shortest. This group of user ses-
sions often contains specific requests, which are the pri-
mary source for errors.

4. Testing Web Applications Using Genetic
Algorithm

After the process of grouping and prioritization above, we
obtain several initial test suites and test cases with the
initial executing sequences. However, the test scheme
generated by the elementary prioritization is not fast in
finding faults and can not satisfy the requirements earlier,
i.e., it is not much approximate to the best one. Therefore,
genetic algorithm is employed further to optimize the
grouping and prioritization.

In 1975, an American professor Holland first proposed
the idea of genetic algorithm systematically [13]. It has
attracted a large number of researchers and extended into
those aspects of optimization, search and machine learn-
ing with a solid theoretic foundation. The genetic algo-
rithm focuses on all the individuals in one population, and
uses random techniques to search efficiently for a coded
parameter space. Selection, crossover and mutation are
the basic operators in genetic algorithm; parameter coding,
the setting of initial population, the design of fitness
function, the selection of genetic operations and control
parameters consist of the critical part of genetic algorithm.
As a global optimization search algorithm of high effi-
ciency, the genetic algorithm has distinctive advantage in
solving the difficult problems in the domains of big space,
multiple peak, nonlinearity and parallel processing, etc.
In the following, we test Web applications using genetic
algorithm to further optimize the initial test suites and test
cases, and their initial executing sequences, in order to
achieve better test suites and test cases that satisfy test
requirements. The process of yielding a population of next
generation using three basic operators that are selection,
crossover and mutation once is called an iteration. To
obtain a good result, much iteration is repeated. The fol-
lowing introduces the process of selection, crossover and
mutation.

4.1 Selection

A pair of individuals is selected from a parent population
with the probability of ps. The probability that an indi-
vidual is selected is in direct proportion to its fitness
value, as is often implemented using the strategy of rou-
lette wheel [13]. In selecting, the individual of high fit-

ness value is duplicated into the population of next gen-
eration directly. The higher the fitness value of an indi-
vidual is, the higher the probability of yielding its off-
spring is, as shows that it is more appropriate to the ex-
pected result. Let we get K test suites (constituting the
initial population), which are S1, S2, …, SK of the de-
scending order according to the prioritization technique.
In practice, we combine the error coverage ratios of test
suites and the cost of test run to design fitness function.
The fitness value is listed as f1, f2, …, fK from high to
low, where fi is the fitness of Si (1≤i≤K). The probability
that an individual is selected equals to the resulting value
that its fitness value divides the sum of fitness values of
all the individuals, i.e., the selected probability of Si,
denoted by ps

Si, is
1j

K

i jf f

 . Obviously, the sum of the

selected probabilities of all the K test suites equals to 1.
According to the discussion above, the fitness f1 and f2

corresponds to two special test suites S1 and S2, the
lengths of whose greatest common prefixes are shortest
and longest respectively. S1 and S2 are selected to be the
individuals of next generation directly (in practical use,
we can also select more than two individuals of high
fitness to become the next individuals); in case they do
not be selected. Now, we randomly yield two numbers
that are g1, g2∈[0, 1], and randomly select two test suites
that are Si and Sj whose probabilities are not less than g1
and g2 respectively. The two new test suites Si’ and Sj’
(the individuals of next generation) are generated throu-
gh crossovering and mutating their parents Si and Sj (see
Subsections 4.2 and 4.3). Repeat the process of selection,
until adequate test suites of next generation are yielded.
One point should be emphasized that some test suites of
higher probabilities may not be selected as parents, while
others of lower probabilities are selected. This case is
reasonable and accords with the theory of biological
evolution in nature, because any thing has its necessity
and occasionality at the same time.

4.2 Crossover

The genes chain of two parent individuals selected are
crossovered with the probability of pc using the
TSCrossover algorithm, where pc is a system control
parameter. The new individuals after crossovering are
used to replace their parents. The TSCrossover algorithm
is shown in Figure 2.

Let we have two test suites Si = < c1, c2, c3, c4, c5, c6, c7,
c8, c9 >, which contains 9 test cases and Sj = < c10, c11, c12,
c13, c14, c15, c16 >, which contains 7 test cases. If the posi-
tion of crossovering is 3, then two new individuals of
next generation after crossovering Si and Sj are: Si’ = < c1,
c2, c12, c13, c14, c15, c16, c8, c9 > and Sj’ = < c10, c11, c3, c4,
c5, c6, c7 >, where the test cases indicated in bold face are
those interchanged one by one from corresponding test
cases in parent test suites.

Copyright © 2010 SciRes JSEA

User Session-Based Test Case Generation and Optimization Using Genetic Algorithm

Copyright © 2010 SciRes JSEA

545

4.3 Mutation

Each bits of the genes chain of new individuals are mu-
tated with the probability of pm using the TSMutation
algorithm, where pm is a system control parameter. The
probability of mutation is often small, or else it will raise
questions over the system stability. The populations can
be prevented from stagnating through mutation. If there
is no mutation, then the test data of new populations will
be confined to the initial values. The mutation process is
conducted respectively using the TSMutation algorithm
for the test suites Si’ and Sj’ crossovered using the
TSCrossover algorithm. The new individuals after muta-
ting are employed to replace those before mutating. The
TSMutation algorithm is shown in Figure 3.

Let pm = 0.015 and Si’ = <c1, c2, c12, c13, c14, c15, c16, c8,
c9>, which is one of the test suites after using the
TSCrossover algorithm. We randomly generate some
data: g(c1) = 0.246, g(c2) = 0.580, g(c12) = 0.025, g(c13) =
0.012, g(c14) = 0.632, g(c15) = 0.073, g(c16) = 0.431, g(c8)
= 0.193 and g(c9) = 0.059. For pm is not less than g(c13),
c13 is mutated, i.e., the positions of c13 and c12 are inter-
changed. The test suites Si’ after mutating becomes < c1,
c2, c13, c12, c14, c15, c16, c8, c9 >.

4.4 The Interacting Testing among User Sessions

Some new test cases, which contain the requested infor-
mation of different users, can also be generated using
crossover. The goal of the new test cases is to detect er-
rors caused by the use of possible conflicting data shared
by different users. The crossover way shows the idea of
information interchange among different user sessions.
Let S be a test suite, the steps of generating a test case
using crossover are:

1) for a test case c in S, randomly generate a number g
∈[0, 1], if a given crossover probability is not less than
g, then

a) copy the requests from r1 to ri in c to an interim test
case, where i is a random number, i∈[1, |c|]; |c| is the
length of URL trace in c;

b) select a test case d (different from c) in S randomly,
and then search rj in d reversely, which is the first one to
have the same URL as ri. If not found, then another test
case (also denoted as d) is selected, until it is found or up
to a given time;

c) if d is found, then all the requests after rj in d are
appended to the interim test case, which is the new test
case generated; otherwise go 2);

2) repeat 1) until each test case in the test suite is
processed.

We search the requests in test case d with an inverse
search method, for the length of greatest common prefix
of two test cases c and d in the same test suite is often

greater than 1; when the corresponding URL trace from r1

to ri is the prefix of this greatest common prefix, we can
not obtain different test cases if using the sequential search
method. For example, given two URL traces c =
u1u2u4u3u5u6u8u7 and d = u1u2u4u3u7u4u5u9, we randomly
copy u1u2u4 from c to an interim test case t firstly (i.e., t
equals to u1u2u4 temporarily). Here, I = 3 and ri = u4. Now,
we search rj in d reversely, which is the first one to have
the same URL as ri and then we have j = 6 and rj = u4. So,
all the requests after r6 in d (i.e., u5u9) are appended to t
such that t = u1u2u4u5u9. If searching the requests in d with
a sequential search method, we have j = 3 and rj = u4. This
time, if copying all the requests after r3 in d (i.e.,
u3u7u4u5u9) to t, we have t = u1u2u4u3u7u4u5u9, which
equals to d itself. And no new test case is generated. The

Algorithm: TSCrossover
input:

Parent test suites Si and Sj;
The crossover probability of pc;

output:
Si’ and Sj’ of next generation;

begin
Si’, Sj’←Si, Sj;
Randomly generate a number g∈[0, 1];
if pc is not less than g

Randomly generate an integral number g’ (0, min(∈ |Si’|,
|Sj’|)]; //|Si’| and |Sj’| are the number

//of test cases in Si’ and Sj’ respectively
Interchange the test cases in Si’ and Sj’ from the position of
g’ one by one,
until no more test case needs to be interchanged in any of
them;

endif;
Output Si’ and Sj’;

end.

Figure 2. The crossover algorithm TSCrossover for test suites

Algorithm: TSMutation
input:

The test suites Si’ and Sj’ after using TSCrossover algorithm;
The mutation probability of pm;

output;
The test suites Si’ and Sj’ after mutating;

begin
for each S in {Si’, Sj’}

for each c in S
Randomly generate a number g∈[0, 1];
if pm is not less than g

Interchange the positions of c and the test case
before c;

endif;
endfor
Output S;

endfor
end.

Figure 3. The mutation algorithm TSMutation for test suites

User Session-Based Test Case Generation and Optimization Using Genetic Algorithm546

reason is that the corresponding URL trace (i.e., u1u2u4)
from r1 to ri (i = 3) in c is the prefix of greatest common
prefix (i.e., u1u2u4u3) of c and d.

In addition, it is often not to mutate a test case, for the
new generated test case after exchanging the two adja-
cent requests ri and ri+1 makes no sense. The possible
reason is that the former request ri-1 may never reach the
request ri+1 (note that, this time ri becomes the next re-
quest of ri+1).

5. Experimental Analysis

Consider a typical miniature Web application developed
to demonstrate our approach: the SWLS (Simple Web
Login System) was shown in Figure 4.

Starting at the first page (indicated by a dashed arrow,
reasonably, a blank page can be used to request for the
first page of a Web application), i.e., a home page (p1),
the user can enter into the news page (p2) to list the news
by clicking on the view link, or enter into the login page
(p3) by pressing the login button. In page p3, the user
enters the userid and password, and presses the submit
button. Upon this pressing, the userid and password are
sent to the Web server for authentication. A logged page
(p4) will be loaded if both userid and password are co-
rrect. On the contrary, an error page (p7) containing an
error message is displayed if at least one of the submitted
values for userid and password is wrong. From the
logged page, it is possible to go to info page (p5) for se-
cure information viewing by just clicking on the browse
link. The user can click on the intra-page link continue to
view the different parts of the same page p5 if it is too
long. A logout page (p6) will be displayed when the user
presses the exit or logout button. Then, the user may
come back to the home page for login again. Note that
each time the login page is displayed; both the userid
and password fields should be initialized to be empty.

We inject only one fault in each page respectively, so
at least 7 faults exist totally (there may be other faults in
the Web application originally). A set of user sessions
are obtained after scanning user logs on the Web server
and purging their irrelevant information; then 89 mean-
ingful user sessions are finally created after scanning
them again. Only 17 user sessions are used to generate
test cases after the reduction of the meaningful user ses-
sions using the URL trace-based ReduceUSession algo-
rithm; and the reduction ratio reaches 80.9%. Imperson-
ally, more user sessions there are for a given Web appli-
cation, much higher is the reduction efficiency, for more
user sessions mean higher possibility that the URL trace
requested by a user session is the prefix of that requested
by another in the view of statistics. The set of 17 user
sessions† (or test cases) is denoted by Γ1. After grouping
and prioritizing Γ1, an initial executing sequence <S1, S2,

S3> of test suites is obtained, which is denoted by Γ2,
where S1, S2 and S3 contain initial executing sequences
of 7, 6 and 4 test cases respectively. We achieve the final
executing sequence <S1’, S2’, S3’> of test suites using
genetic algorithm for further processing, which is de-
noted by Γ3, i.e., S1’, S2’ and S3’ is obtained through
crossovering and mutating S1, S2 and S3.

Now, we run the test suites (and test cases) in Γ1, Γ2
and Γ3 for the Web application respectively, and find all
the 7 faults injected as well as an additional fault (i.e.,
the user may browse p2 just by directly entering its ad-
dress in the URL address bar). The executing time of Γ2
and Γ3, however, is much shorter than that of Γ1, and it
takes less time of Γ3 than that of Γ2 too. This means that
the test suites (and test cases) grouped and prioritized run
faster than those, which are not grouped and prioritized;
and that the test suites (and test cases) processed further
by genetic algorithm are much faster. It is predictive that
the test approach proposed in this paper will yield more
evident positive effects for larger Web applications.

6. Concluding Remarks and Future Work

Generating test cases of high quality is the premise of
Web application testing. The approach in this paper cap-
tures a series of user events, i.e., the sequences of URLs
and name-value pairs in Web server (s). It then employs
the reduction, grouping, prioritization and genetic algo-
rithm to yield test cases and optimizes them. Compared
to the methods of capturing user events in clients, our
approach is very effective when a large volume of users
exist, and it is a Web application testing method of high
efficiency. The main contributions include:

1) an approach to generating and optimizing test cases
is proposed for Web application testing based on user
sessions using genetic algorithm.

2) several important definitions such as URL trace,
prefix, common prefix, greatest common prefix, are
given. These definitions are convenient for reducing and
grouping user sessions.

3) a URL trace-based reduction algorithm is designed.
The user sessions acquired are lessened greatly using the

view

browse login continue

logout

return submit

submit

exit

 home

login
page

p3

logged
page

p4

logout
page

p6

error
page

p7

info
page

p5

home
page

p1

news
page

p2

 † For the convenience of test run, we have preprocessed the user sessions
appropriately. Figure 4. A simple web login system

Copyright © 2010 SciRes JSEA

User Session-Based Test Case Generation and Optimization Using Genetic Algorithm

Copyright © 2010 SciRes JSEA

547

algorithm. However, it covers all the URLs requested by
the original set of user sessions and keeps the sequence
of URL requests.

4) an approach to grouping and prioritizing user sessions
is presented, as can improve the efficiency of test run.

5) an approach to generating new test cases is pro-
posed using crossover. The new test cases generated in-
clude information requested by different users and can
detect errors caused by the use of possible conflicting
data shared by different users. That’s to say, the cross-
over indicates the idea of information interchange among
different user sessions, which helps to test the interacting
of user sessions.

6) a strategy of test reuse and concurrence is provided,
as can decrease the time of test run greatly as well as le-
ssen test cost.

Web application testing is much complex systems engi-
neering. It is not easy to acquire an effective and practical
test scheme. Our approach only evaluates a test case ac-
cording to its test coverage ratio. However, many factors
need to be considered, such as the running cost of each test
case itself (for example, CPU time), including the actual
running time, loading time, time to save test state, and the
influence of different test criteria on a test case. All these
questions need to be answered in future research.

REFERENCES

[1] E. Hieatt and R. Mee, “Going Faster: Testing the Web Ap-
plication,” IEEE Software, Vol. 19, No. 2, 2002, pp. 60-65.

[2] D. C. Kung, C. H. Liu and P. Hsia, “An Object-Oriented
Web Test Model for Testing Web Applications,”
Proceedings of the 1st Asia-Pacific Conference on Web
Applications, New York, 2000, pp. 111-120.

[3] J. Offutt, Y. Wu. and X. Du, et al., “Bypass Testing of
Web Applications,” Proceedings of the 15th IEEE Inter-
national Symposium on Software Reliability Engineering,
Bretagne, November 2004.

[4] C. H. Liu, D. C. Kung and P. Hsia, “Object-Based Data
Flow Testing of Web Applications,” Proceedings of the
1st Asia-Pacific Conference on Quality Software, Hong
Kong, 2000, pp. 7-16.

[5] C. Elbaum, G. Rothermel and S. Karre, et al., “Leveraging
User Session Data to Support Web Application Testing,”
IEEE Transaction on Software Engineering, California,
May 2005.

[6] R. Godin, R. Missaoui and H. Alaoui, “Incremental
Concept Formation Algorithms Based on Galois (Concept)
Lattices,” Computational Intelligence, Vol. 11, No. 2,
1995, pp. 246-267.

[7] S. Khor and P. Grogono, “Using a Genetic Algorithm and
Formal Concept Analysis to Generate Branch Coverage
Test Data Automatically,” Proceedings of the Inter-
national Conference on Automated Software Engin-
eering, Austria, 2004, pp. 346-349.

[8] H. H. Sthamer, “The Automatic Generation of Software
Test Data Using Genetic Algorithms,” PhD. Dissertation,
University of Glamorgan, Wales, 1996.

[9] D. Berndt, J. Fisher and L. Johnson, et al., “Breeding
Software Test Cases with Genetic Algorithms,” Pro-
ceedings of the 36th Hawaii International Conference on
System Sciences, 2003, pp. 17-24.

[10] R. P. Pargas and M. J. Harrold, “Test-Data Generation
Using Genetic Algorithms,” Journal of Software Testing,
Verification and Reliability, Vol. 9, No. 4, 1999, pp.
263-282.

[11] X. X. Jia, J. Wu, M. Z. Jin, et al., “Some Experiment
Analysis of Using Generic Algorithm in Automatic Test
Data Generation,” in Chinese, Journal of Chinese Com-
puter Systems, Vol. 28, No. 3, 2007, pp. 520-525.

[12] D. J. Berndt and A. Watkins, “Investigating the Perfor-
mance of Genetic Algorithm-Based Software Test Case
generation,” Proceedings of the International Symposium
on High Assurance Systems Engineering, Florida, 2004,
pp. 261-262.

[13] J. H. Holland, “Adaptation in Natural and Artificial
System,” University of Michigan Press, Michigan, 1975.

J. Software Engineering & Applications, 2010, 3, 548-555
doi:10.4236/jsea.2010.36063 Published Online June 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Tabu Search Solution for Resource Confidence
Considered Partner Selection Problem in
Cross-Enterprise Project

Hanchuan Xu, Xiaofei Xu, Ting He

School of Computer Science & Technology, Harbin Institute of Technology, Harbin, China.
Email: {xhc, xiaofei, xuantinghe}@hit.edu.cn

Received April 1st, 2010; revised April 21st, 2010; accepted April 23rd, 2010.

ABSTRACT

Cross-enterprise project is the main implementation form in multi enterprises collaborative production environment.
Minimizing the risk of failure and tardiness caused by the uncertainty of partner’s resources in partner selection is the key
problem to ensure success in Cross-enterprise project. In this paper, considering the factors and constraints of
sub-project processing times, precedence of sub-project and project due date, especially the resource confidence, a 0-1
integer programming model was presented with the objective to minimize the risk of failure and the tardiness of the
project. A project scheduling algorithm was designed to search and evaluate selection solutions, and the project
scheduling algorithm was embedded into a Tabu search algorithm to solve the model. Simulation experiments and
comparisons with other algorithms showed that the proposed approach was possible to find the optimal solution with a
faster speed and higher probability.

Keywords: Cross-Enterprise Project, Partner Selection, Resource Confidence, Tabu Search

1. Introduction

To be competitive in the global manufacturing environ-
ment with the rapidly increasing competitiveness, strate-
gic collaborations between enterprises are needed in order
to meet the market’s requirements for quality, respon-
siveness, and customer satisfaction. Dynamic alliance,
virtual enterprise, extended enterprise, and supply chain
are the major management philosophies for multi enter-
prises collaborative production environment.
Cross-enterprise project (CEP) management pattern arose
as the main implementation form in these management
philosophies. CEP is the formation of closer co-ordination
in the design, development, costing and the co-ordination
of the respective manufacturing schedules of co-operating
independent manufacturing enterprises and related sup-
pliers [1,2]. There are four stages in CEP life cycle: for-
mation, operation, evolution and dissolution. A major
issue in the formation phase is to select appropriate part-
ners and allocate tasks between partners. During this
process, the core enterprise comprehensively evaluates
partners according to cost, quality, credit, delivery time,
etc., and then based on certain criteria, find the best
combination of partners to collaborate to complete the

project.
Partner selection has attracted much research attention

recently, because it is an important function for informa-
tion management systems, such as project management
(PM), enterprise resource planning (ERP) and supply
chain management (SCM). Most of researches about the
partner selection problem are based on qualitative analysis
methods. However, quantitative analysis methods for
partner selection are still insufficient. Many operation
research methods, such as analytic hierarchy process
(AHP), analytic network process (ANP) and fuzzy syn-
thetic evaluation are widely used to the problem, but
mathematical models and optimization methods for part-
ner selection are still a challenge [3,4]. In partner selection
process, although there are many factors needed to be
considered such as friendship, credit, quality, and reli-
ability, the cost and completion time are the two key
factors and focused on by most researchers.

In CEP, the resources belong to different partners
which often undertake other projects at the same time, so
the available production capacity of partner will be tight
during some periods. In addition, unforeseen exceptions
also inevitably occur. All of these make resources have a
certain degree of uncertainty. Although there are some

Tabu Search Solution for Resource Confidence Considered Partner Selection Problem in Cross-Enterprise Project 549

constraints between enterprises such as contracts, the case
that partners can’t provide promised resources on time or
in right quality is not able to be completely avoided. When
this happens, it will seriously affect the production sche-
dule of core enterprise and even cause the whole cross-
enterprise project failed. So the confidence level of re-
source that can be provided by partners on time and in
right quality which we defined as resource confidence is a
very important factor in the partner selection problem.
However, most researchers mainly take into account the
cost and completion time, and the objective is to minimize
the total cost of the project or the project duration. The
factor of resource confidence is neglected in most re-
searches.

Yannis and Andreas [5], Sha and Che [6], Mikhailov [7]
and other researchers proposed some models and ap-
proaches for partner selection by establishing a CEP,
where cost, time and distance were considered. However,
the other two important factors, the resource confidence
and the precedence of sub-project, were not considered in
their papers. As Wang et al. [8] indicates, in the coopera-
tion relationship of sub-projects contracted by partners, it
may be represented by an activity network with prece-
dence. Thus, the problem could be considered as a partner
selection problem embedded with project scheduling.
Naiqi et al. [9] considered the completion time as a con-
straint and modeled the partner selection problem by an
integer programming formulation to minimize the manu-
facturing cost. The formulation was then transformed into
a graph-theoretical formulation and a 2-phase algorithm
was developed to solve the problem. Wang et al. [8] took
into consideration the factors of cost, completion time and
precedence of sub-project, described the partner selection
problem with a 0-1 integer programming formulation to
minimize the total cost of the project. They then devel-
oped a fuzzy decision embedded heuristic genetic algo-
rithm to find the solution for partner selection. The ex-
periments showed that the algorithm was possible to
quickly achieve optimal solution for large size problems.
Taking into account the same factors and objective as
Wang [8], W. H. IP et al. [10] and Zhibin et al. [11] sepa-
rately proposed branch and bound solutions for partner
selection problem in virtual enterprises and their solutions
were especially effective to medium or small size prob-
lems. In all these papers mentioned above, their objectives
were minimizing the total cost of project and didn’t con-
sider the impact of resource confidence to project im-
plementation risk. To minimize risk in partner selection
and ensure the due date of a project in virtual enterprise,
W. H. IP et al. [12] described and modeled a risk-based
partner selection problem. They developed a rule-based
genetic algorithm with embedded project scheduling to
solve the problem. In their paper, they assumed that each
candidate partner had a fail probability of its contracted
sub-project. In fact, the fail probability of the sub-project

closely related to whether the partner’s available re-
sources were tight or not in the duration of the sub-project.
The tighter the resources are, the higher the fail probabil-
ity is, and vice versa. However, the production load of
partner is varied in different periods, so the available
resource and fail probability are also different. They used
a whole fail probability for all periods and didn’t consider
the difference of fail probability in different periods.

To solve the partner selection problem in CEP, we first
describe it with a 0-1 integer programming model con-
sidering the factors of process time, precedence of sub-
projects, and resource confidence. Then a project sched-
uling algorithm is proposed to calculate the project com-
pletion time and the time window of each sub-project
under a feasible solution. From this, we embed the project
scheduling algorithm into a Tabu search algorithm to
obtain the optimal partner selection solution. The com-
putation results showed that the proposed approach is
efficient to achieve the optimal solution.

The paper is structured as follows. In Section 2 the
problem and the model are introduced. Then the solution
space reduction method and the project scheduling algo-
rithm to evaluate selection solution are presented in Sec-
tion 3. The Tabu search algorithm embedded the project
scheduling is presented in Section 4. Section 5 reports an
experimental example and computational results obtained
by testing the algorithm on some test instances. Finally,
Section 6 presents our overall conclusions.

2. Model for Partner Selection Considering
Resource Confidence

The problem of partner selection for CEP considering
resource confidence can be described as follows:

Assuming an enterprise (core enterprise) obtain a big
project consisting of several sub-projects. It is not able to
complete the big project by itself from its own resources
and has to find some partner enterprises to collaboratively
finish the project. The partner selection procedure is di-
vided into two phases. Firstly, the enterprise determines
the payment and some basic requirements for the process
time and quality of each sub-project. The partners who
can accept the conditions will propose the process time
they need to finish the sub-project according to their own
capacity. They constitute the candidate partner set. In the
second phase, the enterprise comprehensively evaluates
all candidates and calculates the confidence of resource
provided by the partner for the sub-project. At last the
enterprise selects the most appropriate partner for each
sub-project. There exists plenty methods to evaluate the
individual candidate partner and calculate the resource
confidence, for an extensive review we refer to MALONI
and BENTON [3] and BOER et al. [4]. In this paper, we
just focus on the second phase, i.e., how to select partners
according to the resource confidence.

Based on the risk-based partner selection model pre-

Copyright © 2010 SciRes JSEA

Tabu Search Solution for Resource Confidence Considered Partner Selection Problem in Cross-Enterprise Project 550

sented by W. H. IP et al. [12] and considering the resource
confidence, we present a 0-1 integer programming model
MPCPS for the partner selection problem. Suppose that
the project consists of sub-projects, there are prece-
dence relationship between these sub-projects and they
form a precedence activity network

n

H . If sub-project
can only begin after the completion of sub-project , we
call sub-project as the immediate predecessor of sub-
project and define the connected sub-project pair
by . For the convenience of description, we
label these sub-projects such th i k . Without the loss
of generality, the final sub-project is labeled as sub-pro-

ct n . Thus, we can define that the completion time of
final sub-pro ct nc is the completion time of the project.

Each sub-project has some candidate partners, for sub-
1, 2,..., n , the are im candidate partners,

and for the candidate ner

k
i

i
k

 

i ,

,i k H

j

project 

at

je
e

re

i

 part j of su -project i , its

processing times is ijq periods. The resource confidence

 candidate

b

of j to ub-project in period t is d as

()ijd t () (0,1]ijd t  . The due date of the project is

D. To simplify the problem, we assume that the core en-
terprise will select only one candidate to undertake one
sub-project.

s i note

 and there

The objective is to select the optimal combination of
partners for all sub-projects in order to maximize the
whole resource confidence of the project and to finish the
project within the due date.

The following decision variable is defined.

1
()

0ijx t


 


Then the problem can be modeled as follows:
MPCPS

 
  







n

i

m

j

c

t

*
n

qt

tτ
ij

ij
ijd

x

i n ij

Dcβτd
q

txxFmax
1 1 1

1

)]][[(1])(
1

)[()(

(1)

s.t.
1 1

() 1; 1, 2,...,
m ci n

ij
j t

x t i
 

  n



 (4)

 (2)

1 1 1 1

() () (); 1, 2,..., , ,
m c m ci n k n

ij ij kj n
j t j t

t q x t t x t t c i k H
   

     

(3)

1 1

() ()
m cn n

nj nj n
j t

t q x t c
 

 

() {0,1} , ,ijx t i  j t (5)

where []x  stands for },0 w , []{max y  stands for

min{1, d }y an  is the tard en coefficient.

(1) is the objective function, where

iness p alty

Formula 1

ijq
.

1t qij ()ijt
d  

ence for candidate


source confid

 is the mathematical expectation of re-

j of sub-project i in

the ijq continuous periods, and bbreviated as ija E bel-

low. onstraint (2) ensures that each sub-project will be
contracted to only one partner and constraint (3) is the
precedence constraint of sub-projects. Constraint (4)
gives the method to calculate the completion time of the
project.

It is ob

 C

vious []y  ar

at

o

e

ion

mp

 that the operator []x  and non-

ot c

PCPS is a c lex

an

3.1

alytical and the objective function is n ontinuous
and differentiable, so it is difficult to treat the model by
traditional mathematical programming methods. There-
fore, we develop a project scheduling embedded Tabu
search (PSTS) algorithm to solve this problem.

3. Solution Space Reduction and Evalu
Algorithm of Solution

 Solution Space Reduction

MThe partner selection modeled as
combinatorial optimization problem. The number of fea-
sible solutions (solution space) is very large, even for a
small-scale problem. To simplify the solving process, W.
H. IP et al. [12] defined the concept of inefficient candi-
date and proved that the optimal solution consists without
any inefficient candidate. To efficiently reduce the solu-
tion space, all inefficient candidates can be ignored in the
solving process without losing the optimal solution. Based
on the definition presented by W. H. IP [12] and consid-
ering the characteristics of the model MPCPS, we define
the inefficient candidate to our model as follows.

Definition 1. For the two candidates j and k o

candidate j is selected to sub-project i at period t

otherwise

f sub-

pr

, d

oject i , if min max[,]i it ES LF  min max[,]i it ES LF  ,

()ik ij ikq q t ()ijd t  n , or ik , (ikd)t  ()tijq q ijd , the

the candidate j is called inefficient candidate.

It is easy to rove that there exists at least onep al optim
solution which doesn’t include any inefficient candidate.
Therefore all the inefficient candidates are not considered
in the model without loss of the optimal solution. In
definition 1, min

iES is the earliest possible start time and
max

iLF is the latest allowable finish time of sub-project i .

ngest possible time window min max[,]i iES LF of

sub-project i is only a part of the whole project time
window [1,]c , so to judge whether a candidate is ineffi-

cient or no e only need to do the judgment in time
window min max[,]i iES LF according to definition 1, rather

The lo

n

t, w

than in the whole project time win w. This me -do thod im

Copyright © 2010 SciRes JSEA

Tabu Search Solution for Resource Confidence Considered Partner Selection Problem in Cross-Enterprise Project 551

proves th of definition 1 and the effect of
solution space reduction. Let min

iq and max
iq be the short-

est and longest process time of sub-project i respectively,
min

1, 2,...,min{ }i i i imi
q q q q , 1, 2,...,max }i imi

q q q ,

then min
i

e satisfiability

max {i iq

ES and max
iLF can be calculated with min

iq and
max oject scheduling problem with the

,
iq . This is a pr

objective of minimizing project m pan, i.e.akes

maxPS p an re exists some polynom time

ithms [13].

rec C

r

Evalua

d the

m, th

ial

tur b ng is selected

algo

3.2 Project-Scheduling-Based Solution
n Algorithm

In our TS algorith

tio

e na al num er stri
as code description. Let 1 2[, ,...,]nx x x x , where ix is an

nds candidate

 integer between 1 and im . This sta for that

ix is selected for sub-project i . Thus, 1 2[, ,...,]nx x x x is

called a selection. For exa 3 4] is a partner
selection of a project with 7 sub-projects. In the selection,
the candidate 3 is selected for the sub-project 1, and the

didate 4 is selected for the ub-proje
Once a selection fixes the candidates for all sub-pro-

jects, to obtain the object function value, a project-sche-
duling-based solution evaluation algorithm PSLP can be
done to calculate the variable values of c and

mp 1 5

c d so on.

le, [3 4

 s

 2

t 2, ancan

n ijE , and

 t (i i

also the object function value. The procedure of the algo-
rithm PSLP is described as follows:

Algorithm PSLP

Step 1: Calculate the earliest starting time iES and the

earliest finish time iEF of each sub-projec 

1, 2,...,)n . If do not exist (, , ..., }k n)k i H {1, 2,  
,

letion tim

e

{1, 2,...,k

, then

)i

j p e c

F .

iLS and th

,..

}n  , then

}.

0iES  ; Else, max{ , (}i kES EF k H   .

i i ixi
EF ES q  .

: Calculate the p n . Let

, nLS E
late the latest starting tim

St

LF

lat

LF

ep 2

n EF
Step 3: C

If do not

ro ect com

n nc L

H ,

n ,

alc
nS

u

exist (,i

e

est finish time iLF of each sub-project (1, 2 .,)i i n .

)k

;i nLF Else, min{ , (,)i kLF LS i k H   iLS 

i ixi
LF q .

Step 4: Calculate h sub-

1, 2,.. s l

 th

.,)n

ot.

e fl me eac

whe i critica

i

oat ti

judge

i i

iFF of

ther itproject

sub-p

(i i 
roject or

and

 n FF LS  ES .

U , cal-

If 0iFF  , then { }c cU U i  , Else

{ }ncU U i  .

Step 5: For each sub-project in
nc

 non-critical

culate the maximu al expectation of
confidence by th step-by-step right-shifted procedure.

nc

m mathematic resource
e

Step 5.1: If ncU   , then go to Step 6; Else he

non-critical sub-project i from ncU which has the

maximum earliest start time. \{ }nc ncU U i , 0Pos

get t

 ,

0ixi
E  .

Step 5.2: For 0j  to If Do1iFF 
1

 ixi
ixi

E
q



1

()
j qixi

ix id ES
 

i
k j

k then
1

1
()

j qixi

ix ix i
ixi

E d E
q

 

 i i
k j

S k ,

Pos j End For.

Step 5.3: Adjust oat time of each immediate pre
ceding non-critical sub-project of sub-project i. Fo

the fl -
r

, and (,)k inck U  H , let k kFF FF P  os , go to

St

he maxim thematic ectatio ur

ep 5.1.
Step 6: For each critical sub-project ci U , calculate

t um ma al exp ce con-

fidence,

n of reso
1

0
ix ix ii i

kixi

1
()

qixi

d ES k


E 
q 

 .

Step 7: Calculate the objective function value. ()dF x
mn i

 
1 11

() (1 [[]])
cn

ij ij n
j ti

x t E c D 

 

  

Step 8: Over.
In the PSLP algorithm, the time window of each sub-

project is calculated first. There,  , 1,...,i i iES ES LS

d  , 1,i iEF EF  ..., iLF

roject set cU , the

an represent

do

, tha

rge-scale combination optimization problem.
rtcomings of

 the starting time win-

al path, the critical
w and finish time windows of sub-project i, respec-

tively. In addition, the project critic
sub-p non-critical sub-project set ncU

and the float time of each sub-project can also be deter-
mined. In the second part, based on the idea of solving the
resource levelling project scheduling with fixed project
duration problem and considered the characteristics t
the resource confidence is various in each period and non-
critical sub-project has float time, a step-by-step right-
shifted procedure is employed to find the time section in
which the non-critical sub-project has the greatest mathe-
matical expectation of resource confidence. In the pro-
cedure, non-critical sub-projects are dealt with in accor-
dance with descending order of the earliest start time. At
the last part, the objective function value for a selection is
obtained.

4. Tabu Search Algorithm Design

The Tabu search (TS) algorithm is an effective method for
solving la
The TS algorithm can overcome the sho

Copyright © 2010 SciRes JSEA

Tabu Search Solution for Resource Confidence Considered Partner Selection Problem in Cross-Enterprise Project 552

 one
e constringency speed to op-
 the fact that, in the widest

some common heuristic algorithms which only adapt to
special problems and easily sink into local optimal solu-
tions. TS has been used on an increasing number of prac-
tice problem and has proven to be effective [14,15].

4.1 The Initial Solution

The initial solution is very important to TS and a good
is very useful to improve th
timal solution. Considering
feasible time window  , 1,...,ES ES LF of the sub-pro-

ject, the greater the resource confidence mathematical
expectation of the cand date is, the higher the probability
of being selected is, th generation pro-
cedure PINI is designed as the following steps.

Step 1: From sub-project 1i

i
e initial solution

 to n, calculate the wid-

est feasible time window  ,i iES LF .

Step 2: From sub-project 1i  to n, find candidate ix

which has the greatest m
source confidence in all th es

a atical expectation of
e c dat of sub-project

luti

them
andi

re-
i .

Step 3: output the initial so on 1 2[, ,...,]nx x x x .

It is obvious that the initial solution is feasible.

4.2 Neighbourhood Structure and Candidate

is
s

obt gh changing the value of one bit of the

 confidence and the step-
by

Solution

Considering the natural number string employed in th
algo ghbor is defined as all feasible solutionrithm, nei

ained throu
current solution, i.e., changing a candidate partner of a
sub-project. Moving from the current solution to a solu-
tion in the neighborhood is called a move. Therefore, one
step in a move can change only one partner of the current
solution. Let NB be the neighbor set. Evaluation value of
each solution in NB can be calculated by the PSLP algo-
rithm. The solution in NB will be selected as the candidate
solution with meeting the conditions that it has the great-
est evaluation value and the move from the current solu-
tion to it is not in the Tabu list.

In the solution evaluation algorithm PSLP described in
3.2, Step 5 is to precisely calculate the maximum mathe-
matical expectation of resource

-step right-shifted procedure has high CPU time cost. In
fact, if a solution causes the whole project delayed, its
evaluation value will be penalized with the penalty factor
 in the Formula 1. Therefore, the solution has very low

probability to be selected as the candidate solution. From
this point of view, the following tardiness penalty

aluation procedure of candidate solution CSTPE is
designed.

Procedure CSTPE:

Step 1: Implement the Steps 1-3 in the algorithm PSLP to
calculate t

ev

he time window of each sub-project and the
e whole project.

he time window

completion time of th

Step 2: If the project isn’t finished within the due date in
the solution, then the Step 5 of PSLP will not be run and
the subsequent steps will run with t

 ,i iES LF obtained by the Steps 1-3, else the total PSLP

algorithm will be run.
Experiments show that this candidate solution evalua-

dure can significantly reduce the time cost and
still can find the optim
tion proce

al solution with high probability.
Th

sional
e number of rows is the length of the
t column is the code of the sub-project,

ling,

was found,
w

 if a solution is

tions (max_tries) and the maximum number of itera-
tio

e detailed analysis is described in the Section 5.

4.3 Tabu List

The Tabu list (TSL) is composed of a two-dimen
integer array. Th
Tabu list, the firs
and the second column is the code of the candidate partner
corresponding to the sub-project in the first column. The
code for every row records a solution in the neighborhood
that has been deleted in recent movements. TSL is re-
newed according to the criterion of first in, first out.

4.4 Longer-Term Tabu List and Tabu Relaxation

To avoid getting into the local optimum and the cyc
two special techniques, longer-term Tabu list (TTL) and
Tabu relaxation, are used. TTL is created to dynamically
forbid moving overactive nodes in order to get diversifi-
cation and help to prevent cycling. The algorithm incor-
porates a move frequency table to record the move fre-
quency of each sub-project. When a sub-project’s partner
is changed, its move frequency is incremented by 1. If a
sub-project’s partner x has been moved more than two
times and TTL is not full, it will be put into TTL. If TTL is
full and if some sub-project’s candidate partner y already
in TTL has a lower move frequency than x, y will be
dropped and x will be added into TTL.

Another technique used is the relaxation of Tabu lists.
If a given number of iterations (relaxed_tries) has elapsed
and TTL is full since the last best solution

hich means the search process has plunged into a local
optimal solution or a cycling, both TSL and TTL are
emptied and using the current solution as the initial solu-
tion to continue the search. Relaxation of the Tabu lists
will change the neighborhood of the current solution
dramatically, which will lead to a rapid downhill move-
ment and may lead to new search spaces.

4.5 The Aspiration Criterion and Stopping Rule

The Tabu status of a move can be overruled
feasible and is better than any feasible solution known so
far.

In our PSTS algorithm, there are two ways of control-
ling the execution time: the maximum total number of
itera

ns without improvement of the best known feasible
solution (max_unchanged). The execution of the algo-

Copyright © 2010 SciRes JSEA

Tabu Search Solution for Resource Confidence Considered Partner Selection Problem in Cross-Enterprise Project 553

rithm is stopped when the number of iterations max_tries
and max_unchanged are both attained, or when the
number of iterations doubles max_tries. Therefore, the
total number of iterations is not known in advance, de-
pending on the evolution of the search. The combination
of the max_tries and the max_unchanged as stopping
criterion allows the search to continue if the algorithm is
exploring a new promising region. Obviously, to give
time for improvement after the restart, the max_un-
changed should be greater than the relaxed_tries.

4.6 Global Description of the Algorithm

Algorithm PSTS:

Step 1: Specify the parameters. Set initial
changed, relaxed_tries, set iteration

values of

, iteration counter for no improve-
max_tries, max_un
counter to tries  0
ment to 0unchanged  .

Step 2: Generate an initial solution x using the algo-
rithm PINI ulate the evaluation value (x)F of and calc

x using re.the CSE procedu Let the cu nt best solution
*

rre

x x , the best evaluation value * (x)F F .

Step 3: 1tries tries  , if max_tries tries and

max_ ,ged unchanged or if 2 tries  

then go to Step 7

unchan

max_ tries , , else g

Step 4: If _ tries , an ll,

TSL and TTL.
Find the neighborhood NB of

o to Step 4.

relaxedunchanged  d TTL is fu

then empty
Step 5: x , calculate the

ca ution ndidate sol NBx and the evaluatio

solution

n value ()NBF x .

Calculate the best Tabu TSLx and t

ng piration

he corre-

sponding evaluation value ()TSLF x from TSL.

Step 6: Consideri the TSL,TLL and the as
criterion, generate the new solution x from NBx and

TSLx . If * max{ ()},F F x x *), (NB TSLF ,x x *F

max{ (), ()},NB TSLF x F x 0;unchanged  else

 1unchanged unchanged  . Go to Step 3.

 7: OuStep tput *x and is the optimal solutio
algorithm is over.

If the CSTPE procedure is candidate
so be

le

onsists of 14 sub-projects

*F n,

used to evaluate
lution, then the PSTS will named as PSTS-P. Other-

wise, if just the comp ted PSLP is used, the PSTS will be
named as PSTS-NP.

5. Experiments Analysis

The algorithm was coded by JAVA and run on a Pentium
Dual 2.2 GHz PC.

The example is a project that c
and the core enterprise calls tenderers for the sub-projects.
The precedence relationship represented by the active-
on-node network is shown in Figure 1. The numbers

Figure 1. Example of a project represented by active network

in the parentheses are the number of candidates, the shor

he project’s due date is 24 periods and each sub-project

t-
est process time and the longest process time, respectively.
T
has 3 to 6 candidates. The solution space size is 1.05 × 108.
Through identifying and removing the inefficient candi-
dates according to Definition 1, the size is reduced to 2.83
× 107. Different candidates may have different process
time to the sub-project that they bid for. The resource
confidence of the candidate in each period ()ijd t is cal-

culated by the fuzzy comprehensive evaluation method,
and where () (0,1]ijd t  . For the limitation of the paper

size, the detailed data is omitted.
The setting for the values of parameters is important for

the efficiency rithm. In our algorithm, the “Best_
rate” is used to evaluate and adjust t

 of TS algo
he values of parameters,

w

 of the PSTS-P, PSTS-NP and
B

t it needs much more running time to deal with
la

here “Best_rate” is the rate to reach the optimal solution in
a certain number of runs. Based on the algorithms of IP WH
et al. [10] and Zhibin et al. [11], considering the character-
istics of our problem, a branch- bound algorithm (B & B) is
designed to calculate the optimal solution. For different
scale problems, the algorithm was run a certain number
times according to the scale of the problem with different
random seeds for each parameter setting. Therefore, the
parameters with the highest “Best_rate” are selected. To the
example in Figure 1, the values of the parameters are
“max_tries = 700”, “max_unchanged = 80”, “relaxed_tries
= 60”, the length of TSL is 18, and the length of TLL is 70.
The result of the example is shown in Table 1, and the
objective value is 0.241.

For testing the performance of the PSTS algorithm, we
randomly generated some problems with different scales.
The comparison results

&B are shown in Table 2. Where “N” is the number of
sub-projects, “size” stands for the size of solution space,
“CPU time” is the average computation time of each
running.

The B & B algorithm is a kind of exact algorithm and
can always find the optimal solution (best rate is always
100%), bu

rge scale problems. The two recommended algorithms,
PSTS-P and PSTS-NP, can achieve the optimal solution
with a high best rate and the computation time doesn’t

Copyright © 2010 SciRes JSEA

Tabu Search Solution for Resource Confidence Considered Partner Selection Problem in Cross-Enterprise Project

Copyright © 2010 SciRes JSEA

554

oce

Sub-project no. Se Resource confidence

Table 1. The selected partner list, pr ssing time and resource confidence

lected partner code Processing time Start time Finish time
1 A2 0.82 2 0 2
2 B3 4 0 4 0.80
3 C1 5 3 7 0.76
4 D4 4 6 9 0.55
5 E1 3 9 11

0.60
6 F5 7 8 14 0.72
7 G2 3 11 13 0.58
8 H1 3 15 17 0.63
9 I5 2 15 16 0.69
10 J3 2 12 13 0.72
11 K2 2 14 15 0.83
12 L4 3 17 19 0.82
13 M1 5 18 22 0.91
14 N2 4 23 26 0.87

Table 2. The co arison of PSTS-P, PSTS-NP and B & B

PS B & B

mp

TS-P PSTS-NP
N Size

CPU time (s) Best Best Avg CPU time (s) Best Best Avg CPU time (s) Best Best & Avgrate (%) rate (%) rate (%)

12 5.24 × 108 13.32 100 0.231 0.231 33.32 100 0.231 0.231 48.56 100 0.231

18 4.63 × 1010 33.67 100 0.256 0.256 69.41 100 0.256 0.256 101.72 100 0.256

24 7.51 × 1014 46.59 100 0.217 0.217 85.73 100 0.217 0.217 201.34 100 0.217

33 3.04 × 1018 79.41 98 0.134 0.132 98.41 100 0.134 0.133 579.31 100 0.134

38 1.46 × 1021 88.76 96 0.158 0.156 108.37 99 0.158 0.157 783.85 100 0.158

45 2.35 × 1022 97.58 94 0.179 0.176 120.78 97 0.179 0.178 1084.67 100 0.179

48 6.35 × 1024 113.62 91 0.092 0.089 156.39 96 0.092 0.090 9457.36 100 0.092

52 4.53 × 1026 130.68 88 0.087 0.083 210.65 94 0.087 0.085 17613.09 100 0.087

58 8.63 × 1027 149.31 86 0.083 0.078 290.25 93 0.083 0.080 29465.06 100 0.083

64 9.27 × 1035 173.24 82 0.062 0.053 362.47 90 0.062 0.056 38280.77 100 0.062

row fast with the problem size increase. For PSTS-P

 complicated and practical problem in

problem of CEP with considering resource confidence,

optimizing
ef

g
using the CSTPE procedure to evaluate candidate solu-
tions, it can solve large problems faster; on the other hand,
PSTS-NP has higher rate to obtain optimal solution. In
practice, we can select the appropriate one from the two
algorithms according to the different requirements of
speed and best rate.

6. Conclusions

Partner selection is a
CEP. Minimizing risk caused by the uncertainty of part-
ner’s resources in partner selection and ensuring the due
date of the project are important to the success of the CEP.
This paper introduces a description of the partner selec-
tion problem in CEP. The concept of resource confidence
is used to characterize the uncertainty of partner's re-
sources, then the non-linear integer programming model
(1-5) provides a formal description of the partner selection

where the following features different from conventional
methods are considered:

1) The precedence activity network describing the
precedence relationship between sub-projects

2) The resource confidence of each partner
A project scheduling embedded TS algorithm for the

problem was proposed. Its two variants, PSTS-P and
PSTS-NP, focus on computation speed and

ficiency, respectively. The computation results show its
potential to solve practical partner selection and project
management problems.

The suggested future research work includes: a) Find a
better way to share information between the core enter-
prise and partners, and research how to evaluate and cal-
culate the resource confidence of partners more accurately.
b) Research project planning model and algorithms for the
CEP with considering resource confidence.

Tabu Search Solution for Resource Confidence Considered Partner Selection Problem in Cross-Enterprise Project 555

REFERENCES

[1] X. F. Xu, “Virtual Organization - the Enterprise Organi-
zation Form in the Future,” in Chinese, China Me-
chanical Eengineering, Vol. 7, No. 4, 1996, pp. 15-20.

[2] H. S. Jagdev a nded Enterprise - A
Context for ction Planning &

n

“A Review of

jidimitriou and A. C. Georgiou, “A Goal

ion in a Global Manu-

ter-Integrated

anu-

plied

n for a Risk-Based Partner Selection Problem

ification, Mo-

206.

nd J. Browne, “The Exte
Manufacturing,” Produ

fac

Control, Vol. 9, No. 3, 1998, pp. 216-229.

[3] M. J. Maloni and W. C. Benton, “Supply Chain Partner-
ships: Opportunities for Operations Research,” Europea

Man

Journal of Operational Research, Vol. 101, No. 3, 1997,
pp. 419-429.

[4] L. D. Boer, E. Labro and P. Morlacchi,

Fact

Methods Supporting Supplier Selection,” European
Journal of Purchasing & Supply Management, Vol. 7, No.
2, 2001, pp. 75-89.

[5] A. Yannis, Ha
Programming Model for Partner Selection Decisions in
International Joint Ventures,” European Journal of
Operational Research, Vol. 138, No. 3, 2002, pp. 649-
662.

[6] D. Y. Sha and Z. H. Che, “Virtual Integration with a
Multi-Criteria Partner Selection Model for the Multi-
Echelon Manufacturing System,” International Journal of
Advanced Manufacturing Technology, Vol. 25, No. 7-8,
2005, pp. 793-802.

[7] L. Mikhailov, “Fuzzy Analytical Approach to Partnership
Selection in Formation of Virtual Enterprises,” Omega,

Vol. 30, No. 5, 2002, pp. 393-401.
[8] D. Wang, K. L. Yung and W. H. Ip, “A Heuristic Genetic

Algorithm for Subcontractor Select
turing Environment,” IEEE Transactions on SMC

Part-C, Vol. 31, No. 2, 2001, pp. 189-198.

[9] N. Q. Wu and P. Su, “Selection of Partners in Virtual
Enterprise Paradigm,” Robotics and Compu

ufacturing, Vol. 21, No. 2, 2005, pp. 119-131.

[10] W. H. Ip, D. Wang and K. L. Yung, “A Branch and Bound
Algorithm for Sub-Contractor Selection in Agile M

uring Environment,” International Journal of Produc-
tion Economics, Vol. 87, No. 2, 2004, pp. 195-205.

[11] Z. B. Zeng, Y. Li and W. X. Zhu, “Partner Selection with a
Due Date Constraint in Virtual Enterprises,” Ap
Mathematics and Computation, Vol. 175, No. 2, 2006, pp.
1353-1365.

[12] W. H. Ip, M. Huang, K. L. Yung, et al. ”Genetic Algo-
rithm Solutio
in a Virtual Enterprise,” Computers & Operations Re-
search, Vol. 30, No. 2, 2003, pp. 213-231.

[13] P. Brucker, A. Drexl and R. Möhring, “Resource-Cons-
trained Project Scheduling: Notation, Class
dels, and Methods,” European Journal of Operational Re-
search, Vol. 112, No. 1, 1999, pp. 3-41.

[14] F. Glover, “Tabu Search: Part I,” ORSA Journal on
Computing, Vol. 1, No. 3, 1989, pp. 190-

[15] F. Glover, “Tabu Search: Part II,” ORSA Journal on
Computing, Vol. 2, No. 1, 1990, pp. 4-32.

Copyright © 2010 SciRes JSEA

J. Software Engineering & Applications, 2010, 3, 556-560
doi:10.4236/jsea.2010.36064 Published Online June 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

On Some Quality Issues of Component Selection in
CBSD

Jeetendra Pande1, Raj Kishore Bisht1, Durgesh Pant2, Vinay Kumar Pathak3

1Department of Computer Science, Amrapali Institute of Technology & Sciences, Haldwani, India; 2Department of Computer
Science, Kumaun University, Uttarakhand, India; 3Uttarakhand Open University, Haldwani, India.
Email: jeetendrapande@yahoo.com

Received March 11th, 2010; revised March 27th, 2010; accepted March 29th, 2010.

ABSTRACT

Component based development offers many potential benefits, viz. software reuse, reduced time-to-market, inter-
operability, ease of quality certification etc. However, it is not always that benefits derived from addition of components
from a component repository are more than the costs involved in developing the module from scratch. This work evaluates
various software quality models and suggests recommendations for enhancing software quality in COTS (component
off-the-shelf) based software products by designing software quality metrics that would help in managing and enhancing
quality in component-based software development.

Keywords: Component Based Software Development (CBSD), Components-off-the-Shelf (COTS), McCall’s Model,

Dormey’s Model, Bohem’s Model

1. Introduction

Software is at the heart of most industrial systems in use
today. Rapid changes in industrial methods have led to a
situation where industrial products are now, more often
than not, systems consisting of software and hardware.
Industries in which the use of software is now essential
include, among others, Automotive, Medical-Systems,
Process-Control and Manufacturing. In these and others,
value added to products is provided largely by the asso-
ciated software.

The economics of software projects has been seen as
an important sub-discipline of software engineering for
some time. Projects need to be considered in a wider bu-
siness environment in which the issues of cost, schedule
and productivity are of considerable significance. A key
area in dealing with cost and quality of software systems
is the ease and benefits accruing from reuse, i.e. how
much can be saved by using existing software compo-
nents when developing new software systems? To this
end, Component Based Development (CBD) is widely
accepted as the approach that could best yield the long
sought after benefits of software reuse, reduced time-to-
market, interoperability and ease of quality certification.
The basis for reuse is the reliability of the components
intended for reuse and the gains achieved through their
application.

It is important to demonstrate to management and

funding agencies that reuse makes good business sense.
For this, it is necessary to have methods to collate and
furnish clear financial evidence of benefits of reuse in
real projects. To achieve this, we need to define good
metrics that capture these benefits and develop tools and
processes to allow effective use of these metrics. De-
ployment of component-based applications is a common
practice in the area of commercial software. To meet
market requirements, new functionality is frequently
added to industrial products. Introduction of new func-
tionality is often achieved by adding components to an
existing system. This is why component-based develop-
ment approach is attractive to industry.

Cost and time-to-market issues are addressed by taking
recourse to the rapidly emerging component-based de-
velopment (CBD) approach. Adding new functionality to
existing products must result in lower cost and higher
quality. In CBD, software systems are built as an assem-
bly of components already developed and prepared for
integration. The many advantages of CBD approach in-
clude effective management of complexity, reduced time
-to-market, increased productivity, and greater degree of
consistency and a wider range of usability. Thus, quality
of the final software is highly influenced by use of CBD
approach. Each component will have its own quality at-
tribute profile, but when interfaced and used together
with other components, the resulting composition may
show a different quality attribute profile altogether [1]. A

On Some Quality Issues of Component Selection in CBSD 557

large range of components, which perform the same
function, are available from different vendors. This
makes it very difficulty for a developer to decide which
component to use and which to discard, based on the
quality attributes of available competing components.
Quality of an individual component is important but
there is no guarantee that integration of components with
high quality attributes will lead to a software product
with overall high quality attributes. When multiple com-
ponents are integrated, it is very difficult to reason about
the overall quality of the final product and developers
require some metric that helps them in evaluating and
choosing components in such a manner that the final
product is of high quality.

Project managers usually lay stress on the importance
of improving estimation accuracy and techniques to
support better estimates. This paper surveys the status of
quality framework in component based software devel-
opment and provides recommendations for future work
in improving the quality of component based software
development.

2. Software Quality Models

According to IEEE 610.12 standard [2], software quality
is:

 The degree to which a system, component or
process meets specified requirements.

 The degree to which a system, component or
process meets customer or user needs or expec-
tation.

The following section briefly explains the various
quality models for software development.

2.1 Mccall’s Model (1977)

The first quality model was proposed by Jim McCall et
al [3,4], in 1977. This model is also known as the Gen-
eral Electric Model. McCall split eleven different quality
attributes into three groups, as shown in Table 1.

1) Product Operation: It includes correctness, reliabil-
ity, efficiency, integrity and usability.

2) Product Revision: It includes maintainability, flexi-
bility and testability.

3) Product Transition: It includes portability, reusabil-
ity and interoperability.

With the aim of improving quality of software prod-
ucts, McCall included a number of quality factors in his

Table 1. McCall’s model

Product Operation Product Revision Product Transition
• Correctness
• Reliability
• Efficiency
• Integrity
• Usability

• Maintainability
• Flexibility
• Testability

• Portability
• Reusability
• Interoperability

model that gave due weight to both users’ views and de-
velopers’ priorities.

The advantage of McCall’s Quality Model is the rela-
tionship created between quality characteristics and met-
rics. The major disadvantage is that functionality of the
software product is not considered.

2.2 Boehm’s Model (1978)

Barry W. Bohem gave the second quality model in 1978.
Boehm’s model is similar to the McCall’s Quality Model
in that it also presents a hierarchical quality model struc-
tured around high-level characteristics, intermediate-
level characteristics and primitive characteristics – each
of which contributes to the overall quality level [5,6].

High-level characteristics represent high-level requi-
rements of actual use. These characteristics address three
main questions:

1) As-is utility
2) Maintainability
3) Portability
These three primary uses had quality factors associated

with them, which represented the next level of Boehm's
hierarchical model, the intermediate-level characteristics.
Boehm identified seven quality factors, namely:
(a) Portability (b) Reliability (c) Efficiency (d) Usability
(e) Testability (f) Understandability (g) Flexibility

The lowest level structure of the characteristics hier-
archy in Boehm’s model is the primitive characteristics
metrics hierarchy, in which these quality factors are fur-
ther broken down into Primitive constructs that can be
measured. For example, Testability is broken down into
accessibility, communicativeness, structure and self-de-
scriptiveness. Bohem’s model lays emphasis on main-
tainability of the software product. It includes considera-
tions involved in evolution of a software product with
respect to the utility of the program. Boehm’s quality
model is based on a wide range of characteristics but
does not elaborate on the methodology of measuring
these characteristics.

2.3 FURPS/FURPS+ (1992)

This model, proposed by Robert Grady and Hewlett-
Packard Co, decomposes characteristics into two differ-
ent categories of requirements:

 Functional Requirements (F): Defined by input
and expected output.

 Non-functional Requirements (NF): Usability,
Reliability, Performance and Supportability.

FURPS is an acronym representing a model for clas-
sifying software quality attributes (requirements):

 Functionality–Feature set, Capabilities, Gener-
ality, and Security.

 Usability–Human factors, Aesthetics, Consis-
tency and Documentation.

Copyright © 2010 SciRes JSEA

On Some Quality Issues of Component Selection in CBSD

Copyright © 2010 SciRes JSEA

558

 Reliability–Frequency/severity of failure, re-
coverability, predictability, accuracy and mean
time to failure.

 Performance–Speed, efficiency, resource con-
sumption, throughput and response time.

 Supportability–testability, extensibility, adapt-
ability, maintainability, compatibility, configu-
rability, serviceability, installability, localizabil-
ity and portability.

The main disadvantage of the FURPS model is it does
not take into account the portability of the software pro-
duct. Rational Software extended this model to FUR-
PUS+, for use in corporate requirements such as design
constrains, implementation requirements, interface re-
quirements and physical requirements.

2.4 Dromey’s Model (1996)

R. Goeff Dromey proposed this model in 1996 [7,8].
According to Dormey, high level attributes like reliabil-
ity and maintainability cannot be built into software.
Therefore, he identified a set of properties to cover these
requirements. In this model, Dormey focused on those
properties of the software product that affect the quality
attributes. He connected software product quality with
software quality attributes (Table 2).

The disadvantage of this model is that efficiency of
software is not considered for determining the quality of
software.

2.5 ISO Model 9126 (1991)

ISO 9126 model was proposed in 1991. Unlike its
predecessors, MaCall’s Model and Bohem’s Model,
upon which this model was built, functionality of a soft-
ware product is also taken into consideration in this
model. It proposes a generic definition of software qual-
ity in terms of six quality factors, which further covers
some sub factors:

 Functionality–Suitability, accuracy, interoper-
ability, compliance and security.

 Maintainability–Analyzability, changeability,
stability and testability.

 Usability–Understandability, learnability, oper-
ability and likeability.

 Efficiency–Time-behaviour and Resource-be-
haviour.

 Portability–Adaptability, replaceability, instal-
lability, conformance and coexistence.

 Reliability–Maturity, recoverability, availabil-
ity and fault-tolerance.

It defines the internal and external quality characteristics
of the software product. The main disadvantage of this
model is how these characteristics are to be measured.

3. Component Based System Development

A component is [11,12] a language neutral, independ-
ently implemented package of software services, deliv-
ered in an encapsulated and replaceable container, ac-
cessed via one or more published interfaces. While a
component may have the ability to modify a database, it
should not be expected to maintain state information. A
component is neither platform-constrained nor is it ap-
plication-bound.

Following the success of the structured design and OO
paradigms, Component-Based Software Development
(CBSD) has emerged as the next revolution in software
development [13].

The idea behind CBSD is integrate the reusable com-
ponents to develop the final product. This strategy re-
duces the development effort, time-to-market and cost.
Quality and reliability come as inherited features in the
product developed using CBSD approach, as the compo-
nents used are time tested.

4. Quality of Component based software
Development

In software product development using CBSD, the pro-
grammer’s role is to integrate the pre-existing software
components. The various software quality models dis-
cussed above are generic models. These models do not
address the quality issues for CBSD. Bertoa [14] pro-
posed a quality model for component based software de-
velopment that allows an effective assessment of COTS
components. This quality model is based on ISO 9126,
adapted to deal with specific characteristics of COTS
components. In the proposed model, five of the charac-
teristics of the ISO 9126 model have been retained while
the sixth characteristic, namely Portability, has been re-
moved. Additionally, suitability and analyzability sub-cha-
racteristics have also been removed and two new sub-

Table 2. Dormey’s quality model

Software product Implementation

Software product quality Correctness Internal Contextual Descriptive

Software quality attributes Functionality, reliability
Maintainability

Efficiency,
reliability

Maintainability
Reusability,
Portability,
Reliability

Maintainability
Reusability,
Portability,
Usability

On Some Quality Issues of Component Selection in CBSD 559

characteristics, namely compatibility and complexity,
have been introduced (Table 3). The sub-characteristics
have been further classified into two different categories,
namely run time and life cycle sub-characteristics. Some
of the characteristics (Usability) and sub-characteristics
(learnability, understandability and operability) have
changed meaning in the proposed model.

However, this model fails to validate itself on any ap-
plication. Adnan & Bassem [15] has also done excellent
work on developing a quality model for evaluating
COTS components that support a standard set of quality
characteristics. This model is developed based on study
done on the six generic quality models. Staring with ISO
9126 model as a base, necessary changes have been
made in it to customize it to suit COTS based develop-
ment. A new characteristic, viz. Stakeholders, is pro-
posed in this new model. It depends upon who are the
members of the team responsible for developing, main-
taining, integrating and/or using information system
based on COTS systems (Figure 1).

The major drawback of this model is that it fails to ex-
plain how to measure the internal quality characteristics.
Ali, Gafoor & Paul [P] proposed a new approach using a
set of 13 system-level metrics, which are divided into 3
categories viz. Management, Requirement and Quality
(Table 4).

This metrics helps managers select between appropri-
ate components from a repository of software products
and aid them in deciding between using COTS compo-
nents or developing new components. This model, how-
ever, does not say much about how these metric are mea-
sured/quantified. Jasmine & Vasantha [Q] propose De-
fect Removal Efficiency–a quality metric that provides
benefits at both project and process levels. They rede-
fined the basic definition of defect removal efficiency in
terms of the phases involved in reuse-based development

and proposed a systematic approach in the defect re-
moval process. Sharma et al. [R] proposed a quality
model based on ISO9126 that defines the characteristics
and sub-characteristics of the component and proposes to
add some more sub-characteristics to it, which may be
relevant in the CBSD context. This model can also be
used to estimate the efforts required to achieve the re-
quired value of any characteristic.

5. Untouched Quality Related Issues in
Component Selection Process

In an application developed using COTS approach, vari-
ous components are integrated with each other to build
the whole system of desired quality. This integration
process is the most crucial part of the CBSD. There may
be more than one component available in the repository
or more then one vendor available for the same compo-
nent that performs the desired task. Each individual com-
ponent from the different sources has different quality
attributes. When these individual components are inte-
grated to develop a whole system, the quality attributes
of components may change and affect the quality of the
overall system.

There is an absence of any kind of metrics that can
help in selecting between different components from
different sources with the same functionality by evaluat-
ing relevant quality parameters of the component, such as
cost-avoidance, reliability, productivity etc.

There is an increasing need for metrics meant specifi-
cally for component-based software, to help foster and
manage quality in component-based software development.
This is because traditional software product and process
metrics are neither suitable for nor sufficient in managing
the complexity of software components, which is neces-
sary for quality and productivity improvement within

Table 3. Quality model for COTS components by Bertoa

Characteristic Functionality Reliability Usability Efficiency Maintainability

Runtime Sub-characteristics Accuracy, Security Recove-rability
Time Behavior,
Resource Behavior

Life Cycle Sub-characteristics

Suitability,
Interoperability,
Compliance,
Compatibility

Maturity

Learn ability,
Understand-ability,
Operability,
Complexity

Changeability,
Testability

Table 4. System level metric for component based system

Category Management Requirements Quality

Cost Requirements Conformance Adaptability
Time to market Requirements stability Complexity of interfaces and integration

Software engineering environment Integration test coverage
System resource utilization End-to-end test coverage

 Fault profiles
 Reliability

Metric

 Customer satisfaction

Copyright © 2010 SciRes JSEA

On Some Quality Issues of Component Selection in CBSD 560

Figure 4. The new quality model for COTS-based systems

organizations adopting component-based software deve-
lopment.

6. Conclusions

This paper presents a survey of various generic quality
models as well as quality models for COTS development.
Based on this survey, some unanswered issues related to
CBSD have been identified.

Future work in the development of CBSD research
could include determination of quality metrics for compo-
nents selection where there is more then one component
available for the same task. This metric would help the
developer/integrator in selecting between various compo-
nents or decide upon develop the component from scratch.
This metric should be easy to calculate and be feasible for
practical use. The field of quality attribute determination
of component-based system is extensive and more re-
search can and should be performed in this field. This will
help in increasing confidence in the use of research results,
to solve problems in practical industrial settings.

REFERENCES

[1] J. A. Borretzen, “The Impact of Component-Based Deve-
lopment on Software Quality Attributes,” http://www. too-
doc.com/Software-quality-attribute-pdf.html

[2] “IEEE Standard Glossary of Software Engineering Term-
inologies,” IEEE Standard 610.12-1990, 10 December

1990.

[3] J. A. McCall, P. K. Richards and G. F. Walters, “Factors in
Software Quality,” Griffiths Air Force Base, New York
Rome Air Development Center Air Force Systems
Command, 1977.

[4] J. A. McCall, P. K. Richards and G. F. Walters, “Factors in
Software Quality,” National Technology Information

aracteristics of Software

nference on Software

Software Engineering, Vol. 21, No.

C

s and Guidelines for

www.

ng Machinery, Vol.

 Machinery, Vol. 46, No. 8, August

d Software Engineering (QAOOSE), Malaga,

l of
Computer Science, Vol. 2, No. 4, 2006, pp. 373-381.

Service, Vol. 1, No. 2-3, 1977.

[5] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G.
McLeod and M. Merritt, “Ch
Quality,” North Holland, 1978.

[6] B. W. Boehm, W. Barry, J. R. Brown and M. Lipow,
“Quantitative Evaluation of Software Quality,” Inter-
national Conference on Software Engineering, Procee-
dings of the 2nd International Co
Engineering, San Francisco, 1976.

[7] R. G. Dromey, “Concerning the Chimera (Software
Quality),” IEEE Software, Vol. 13, No. 1, 1996, pp. 33-43.

[8] R. G. Dromey, “A Model for Software Product Quality,”
IEEE Transactions on
2, 1995, pp. 146-163.

[9] ISO 9126, “Information Technology-Product Quality-
Part1: Quality Model,” International Standard ISO/IE
9126, International Standard Organization, June 2001.

[10] ISO 9126, “Information Technology-Software Product
Evaluation-Quality Characteristic
their Use,” ISO, December 1991.

[11] M. Sparling, “Is there a Component Market?”
cbd-hq.com/articles/2000/000606ms_cmarket.asp

[12] M. Sparling, “Lesson Learned through Six Years of
Component Based Software Development,” Communi-
cations of the Association for Computi
43, No. 10, October 2000, pp. 47-53.

[13] P. Vitharana, “Risk & Challenges of Component Based
Software Development,” Communications of the Associa-
tion for Computing
2003, pp. 237-252.

[14] M. Bertoa and A. Vallecillo, “Quality Attributes for COTS
Components,” Proceedings of the 6th International
ECOOP Workshop on Quantitative Approaches in Object-
Oriente
2002.

[15] A. Rawashdeh and B. Matalkah, “A New Software Quality
Model for Evaluating COTS Components,” Journa

Copyright © 2010 SciRes JSEA

J. Software Engineering & Applications, 2010, 3, 561-571
doi:10.4236/jsea.2010.36065 Published Online June 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

MDA (Model-Driven Architecture) as a Software
Industrialization Pattern: An Approach for a
Pragmatic Software Factories

Thomas Djotio Ndie1, Claude Tangha1, Fritz Ekwoge Ekwoge2

1Department of Computer Science, National Advanced School of Engineering, University of Yaounde 1, Yaounde, Cameroon; 2Koossery
Technology Cameroon, Douala, Cameroon.
Email: {tdjotio, ctangha, ekwogefee}@gmail.com

Received March 5th, 2010; revised April 30th, 2010; accepted April 30th, 2010.

ABSTRACT

In this paper we show that the MDA can be considered as a software industrialization pattern (or a software factory).
Nearly all industries today are haunted with how to reduce costs, improve quality, faster time-to-market and to maximize
profits. These challenges are particularly relevant to the software industry, because it still lags behind other technology
sectors as regards industrialization and the timely delivery of software products. Most software are still of poor quality,
always finished after deadlines (most don’t finish at all), and are very labour intensive. Here, we discuss the MDA as an
approach that may help solving at the same time both problems of industrialization and ever-changing software
infrastructures. We propose a MDA Engine based on a real case study in an IT services company. It is a proposal for a
framework to create custom MDA tools, based on XMI, XSLT and the Visitor Pattern.

Keywords: Software Industrialization, Software Factories, MDA, MDA Engine, MDD, DSM

1. Introduction

Software engineers are faced with the ever evolving na-
ture of the software industry. New implementation infra-
structures come and go at non negligible rates. What is
“in” today may be “out” in just a few months, with little or
no backward compatibility. A software factory’s major
concern is the industrialization of software development
[1,2]. Just as a brewing industry has brewing factories that
industrialize the production of beer, a software factory’s
main goal is the rapid production of high quality software
components, at lower costs. According to Microsoft1
“Software Factories provide a faster, less expensive, and
more reliable approach to application development by
significantly increasing the level of automation in appli-
cation development, applying the time-tested pattern of
using visual languages to enable rapid assembly and con-
figuration of framework based components”[3].

The keyword that makes any industry factory produc-
tive is automation. But the automation process is a more

complicated issue in the software industry compared to
other industries. The software industry is constantly
plagued by new technologies springing up very frequently.
At one time everything was in C. Now most developers
code in Java or any .NET language. At one time we had
COM, now we equally have Web Services. The software
industry has accepted the UML, which may help in de-
scribing systems, irrespective of implementation details.
With UML, the model we describe will not change as
often as the technology used to realize the system. The
challenge then, in industrializing software components,
will be the automatic transformation of UML models to
concrete implementations. This is where tools like the
MDA pattern come into play. When designing with UML,
our level of abstraction is increased.

Software development is a complex issue. The com-
plexity is aggravated by the fact that most developers
build every application as though it is the first of its kind
anywhere. We re-code the same Data Access Layers,
design user interfaces from zero for each new product that
comes, and we create services that are not reusable be-
cause deadlines are catching up on us. We may have gone
a long way from writing code in assembly, but software
development has always been regarded as an art by most

1
Microsoft coins the term “software factory” in association with

their .NET platform, but this description of software factories can be
applied to other platforms.
LIRIMA (http://www-direction.inria.fr/international/lirima.html)

MDA (Model-Driven Architecture) as a Software Industrialization Pattern: 562
An Approach for a Pragmatic Software Factories

software developers, be they professional or casual de-
velopers. To industrialize the development of software,
we need an increased level of abstraction, standardization
and automation. According to the authors of the publica-
tion [1], “the key to industrialize software development is
to leverage experienced developers by encapsulating their
knowledge as reusable assets that others can apply. De-
sign patterns demonstrate limited but effective knowledge
reuse. The next step is to move from documentation to
automation, using languages, frameworks and tools to
automate more of the software life cycle”. Most software
has been written in the past decades to increase the pro-
ductivity of workers in offices, a popular example being
office automation suites. Software has been written to
manipulate robots that assemble car parts in record time.
For many years now, the software industry has been
writing software that has helped increase the level of in-
dustrialization in other technical and non-technical sec-
tors. It is time we seriously consider using software to
industrialize the development of software. There are many
ways we could automate the software development proc-
ess. The most popular today being: Templates, Code
Generators, MDA and DSL. This paper is separated into
four parts. The first part will explore the state-of-the-art
on the techniques used in industrializing software com-
ponents, with particular focus on MDA. The second will
focus on a specific case study of an IT Services Company:
the Koossery Technology Framework (KTF). The third
section will present our solution: the MDA Engine de-
signed to serve as a guide for the creation of custom MDA
tools. The last will present OptimaDev, the result of the
application of the MDA Engine proposed.

2. Software Industrialization Techniques:
The State-of-the-Art

2.1 Elementary Industrialization Techniques:
Generators and Templates

A source code generation result in generating source
code based on an ontological model such as templates. It
is accomplished with a programming tool such as tem-
plate processor or an Integrated Development Environ-
ment (IDE) [4,5]. The generation of source code also
results from abstract models for particular application
domains, particular organizations, or in simplifying the
production process for computer programmers [5-7]. In
the context of software engineering, the use of the term
template implies many technical specifications, but it is
generally identified as any processing element that can
be combined with a data model and processed by a tem-
plate engine to produce a result document2. Source code
generators improve the quality of source code, provide

some consistency, increase productivity and increase the
level of abstraction to a certain degree. The most com-
mon form of generating code is by using templates.
Though aiding in industrializing the development of
software components, code generators and templates in
general are too technology-oriented. It is to remove this
coupling that the MDA comes into play.

2.2 Model Driven Architecture (MDA) and
Domain Specific Modeling (DSM)

2.2.1 MDA (Model Driven Architecture)
The MDA is a development framework defined by OMG
[8]. It “starts with the well-known and long established
idea of separating the specification of the operation of a
system from the details of the way that system uses the
capabilities of its platform” [9]. MDA addresses three
main objectives which are portability, interoperability
and re-usability through architectural separation of con-
cerns. The MDA is a form of Model-Driven Develop-
ment (MDD) that promises to allow the definition of
machine readable application and data models which
permits the long-term flexibility of implementation, inte-
gration, maintenance, testing and simulation [1,9-11].
Many basic concepts are described around it. We will
just mention three of them: system, model, and viewpoint
[9]. The system concept may include anything that can
be a program, a single computer system, some combina-
tion of part of different systems, a federation of systems,
each under separate control, a people, an enterprise or a
federation of enterprises. The model of a system is a
specification of that system and its environment for some
purpose. “A viewpoint on a system is a technique for
abstraction using a selected set of architectural concepts
and structuring rules, in order to focus on particular con-
cerns within that system” [12-14].

The MDA specifies three viewpoints on a system: a
platform independent view point, a computation inde-
pendent viewpoint and a platform specific viewpoint.
The ‘Platform Independent’ is a quality which a model
can exhibit and sets that the model is independent of the
features of a platform of any particular type [14-16]. The
Computation Independent Model (CIM) is a view of a
system from that computation independent viewpoint
which focuses on the environment of the system, and the
requirements for the system. The details of the structure
and processing of the system are hidden or are yet unde-
termined. The Platform Independent Model (PIM) relies
from platform independent viewpoint. It focuses on the
operation of a system while hiding the details necessary
for a particular platform. “A PIM exhibits a specified
degree of platform independence so as to be suitable for
use with a number of different platforms of similar type.”
[14]. A very common strategy to achieve platform inde-
pendence is to target a system model for a technology-

2
http://www.nationmaster.com/encyclopedia/template-processor; (also

at Wikipedia, accessed February 24, 2009)

Copyright © 2010 SciRes JSEA

MDA (Model-Driven Architecture) as a Software Industrialization Pattern: 563
An Approach for a Pragmatic Software Factories

neutral virtual machine [1]. The Platform Specific Mod-
eling (PSM) combines the specifications in the PIM with
the details that specify the way that the system uses a
particular type of platform [13,14].

MDA is based on detailed platform models, for exam-
ple, models expressed in UML and/or OCL, and stored in
a MOF compliant repository [9,17-21]. There is the
MDA pattern, by which a PIM is transformed to a PSM.
This process of converting one model to one another of
the same system is called “the model transformation”
that forms a key part of MDA.

2.2.2 MDA vs. Domain Specific Modeling (DSM)
DSM is a software engineering methodology for design-
ing and developing systems, most often IT systems such
as computer software. It involves systematic use of a
graphical Domain-Specific Language (DSL) to represent
various facets of a system. DSM languages tend to re-
quire less effort and fewer low-level details to specify a
given system [10,16,21,22]. MDA and DSM may appear
to be the same concepts; both approaches will result in
producing code automatically from a higher abstraction,
thus increasing productivity. Though they both propose
methods of solving the software industrialization prob-
lem based on Model-Driven Development (MDD), they
both differ in approach. The principal differences can be
summarized as follows: MDA promotes the use of the
UML or any MOF-compliant modeling language, while
DSM promotes the use of DSL for the description of a
domain space. MDA is all about the use of models and
their automatic transformations using a standard trans-
formation language while on the other hand DSM is not
limited to using models. The other main reason of chois-
ing MDA but not DSM is because the cost of creating
and maintaining a new language not based on a standard
will be too high for the compagny with no signficant
added value and mostly because the nowaday IT com-
pagny already has a lot of trained UML professionals. In
the next section, we will present the Koossery Technol-
ogy Framework, a real case study in an IT company.

3. Case Study: The Koossery Technology-
Framework; Industrializing the
Development of Koossery Technology
Software Components

We exposed some basic concepts currently used to in-
dustrialize the development of software components. We
have talked about the MDA Pattern, code generators,
templates, and DSM. In this section, we will explore a real
world example of industrializing software components in
an IT services company called Koossery Technology
(KT)3.

3.1 Koossery Technology: Company Profile

KT adapts its services to the size of its customers, where
ever the customer’s location. Its center for technological
support, Koossery Tech' Lab (KTL) does continuous
technical tracking on predilected technologies, and
knowledge management. KT's solutions include but are
not limited to (1) J2EE and .NET Architecture and ap-
plication development, (2) CORBA/C++ and CORBA/
Java Distributed Application Development, and (3)
DataWareHouse, DataStage, Genio, BO/Webi. There are
generally two phases involved in building .NET, Java or
Corba C++/Java applications in KT. During the phase of
architecture and UML design, engineers will model al-
ternately ‘use case diagrams’; ‘class diagrams’; ‘se-
quence diagrams’; ‘component diagrams’; ‘deploy-
ment diagrams’ to respectively identify the functional
components; represent the relationship between objects;
depict the dynamics of the objects and state the distrib-
uted character of the application.

During the phase of development of KT .NET applica-
tions, engineers can be allocated to the development of
one or several layers. In the particular case of .NET ap-
plications we have: the Presentation Layer (be it a light
client based on ASP.NET, or a rich client based on Win-
forms, or a smart client); the Business Logic Layer (BLL)
(that can be implemented using an internal framework of
the customer and the .NET framework, with target lan-
guages C# or VB.NET). The Data Access Layer (DAL)
that can be implemented using the internal framework of
the customer, or a commercial or open source Object/
Relational (O/R) mapping framework. The Database
Management System (DBMS) familiar to KT engineers
include but are not limited to: Sql Server, Oracle, and
Sybase. The Inter-Layer Communications: different lay-
ers exchange data using some message queuing (like
MSMQ, MQ-Series), the XML web service model in a
heterogeneous environment, .NET Remoting in a homo-
geneous Microsoft environment, or PONOs4 exposed as
services via the Spring framework. In the following sec-
tion, though mainly references will be made to the .NET
framework, KT uses the same philosophy for other tech-
nologies (Java and CORBA/C++) [15,23,24].

3.2 Inhouse Framework

3.2.1 Overview
KT Lab has put in place the Koossery Technology
Framework (KTF) (illustrated by the Figure 1), a reus-
able design for the development of complex distributed
systems. This framework serves as a guide in building
robust Service Oriented Architecture (SOA) applications,
distributed components, and user interfaces.

The KTF is expressed as a set of abstract classes, ser-

4
Plain Old .NET Objects 3

http://www.koossery-tech.com

Copyright © 2010 SciRes JSEA

MDA (Model-Driven Architecture) as a Software Industrialization Pattern:
An Approach for a Pragmatic Software Factories

Copyright © 2010 SciRes JSEA

564

Figure 1. Koossery technology framework for n-tier applications5

vice locators, configuration files, and the way all in-
stances of these collaborate for a specific type of soft-
ware. It includes many support programs, code libraries,
and other software to help develop and glue together the-
different components of a software project, using popular
patterns like MVC (Model View Controller), DAO (Data
Access Object), DTO (Data Transfert Object), IoC/DI
(Inversion of Control/Depedency Injection), Service Lo-
cators and other design patterns. It also uses popular tier
software utilities like log4j/log4net6, Ibatis7, Hibernate8,
Spring, Struts, Maverick ... Various parts of the KTF are
exposed though an API. With the KTF in place, develop-
ers spend more time concentrating on the business-spe-
cific problem at hand than on the plumbing code behind
it. Also the KTF limits the choices during development
to a certain extent, so it increases productivity, specifi-
cally in big and complex systems.

3.2.2 Development of .NET Server Components
Now we will describe how server components are de-
veloped. The development of a .NET server component,
for example, is divided into 3 fundamental layers: DAL,
SISV (Simple Service), SVCO (Service Controller). In
the DAL, data can be stored in a Remote DBMS
(RDBMS) or any other medium. To access data, the
DAL uses a framework for O/R mapping, the two most
popular used being iBATIS and NHybernate. Sometimes
ADO.NET9 is used directly, but it is used in a similar

manner as an O/R mapping architecture. The DAL also
possesses a service locator called DAOController which
encapsulates the search for any DAO implementation.

The SISV is the layer for simple services. This layer
manipulates the DAL directly, using the DAOController
service locator to find the required DAO implementation.
It is meant to be a stable layer since it is constituted of
very simple functionalities which are just a combination
of calls to the DAL. The SISV also has a service locator
called SISVFinder to encapsulate the search for any
SISV implementation.

The SVCO is the layer for composed services. This
layer is constituted of very high level services which are
obtained as a combination of services found in the SISV
layer, using the SISVFinder to search the required SISV
service. The SVCO layer should never access the DAL
directly. It also has a SVCOFinder to encapsulate the
search for its SVCO services.

The KTF applies dependency injection using the IoC
pattern. The SISVFinder dependency of the SVCO is
passed as a constructor dependency in an SVCO imple-
mentation, and the DAOController dependency of the
SISV is passed as a constructor dependency in a SISV
implementation. Integration is usually done in an exter-
nal file using the Spring Application Framework10.

The strategy most applied when developing a server
component at KT is to separate the server component
into two distinct software units, the CORE and the 5

VO = Value Object/
6
http://logging.apache.org/log4net/ 9

http://msdn2.microsoft.com/en-us/data/default.aspx 7
http://ibatis.apache.org/ 10

http://www.springframework.org/ 8
http://www.hibernate.org/343.html

MDA (Model-Driven Architecture) as a Software Industrialization Pattern: 565
An Approach for a Pragmatic Software Factories

BACKEND. The CORE includes all different interfaces,
exceptions and Data Transfer Objects (DTOs). The
BACKEND includes all concrete implementations of the
CORE. The CORE is the heart of the server component.
It contains the CORE_CONTRACT and the CORE_
BACKEND. CORE_CONTRACT includes all interfaces
of the services offered by the server component to its
clients. The CORE_BACKEND comprises all interfaces
of the DAL and the SISV. The BACKEND contains the
following packages: the DAO, SISV and SVCO. The
DAO package contains all implementations of the DAL
interfaces found in the CORE_BACKEND, the SISV
package contains all implementations of the SISV inter-
faces found in the CORE_BACKEND, the SVCO pack-
age contains all implementations of SVCO interfaces
found in the CORE_CONTRACT.

The framework proposes a method of realizing the
concrete implementations of the DAL, SISV and SVCO.
The services of the server component may be exposed
locally using assemblies, as web services using Spring,
or by using .NET remoting using Spring. Logging is usu-
ally accomplished via a logging framework e.g. Log4Net.
All these layers are organized into separate Visual Studio
projects that generate 6 principal artifacts: the CORE_
CONTRACT, CORE_BACKEND, SVCO, SISV and
DAO assemblies plus a set of configuration files, as
summarized in Figure 2.

3.3 The Need to Industrialize [1]

KT, like most IT services companies, realized that with
their actual methods close to handicraft, a lot of money
was being lost when everything was done manually. The
first approach to reduce the amount of craft was to capi-
talize all of the company’s experience in a framework,
the KTF; and organize methods for the realization of
aproject. However, this first approach just permitted the
engineers to have a working guide to the development of

Figure 2. Koossery technology sample server component
project structure [15]

applications, with still a major part of the application
done manually. There was thus a need for a second ap-
proach that will reduce the amount of manual input, and
which from the modeling phase generates an application
respecting their standards [15,23,24].

We propose the MDA, amongst other software indus-
trialization techniques, because it is the closest approach
to really fulfilling this form of application generation.
We expect the MDA approach from the UML model of
an application, to generate all the application, all techni-
cal services, all configuration files, all CRUD (Create,
Read, Update and Delete) functionalities so that the de-
veloper in the end will only have to complete with spe-
cific algorithms for only the most complicated business
logic.

3.4 Preparations for the MDA: Identification of
PIM, PSM and CM in KTF

To apply the MDA pattern to the KTF, let us identify
what we will use as PIM, PSM and CM. Let us also de-
fine how our models will be marked, so as to perform
automatic transformations from a higher level of abstrac-
tion (the PIM) to a lower level of abstraction (the CM).
 The choice of PIM has been natural: UML. Various

enterprise UML tools are already used in KT in-
cluding Rational Rose from IBM, Poseidon for
UML from GentleWare and Enterprise Architect
from Sparx Systems.

 The choice of PSMs has been limited to the various
technologies used in KT at the present moment.
Webservices or .NET remoting for exposing ser-
vices, Hybernate or iBATIS for O/R mapping,
Spring for Dependency Injection and exposure of
PONOs and POJOs11 as services, Log4J/Log4Net
for logging etc.

 The CM can either be in Java, C# or CORBA/C++
for source code, and XML for configuration files.

Now that we have identified the various models, we
have to perform automatic transformations from the ab-
stract models to the code models. The strategy we have
used to aid in this automatic transformation is by using
marks, and the possible use of OCL to produce models of
higher quality. So how could we mark UML diagrams
for the KTF?

There are some standards respected in all modeling
done in KT. All DAO, SISV, and SVCO interfaces are
prefixed with “I” and suffixed with DAO, SISV and
SVCO respectively e.g. IUserDAO, IUserSISV and IUs-
erSVCO. All DAO, SISV and SVCO concrete imple-
mentations are suffixed with DAOImpl, SISVImpl and
SVCOImpl respectively e.g. UserDAOImpl, User-SIS-
VImpl, and UserSVCOImpl. All DTOs are suffixed with

11
Plain Old Java Objects

Copyright © 2010 SciRes JSEA

MDA (Model-Driven Architecture) as a Software Industrialization Pattern: 566
An Approach for a Pragmatic Software Factories

DTO, e.g., UserDTO and all relational database tables
are stereotyped with entity.

With this level of detail in the UML models, a choice
was made to use UML classifier suffixes as a means of
marking our models. These marks help us perform the
automatic transformations from PIM (the UML model) to
CM (the resultant code). e.g. a classifier that inherits
from no other classifier and marked with the DAOImpl
suffix in the PIM will, in the resultant CM (C# or Java
code), inherits from the AbstractDataAccessObject ab-
stract class defined in the KTF. Another method of
marking will be the use of stereotypes; e.g. classifiers
marked with the entity stereotype will be transformed
into Data Definition Language (DDL) statements in
Structured Query Language (SQL). Finally, we use the
OCL to add some elements of business logic to the mod-
els, like saying “an employee’s age must be between 18
and 65”.

Now that we have identified the PIM, PSM and CM in
the KTF and stipulated how the models will be marked,
the framework is ready for MDA Transformations. The
next step is using an MDA tool that performs the auto-
matic transformations between models.

4. Designing a Lightweight MDA Engine

4.1 Motivation

So we have the problem of applying the MDA pattern in
a company. Creating some custom software that will
perform specific and not general automatic transforma-
tions from PIM to CMs will be more beneficial to the
company on one hand, but may cost the company more
time and money developing such software on the other
hand. The custom software can be tuned to extract
maximum benefit from the MDA pattern. It is to help
create custom MDA tools that the idea of designing a
lightweight MDA Engine sprung up. This MDA Engine
will serve as a guide for the creation of custom MDA
tools, which can be tuned for the specific enterprise, con-
sistent, and uses as much as possible standard file for-
mats, thus increasing the Return On Investment (ROI) for
the creation of the custom MDA tool. It was designed to
be lightweight so that the custom MDA tool developer
will be able to start his/her project very rapidly.

4.2 Custom MDA Tool

4.2.1 Pragmatic Approach
To be pragmatic, we cannot possibly model every aspect
of the business logic in UML. Maybe with the arrival of
Executable UML this will be possible. But why should
everything be modeled in UML? An argument in favor of
modeling everything in UML is the ability to generate
full working application only from the UML model. Ar-
guments against relate the complexity and heaviness of

these models. A pragmatic approach will involve some
hybrid of UML and a 3GL. When computers were in-
vented, everyone thought that paper usage in offices
would reduce. Just the opposite is complete taking place
today, with computers printing out more and more paper
every day. Likewise, will the MDA eliminate the need
for programmers? Not necessarily.

With present and near future technology, some parts of
a software application will always require low-level
coding. It just doesn’t have to be a lot of very low-level
coding. It is only by creating custom software that we
can respect these criteria for each particular enterprise.
The main reason why software developers sometimes
react very critical on MDA is that MDA automates the
heart of their profession. The generated code is not sim-
ply like how they code. This has prompted the develop-
ment of a lightweight MDA Engine, from which devel-
opers can produce generated code from abstract models,
their way.

4.2.2 The Broad View
The mere fact that we are trying to automatically trans-
form a visual language like UML to some code may
sound like a daunting task. Do we have to write Com-
puter-aided design (CAD)-like software that understands
shapes? That would be a very difficult thing to do. What
would help is if we had an electronic format that repre-
sents these visual models, and permit us to access parts
of these models. There exists such an electronic format:
the XMI (ML Metadata Interchange) format.

XMI: Now that our visual models can be transformed
to electronic formats, we have to be able to perform
MDA transformations on these models. Is there any
standard for the transformation of XMI files? The QVT12
exists, but does not suit our case since it cannot generate
source code and no concrete implementation exists at the
time of writing. So there is yet no implemented standard
for transforming XMI files to any other type, but the
problem can be solved indirectly. Since XMI files are
XML files, we can address the problem by looking for a
standard for transforming XML files. Fortunately, the
XML format already has a standard for transformations
from XML to any desired format, the XSLT (Extensible
Stylesheet Language Transformations). Since XMI is an
XML file, we can thus define a mapping between MDA
transformations and XSL Transformations.

ESLT: So to conclude, the proposed approach is sim-
ply to export UML models (our PIM) to the XMI format,
then perform XSLT transformations to obtain specific
code, configuration files or other text files(the CM). No
need to depend on a proprietary format, or tool.

Now that we have a view of how transformations will
12

http://smartqvt.elibel.tm.fr/, http://en.wikipedia.org/wiki/QVT;
http://umtqvt.sourceforge.net/;
http://www.omg.org/docs/ptc/07-07-07.pdf (accessed 24/103/2009).

Copyright © 2010 SciRes JSEA

MDA (Model-Driven Architecture) as a Software Industrialization Pattern:
An Approach for a Pragmatic Software Factories

Copyright © 2010 SciRes JSEA

567

be performed, we can build an MDA Engine that will
help us do these transformations.

4.2.3 Architecture of the Lightweight MDA Engine
Since we have an XMI document that has to be trans-
formed to various code models, it seemed natural to use
the Visitor Design Pattern, where each visitor will visit
the XMI document containing our UML model and gen-
erate corresponding code. We may have a visitor for the
generation of each specific interface, configuration file,
concrete class implementation or even other XMI files.
Sometimes the order in which the visitors visit is impor-
tant. The MDA Engine has to take care of that. The main
concepts are illustrated by the Figure 3.

The Figure 4 shown below illustrates the UML Class Figure 3. MDA engine main concepts

Figure 4. MDA engine

MDA (Model-Driven Architecture) as a Software Industrialization Pattern: 568
An Approach for a Pragmatic Software Factories

Diagram of the MDA Engine.
The participants of the UML Class Diagram are:

 IGeneratable: Interface that represents any generat-
able document. All generatable documents accept a
visitor. In this particular case, all generatable docu-
ments accept an IXMIVisitor.

 IXmiVisitor: Interface that represents a visitor for
an XMI document. Every visitor has a name. The
visitor’s operation is defined in the visit method.

 IXmiTransformationEngine: Interface that defines a
common contract for all XSLT processors. There
are two methods. One that transforms an XMI
document to a text document, and another that spe-
cifically transforms an XMI document to another
XML document.

 SimpleXmiTransformationEngine: A concrete XS-
LT processor that implements IXmiTransforma-
tionEngine.

 MDATransformationInfo: A data structure that
holds a list of visitors for a particular generatable
document.

 MDACoreEngine: This contains a list of MDAT-
ransformationInfos. It has a Generate method that
calls each visitor sequentially as defined in each
MDATransformationInfo object.

 XmiDocument: Data structure that represents a
“generatable” XMI document. It has two properties
that expose the DOM representation of the XMI file.
One that is editable XmlDoc, and another that is not
editable (but faster) XPathDoc. As soon as an
XmiDocument accepts an IXmiVisitor, it calls this
visitor’s visit method on itself.

 AbstractXmiDocumentVisitor: All visitors can de-
rive from this base class to facilitate their work. It
has a reference to an IXmiTransformerEngine for
XSLT processing, a dictionary of namespaces used
in the XSLT files, a dictionary of Parameters that
can be passed to the XSLT processor. It also has a
utility function that maps an XMI ID to a classifier
name called mapXmiToClassifier. Each visitor may
use the XSLT processor for MDA Transformations.
The AbstractXmiDocumentVisitor may also pos-
sess a log object based on a logging framework like
log4J/log4Net for logging purposes.

 ConcreteVisitor1 and ConcreteVisitor2: These are
concrete transformations to be performed in the
IXmiDocument. Each operation is defined in the
concrete class’s visit method

This engine is distributed as a third party library, in the
form of a .NET assembly or Java jar file. All the devel-
oper has to do now is to write visitors based on the Ab-
stractXmiDocumentVisitor, and define a set of XSLT
templates. The MDACoreEngine is then filled with a list
of MDATransformationInfo objects, which in turn are

filled with visitors either programmatically or using de-
pendency injection (one may use the Spring IoC Frame-
work for depency injection). To perform transformations,
simply call the Generate() method of the MDACoreEn-
gine object. The next section presents Optimadev, an
application usage/case of the MDA Engine.

5. OptimaDev: A Prototype for MDA Engine

Creating a prototype for the MDA Engine will consist of
creating an incomplete model of the future full-featured
MDA Engine, which can be used to let the users have a
first idea of the completed program. This prototype is
called OptimaDev.

5.1 Preliminary Specification

The preliminary specification for OptimaDev was to cre-
ate, automatically from the UML model, a set of artifacts.
These included, but are not limited to artifacts needed for
the CORE_CONTRACT, CORE_BACKEND, DAO,
SISV and SVCO components. Some of the artifacts to be
generated are displayed in Figure 5 below.

5.2 Analysis

In order to fulfill the preliminary specifications, Optima-
Dev was designed as a custom MDA Engine that will
perform MDA transformations for us, creating artifacts
that respect the KTF. The choice of a custom MDA tool
was taken because of the incapability of current MDA
tools [13] in generating artifacts that respect the KTF.
Based on the architecture in Subsection 5.1 and illustrate
by the Figure 5, we created 9 visitors. All visitors inherit
from the AbstractXMIDocumentVisitor base class as
found in 4.2.3, and are listed in Table 1. OptimaDev was
also furnished with a Graphical User Interface to ease the
transformation process (see Figure 6).

Figure 5. OptimaDev: Preliminary specifications

Copyright © 2010 SciRes JSEA

MDA (Model-Driven Architecture) as a Software Industrialization Pattern: 569
An Approach for a Pragmatic Software Factories

5.3 Implementing the Prototype

The user interface permits the user to input his XMI file
representing his model, and choose an output directory
where OptimaDev will serialize results. The XMI file is
obtained by exporting from a UML design tool. After
generation, OptimaDev provides visual feedback on the
status of the generation, like the number of files success-
fully generated. As shown in Figure 6, OptimaDev is
cautious enough to detect if there was an error during
transformations, and robust enough to continue func-
tioning after having signaled the error. Finally, the gen-
erated artifacts are serialized in directory structures that
closely resemble what is expected in a KT project.

5.4 Case Study or Application of OptimaDev:
SoNetSec

5.4.1 Context
SoNetSec is a Real Estate Servicing company located in
Cameroon. To ameliorate its services, SoNetSec has de-
cided to have at its disposal an Information System in the
form of a family of software that will guarantee at the
same time its agility and its global competivity. Without
entering into the details of the functional specifications, we
will briefly list some of its non functional specifications:
 The principal application, which will serve to show-

cast, promote and ecommerce its products and ser-
vices will be a transactional web based Internet ap-
plication, capable of supporting high visiting rates.

 Some applications may have to be implemented
using rich clients.

 The application will be conceived and implemented
as a set of autonomous services.

 Scalability, security, robustness, response time, ma-
intenance issues have to be considered in the concep-
tion and implementation of the different applications.

Fortunately enough, the KTF already facilitates the
creation of software applications and software compo-
nents with such non functional specifications. Some por-
tions of the Information System to be realized were given
to two software engineers and a senior software architect.
What is interesting to recall is that within KT, most en-
gineers communicate via UML models.

In the course of prototyping, a study of how the engi-
neers and the senior architect modeled the Information
System was done, including a study of how these models
were implemented. It was the job of the prototype MDA
Engine, OptimaDev, to automatically produce source
code respecting the KTF from these visual representa-
tions. The feedback of the engineers, obtained through
agile methods, was indispensable in perfecting the 9
visitors listed in Table 1 below. This helped create
source code and configuration files that were to be com-
pared with what was done manually.

5.4.2 Preliminary Results and Benefits
The autogenerated code improves on quality, consistency,
productivity and abstraction compared to manual code

Figure 6. OptimaDev: Automatic error detection

Copyright © 2010 SciRes JSEA

MDA (Model-Driven Architecture) as a Software Industrialization Pattern: 570
An Approach for a Pragmatic Software Factories

Table 1. Visitors for the OptimaDev (MDA transformation
visitors used in the OptimaDev)

 Visitor Description

1 DTOVisitor

From the PIM, it extracts all DTOs
from class diagrams and serializes each
DTO in a separate file in the choice
programming language. This visitor is
meant to generate 100% of the code.

2 DAOImplVisitor

From the PIM, it extracts all DAO
Implementations from class diagrams
and serializes each implementation in a
separate file in the choice programming
language. This visitor is meant to gen-
erate stubs for the implementations
with support of very common CRUD
method signatures. This accounts for
95% of the code.

3 DAOInterfaces-
Visitor

From the PIM, it extracts all DAO
Interfaces from class diagrams and
serializes each implementation in a se-
parate file in the choice programming
language. This visitor is meant to gen-
erate 100% of the code.

4 SISVImplVisitor

From the PIM, it extracts all SISV
Implementations from class diagrams
and serializes each implementation in a
separate file in the choice programming
language. This visitor is meant to gen-
erate stubs, accounting for 75% of
code.

5
SISVInterfaces-

Visitor

Same as DAOInterfacesVisitor, but for
SISV interfaces. This visitor is meant to
generate 100% of the code.

6 SVCOImplVisitor
Same as SISVImplVisitor, but for
SVCO implementations. This visitor is
meant to generate 75% of the code.

7
SVCOInterfaces-

Visitor

Same as DAOInterfacesVisitor, but for
SVCO interfaces. This visitor is meant
to generate 100% of the code.

8 SpringVisitors

From the PIM, it extracts all DAO,
SISV and SVCO Implementations from
class diagrams and setups spring con-
figuration files for Inversion of Control.
It also sets up the service locators of
each of these layers. This visitor is
meant to generate 100% of the code.

9
IbatisRequestsVisi-

tor

From the PIM, it extracts all DAO and
DTO Implementations from class dia-
grams and creates iBatis request con-
figuration files which are each serial-
ized in a separate file in the choice
programming language. This visitor is
meant to generate stubs for the imple-
mentations with support of very com-
mon CRUD method signatures. This
accounts for 95% of the code.

6. Conclusions and Perspectives

approaches which simply provides flexibility and control.
Equally, Knowledge Base was a great benefit. The proc-
ess of adopting the MDA pattern has forced the extrac-
tion of the best of individual KT experts into the MDA
Engine, OptimaDev.
The approach we adopted helps us create pragmatic
software factories that boost the industrialization of
software development. We have particularly emphasized
on the MDA pattern as a form of MDD and as a software
factory. The best approach will be to create some custom
tool that adapts the MDA pattern for each company. The
MDA Engine is a proposal for a framework to create
custom MDA tools, based on XMI, XSLT and the Visitor
Pattern. It serves as a starter kit to help develop MDA
tools that are tuned to a company’s business logic, or
software development strategies.

We have also described the use of this MDA Engine to
build a prototype custom MDA tool (internal code name:
OptimaDev) for Koossery Technology (KT). For Opti-
maDev, the KT MDA tool prototype, we realized some
visitors based on the MDA Engine proposed. These visi-
tors are designed to generate code for the development of
a server side component following the KT Framework.
Together with the addition of other visitors for the pres-
entation layer, the support of the Object Constraint Lan-
guage (OCL) especially for visitors targeting the business
layer, we are very confident that with time the custom
MDA tool’s roadmap will be from code generator, to
software component generator, and finally to a complete
software application generator.

For the perspective point of view, there are many
things we can add to this basic MDA Engine. Let’s men-
tion some here.
 Multi Agent System (MAS), where we will have

intelligent agents instead of visitors that perform
transformations.

 Expert System (ES), where the MDA Engine may
instead be conceived as an inference engine with a
set of inference rules that transform models. This
permits the transformation process to be more de-
clarative than imperative (see [7]).

 OCL Support, to be able to produce models of even
higher quality.

 xUML or Executable UML support, to describe the
dynamics of a domain [20].

 Round-trip engineering, to synchronize changes
between model and code.

 AI/Fuzzy Logic: because the model itself can have
some errors which some Artificial Intelligence or
Fuzzy Logic can help.

 And others e.g. Velocity template language support,
because it closely resembles the output code, unlike

Copyright © 2010 SciRes JSEA

MDA (Model-Driven Architecture) as a Software Industrialization Pattern: 571
An Approach for a Pragmatic Software Factories

XSLT.

7. Acknowledgements

Special thanks go to Professor Jean Claude Derniame of
Institut Polytechnique de Loraine at Nancy France, to
have reviewed this paper, and also to Koossery Tech-
nology Cameroon to have provided us with a real test
environment.

REFERENCES

[1] J. Greenfield and K. Short, “Moving to Software Factories.”
http://www.softwarefactories.com/ScreenShots/MS-WP-0
4.pdf

[2] DoFactory.com, “Design Patterns in C#, VB.NET WPF,
WCF, LINQ, PATTERNS,” Data & Object Factory™,
http://www.dofactory.com/Patterns/Patterns.aspx

[3] Microsoft, “Domain-Specigic Language Tools.”
http://msdn2.microsoft.com/en-us/vstudio/aa718368.aspx

[4] P. V. Hoof, “Code-Gen–about and technical documentation.”
http://forgeftp.novell.com//codegen/docs/Technical%20do

cumentation/codegen_doc.pdf

[5] AndroMDA, “Extensible Code Generator.” http://www.
andromda.org

[6] Code Generation Network, “Code Generation Network.”
http://www.codegeneration.net/tiki-index.php?page=Mod
elsIntroduction

[7] ExpertCoder, “Code Generation Libraries for .NET, Mono and
dotGNU.” http://expertcoder.sourceforge.net/en/index.html

[8] A. Kleppe, J. Warmer and W. Bast, “MDA Explained: The
Practice and Promise of the Model Driven Architecture.”
Addison Wesley, Massachusetts, 2003.

[9] J. Miller and J. Mukerji, “MDA Guide Version 1.0.1.”
http://www.omg.org/docs/omg/03-06-01.pdf

[10] A. Kleppe, J. Warmer and W. Bast, “MDA Explained: The
Model-Driven Architecture: Practice and Promise,”
Addison Wesley Professional, Massachusetts.

[11] J. S. Mellor, S. Kendall, A. Uhl and D. Weise, “MDA
Distilled: Principles of Model-Driven Architecture.”

Addison Wesley Professional, Massachusetts, 2003.

[12] S. Sewall, “Executive Justification for Adopting Model
Driven Architecture (MDA).”

http://www.omg.org/mda/mdafiles/11-03_Sewall_MDA_p
aper.pdf

[13] Equipe SoftFluent, “Livre Blanc CodeFluent L’approche
de Génie Logiciel de SoftFluent.”

http://www.softfluent.com/codefluent_home_en.aspx

[14] “What is MDA?” http://www.modelbased.net/mdi/mda/
mda. html

[15] E. E. Fritz, “Pragmatic Software Factories: Industrializa-
tion of the Development of Software,” Masters of Thesis
of the National Advanced School of Engineering, Univer-
sity of Yaounde 1, 2007.

[16] J. M. Embe, “MDA: Applications de la Trans- formation
des Modèles à la Génération d’Applications Trois Tiers,”
Ecole Nationale Supérieure Polytechnique, Université de
Yaoundé 1, 2005.

[17] D. Pilone and N. Pitman, “UML 2.0 in a Nutshell,”
O’Reilly, 2005.

[18] S. Mellor and M. Balcer, “Executable UML: A Foundation
for Model-Driven Architecture,” Addison Wesley Pro-
ssional, 2002.

[19] J. Warmer and A. Kleppe, “Object Constraint Language,
Getting Your Models Ready for MDA,” Addison Wesley
Professional, Massachusetts, 2003.

[20] 20nUML. http://numl.sourceforge.net/index.php/MainPage

[21] openArchitectureWare.organization, “Official Open Archi-
tectureWare.” http://www. openarchitectureware.org

[22] S. Cook, J. Gareth, S. Kent and A. Cameron, “Domain-
Specific Development with Visual Studio DSL Tools,”
Addison Wesley Professional, Massachusetts, 2007.

[23] M. Yacoubou, “Développement Industrialisé d'Appli-
cations n-tiers: Partie FrontEnd,” Master’s Thesis of the
National Advanced School of Engineering, University of
Yaounde 1, 2007.

[24] P. Djomga, “Développement Industrialisé d'Applications
n-tiers: Partie BackEnd,” Master’s Thesis of the National
Advanced School of Engineering, University of Yaounde
1, 2007.

Copyright © 2010 SciRes JSEA

J. Software Engineering & Applications, 2010, 3, 572-579
doi:10.4236/jsea.2010.36066 Published Online June 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Object-Oriented Finite Element Analysis of Metal
Working Processes

Surendra Kumar

CSIR Centre for Mathematical Modelling and Computer Simulation, Council of Scientific and Industrial Research, Bangalore, India.
Email: surendra@cmmacs.ernet.in

Received March 10th, 2010; revised March 30th, 2010; accepted April 2nd, 2010.

ABSTRACT

Recently an object-oriented approach has been applied in the fields of finite element analysis with a view to treating the
various complexities within these. It has been demonstrated that finite element software designed using an object-oriented
approach can be significantly more robust than traditional codes. This paper describes a special kind of implementation
of object-oriented programming which is rather hybrid in nature, in the development of a finite element code for
engineering analysis of metal working problems using C++, and discusses the advantages of this approach.

Keywords: Finite Element Method, Data Abstraction Techniques, Object-Oriented Programming, C++ Programming

Language, Metal Working

1. Introduction

The finite element method (FEM) has been developed
and applied extensively in various fields of engineering. It
is a purely computer-oriented numerical tool and requires
an extensive amount of programming effort. Major con-
cerns in the development of FEM systems are placed on
the computational efficiency of numerical algorithms.
Traditionally, procedure oriented programming techni-
ques have been widely used and procedural programming
languages such as FORTRAN have been strongly sup-
ported. Although the procedural approach has been
proven effective in treating algorithmic complexity, this
approach has intricate control strategies and internal data
representation and does not address design and quality
issues of the overall program. As a result, software de-
veloped using this approach is likely to face difficulties in
its maintenance and extensions.

Recently, several investigations have been performed
in applying the concept of object-oriented (O-O) meth-
odology in the field of FEM [1-13]. It has been verified
that object-oriented programming can provide strong
support to desirable features of FEM systems such as
reusability, extensibility, easy maintenance, etc. These
benefits are achieved by well defined mechanisms of
modular design and reusability of code. The object-orient-
ed approach attempts to manage the complexity inherent
in real-world problems by abstracting out knowledge and
encapsulating it within objects. The various features of

this approach consist of a class mechanism with inheri-
tance and virtual function call mechanism, in addition to
the facilities supporting data abstraction techniques and
polymorphism. A detailed account of object-oriented pro-
gramming can be found in several computer journals,
language user guides and other literatures [14-16].

Mackerle [17] presents a list of published papers deal-
ing with object-oriented programming (OOP) applied to
FEM and BEM. In one of earlier investigations, Zimmer-
mann et al. [2] discussed the concept of OOP as applied to
the implementation of the finite element method. Huang et
al. [4] have proposed a knowledge base system in which
an object-oriented analysis in the FEM domain is carried
out by means of introducing entity analysis concepts.
Zimmermann et al. [5] discussed the key features of an
integrated environment of finite element related technique
which includes an object-oriented graphic interactive
environment and object-oriented operators for symbolic
mathematical derivations. Archer et al. [6] demonstrated
an object-oriented architecture for finite element analysis
based on a flexible and extendible set of objects that fa-
cilitate finite element modeling and analysis. Yu and
Kumar [7] presented an object-oriented framework for
implementing finite element method and explored ways to
exploit the commonalities between various types of ele-
ments, loads, constraints and solvers so that duplication is
reduced and software reuse is improved. Mackie [8] de-
scribed a study into the object-oriented implementation of
distributed finite element analysis on desktop computers

Object-Oriented Finite Element Analysis of Metal Working Processes 573

using the .NET framework. Heng and Mackie [9] pro-
posed the use of software design patterns to capture best
practices in O-O finite element programming.

Some research papers discuss the object-oriented tech-
niques in the context of specific problems and also depict
changes in the overall design or specific aspects in the
design. Tabatabai [10] suggested an O-O finite element
environment for reinforcement dimensioning of two- and
three-dimensional concrete panel structures. Pantale [11]
presented benefits of using an OOP approach in com-
parison with traditional programming language ap-
proaches in the analysis of inelastic deformations and
impact processes. Kromer et al. [12] described an ap-
proach to the design and implementation of a multibody
systems analysis code using an object-oriented architec-
ture. Franco et al. [13] discussed the aspects of the OOP
used to develop a Finite Element technique for limit
analysis of axisymmetrical pressure vessels.

Although, the basic concepts of the design of an O-O
finite element program are same, varying degrees of ob-
ject orientation – even procedural design – can be ac-
complished using an O-O language depending upon a
variety of factors including the software requirements,
language features, executing environment and developer’s
methodology and viewpoint. Furthermore, one of the
important challenges in developing O-O finite element
codes is to find the balance between good abstractions and
high computational efficiency, since the data abstraction
and the associated polymorphism results in loss of nu-
merical performance because it requires late (dynamic)
binding. Compiler optimization and flow of execution in a
process (computer program) are also more amenable to
procedure-oriented code. Inspite of tremendous advan-
cements in computer hardware capability, the numerical
efficiency of finite element codes remains an important
factor since demand for non-linearities, mesh refinement,
coupled analysis and other complexities in the finite
element solution are also growing. Unfortunately in early
investigations, O-O philosophy has been considered as a
systematic obligation and even numerical tools such as
Gauss integration schemes have been abstracted out as
objects. It is obvious that this extreme inclination towards
data abstraction for each conceptual entity can lead to a
serious loss of performance and difficulty in maintenance.

In the present investigation, a particular kind of ob-
ject-oriented implementation has been applied in the de-
sign of FEM system for metal working analysis. The app-
lication of object-oriented programming to metal working
analysis is not discussed in literature, although an impor-
tant aspect of object-orientation is that it supports very
general finite element codes, not tied to any particular
application area. The metal working problems are multi-
structure problems involving master (die) and slave
(workpiece) structures and also include a large amount of
non-linearities both in the element formulation and the

solution process. The present design is rather hybrid in
nature comprising of both object-orientation techniques
and modular programming practices. This has been ac-
complished by abstracting out necessary real world ob-
jects in the finite element domain and implementing all
numerical calculations and tools as member functions
inside classes of these objects, wherever appropriate. This
approach will apparently result in a good balance of
benefits brought out by the two approaches. The present
architecture also consists of suitable interface classes
between primitive FEM classes (material, node, element,
etc.) and the problem domain at different levels so that
these primitive objects do not directly interact with the
problem domain but through these interfaces. C++ is used
in the development of the program which has several
features to support object-oriented programming and can
provide high computing efficiency because of its com-
patibility with C [18].

The paper is organized as follows. First, the key con-
cepts of object-oriented programming are briefly outlined
in the context of FEM and different features of present
object-oriented framework are discussed. The issues in-
volved in general object-oriented design and the benefits
obtained by specific aspects of present implementation are
also discussed. Next, present object-oriented system is
applied in solving a general example problem of metal
working and roles of different classes and interactions
among them are explained.

2. Object-Oriented Design of FEM System

The most desirable types of general purpose finite element
codes are those that are designed for comprehension,
modification and updating. These desirable objectives can
be easily met if the program is designed using object-
oriented techniques. The FEM is by its nature a modular
numerical tool. Object-oriented programming enables full
advantage to be taken of this modularity. It reduces the
scope for bugs by encouraging clearer thinking about the
program design and allows easier incorporation of new
types of element, solution techniques and other facilities
as they become available.

While performing an object-oriented design, the first
task is to identify classes of objects that will model the
application domain. Fortunately, it is not difficult to iden-
tify the objects in the FEM domain, because several enti-
ties such as element types, material properties, nodal
points, elements, etc. can be extracted from the funda-
mental concepts of FEM. Several solid model entities
such as points, lines, surfaces, volumes, etc. also can be
directly identified as objects. However, in the FEM do-
main, there are a large amount of problem-solving activi-
ties which are difficult to be directly identified as objects.
Yet, their use and implementation may differ substantially
from those in conventional codes. Some mathematical
variables such as vector, matrix, etc. can also be designed

Copyright © 2010 SciRes. JSEA

Object-Oriented Finite Element Analysis of Metal Working Processes 574

as objects so as to hide their implementing details.
The present framework consists of several basic classes

such as ElemType, Material, Node, Element, etc. which
are traditional classes used for the representation of finite
elements. Several specific classes are derived from these
abstract classes. For example, a class Elem2DMfQ8 de-
fining two dimensional eight noded metal working quad-
rilateral elements is virtually inherited from multiple base
classes each having own set of base classes, as depicted in
Figure 1.

In most of the earlier investigations, these primitive
objects directly interact with the problem domain. How-
ever, it can be revealed from the real world concepts that
in the FEM domain, some super objects can be identified
which are either aggregates of the same objects or a su-
perset of different objects. Further, new formalisms and
new solution strategies evolve in a regular manner in the
FEM field. The implementation of these new techniques
in the main class or sub-class of the problem domain must
not lead to frequent revisit of classes at lower levels and
must not demand for redefinition or major changes in the
software architecture. In order to achieve this to a possible
extent, we create an interface between the primitive ob-
jects and the problem domain by defining classes such as
ElemTypeGroup, MaterialGroup, NodeGroup, Ele-
mentGroup, etc., which deal with groups of the same
type of objects. For example, the ElementGroup class is
defined which deals with the lists of elements and per-
forms several tasks including assembly of element stiff-
ness matrices and load vectors, and the solution of the
system equations as depicted in Figure 2. This class is
derived from a LinkedList class template and so inherits
all its operations for the proper management of the list.
The LinkedList class has been defined in template form
so that it can take different types of objects (ElemType,
Material, Node, Element, etc.) as template arguments. A
knowledge base has been incorporated to the LinkedList
class which creates and maintains an array of pointers of
objects so that an individual item in the list can be found
out as efficiently as that in a normal array. The creation of
the interface classes (which are properly optimized for
numerical efficiency) has provided additional benefits in
the modification and extension of the code. On one hand,
the primitive classes can be modified, extended and made
more efficient independently and on the other hand,
modification or extension of main class of the problem
domain may require revisit of only the interface classes
and doesn’t affect classes at lower levels. The direct in-
volvement of interface classes such as the ElementGroup
rather than primitive classes or their inheritances also
improves the performance during the solution phase since
most of the time data are required in vector or matrix form
as an aggregate of all the elements or nodes. One of the

Figure 1. An example of inheritance of class Elem2DMfQ8

class ElementGroup : public LinkedList<Element> {

private:

/* . . . */

public:

ElementGroup(); // constructor

~ElementGroup(); // destructor

Element* operator[] (int who); // subscript

// operator to reference an element

void Assembly(int loadcase); // assembly of

// stiffness matrices and load vectors

void SkySolve(int loadcase); // skyline

// reduction solution

void FrontSolve(int loadcase); // frontal

// solution

/* . . . */

};

Figure 2. An ElementGroup class dealing with group of
elements

advantages of this interfacing can also be seen in the class
NodeGroup. Since the class Node here is not inherited
mainly for efficiency reasons, the class NodeGroup is
responsible for distinguishing the functionality of nodes in
different types of analyses (static, multi-step, transient,
etc.).

As discussed earlier, the metal working problem do-
main consists of multiple structures master as well as
slave, each having own set of attributes and interacting
with one another through the interface. Here, a Struc-
tureGroup class is defined which holds a pointer to two
master structures (lower die and upper die) and slave
structure (workpiece). Each of these structures belongs to

Copyright © 2010 SciRes. JSEA

Object-Oriented Finite Element Analysis of Metal Working Processes 575

a class Structure defined to contain objects of classes
such as ElemTypeGroup, MaterialGroup, NodeGroup,
ElementGroup, etc. In many occasions while performing
some tasks, the primitive classes may need to retrieve or
request some data from the interface classes at higher
level. This is done by defining a pointer to Structure
within the primitive classes as depicted in diagram shown
in Figure 3.

Several other classes, in addition to those discussed
above, need to be defined in a complete finite element
library. For example, several solid model classes such as
Keypoint and KeypointGroup, Line and LineGroup,
Area and AreaGroup and Volume and VolumeGroup,
are defined that perform modal generation and meshing.
Classes Load and Constraint are also defined dealing
with loading and constraints as applied to solid model
objects and/or nodes and elements. As has become
common practice now, some mathematical variables re-
quired in the FEM domain such as vector, matrix, etc.
have been represented in template form so that they can
take variable type (integer, float, double, etc.) as an ar-
gument. Engineering variables such as strains and stresses
have also been identified as objects. Several utility classes
are also defined for the purpose of processing of finite
element results and also for managing the finite element
objects.

3. Object-Oriented FEM Analysis of Metal
Working Process

The present object-oriented FEM system has been applied
to solve several metal working problems after proper vali-
dation of the code [19]. It is worthwhile here to discuss
qualitatively different aspects of present O-O FEM ar-
chitecture in solving a metal working problem. In order to
do so, a commonly known example problem of spike
forging of a cylindrical steel billet in an impression die
containing a central cavity is considered. The deformation
characteristics of the spike forging are such that the por-
tion of the material near the outside diameter flows ra-
dially, while the portion near the center of the top surface
is extruded forming a spike. The problem is an axisym-
metric rigid-plastic problem and a schematic drawing is
shown in Figure 4. The steps required and role of dif-
ferent classes in analyzing the problem are briefly de-
scribed below.

3.1 Discretization and Pre-Processing of Finite
Element Model

The element type is defined to be eight-noded isopara-
metric quadrilateral element with axisymmetric option.
This is done by requesting object of ElemTypeGroup
class which dynamically creates an object of class
ElemType2DMfQ8 and inserts in the list of element
types. While the object is created, several characteristics

of the element such as number of nodes, number of nodal
degrees of freedom, etc. are also defined. Material prop-
erties are defined by requesting MaterialGroup class
which creates an object of an appropriate derived class of
base class Material and assigns material constants values
and defines flow rule which is a function of strain rate,
strain and temperature.

Figure 3. Basic architecture of present O-O FEM imple-
mentation (‘+’ sign at the left corner of each block indicates
that the class is shown in unexpanded form while ‘-’ sign
indicates that the class is depicted in expanded form)

Figure 4. Schematic drawing of spike forging dies and billet

Copyright © 2010 SciRes. JSEA

Object-Oriented Finite Element Analysis of Metal Working Processes 576

Solid modelling, mesh control and mesh generation are
performed using classes such as KeypointGroup, Line-
Group and AreaGroup. While meshing, a number of
nodal points are established which are created once the
solid model objects request object of class NodeGroup to
do so. The coordinates, etc. are assigned to each nodal
point during the process. Similarly elements are defined
by an object of class ElementGroup which creates ob-
jects of class Elem2DMfQ8 based on the element type
currently set and arranges them in a list. The data input to
each element include the element type reference number,
material reference number and element connectivity.
Since the current problem is a multi-structure problem
involving lower and upper dies and workpiece (Figure 4),
most of the above steps are repeated for each of these
structures. The meshes of dies and workpiece (deformed)
are shown in Figure 5. In this figure, only segments of
dies required to define constraints and loading conditions,
are modeled and meshed.

3.2 Constraints and Loading

The material flow, which is characterized by spike height
variation, depends on the interface friction between die
and billet as well as the geometries of dies and billets.
Here boundary conditions are prescribed on surfaces of
master structures and/or slave structure as appropriate.
The die boundary conditions along curved die-workpiece
interfaces which constrain flow of material into the die are
prescribed using objects of Constraint class defined ap-
propriately within each master structure. Similarly, fric-
tional boundary conditions are applied using objects of
Load class.

3.3 Computation of Element Properties

The rigid-plastic approach states that for a plastically
deforming body of volume Ω under surface traction

 prescribed on a part of the surface and velocity

 prescribed on the remainder of the surface

}{ f

}{u
fΓ

u , the

variational principle (principle of virtual power) can be
written as:

Ω Ω { } { } Γ 0
f

T
v v Γd K d u f d            

(1)
where is the effective stress defined as ）（ 

and ），（   for rigid-plastic and rigid-vis-

coplastic materials respectively,  is the effective strain,

 is the effective strain-rate and iiv    is the volu-

metric strain-rate. K is a penalty constant introduced to
impose incompressibility requirement.

In FEM, a continuous velocity field over each element
can be defined uniquely in terms of velocities of associ-
ated nodal points by introducing the shape function.
Equation (1) can now be expressed in terms of nodal point

velocities and their variations }{U }{ U . From arbi-

trariness of IU , a set of algebraic equations (stiffness

equations) are obtained as

0
)(














 

e eII UU


 (2)

where (e) indicates the quantity at the eth element. The
capital-letter suffix (I) signifies that it refers to the nodal
point number.

In metal-forming, the stiffness Equation (2) is nonlinear
and the solution is obtained iteratively by using the
Newton-Raphson method. The method consists of lin-
earization by Taylor expansion near an assumed solution
point }{}{ 0UU  (initial guess), calculating

which is the first-order correction of the velocity ,

and application of suitable convergence criteria to obtain
the final solution. After linearization, (2) can be written in
the form [20]:

}{ΔU

}{ 0U

}{Δ}]{Δ[RUKT  (3)

where is called the tangent stiffness matrix and

 is referred to as the vector of residual (out-of-

balance) force increments. These are calculated as sum-
mation of contributions from all the elements as

][TK

}{ΔR

TK][
e

TK[e] and , in which is

the element tangent stiffness matrix and is the

vector of increments of element residual force.


e

erR }Δ{}Δ{ eTK][

er}Δ{

Figure 5. Mesh of the workpiece (deformed) and dies in
spike forging of a cylindrical steel billet in an impression die
containing a central cavity

Copyright © 2010 SciRes. JSEA

Object-Oriented Finite Element Analysis of Metal Working Processes 577

For each element e, and are calculated

by member functions StiffMat() and LoadVect() defined
in the class Elem2DMfQ8 or its base classes as appro-
priate. Calculating stiffness matrix and load vector require
some subtasks to be performed such as calculating shape
functions, their partial derivatives, strain-displacement
matrix, etc. These subtasks are implemented in the cor-
responding element type class ElemType2DMfQ8 or its
base classes and are performed when a request is made by
element objects. Numerical tools such as numerical inte-
gration scheme required for above calculations are em-
bedded within an appropriate element class or element
type class.

eTK][er}Δ{

3.4 Assemblage of Elements and Solution of
Equilibrium Equations

The element tangent stiffness matrices and residual load
vectors are assembled to constitute the global tangent
stiffness matrix and global residual force vector as dis-
cussed above. The function Assembly() defined in the
class ElementGroup gets the stiffness matrix and force
vector from each element and assembles them in skyline
vector storage mode. This compacted storage is used by
the skyline reduction solution method SkySolve() to solve
the system of equations. Another solution scheme called
frontal solution method is implemented by the function
FrontSolve(). However, the complete assembly of all
element contributions is not required in the case of frontal
solution method (FrontSolve()) in which assembly and
reduction of equations are performed at the same time.
Each of the tasks performed by these member functions is
decomposed into smaller tasks executed by different
member procedures implemented in this class. Since this
phase of finite element solution is computationally inten-
sive, the present implementation of this segment is more
inclined towards procedure-oriented methodology.

The solution of the system of equations using any of
two methods determines the nodal velocity increments
(represented in vector form) at a particular iteration in a
particular load step. Iteration is continued in a particular
load step until convergence is achieved and velocity cor-
rection terms become negligibly small. This is followed
by calculation of nodal velocities at the load step by the
function implemented in NodeGroup class. Here it seems
that object-oriented approach has resulted in performance
loss by first calculating the degree of freedom variable in
vector form and then assigning these values to nodes
which are identified as objects. Although for a simple
linear static analysis this may be correct, the same is not
true in the present case of non-linear multi-step analysis
since the kind of variables (nodal velocity increments)
calculated by solving the system of equations is different
from that assigned to the node which is nodal velocities.
Further, this assignment to the nodes takes place only at

the end of a particular step and not at the end of each
iteration.

3.5 Computation of Strains/Stresses and
Post-Processing of Results

Once the nodal velocities are known, effective strain rates,
effective strains and effective stresses within an element
are calculated using the member functions defined in the
Elem2DMfQ8 class or its base classes. This calculation is
invoked by the ElementGroup class before going to the
next step. The ElementGroup class is also responsible to
save these results in proper file and also prints/plots these
results during the solution or at the end of the solution, if
and when a request is made. For example, solution of
effective strain rate in the mesh of the workpiece at die
displacement of 0.6H0 is plotted in Figure 6 as directly
obtained by the present implementation of the code.

3.6 Remeshing

The metal working finite element analysis results in se-
vere distortions of mesh and it is essential to frequently
refine the mesh or modify some elements during the so-
lution phase. Fortunately, the present implementation has
one interface class as ElementGroup and another as
Structure at a higher level. These interface classes ef-
fectively perform remeshing and map the data from the
old mesh to the new mesh. Figure 7 depicts the effective
strain rate distribution mapped to the new mesh generated
by remeshing after the die displacement of 0.6H0.

4. Discussion and Conclusions

In recent past, several investigators have implemented
object-oriented techniques in FEM and reported benefits
because of this. Object-oriented programming can provide
stronger support to desirable features of finite element
application programs such as easy testing, maintenance,
extension and reusability, than the traditional program-
ming.

In object-oriented design, the approach used is to iden-
tify and implement a library of finite element data types or
classes identified from the real world concept. Each class
has well-defined roles and interfaces and therefore can be
developed, validated and maintained independently. This
approach also permits efficiency concerns to be more
easily addressed at the implementation level of each class.
The concept of inheritance enables efficient and natural
usability of finite element codes. Several new facilities
such as new element types, materials and solution tech-
niques may be incorporated with much reduced effort.

Although, the objective and general framework of the
object-oriented code in these studies are the same, it is not
surprising to find some differences in program design
leading to the conclusion that a unique (optimized) O-O
implementation of FEM system is difficult to conceptu-

Copyright © 2010 SciRes. JSEA

Object-Oriented Finite Element Analysis of Metal Working Processes 578

Figure 6. Effective strain rate at die displacement of 0.6Ho
during spike forging of a cylindrical steel billet in an im-
pression die

Figure 7. Effective strain rate mapped to the new mesh after
remeshing at die displacement of 0.6Ho during spike forging
of a cylindrical steel billet in an impression die

alize. Because of a number of factors involved such as
software requirements, language features, programming
environment and developer’s methodology and perspec-
tive, varying degrees of object orientation techniques can
be achieved, each having its own merit. One of the im-
portant challenges in developing O-O finite element codes
is also to find the balance between good data abstraction
and high computational efficiency. Further, extreme ten-
dency towards data abstraction for each conceptual entity
can increase the effort in testing and maintenance of code
rather than decreasing it. Since numerous variables are
created, used and destroyed during the full phase of FEM
analysis, it is worthwhile to represent some of them in
vector, matrix or normal structure form with proper
naming in Hungarian notation rather than applying data
abstraction.

The present paper discusses a special kind of imple-

mentation of object-oriented approach used in the design
of FEM system for metal working analysis. This design is
hybrid in nature consisting of both object-orientation
techniques and procedure-oriented approach and can
result in a good balance of benefits brought out by the two
practices. C++ is used in the development of the program
which has several features to support object-oriented pro-
gramming. This object oriented code has been applied to
solve an example problem of metal working and different
aspects are presented.

The present object-oriented FEM system has been de-
signed to contain necessary classes and their inheritances
identified from the concepts and requirements of FEM. In
addition, we create proper interfaces between these
primitive classes and the problem domain at different
levels so that these primitive objects do not directly in-
teract with the problem domain but through some super
objects. These super objects have been identified as either
an aggregate of the same objects or a superset of different
objects. This concept has provided additional benefits in
modification and extension of the code without any com-
promise in efficiency, since the primitive classes can be
modified, extended and made more efficient independ-
ently. Further, most of the numerical tools and algorithms
are embedded appropriately within these interface classes
instead of abstracting out them as objects, thus leading to a
mixed design. The static member function concept and
other facilities in C++ such as use of this pointer helped us
to implement a hybrid approach wherever required.

REFERENCES

[1] G. R. Miller, “An Object-Oriented Approach to Structural
Analysis and Design,” Computers & Structures, Vol. 40,
No. 1, 1991, pp. 75-82.

[2] T. Zimmermann, Y. Dubois-Pelerin and P. Bomme,
“Object-Oriented Finite Element Programming. I. Govern-
ing principles,” Computer Methods in Applied Mechanics
and Engineering, Vol. 98, No. 3, 1992, pp. 291-303.

[3] X. A. Kong, “Data Design Approach for Object-Oriented
FEM Programs,” Computers & Structures, Vol. 61, No. 33,
1996, pp. 503-513.

[4] S. Y. Huang, S. Nakai, H. Katukura and M. C. Natori, “An
Object-Oriented Architecture for a Finite Element Method
Knowledge-Based System,” International Journal for
Numerical Methods in Engineering, Vol. 39, No. 20, 1996,
pp. 3497-3517.

[5] T. Zimmermann, P. Bomme, D. Eyheramendy, L. Vernier
and S. Commend, “Aspects of an Object-Oriented Finite
Element Environment,” Computers & Structures, Vol. 68,
No. 1-3, 1998, pp. 1-16.

[6] G. C. Archer, G. Fenves and C. Thewalt, “A New
Object-Oriented Finite Element Analysis Program Archi-
tecture,” Computers & Structures, Vol. 70, No. 1, 1999, pp.
63-75.

[7] L. Yu and A. V. Kumar, “An Object-Oriented Modular Fra-

Copyright © 2010 SciRes. JSEA

Object-Oriented Finite Element Analysis of Metal Working Processes

Copyright © 2010 SciRes. JSEA

579

mework for Implementing the Finite Element Method,”
Computers & Structures, Vol. 79, No. 16, 2001, pp. 919-928.

[8] R. I. Mackie, “Object Oriented Implementation of Distri-
buted Finite Element Analysis in .NET,” Advanced Engin-
eering Software, Vol. 38, No. 11-12, 2007, pp. 726-737.

[9] B. C. P. Heng and R. I. Mackie, “Using Design Patterns in
Object-Oriented Finite Element Programming,” Compu-
ters & Structures, Vol. 87, No. 15-16, 2009, pp. 952-961.

[10] S. M. R. Tabatabai, “Object-Oriented Finite Element-
Based Design and Progressive Steel Weight Minimi-
zation,” Finite Elements in Analysis and Design, Vol. 39,
No. 1, 2002, pp. 55-76.

[11] O. Pantale, “An Object-Oriented Programming of an
Explicit Dynamics Code: Application to Impact Simu-
lation,” Advances in Engineering Software, Vol. 33, No. 5,
2002, pp. 297-306.

[12] V. Kromer, F. Dufossé and M. Gueurya, “On the Im-
plementation of Object-Oriented Philosophy for the
Design of a Finite Element Code Dedicated to Multibody
Systems,” Finite Elements in Analysis and Design, Vol. 41,
No. 3, 2005, pp. 493-520.

[13] J. R. Q. Franco, F. B. Barros, F. P. Malard and A. Balabram,
“Object Oriented Programming Applied to a Finite Ele-

ment Technique for the Limit Analysis of Axisymme-
trical Pressure Vessels,” Advances in Engineering Soft-
ware, Vol. 37, No. 3, 2006, pp. 195-204.

[14] R. Wirfs-Brock, B. Wilkerson and L. Wiener, “Designing
Object-Oriented Software,” Prentice Hall, Englewood
Cliffs, New York, 1990.

[15] I. Graham, “Object Oriented Methods,” Addison-Wesley,
Reading, Massachusetts, 1991.

[16] G. Booch, “Object-Oriented Design with Applications,”
The Benjamin/Cummings, Menk Park, 1991.

[17] J. Mackerle, “Object-Oriented Programming in FEM and
BEM: A Bibliography (1990–2003),” Advanced Engin-
eering Software, Vol. 35, No. 6, 2004, pp. 325-336.

[18] B. Stroustrup, “The C++ Programming Language,”
Addison-Wesley, Reading, Massachusetts, 2nd Edition,
1991.

[19] S. Kumar, “Finite Element Modeling of Thermomechanical
Behavior and Microstructural Evolution in Steel during
Hot Deformation Processes,” Project Report, No. SR/
FTP/ETA-31/2005, New Delhi, November 2009.

[20] S. Kobayashi, S.-I. OH and T. Altan, “Metal Forming and
the Finite-Element Method,” Oxford University Press,
Oxford, 1989.

J. Software Engineering & Applications, 2010, 3, 580-587
doi:10.4236/jsea.2010.36067 Published Online June 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

The Exploratory Analysis on Knowledge Creation
Effective Factors in Software Requirement
Development

Jiangping Wan1,2, Ruoting Wang1

1School of Business Administration, South China University of Technology, Guangzhou, China; 2Institute of Emerging Industrialization
Development, South China University of Technology, Guangzhou, China.
Email: scutwjp@126.com, mawangrt@gmail.com

Received March 16th, 2010; revised April 9th, 2010; accepted April 11th, 2010.

ABSTRACT

The knowledge creation effective factors were found in both necessary elements for stimulus of knowledge creation and
the key influencing factors of software project success. The research was carried with the specific successful practices of
Microsoft Corporation and William Johnson’s analysis of R & D project knowledge creation. The knowledge creation
effective factors in requirement development project are clarified through deeply interviewing the software enterprises in
Guangdong province as well as other corporate information departments. The effective factors are divided with R & D
project knowledge creation model in the view of organizational, team, personal and technical four levels through
literature research and interview in enterprises, and the empirical study was done with questionnaire and exploratory
analysis.

Keywords: Software Requirement, Knowledge Creation, Project, Organization, Empirical Study

1. Introduction

The smooth development of software requirements needs
an efficient organization to support [1], this paper dis-
cusses the knowledge creation factors in software re-
quirements development process in the meta-level of the
software process with the instance of Microsoft corpora-
tion [2-4]. Software requirement development as a
knowledge creation process, Nonaka etc. have attributed
the knowledge effect factors to four reasons: intention,
autonomy, creative chaos, requisite variety. On this basis,
Krogh etc. re-emphasized the importance of friendly re-
lationship to build efficient “Ba” [5]. J. P. Wan etc. ana-
lyzed from knowledge management view, some of them
proposed a number of effective factors: experience in the
domain, knowledge gaps, user participation, administra-
tive support, personal capability, comprehensive training,
methodology and related technology and so on [6,7].

This paper is organized as follows: first knowledge
creation effective factors are illustrated and the effective
factors in the requirement development process are con-

cluded. With deeply interviewing the software enterprises
in Guangdong province as well as other corporate infor-
mation departments, the knowledge creation effective
factors in requirement development project are clarified,
finally the empirical study is done with questionnaire
survey and exploratory analysis.

2. Knowledge Creation Effective Factors

Nonaka attributed knowledge creation effective factors to
intention, self-management, creative chaos, redundancy
and requisite variety [8], and re-emphasizes the friendly
environment in the organization [5].

2.1 Intention

Nonaka indicated that the organization intention is the
most important criterion in judging the authenticity of
intent. If there is no organization intention, the organiza-
tion will not be able to judge the value of perceived in-
formation and creative knowledge, at the same time, the
organization intention must be affected by the organiza-
tional value. William Johnson considers that it should give
one intention for each project at last, and it is obviously
that if there is no intention, the next research will not
continue [9]. Software requirements development process

This research was supported by Key Project of Guangdong Province
Education Office (06JDXM63002), NSF of China (70471091), and
QualiPSo (IST- FP6-IP-034763)

The Exploratory Analysis on Knowledge Creation Effective Factors in Software Requirement Development 581

is a knowledge creation process in nature [7]. For example,
the first is to establish a shared vision to enhance the
team’s sense of identity, belonging in the Microsoft cor-
poration’s successful rules [3].

2.2 Self-Management

It is that the members or the teams take actions volun-
tarily to improve the organization creativity. Autonomy
team refers to taking the team as operation mainstay vo-
luntarily. For example, William Johnson discovers that
personal autonomy is very important for knowledge cre-
ation with interviews [9]. It allows large teams to work
like small teams by dividing work into pieces, proceeding
in parallel but synchronizing continuously, stabilizing in
increments, and continuously finding and fixing problems
in Microsoft Corporation [10].

2.3 Creative Chaos

Nonaka etc. illustrate that turbulence and creative chaos
accelerate the interaction between the organization and
environment. Members will start to question the validity
of the basic attitudes. It will be opportunity to amend the
fundamental thinking and insight. It is obviously that
turbulence and creative chaos contribute to organizational
knowledge creation [5]. William Johnson discovered that
only in a few projects, turbulence and creative chaos
possess function which promotes knowledge creation, just
same as Nonaka’s description with R & D’s research
projects. In most projects, it is often closely linked with
the problem’s occurrence. There is no data illustrated that
the creative chaos and knowledge creation have a strong
correlation [9].

2.4 Redundancy

Redundancy usually refers to the repetition and share for
group members and the unnecessary information. It is a
kind of redundancy to adopt different technologies to
solve the same problem during requirement development
process. For example, it is an effective knowledge crea-
tion process to build a number of schemes and choose the
optimal with review.

2.5 Requisite Variety

William Johnson concluded that all projects regard the
requisite variety as a positive factor in the project knowl-
edge creation on the R & D project study [9]. Microsoft
Corporation emphasized the small teams, which should be
diversification and even in a role. There are usually many
different working ways and its members should have dif-
ferent job skills or experience levels in a project team [5].

2.6 Friendly Relationship

Krogh etc. considered that the friendly relationship can
remove the distrust, fear and dissatisfaction in the know-

ledge creation process, and allow team members to ex-
plore new markets, new customers, new products and new
manufacturing technologies in the unknown territory with
enough reassurance [5].

3. The Effective Factors in the Requirement
Development Process

The goal of software development is to exploit the high
quality software which meets the customers’ real requi-
rements timely within the budget. The success of the pro-
ject depends on good requirement management [11]. This
paper discusses the effect factors of requirement devel-
opment process in perspective of knowledge creation.

3.1 Domain Experiences

Cohen and Levinthal argued that if the organization had
more relevant knowledge or experiences, and its absorp-
tive capacity is better, it is a function of its past experi-
ences accumulation [12]. Y. H. Ke etc. analyzed the im-
portance of domain experience for system development,
and discovered that the system development experience
and deeply understanding of domain knowledge have a
positive effect on knowledge transfer [13]. Pete Sawyer
and Gerald Kotonya considered that one of the key re-
sources in software requirement acquisition is the domain
knowledge. Requirements engineers need to acquire ef-
fective knowledge on application domain. It can help
them to know the tacit knowledge what stakeholders can
not clearly illustrate and learn about the necessary balance
between the conflict requirements [14]. For example,
Microsoft’s team model advocates on the basis of deeply
understanding the client’s business requirements and
familiarly mastering related technologies to develop the
project and decision-making. Therefore, the project team
members should have the professional and deeply tech-
nology and business skills in themselves domains [15].

3.2 Knowledge Gap

It refers that the developer is lacking of business operation
knowledge, knowledge of technology, and understanding
of user business and software technology [16]. S. Alshawi
etc. argued that it is important to have the business and
technical knowledge for any enterprise [17].

3.3 User Participation

It is particularly important in information systems’ de-
velopment [18-20]. In Standish Group study, the most
reason of project “disagree” factor was the lack of user
participation, accounting for 13% in all failure projects.
All successful projects illustrated that the most important
factor was user participation, accounting for 16% of all
projects [21,22]. Standish Group enumerated the top ten
critical elements of software projects success with sur-
veying 8380 software projects, the lack of user involve-

Copyright © 2010 SciRes. JSEA

The Exploratory Analysis on Knowledge Creation Effective Factors in Software Requirement Development 582

ment is listed in the top ten reasons of software project
failure [23,24].

3.4 Administrative Support

For example, the Microsoft product development process
explicitly specifies that when the projects passing the
review and approval by higher managers, and the com-
pany will make sure the development progress is going
smoothly, and appropriate human and resources for de-
velopment will deploy through human resource depart-
ment and finance department [3,4].

3.5 Personal Capability

System analyst is a typical compound talent, and his
knowledge structure not only strides the social sciences
and natural sciences, but also is the perfect combination of
theory and practice. For example, Microsoft asked the
staff who participates the software development project
have good professionalism and excellent job skills. Staff
qualities include: personal quality, passion for product,
concerning customer feedback, having cooperation spirit
and so on [25].

3.6 Comprehensive Training

For example, Microsoft pays much attention to the de-
veloper’s re-improved process, including learning and
training and so on. The training ways are various, such as
professional skills training, many kinds of seminars,
training of product plan and development and so on. It
also pursues to learn from the past and current research
projects and products in system way [4].

3.7 Methodology

Today, many software organizations implement the best
industry practices as the software development method-
ology, such as the SW-CMM (Capability Maturity Model
For Software) has been promoted the Software Engi-
neering Institute (SEI) of Carnegie Mellon University in
United States since 1987 and so on [15,24].

3.8 Related Technology

Eriksson and Dickson argued that people share the exist-
ing knowledge and the new knowledge are created in
same time, and the IT infrastructure is one of the factors
impacting knowledge creation and share, including sup-
porting information circulation, integrating tools for
group problem-solving, such as Intranet, Extranet, video
conferencing etc. [26].

4. Interview in Enterprises

We interview some experienced requirement developers,
project managers, technical directors and other staffs of
the software enterprises in Guangzhou P. R. China for the
effect factors of software requirement development. The

results are summary as follows.

4.1 Positive Factors

Requirement developer generally plays by the veteran in a
team with abundant project experience. These skills in-
clude: 1) domain knowledge; 2) communication skill; 3)
analysis & arranging capability, comprehensive capability;
4) mastering a certain tool, specially the requirement
analysis tools.

It has great importance on the methods and techniques
of requirement development process in the software en-
terprise. First, it carries out the project generally according
to the project management standards. Second, it uses
prescriptive specification to develop requirement, e.g. the
standard template, the standard development tool and so
on. Finally, it will use variously interview methods, re-
cording methods and tools in the requirement develop-
ment process.

4.2 Uncertain Factors

Enterprises always hold uncertain attitude about auton-
omy. They considered that in the project management,
whether the team processes autonomy is related to the
project property. Employee must complete their work
following the requirement specification and the standard
format and submit the required report. However, they can
complete independently in really operation.

4.3 Negative Factors

Software companies generally oppose chaotic environ-
ment, in particularly they do not like working in a tense
environment. The creative chaos environment is not es-
tablished, and tense working environment usually causes
staffs turnoff.

5. The Classification on the Effective Factors
of Knowledge Creation in Software
Requirement Development

The knowledge creative factors in software requirement
development are classified into three areas through the
literature research and enterprise interviews (Table 1). 10
of which factors are positive, 3 are unable to determine
clearly, there are two negative factors.

6. Questionnaire Design and Collection

The quantitative sample survey is taken to test the hy-
potheses of knowledge creation effective factors in soft-
ware requirement development.

The questionnaire includes the following six areas: basic
information, organizational characteristic, personal chara-
cteristic, technical characteristic, knowledge creation and
requirement development characteristic relationship.

The first area is about the basic information, including
industry type, system user, system type, the number of

Copyright © 2010 SciRes. JSEA

The Exploratory Analysis on Knowledge Creation Effective Factors in Software Requirement Development

Copyright © 2010 SciRes. JSEA

583

system development team, the number of system requi-
rement development team and testee related role in order
to have a more clear understanding of the sample. The
second area is about organizational characteristic scale,
including 4 variables and 14 items. The third area is about
the team characteristic scales, including 6 variables and 16

items. The fourth area is about the personal characteristic
scale, including 3 variables and 8 items. The fifth area is
about the technical characteristic scales, including 2
variables and 7 items (Table 2). The sixth area is about the
knowledge creation and requirement development rela-
tionship characteristic scale, including 4 items.

Table 1. Classification on the effective factors

Relativity Level Effect factor Remark

Management support
Organization

Friendly environment

Project intention
Requisite variety
User participation

Team

Comprehensive training

Domain experience
Personal

Personal capability

Methodology

Positive

Technology
Related technology

Organization Redundancy

Team Self-management Uncertain
Personal Self-management

Organization Creative chaos

Negative
Team Knowledge gap

Literature research and
enterprise interviews

on the effective factors’
classification is
basically same.

Table 2. Questionnaire detailed corresponding table

Level Variable factors Item References

Management support ～Area one O1 O3
Nonaka (2000), Johnson (2000), Standish Group (1994), Zhang Xiang-
hui (2005), Chen Honggang (2003), James Emery (2002)

Friendly environment ～Area two O4 O10
Nonaka (2000), Johnson (2000), Krogh (1994), Zhang Xianghui (2005),
Chen Honggang (2003)

Creative chaos 、Area two O11 O14 Nonaka (1995, 2000), Johnson (2000)

Organization

Redundancy 、Area two O12 O13 Nonaka (1995, 2000), Johnson (2000)

Project intention Area ～ three T1 T2
Nonaka (1995, 2000), Johnson (2000), Zhang Xianghui (2005), Cheng
Honggang (2003)

Self-management ～Area three T3 T5
Nonaka (1995, 2000), Johnson (2000), Zhang Xianghui (2005), Chen
Honggang (2003)

Requisite variety ～Area three T6 T7 Nonaka (1995, 2000), Johnson (2000), Zhang Xianghui (2005)

User participation ～Area three T8 T10
Standish Group (1994, 1995, 1999), Johnson (2000), Zhang Xianghui
(2005), Guinan (1998), Henri Barki (1994), Hirschheim (1994)

Comprehensive training Area three T11～T13 Humphrey (2002), Constantine (1995), Chen Honggng (2003)

Team

Knowledge gap ～Area three T14 T16 Alshawi (2003), Linda (2000), Ian McBriara (2003), Gilbert (1996)

Self-management ～Area four I1 I2 Nonaka (1995, 2000), Johnson (2000), Chen Honggng (2003)
Domain experience ～Area four I3 I6 Cohen, Levinthal (1990), Ke Yihua (2005), Chen Honggang (2003)

Personal
Personal capability ～Area four I7 I8

Johnson (2000), Zhang Xianghui (2005), Chen Honggang (2003), Tian
Junguo (2003)

Technology Methodology ～Area five Te1 Te2 Johnson (2000), Zhang Xianghui (2005), Chen Honggang (2003)

 Related technology ～Area five Te3 Te7
Johnson (2000), Zhang Xianghui (2005), Chen Honggang (2003), Ellen
Gottesdiener (1999), Eriksson, Dickson (2000, 2003)

4 15 45

The Exploratory Analysis on Knowledge Creation Effective Factors in Software Requirement Development 584

7. The Exploratory Analysis of Requirement
Development Effective Factors

7.1 Reclaiming Questionnaire

Questionnaire has surveyed during December 2006 to
January 2007 in Guangdong region, including Guangzhou
Ferryman Management Consulting Co., Ltd., Guangdong
Visionsky Information Technology Co., Ltd., Guangzhou
KeenFox Engineering Co., Ltd., Computer and Tech-
nologies Solution (Shenzhen) Co., Ltd., nearly 20 enter-
prises, issued totally 50 e-mails, and totally recovered 26s,
all are valid.

7.2 Characteristic of Sample

The highest proportion is the software industry, the num-
ber is 17, accounting for 65.4%; the rest of the industry
includes financial industry, service industry and other
industries accounted for 11.5%, 11.5% and 11.8% corre-
spondingly.

The products which belong to interviewee’s team are
generally provided to the external clients to use (sample
number 10, accounting for 38.5%), internal requirement
(sample number 8, accounting for 30.8%) and the com-
bination of the two (sample number 8, accounting for 30.8
%). The products which belong to the interviewee’s team,
mainly MIS (sample number 17, accounting for 26.6%)
and DSS (sample number 13, accounting for 20.3%),
others such as ERP, EC, KM, special products, common
products as well as other, accounting for 9.4%, 9.4%,
6.3%, 10.9%, 1.6% and 15.6% correspondingly.

The 51 persons and above (sample number 16) is do-
minated, in the software development team where the
interviewee is accounting for 38.5%; 1 to 10, 11 to 20, 21
to 50 are accounted for 26.9%, 23.1 % and 11.5% corre-
spondingly. The 4 to 5 persons is dominated in the re-
quirement development team, accounting for 42.3%,
while, 11 persons and above, 6 to 10, and less than 3, are
accounting for 26.9%, 19.2% and 11.5% correspondingly.
The main interviewees are team project management, the
sample number is 12, accounting for 36.2%; developer,
requirement person, designer, tester and others are ac-
counting for 26.9%, 7.7%, 3.8% and 7.7% correspond-
ingly. Software industry is dominated in the interviewee’s
enterprises, the main products is MIS and DSS. Inter-
viewee’s software development team usually are large, the
number of requirement team is 4 to 5 persons. Mainly
interviewees are project managers in order to make the
data more persuasive.

7.3 Analysis on Reliability and Validity

The Cronbach’s α value is used to determine internal con-
sistency because this paper is exploratory research and
items are limited. The reliability of every variable is more
than 0.350 after deleting items I3 and Te7, and reliability

can be basically acceptable (Table 3).

7.4 Statistical Analysis

7.4.1 Descriptive Statistics
The descriptive statistics is illustrated in the Table 4 ac-
cording to the variables in Table 2. The summary is in the
following.

1) The average score of knowledge transformation &
requirement development is 4.4712 and indicates that
there is close relationship between knowledge transfor-
mation and requirement development, it is same as with
literature research and enterprise interview.

2) Personal capability, comprehensive training, friendly
environment, project intent, customer participation, do-
main experience and requisite variety and etc., score more
than 4 and have a higher acceptance.

3) Redundancy, creative chaos, team self-management,
individual self-management, methodology and technol-
ogy, score lower than 3.5, are basically same as the ex-
pected results.

7.4.2 One-Sample T Test
It judges one-sample T test which the test value is 3.5,
confidence interval is 95%. If the significant coefficient is
less than 0.05, and the upper and lower bounds are greater
than 0, indicating its value to more than 3.5 large (have
passed the examination); if a significant factor greater
than 0.05, or the upper and lower bounds are less than 0,
then its value is smaller than 3.5. It is illustrated in Table 5
that the items are passed the test except redundancy,
creative chaos, the team self-management, individual self-
management, methodology and technology.

Redundancy, creative chaos, team self-management,
individual self-management, methodology and technolo-
gy do not pass the test where the test value is 3.5. The
reverse scoring one-sample T test results is illustrated in
the Table 6 where the test value is 3. Only the individual
autonomy is significant, it specified that the individual
autonomy plays a negative effect on knowledge creation
of requirement development. The other variables do not
pass the test, they are unclear type. In addition, the
knowledge transfer and requirement development still
passing the test where test value 4, it illustrates in Table 7
that the relationship between the requirement develop-
ment and knowledge transfer is recognized highly.

8. Conclusions

It is illustrated in Table 8 that the management support,
friendly environment, intention, requisite variety, cus-
tomer participation, comprehensive training, knowledge
gap, domain experience and personal capability and so on
through the literature research, interview in enterprise and
questionnaire survey, The nine variables have the positive
effect on the knowledge creation of requirement devel-
opment, where the knowledge gap is measured by reducing

Copyright © 2010 SciRes. JSEA

The Exploratory Analysis on Knowledge Creation Effective Factors in Software Requirement Development 585

Table 3. Reliability of variables

Variably Item number Cronbach’s α value Remove item Reference value

Management Support 3 0.710
Friendly environment 7 0.771

Redundancy 2 0.447
Creative chaos 2 0.683

Intention 2 0.410
Team self-management 3 0.532

Requisite variety 2 0.555
User participation 3 0.502

Comprehensive training 3 0.824
Knowledge gap 3 0.379

Personal self-management 2 0.703
Domain experience 2 0.552 I3
Personal capability 3 0.409

Methodology 2 0.627

Technology 4 0.469 Te7
Knowledge transfer& requirements development 4 0.914

0.350

Table 4. Descriptive statistics

 N Minimum Maximum Mean Std. Deviation

Management support 26 3.0000 5.0000 3.961538 .5360508
Friendly environment 26 3.4286 4.8571 4.131868 .3426739

Redundancy 26 2.0000 4.0000 3.096154 .6636148
Creative chaos 26 1.0000 5.0000 2.865385 .9225800

Intention 26 3.0000 5.0000 4.115385 .4540417
Team self-management 26 2.0000 4.3333 3.480769 .5931590

Requisite variety 26 3.5000 5.0000 4.019231 .3868015
User participation 26 3.6667 5.0000 4.423077 .4274752

Comprehensive training 26 3.3333 5.0000 4.192308 .5178852
Knowledge gap 26 3.0000 4.6667 3.987179 .4664835

Personal Self-management 26 1.0000 4.0000 2.500000 .7745967
Experience in the field 26 2.5000 5.0000 4.038462 .5463163

Personal capability 26 3.5000 5.0000 4.211538 .4043038
Methodology 26 2.5000 4.0000 3.403846 .4902903

Related technology 26 1.7500 4.0000 3.375000 .4962358
Knowledge transfer & requirements development 26 3.7500 5.0000 4.471154 .4707809

（ ）Valid N listwise 26

Table 5. Variable one-sample T test

Test Value = 3.5

95% Confidence Interval of the
Difference

t df Sig. (2-tailed) Mean Difference

Lower Upper

Management support 4.390 25 .000 .4615385 .245023 .678054
Friendly environment 9.402 25 .000 .6318681 .493459 .770277

Redundancy -3.103 25 .005 -.4038462 -.671886 -.135806
Creative chaos -3.507 25 .002 -.6346154 -1.007254 -.261977

Intention 6.911 25 .000 .6153846 .431993 .798776
Team self-management -.165 25 .870 -.0192308 -.258813 .220351

Requisite variety 6.845 25 .000 .5192308 .362998 .675463
User participation 11.011 25 .000 .9230769 .750416 1.095738

Comprehensive training 6.816 25 .000 .6923077 .483129 .901486
Knowledge gap 5.325 25 .000 .4871795 .298763 .675596

Personal self-management -6.583 25 .000 -1.0000000 -1.312866 -.687134
Domain experience 5.026 25 .000 .5384615 .317800 .759123
Personal capability 8.974 25 .000 .7115385 .548237 .874840

Methodology -1.000 25 .327 -.0961538 -.294186 .101879
Related technology -1.284 25 .211 -.1250000 -.325434 .075434

Copyright © 2010 SciRes. JSEA

The Exploratory Analysis on Knowledge Creation Effective Factors in Software Requirement Development 586

Table 6. Not pass the variable reverse scoring one-sample T test where the test value is 3.5

Test Value = 3.5

95% Confidence Interval of
the Difference

t df Sig. (2-tailed) Mean Difference

Lower Upper

）Redundancy (reverse –.739 25 .467 –.0961538 –.364194 .171886
Creative chaos (re ）verse .744 25 .464 .1346154 –.238023 .507254

Team Self- （management reverse ） –4.133 25 .000 –.4807692 –.720351 –.241187
Personal Self- （management reverse ） 3.291 25 .003 .5000000 .187134 .812866

（Methodology reverse ） –4.200 25 .000 –.4038462 –.601879 –.205814
Related technol （ogy reverse ） –3.853 25 .001 –.3750000 –.575434 –.174566

Table 7. Knowledge transfer and requirement development one-sample T test

Test Value = 3.5

95% Confidence Interval of the
Difference

t df Sig. (2-tailed) Mean Difference

Lower Upper

Knowledge transfer and requirement development 5.103 25 .000 .4711538 .281001 .661306

Table 8. The summarized relationship between variables

Correlation Level Effect factor Remark
Management support The same as with literature research and enterprise interview

Organization
Friendly environment The same as with literature research and enterprise interview

Intention The same as with literature research and enterprise interview
Requisite variety The same as with literature research and enterprise interview
User participation The same as with literature research and enterprise interview

Comprehensive training The same as with literature research and enterprise interview
Team

Knowledge gap The same as with literature research and enterprise interview
Domain experience The same as with literature research and enterprise interview

Positive (＋)

Personal
Personal capability The same as with literature research and enterprise interview

Redundancy The same as with literature research and enterprise interview
Organization

Creative chaos
Chaos is a demon for the software business (Larry • Constantine), but the creative

chaos has certain positive effect for enterprise management.
Team Self-management The same as with literature search and enterprise interview

Methodology Small-scale projects require little, but large-scale projects need.

Uncertain (U)

Technology
Related technology Small-scale projects require little, but large-scale projects need.

－Negative () Personal Self-management
Requirement development projects generally obey the project management method,

have clear work plan and method.

knowledge gap and it is positive. Considering the litera-
ture research and interview in the enterprise, individual
independency is determined negative because it illustrates
significance in reverse scoring. The others, including
redundancy, creative chaos, team self-management,
methodology and technology, are unclear. It concludes
that the technology and the methodology are support
factors of project development and would be very useful
for large scale projects. On the contrary, redundancy,
creative chaos and team self-management should be
avoided as far as possible in the project, because it is
inconsistence with the goals of requirement development.

9. Acknowledgements

Thanks for helpful discussion with Mr. Huang Deyi,
Mr.Li Jiangzhang, Mr. Chen Zhening, Mr. Wang Shuwen,
Mr. Liu Bing, Brenda Huang, and Ms. Zhang Hui etc.

REFERENCES

[1] X. M. Li, L. Y. Sun and Y. L. Wang, “Research on
Software Requirement Management Based on Knowledge
Management,” Management of Research and Deve-
lopment, Vol. 17, No. 2, February 2005, pp. 28-32, 39.

[2] Swebok, “Guide to Software the Software Engineering
Body of Knowledge,” 2004. http://www.swebok.org

[3] X. H. Zhang, “Software Development Process and Mana-
gement,” Tsinghua University Press, Beijing, 2005.

[4] M. A. Cusumano and R. W. Selby, “The Secrets of Micro-
soft,” Free Press, New York, 1995.

[5] G. von Krogh, K. Ichijo and I. Nonaka, “Enabling
Knowledge Creation: How to Unlock the Mystery of Tacit
Knowledge and Release the Power of Innovation,” Oxford
University Press, New York and Oxford, 2000.

[6] J. P. Wan, Q. J. Liu, D. J. Li and H. B. Xu, “Research on
Knowledge Transfer Influencing Factors in Software

Copyright © 2010 SciRes. JSEA

The Exploratory Analysis on Knowledge Creation Effective Factors in Software Requirement Development 587

Process Improvement,” Journal of Software Engineering
and Applications, Vol. 3, No. 2, February 2010, pp. 134-
140.

[7] J. P. Wan, H. Zhang, D. Wan and D. Y. Huang, “Research
on Knowledge Creation in Software Requirement Deve-
lopment,” Journal of Software Engineering and Applica-
tions, Vol. 3, No. 5, May 2010, pp. 487-494.

[8] I. Nonaka and H. Takeuchi, “The Knowledge Creating
Company,” Oxford University Press, New York, 1995.

[9] W. Johnson, “Technological Innovation and Knowledge
Creation: A Study of Enabling Condition and Processes of
Knowledge Creation in Collaborative R & D Project,”
Ph.D. Dissertation, York University, Toronto, 2000.

[10] H. G. Chen, et al., “The Science and Art of Software De-
velopment,” Electronic Industry Press, Beijing, 2002.

[11] Y. S. Zhang, “The Way of System Analyzer,” Electronic
Industry Press, Beijing, 2006.

[12] W. M. Cohen and D. Levinthal, “Absorptive Capacity: A
New Perspective on Learning and Innovation,” Adminis-
trative Science Quarterly, Vol. 35, No. 1, 1990, pp. 128-
152.

[13] Y. H. Ke, “Research on Imparting Knowledge Transfer
across Team: Based Information Systems,” Master Thesis,
Information Management of Institute, National Sun
Yat-sen University, Taiwan, 2005.

[14] P. Sawyer and G. Kotonya, “Swebok: Software Require-
ments Engineering Knowledge Area Description Version
0.5,” IEEE and ACM Project on Software Engineering
Body of Knowledge, San Francisco, July 1999.

[15] J. P. Wan, “Research on Software Product Support Struc-
ture,” Journal of Software Engineering and Applications,
Vol. 2, No. 3, October 2009, pp.174-194.

[16] B. Jayatilaka, “The Role of Developer and User Know-
ledge Domains and Learning in Systems Development,”
AMCIS2000, 2000, pp.1323-1329.

[17] S. Alshawi and W. Al-Karaghouli, “Managing Know-
ledge in Business Requirements Identification,” Logis-
tics Information Management, Vol. 16, No. 5, 2003, pp.
341-349.

[18] H. Barki and J. Hartwick, “User Participation, Conflict and
Conflict Resolution,” Information Systems Research, Vol.
5, No. 2, December 1994, pp. 422-440.

[19] P. J. Guinan, J. G. Cooprider and S. Faraj, “Enabling
Software Development Team Performance during Requi-
rement Definition: A Behavioral vs. Technical Approach,”
Information Systems Research, July 1998, pp. 101-125.

[20] R. Hirschheim and H. K. Heinz, “Realizing Emancipatory
Principles in Information Systems Development: The Case
for ETHICS,” Management Information Systems Quar-
terly, Vol. 18, No. 1, March 1994, pp. 83-109.

[21] Standish Group, “Chaos 1994,” The Standish Group
International, Massachusetts, 1994.

[22] Standish Group, “Chaos,” Standish Group Report, 1995.

[23] Standish Group, “Chaos: A Recipe to Success,” Standish
Group Report, 1999.

[24] W. S. Humphrey, “Managing the Software Process,”
Reading, Addison-Wesley, Massachusetts, 1989, pp. 19-
24.

[25] L. L. Constantine, “Beyond Chaos: The Expert Edge in
Managing Software Development,” Addison-Wesley,
Boston, 2001.

[26] I. V. Eriksson and G. W. Dickson, “Knowledge Sharing in
High Technology Company,” American Conference on
Information System, Vol. 36, No. 2, 2000, pp. 1330-1335.

Copyright © 2010 SciRes. JSEA

J. Software Engineering & Applications, 2010, 3, 588-592
doi:10.4236/jsea.2010.36068 Published Online June 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

A Neuro-Fuzzy Model for QoS Based Selection of
Web Service

Abdallah Missaoui1, Kamel Barkaoui2

1LSTS-ENIT, Tunis, Tunisia; 2CEDRIC-CNAM, Paris, France.
Email: abdallah.missaoui@enit.rnu.tn, barkaoui@cnam.fr

Received January 5th, 2010; revised March 8th, 2010; accepted March 10th, 2010.

ABSTRACT

The automatic selection and composition of Web services rely strongly on the manner to deal with ambiguity inherent to
the description of functionalities of these services and the client’s requests. Quality of Service (QoS) criteria become
crucial in Web services selection and the problem of checking that a web service satisfies a given level of QOS is
considered in recent research works. This paper presents a QoS based automatic classification method of web services.
These services give generally similar functionalities and are offered by different providers. The main feature of our Web
service selection model is to take advantage of the neuro-fuzzy logic for coping with the imprecision of QoS constraints
values.

Keywords: Web Service, Selection, Neuro-Fuzzy, QoS, Constraint

1. Introduction

Web services are modular, self-contained, self-describing
software components which are distributed over the Web.
They can be readily located and checked-out online and
dynamically, using a new directory and corresponding
search mechanism known as Universal Description, Dis-
covery, and Integration (UDDI).

The requester accesses the description using a UDDI or
other types of registry, and requests the execution of the
provider’s service by sending a SOAP message to it (see
Figure 1).

SOAP and HTTP provide exactly what they were de-
signed for a simple, lightweight mechanism for interop-

Figure 1. Basic web services architecture

erability and distributed communication. However, SOAP
and HTTP do not provide the traditional enterprise quali-
ties of service typically needed for an enterprise.

Furthermore, SOAP was designed to be extensible,
and it can be extended to support any desired QoS fea-
ture by adding SOAP headers to the SOAP messages and
adding QoS features to the basic SOAP run-time facili-
ties.

In recent years, several service providers offer QoS
features to there customers. Then, multiple providers
may provide similar functionalities with different values
of non-functional properties.

Their non-functional properties need to be considered
during service selection. There are characterised as qual-
ity of service (QoS). In many practice cases of business
applications, it is recommended to be taken into account
during the provider selection.

The human faculty of cognition and perception is very
complex, but it possesses an efficient mechanism for in-
formation processing and expression [1,2].

This paper applies the neuro-fuzzy decision making
approach in the process of selection and choice of the
most appropriate web service with respect to quality of
service criteria.

This paper is organized as follows: Section 2 presents
web service QoS generic description. In Section 3, we
discuss and evaluate related works on web service selec-
tion adopting a common fuzzy logic approach. Section 4,

A Neuro-Fuzzy Model for QoS Based Selection of Web Service 589

we enlighten our QoS requirement description model ex-
ploiting neuro-fuzzy logic in order to deal with the im-
precision of QoS constraints values. Comments and
recommendations for our model are explicitly presented
in Section 5. Finally, Section 6 draws a conclusion.

2. QoS Properties of Web Service

Many services are appearing on the Web, several requ-
esters are presented to a group of service providers offer-
ing similar services. Different service providers may have
different qualities of service.

QoS is one of the most important factors for user’s
choice of Web service. This will require sophisticated pa-
tterns of selection process. It is necessary to provide an
appropriate negotiation mechanism between clients and
service providers to reach mutually-agreed QoS goals.

QoS management in Web service architecture includes
the definition of QoS attributes and the specifications of
the following processes: QoS publication, discovery,
validation, and monitoring. Many works have studied
QoS management on web service. Several QoS languages
and architectures are proposed.

The proposed approaches for QoS management can be
classified into two groups: one based on extending web
service technologies including SOAP, WSDL and UDDI
to support QoS [3-5]. The second group use independent
entities to perform QoS management [6].

Quality of service is defined by the ability to provide
different priorities to different applications, users, or data
flow, or to guarantee a certain level of performance to a
data flow. A QoS property may include several sub-pro-
perties representing different evaluation criteria, e.g. avai-
lability, performance, accessibility. In addition, a QoS
property can be evaluated by many metrics and therefore
it is necessary to define the units of measurements.

QoS in web service architecture is a combination of
several qualities or properties of a service, such as:

 Response time: the interval between a user-
command and the reception of an action, a result or a
feedback from the service.
 Availability: availability is the percentage of

time that a service is available for use;
 Accessibility: Accessibility represents the de-

gree that a system is normatively operated to coun-
teract request messages without delay.
 Throughput: It means the max number of ser-

vices that a platform providing Web services can
process for a unit time.
 Reliability: Reliability is the quality aspect of a

Web service that represents the degree of being ca-
pable of maintaining the service and service quality.
The number of failures per month or year represents
a measure of reliability of a Web service.
 Price: represents the money that the customer

should pay for this service. It is always associated

with the value of the service’s functionality, i.e. the
more a service costs, the more complicated functions
it provides.
 Security Level: represents the security level of

a service. It includes the existence and type of au-
thentication mechanisms the service offers, confi-
dentiality and data integrity of messages exchanged,
non-repudiation of requests or messages, and resil-
ience to denial-of-service attacks [7].

3. Related Work

With the strong popularity of the development of service
oriented application, quality of service becomes a central
interest of more and more researchers and enterprises. QoS
values are proportional to the reliability degree and per-
formance of service and thus play a very important role in
the provider choice. A large number of services are ex-
posed constraint information’s for comparison providers.

Many researches [5,8-10] have studied QoS issues to
improve two processes of discovery and selection of ser-
vices. Several QoS-aware web service selection mecha-
nisms have been developed in recent years in order to
perform the web service composition and to improve
performance applications based on services. This mecha-
nisms’ main objective is how to how properly select a set
of providers that most satisfy the constraints defined by
the user in his business processes.

Menascé studies the problem of finding services that
minimize the total execution time. It presents an opti-
mized heuristic algorithm that finds the optimal solution
without exploring the entire solution space. The solution
provided in [11] covers only the important case of execu-
tion constraints but not all QoS properties.

Pfeffer proposed a fuzzy logic based model for repre-
senting any kind of non-functional service properties. This
representation of user preferences enables the fast eva-
luation of the requested service composition by a fuzzy
multiplication of the service composition properties. Thus
service composition’ properties are measured during or
after execution [12].

Other works have been done in fuzzy logic based web
service selection. In [12-17], various methods have been
proposed for specifying fuzzy QoS constraints and for
ranking Web services based on their fuzzy representation.

There is a more suitable technique to quantify func-
tional properties: Linear Programming. These properties
are not fitting well for measuring the non-functional at-
tributes, because the majority of them are not easy to be
quantified in numerical form. In the meantime, user’s QoS
constraints regularly remain imprecise or ambiguous due
to various human mental states, and it is very difficult to
distinguish the priority order among QoS criteria.

Furthermore, in web services selection, the applied QoS
constraints are not explicitly defined. It is necessary to
relax the constraints to make an optimal solution. The use

Copyright © 2010 SciRes. JSEA

http://en.wikipedia.org/wiki/Flow_%28computer_networking%29
http://www.businessdictionary.com/definition/result.html
http://www.businessdictionary.com/definition/feedback.html

A Neuro-Fuzzy Model for QoS Based Selection of Web Service 590

of fuzzy logic offers improvements in the overall satis-
faction level. The QoS information’s represented at ab-
stract level such that it could efficiently select the best
services.

However they are still initial efforts which need further
investigation for more complete solutions. In the follow-
ing, we specify several open issues that can be solved:

 When we use some kinds of fuzzy numbers like
triangular fuzzy they may not be easy to be defined
by end users.
 It is very important to correctly define the QoS

properties that we use in the selection process. These
criteria’s QoS have important effects on ranking
methods.
 How to improve fuzzy based web service dis-

covery and the representation of QoS to achieve ef-
fective web service selection?
 How to automatically set the weights of service

providers attributes?

4. Refinement of the Framework

Neuro-fuzzy technique is the combination of two artificial
intelligence (AI) methods: fuzzy logic techniques and
neural networks. Neuro-fuzzy system has the ability to
handle the nonlinear and complex systems. It is con-
structed based on the learning algorithm of neural net-
works technique to adjust the appropriate parameters for
fuzzy logic system [18].

In this paper, we aim to solve the selection of web ser-
vices in a global and flexible manner by introducing a
neuro-fuzzy way. For this purpose, we have developed a
neural-fuzzy system based on the Sugeno Approach [19].
This is known as the ANFIS (i.e., Adaptive Neuro-Fuzzy
Inference Systems). We assume that semantic match-
making has taken place to identify functionally equivalent
services. When several of them are available to perform
the same task, their quality aspects become important and
useful in the selection process.

An ANFIS is a multi-layered feed forward network, in
which each layer performs a particular task. The layers are
characterized by the fuzzy operations they perform. Fig-
ure 2 describes the global architecture of this neural-fuzzy
system. It shows a n-input, type-5 ANFIS. Three member-
ship functions are associated with each input.

We assume that the fuzzy inference system under con-
sideration has n inputs Q1, Q2,…,Qn (which are one service
attributes). Each input has five linguistic terms, for ex-
ample, the input Q1 possesses the terms {M11, M12,…, M15}.

For each input Qi, we have defined linguistic expres-
sions
Li = {Very Poor(vp), Poor(p), Medium(m), Good(g), Very
Good(vg)}

The common fuzzy if-then rule has the following type:
Rule 1: If (Q1 is M11) and (Q2 is M21) and … and (Qn is Mn1)
then f1 (Q1, Q2,…, Qn)

We denote the output of the ith node in layer k as Ok,i.
Figure 2 shows the schematic diagram of the ANFIS
structure, which consists of five layers.

Layer 1: Every node i in this layer transform the crisp
values to a fuzzy one

1, 11
()i M i

O Q for  1, 2,...,5i and

1, 22
()i M i

O Q for  1, 2,...,5i and, …, and

1, ()i M nni
O Q for  1, 2,...,5i

where QK is the input to node K and Mki (and 1,...,k n 
 1,...,5i) is a linguistic label (very poor, poor, fair,

good, very good) associated with this node. In other words,
O1,i is the membership grade of a fuzzy set

     1 5,...,n nM M  11,...M M 15 21 25, ,..., ...M M M 

and it specifies the degree which the given input QK

( 1,...,k  n) satisfies the quantifier M.

We use the following generalized Bell function as the
membership function (MF)

2

1
()

1
biM

i

i

Q
Q c

a

 




where ai, bi and ci are the parameters set of MF. The
bell-shaped function varies depending on the values of
these parameters. Where the parameters a and b vary the
width of the curve and the parameter c locates the center








Figure 2. The structure of the neural fuzzy selector

Copyright © 2010 SciRes. JSEA

A Neuro-Fuzzy Model for QoS Based Selection of Web Service 591

of the curve. The parameter b should be positive. The pa-
rameters in this layer are referred to as premise para-
meters. The generalized Bell-shaped function is shown in
Figure 3.

Layer 2: Every node in this layer is a fixed node labeled
∏. The weighting factor, wk, of each rule is calculated by
evaluating the membership expressions in the antecedent
of the rule. This is accomplished by first converting the
input values to fuzzy membership values by utilizing the
input membership functions and then applying the and
operator to these membership values.

The and operator corresponds to the multiplication of
input membership values.

2, 1 21 2
() ()... ()i i M M M ni i ni

O w Q Q Q   

Each node output represents the firing strength of a
rule.

Layer 3: Every node in this layer is a fixed node labeled
N. The function of the fixed node is used to normalize the
input firing strengths.

3,

1

i
i i n

j
j

w
O w

w


 


  1,...,i n

Layer 4: Every node in Layer 4 is a parameterized
function, and the adaptive parameters are called “conse-
quent parameters”.

The node function is given by:

4, 1 1 2 1 1 1(...)i i i i
i i i i n nO w f w p Q p Q p Q p      

Layer 5: The single node in this layer is a fixed node
labeled ∑, which computes the overall output as the
summation of all inputs:

1
5,1

1

1

n

in
i

i n
i

i
i

w f
O w f

w







 





Thus, the ANFIS network is constructed according to
the TSK fuzzy model. This ANFIS architecture can then
update its parameters according to the backpropagation
algorithm [20].

This algorithm minimizes the error between the output

Figure 3. Generalized bell-shaped (a = 2, b = 4, c = 6)

of the ANFIS and the desired output.
Our neuro-fuzzy system allows classifying service

providers in several categories: very poor, poor, fair,
good, very good. It allows automating the selection pro-
cess in the dynamic composition of services.

According to the QoS requirements of web service
providers and the functions of Neuro-fuzzy system, we
believe that each service invoked is appropriate candidate
to increase the composition ability of web services and to
decrease the burden of composition cognition and the
minimal development cost.

5. Comments and Recommendations

In fuzzy inference system (FIS), The MF of the conse-
quent of each rule is a constant of a fuzzy MF. There are
two steps to construct this system: the specification of an
appropriate number of input/output and the specification
of the shape of MFs. The main problem is that structure
identification requires human expertise to solve the pa-
rameter estimation. In our selector system we used a dif-
ferent approach, which take advantage of adaptive neural
networks algorithms during fitting procedures. MF pa-
rameters are fitted to a dataset through a learning algo-
rithm.

A significant number of samples of service providers
are needed in order to have better result and to avoid
having too many defect values during selection process.
The database must be as complete as possible, including
samples of providers attributes over a broad range. The
number of samples depends on the context and on the
runtime environment.

On the other hand, fuzzy logic sets are based on trans-
parence, linguistic rules and establish a framework to
include human expertise into modelling. The number of
rules is decided by an expert who is familiar with the
system to be modeled. In our work, however, no expert is
available and the number of membership functions as-
signed to each input qualities is chosen empirically by
examining the desired input-output data.

We merged the fuzzy logic approach with the ability of
learning algorithms from neural networks to adjust the
model.

6. Conclusions

Web service composition is an emerging area involving
important technological challenges. Some of the main
challenges are to correctly describe QoS of Web services,
to compose them adequately and automatically, and to
discover suitable providers and QoS composition issues.

Neuro-fuzzy logic can be seen as a promising formal
technique for representing imprecise QoS constraints. In
this paper, we have presented a solution to use neuro-
fuzzy approach in Web service discovery and selection.
We have proposed methods for ranking and selecting web
services based on a neuro-fuzzy specification of fuzzy

Copyright © 2010 SciRes. JSEA

A Neuro-Fuzzy Model for QoS Based Selection of Web Service

Copyright © 2010 SciRes. JSEA

592

QoS constraints. The user’s constraints are formalized as
fuzzy sets and the Qos criteria’s are expressed as fuzzy
expressions.

This model can be seen as a contribution towards a
more complete solution for web service composition in-
tegrating fully QoS features.

REFERENCES

[1] J. S. Jang, “ANFIS: Adaptive-Network-Based Fuzzy In-
ference System,” IEEE Transactions on Systems, Man,
and Cybernetics, Vol. 23, No. 3, 1993, pp. 665-684.

[2] J. R. Jang and C. T. Sun, “Neuro-Fuzzy and Soft Com-
puting: A Computational Approach to Learning and
Machine Intelligence,” Prentice-Hall, Inc., Upper Saddle
River, New Jersy, 1997.

[3] V. Diamadopoulou, C. Makris, Y. Panagis and E. Sakko-
poulos, “Techniques to Support Web Service Selection
and Consumption with QoS Characteristics,” Journal of
Network and Computer Applications, Vol. 31, No. 2, 2008,
pp. 108-130.

[4] A. F. M. Huang, C. W. Lan and S. J. H. Yang, “An Optimal
QoS-Based Web Service Selection Scheme,” Information
Sciences, Vol. 179, No. 19, 2009, pp. 3309-3322.

[5] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J.
Kalagnanam and H. Chang, “QoS-Aware Middleware for
Web Services Composition,” IEEE Transactions on
Software Engineering, 2004, pp. 311-327.

[6] D. A. Menascé, H. Ruan and H. Gomaa, “QoS Manage-
ment in Service-Oriented Architectures,” Journal of Per-
formance Evaluation, Vol. 64, No. 7-8, 2007, pp. 646-663.

[7] D. A. Menasce, “QoS Issues in Web Services,” IEEE
Internet Computing, Vol. 6, No. 6, 2002, pp. 72-75.

[8] M. Sultana, M. M. Akbar and M. Rouf, “Network Flow
Heuristic Algorithm for a Distributed Web Service Selection
Problem,” IEEE Conference on Communications, Compu-
ters and Signal Processing, 2009, pp. 465-470.

[9] D. Tsesmetzis, I. Roussaki and E. Sykas, “QoS-Aware
Service Evaluation and Selection,” European Journal of
Operational Research, Vol. 191, No. 3, 2008, pp. 1101-
1112.

[10] S. Chaari, Y. Badr and F. Biennier, “Enhancing Web Ser-
vice Selection by QOS-Based Ontology and WS-Policy,”

Proceeding of the 23rd ACM Symposium on Applied
Computing, Ceará, 2008, pp. 2426-2431.

[11] D. A. Menascé, E. Casalicchio and V. Dubey, “On
Optimal Service Selection in Service Oriented Archi-
tectures,” Performance Evaluation Journal, Vol. 67, No. 8,
2010, pp. 659-675.

[12] H. Pfeffer, S. Krüssel and S. Steglich, “A Fuzzy Logic
based Model for Representing and Evaluating Service
Composition Properties,” The Third International Con-
ference on Systems and Networks Communications,
Bangalore, 2009.

[13] M. Lin, J. Xie, H. Guo and H. Wang, “Solving Qos-Driven
Web Service Dynamic Composition as Fuzzy Constraint
Satisfaction,” IEEE International Conference on e-Tech-
nology, e-Commerce and e-Service, Hong Kong, 2005.

[14] P. Wang, K. Chao, C. Lo, C. Huang and Y. Li, “A Fuzzy
Model for Selection of QoS-Aware Web Services,” IEEE
International Conference on e-Business Engineering,
IEEE Computer Society, Shanghai, 2006, pp. 585-593.

[15] K. M. Chao, M. Younas, C. C. Lo and T. H. Tan, “Fuzzy
Atchmaking for Web Services,” The 19th International
Conference on Advanced Information Networking and
Applications, Taipei, 2005.

[16] L. Zhuang, Y. F. Huang, W. G. Jian, J. B. Zhou and H. Q.
Guo, “Solving Fuzzy QoS Constraint Satisfaction Tech-
nique for Web Service Selection,” International Con-
ference on Computational Intelligence and Security Work-
shops, Harbin, 2007.

[17] H. Tong and S. Zhang, “A Fuzzy Multi-Attribute Decision
Making Algorithm for Web Services Selection Based on
QoS,” The IEEE Asia-Pacific Conference on Services
Computing, Guangzhou, 2006.

[18] M. A. Denai, F. Palis and A. Zeghbib, “ANFIS Based
Modelling and Control of Non-Linear Systems: A Tu-
torial,” IEEE International Conference on Systems, Man
and Cybernetics, Vol. 4, 2004, pp. 3433-3438.

[19] O. Nelles, A. Fink, R. Babuka and M. Setnes, “Com-
parison of Two Construction Algorithms for Takagi-
Sugeno Fuzzy Models,” International Journal of Applied
Mathematics and Computer Science, 2000, pp. 835-855.

[20] P. Werbos, “The Toots of the Back Propagation: From
Ordered Derivatives to Neural Networks and Political
Forecasting,” John Wiley and Sons, Inc, New York, 1993.

http://portal.acm.org/citation.cfm?id=248321&dl=GUIDE&coll=GUIDE&CFID=61232255&CFTOKEN=66152027
http://portal.acm.org/citation.cfm?id=248321&dl=GUIDE&coll=GUIDE&CFID=61232255&CFTOKEN=66152027
http://portal.acm.org/citation.cfm?id=248321&dl=GUIDE&coll=GUIDE&CFID=61232255&CFTOKEN=66152027
http://portal.acm.org/citation.cfm?id=248321&dl=GUIDE&coll=GUIDE&CFID=61232255&CFTOKEN=66152027
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4K2SJ8X-1&_user=2503238&_coverDate=04%2F30%2F2008&_alid=1044082865&_rdoc=1&_fmt=high&_orig=search&_cdi=6902&_sort=r&_docanchor=&view=c&_ct=169&_acct=C000053505&_version=1&_urlVersion=0&_userid=2503238&md5=ac900cad36ed97d3a69d058f2bc261df
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKB-4K2SJ8X-1&_user=2503238&_coverDate=04%2F30%2F2008&_alid=1044082865&_rdoc=1&_fmt=high&_orig=search&_cdi=6902&_sort=r&_docanchor=&view=c&_ct=169&_acct=C000053505&_version=1&_urlVersion=0&_userid=2503238&md5=ac900cad36ed97d3a69d058f2bc261df
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0C-4WFG5WV-2&_user=2503238&_coverDate=09%2F09%2F2009&_alid=1044082865&_rdoc=2&_fmt=high&_orig=search&_cdi=5643&_sort=r&_docanchor=&view=c&_ct=169&_acct=C000053505&_version=1&_urlVersion=0&_userid=2503238&md5=90cb9600c1453861c9ba9e0414c87104
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0C-4WFG5WV-2&_user=2503238&_coverDate=09%2F09%2F2009&_alid=1044082865&_rdoc=2&_fmt=high&_orig=search&_cdi=5643&_sort=r&_docanchor=&view=c&_ct=169&_acct=C000053505&_version=1&_urlVersion=0&_userid=2503238&md5=90cb9600c1453861c9ba9e0414c87104
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V13-4MC71BJ-1&_user=2503238&_coverDate=08%2F31%2F2007&_alid=1044082865&_rdoc=9&_fmt=high&_orig=search&_cdi=5663&_sort=r&_docanchor=&view=c&_ct=169&_acct=C000053505&_version=1&_urlVersion=0&_userid=2503238&md5=4d5888686327197cbd496e9427d2bcd9
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V13-4MC71BJ-1&_user=2503238&_coverDate=08%2F31%2F2007&_alid=1044082865&_rdoc=9&_fmt=high&_orig=search&_cdi=5663&_sort=r&_docanchor=&view=c&_ct=169&_acct=C000053505&_version=1&_urlVersion=0&_userid=2503238&md5=4d5888686327197cbd496e9427d2bcd9
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V13-4WSRDV5-1&_user=2503238&_coverDate=07%2F17%2F2009&_alid=1069518289&_rdoc=2&_fmt=high&_orig=search&_cdi=5663&_st=13&_docanchor=&_ct=3&_acct=C000053505&_version=1&_urlVersion=0&_userid=2503238&md5=cbeef5b73ece4815228111b6e7c9ed19#bio1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V13-4WSRDV5-1&_user=2503238&_coverDate=07%2F17%2F2009&_alid=1069518289&_rdoc=2&_fmt=high&_orig=search&_cdi=5663&_st=13&_docanchor=&_ct=3&_acct=C000053505&_version=1&_urlVersion=0&_userid=2503238&md5=cbeef5b73ece4815228111b6e7c9ed19#bio2
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V13-4WSRDV5-1&_user=2503238&_coverDate=07%2F17%2F2009&_alid=1069518289&_rdoc=2&_fmt=high&_orig=search&_cdi=5663&_st=13&_docanchor=&_ct=3&_acct=C000053505&_version=1&_urlVersion=0&_userid=2503238&md5=cbeef5b73ece4815228111b6e7c9ed19#bio3

J. Software Engineering & Applications, 2010, 3, 593-602
doi:10.4236/jsea.2010.36069 Published Online June 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Scalable Varied Density Clustering Algorithm for
Large Datasets

Ahmed Fahim1, Abd-Elbadeeh Salem2, Fawzy Torkey3, Mohamed Ramadan4, Gunter Saake1

1Faculty of Information, Otto-Von-Guericke University, Magdeburg, Germany; 2Faculty of Computers & Information, Ain Shams
University, Cairo, Egypt; 3Kafrelshiekh University, Kafrelshiekh, Egypt; 4Faculty of science, Menofyia University, Shebeen Elkoum,
Egypt.
Email: ahmmedfahim@yahoo.com

Received November 11th, 2009; revised December 8th, 2009; accepted December 11th, 2009.

ABSTRACT

Finding clusters in data is a challenging problem especially when the clusters are being of widely varied shapes, sizes,
and densities. Herein a new scalable clustering technique which addresses all these issues is proposed. In data mining,
the purpose of data clustering is to identify useful patterns in the underlying dataset. Within the last several years, many
clustering algorithms have been proposed in this area of research. Among all these proposed methods, density clustering
methods are the most important due to their high ability to detect arbitrary shaped clusters. Moreover these methods often
show good noise-handling capabilities, where clusters are defined as regions of typical densities separated by low or no
density regions. In this paper, we aim at enhancing the well-known algorithm DBSCAN, to make it scalable and able to
discover clusters from uneven datasets in which clusters are regions of homogenous densities. We achieved the scalability
of the proposed algorithm by using the k-means algorithm to get initial partition of the dataset, applying the enhanced
DBSCAN on each partition, and then using a merging process to get the actual natural number of clusters in the
underlying dataset. This means the proposed algorithm consists of three stages. Experimental results using synthetic
datasets show that the proposed clustering algorithm is faster and more scalable than the enhanced DBSCAN
counterpart.

Keywords: EDBSCAN, Data Clustering, Varied Density Clustering, Cluster Analysis

1. Introduction

Over the past several years, even though the computing
power has increased exponentially, hard-drive capacity
has increased at an order of magnitude greater than that of
processor power. Thus the capability to store data has
greatly outpaced the capability to process it. As a result,
large volumes of data have been generated. The result of
this unceasing data collection is that organizations have
become data-rich and knowledge-poor [1]. The main
purpose of data mining is to extract knowledge from the
data at hand, in other words data mining is the process of
extracting hidden and interesting patterns from huge
datasets.

Data clustering is one of the promising techniques of
data mining, which groups a set of objects into classes or
clusters such that objects within a cluster have high simi-
larity in comparison to one another, but they are dissimilar
to objects in other clusters. Data clustering algorithms can
be classified into four categories; (1) partitioning, (2) hie-

rarchical, (3) density-based and (4) grid-based. However,
some algorithms may fall into more than one category. By
clustering one can identify dense and sparse regions and,
therefore, discover overall distribution patterns. Finding
clusters in data is challenging when the clusters are being
of widely differing sizes, shapes and densities and when
the data contains noise and outliers. Although many al-
gorithms exist for finding clusters of different sizes and
shapes, there are few algorithms that can detect clusters of
different densities.

Basic density based clustering techniques such as
DBSCAN [2] and DENCLUE [3] treat clusters as regions
of high typical densities separated by regions of no or low
densities. So they are able to suitably handle clusters of
different sizes and shapes besides effectively separate
noise and outliers. But they may fail to identify clusters
with varying densities unless the clusters are totally se-
parated by sparse regions. There are some algorithms
which handle clusters of different densities, like OPTICS
[4] but it does not produce explicit clusters. Traditional

Scalable Varied Density Clustering Algorithm for Large Datasets 594

)

DBSCAN algorithm sometimes has trouble with clusters
of varying densities. An enhanced DBSCAN algorithm
has been developed to discover varied density clusters
from uneven datasets [5]. The disadvantage of this algo-
rithm is its high computational complexity and it does not
scale well with the size of huge datasets. It requires O(n
log n); where n is the size of the input dataset. Its main
advantages are discovering varied density clusters and
requiring only one input parameter; (maxpts) which de-
termines a suitable value for Eps in DBSCAN for each
cluster based on the local density. So it is very important
to exploit these to two golden advantages and improve the
scalability of this algorithm. The original DBSCAN al-
gorithm has been merged with k-means algorithm in
KIDBSCAN [6], and DBSK [7], and with CLARANS
algorithm in [8].

This paper proposes an algorithm that merges among
partitioning, density, and hierarchical based methods. It is
based on ideas extracted from k-means [9], enhanced
DBSCAN [5], and CURE [10]. The enhanced DBSCAN
selects a suitable value for its parameter Eps in each
cluster, based up on the local density of the starting point
in each cluster, and adopts the traditional DBSCAN for
each value of Eps. The idea of the enhanced DBSCAN
algorithm depends on discovering the highest density
clusters at first, and then the Eps is adapted to discover
next low density clusters with ignoring the previously
clustered points. For more details, one can refer to [5].

The proposed algorithm improves the scalability of the
EDBSCAN algorithm via partitioning the dataset in order
to reduce the search space of the neighborhoods. Instead
of examining the whole dataset, the EDBSCAN searches
only in the objects within each partition. Merging stage is
needed to get the final natural number of clusters in the
underlying dataset.

The rest of this paper is organized as follows; some
related works are reviewed in Section 2. Section 3 pre-
sents the proposed algorithm and describes in details the
three stages of it, and analyzes its time complexity. Sec-
tion 4 presents some experimental results on different
datasets to show the performance of the proposed algo-
rithm. Finally the conclusion is presented in Section 5.

2. Related Work

Clustering is the organization of the objects in a dataset D
into homogeneous and separated groups with respect to a
distance or a similarity measure. Its ultimate objective is
to assign the similar objects to the same cluster or group,
and dissimilar ones to different clusters. Clustering me-
thods can basically be classified into two main types; par-
titioning and hierarchical based methods [11]. Partitioning
algorithms construct a partition of a dataset D of n objects
into a set of k clusters; k is an input parameter for these
algorithms. A partitioning algorithm typically starts with
an initial partition of D and then uses an iterative control

strategy to optimize an objective function. The square
error criterion, defined below in (1), is the most com-
monly used (mi is the mean of cluster Ci).

2

1

(
k

i
i p ci

p m
 

  (1)

The square-error is a good measure of the within cluster
variation across all the partitions. The objective herein is
to find k partitions that minimize the square error. Thus,
square error clustering tries to make the k clusters as
compact and separated as possible and it works well when
clusters are compact clouds that are rather well separated
from one another. Each cluster is represented by the gra-
vity center of the cluster (k-means algorithm) or by the
object that is the most centrally located in the cluster
(k-medoids algorithms). Consequently, partitioning algo-
rithms use a two-step procedure. First, they determine k
representatives minimizing the objective function. Second,
they assign each object to the cluster with its representa-
tive “closest” to the considered object. This type of algo-
rithms discovers only spherical shaped clusters of similar
sizes, and requires k as input parameter.

Hierarchical algorithms create a hierarchical decom-
position of D. The hierarchical decomposition is repre-
sented by a dendrogram; a tree that iteratively splits D into
smaller subsets until each subset consists of only one
object. In such a hierarchy, each node of the tree repre-
sents a cluster of D. The dendrogram can either be created
from the leaves up to the root (agglomerative approach) or
from the root down to the leaves (divisive approach) by
merging or dividing clusters at each step. Agglomerative
hierarchical clustering (AHC) is more stable but its time
and memory space requirements are consistently higher.
Therefore it is unfeasible for a large dataset. Moreover, for
examples, the single link approach is very susceptible to
noise and differences in density. While group average and
complete link are not as susceptible to noise, but they have
trouble with varying densities and cannot handle clusters
of different shapes and sizes [12]. Another hierarchical
algorithm called CURE [10] has been proposed, it stops
the creation of a cluster hierarchy if a level consists of k
clusters, where k is one of several input parameters. It
utilizes multiple representative points to evaluate the dis-
tance between clusters. Thereby, it is adjusting well to
arbitrary shaped clusters and avoiding the chain effect
problem of the single-link. This results in good clustering
quality. But this algorithm has several parameters. The
parameter setting does have a profound influence on the
result.

Besides the partitioning and hierarchical approaches,
density based clustering methods such as DENCLUE [3]
and DBSCAN [2] form a third clustering type. These are
often used in data mining for knowledge discovery. Den-
sity-based clustering uses a local cluster criterion, in

Copyright © 2010 SciRes. JSEA

Scalable Varied Density Clustering Algorithm for Large Datasets 595

which clusters are defined as regions in the data space
where the objects are dense, and remain, separated from
one another by low-density regions. The basic idea of the
DBSCAN algorithm is that for each point of a cluster the
neighborhood of a given radius (Eps) has to contain at
least minimum number of points (MinPts), where Eps and
MinPts are input parameters. These two parameters are
global for the dataset. Furthermore it is not easy to de-
termine the best value for Eps, and hence DBSCAN can
not discover clusters with varied density unless they are
totally separated. Density-based clustering has some ad-
vantages over k-clustering and AHC in discovering clus-
ters of arbitrary shapes and sizes.

However, in previous studies, it was shown that current
density based clustering works well only on a simple
dataset where cluster densities are similar [4]. Density
based clustering is important for knowledge discovery in
databases. Its practical applications include biomedical
image segmentation [13], molecular biology and geos-
patial data clustering [14], and earth science tasks [2].

The enhanced DBSCAN algorithm [5] has previously
been proposed to solve the problem of varied density
clusters. In this paper, we improve the scalability of the
enhanced DBSCAN by first partitioning the dataset to
reduce the search space of the neighborhoods, then ap-
plying the enhanced DBSCAN on each partition sepa-
rately, and finally applying merging procedure to get the
actual number of clusters in the whole dataset.

3. The Proposed Algorithm
In this section, we describe the details of the proposed
algorithm which called scalable enhanced DBSCAN
(SEDBSCAN). This algorithm composed of three main
stages; the first stage is to partition the dataset into k su-
per-clusters, the second stage is to find out the sub-clus-
ters within each partition (super-cluster), the third stage is
to find out the natural number of clusters by merging
dense sub-clusters from different partitions (super-clus-
ters). Figure 1 depicts these three stages.

3.1 Partitioning Stage

The main purpose of this stage is to partition the un-
derlying dataset into a finite number of smaller datasets,
because most algorithms perform efficiently well with
small datasets more than large datasets. So this stage will
improve the scalability of the proposed algorithm. In this
stage, discovering varied-shaped clusters is not of high
importance, but the most important issue is getting the
initial partitions as soon as possible. To fulfill this goal, an
algorithm with time complexity O(n) should be used.

Figure 1. Main stages of the scalable EDBSCAN

k-means algorithm [9] is the best choice for this stage. In
the following, a brief review about k-means is presented.
The k-means is classified as a partitioning method that
requires only one input parameter, k, which represents the
number of clusters. The main steps of this algorithm are as
follows:

Input: the number of clusters k, and a dataset containing
n objects.

Output: a set of k clusters which minimizes the square
error as in Equation (1).

Method:
1) Arbitrary select k centers as the initial solution.
2) Compute membership the objects according to the

current solution.
3) Update cluster centers according to new member-

ships of the objects.
4) Repeat steps 2 and 3 until convergence.
The k-means is scalable and efficient in processing

large datasets due to its low time complexity (i.e. O(n)).
Since the k-means works well with spherical shaped
clusters of similar size, we expect that the result of this
stage is not always correct. Consider the following ex-
ample depicted in Figure 2. It is shown that the k-means
produces six clusters. One can easily discover that this
result is not really correct, as an actual cluster may be
distributed over more than one partition, or some clusters
are merged together.

The second stage will handle each partition as a new
separate dataset. We used a scalable version of the k-
means algorithm. This version was previously presented
in [9]. It reduces the number of computations in the sec-
ond step of the original k-means. It achieved its scalabil-
ity through redistributing the objects that became far
from their previous centers, while the objects which be-
come closer to their centers will not be redistributed.

3.2 EDBSCAN Each Partition

This stage applies the enhanced DBSCAN on each parti-
tion. The main advantage of this algorithm is that it has the
ability to discover varied density clusters. So the proposed

Figure 2. Initial partition resulted from k-means algorithm

Copyright © 2010 SciRes. JSEA

Scalable Varied Density Clustering Algorithm for Large Datasets 596

ure 3.

algorithm will inherit this important advantage. A brief
review about EDBSCAN [5] is presented. The EDBS-
CAN algorithm is based on the DBSCAN [2] algorithm,
but it surmounts the problem of fixed Eps in DBSCAN.
The EDBSCAN needs two input parameters; they are
Minpts and Maxpts, Minpts < Maxpts < 20. These two
parameters determine the minimum and maximum density
for core points respectively. Maxpts also determines the
Eps for each cluster according to the highest local density
of its starting point. Minpts is fixed to 4 as in DBSCAN
algorithm. Thus the user will set only one input parameter.
The main steps in this algorithm are as follows:

Input: Maxpts, and dataset containing n objects.
Output: actual clusters discovered from the input dataset.

Method:
1) Find the k-nearest neighbors for each object p.

(i.e. Nk(p)) and keep them in ascending order
from p.

2) Set local density value for each object p as
DEN(p,y1,…,yk) which represents the sum of
distances among the object p and its k-nearest
neighbors.

3) Rearrange the objects in descending order ac-
cording to their local densities.

4) ClusId = 1.
5) Starting from the first unclassified object p in

the sorted data do the following:
a) Eps = distance to maxpts-nieghbor for the object p.
b) Assign the object p to the current cluster (ClusId).
c) Append its unclassified neighbor qi, wrt. Eps and

Minpts to the seed list SLp in ascending order of their dis-
tance to p, Continue expanding current cluster until no
object can be assigned to it.

6) ClusId = ClusId + 1.
Assign the next unclassified object to the current

cluster and go to step 5 until all objects are classified.
In EDBSCAN there are no border points as in DBSC-

AN. So it treats small clusters as noise and discards them
from the data. Experimentally, a small cluster is the
cluster that has less than 0.006 of the size of the dataset.
Figure 3 shows the sub-clusters discovered from each
partition resulted from the first stage. This figure shows
16 sub-clusters discovered from the six initial partitions.

From Figure 3 one can see that some sub-clusters are
merged together to get the natural clusters in the under-
lying dataset. To merge sub-clusters, the idea of repre-
sentative points proposed by CURE algorithm [10] will
be used, but not using the same technique of the CURE.
The k-means algorithm will be used for selecting these
representative points. Based on these representttatives,
two clusters with the most near representatives will be
merged in a hierarchical fashion until termination condi-
tion is hold. This process will be done in the third stage.

3.3 Merging Dense Clusters

This stage aims to merge the nearest dense sub-clusters
detected from applying the EDBSCAN on each partition
in the second stage. As it is known there is no border
point can be detected by EDBSCAN algorithm, since it
uses minimum and maximum density for core points.
Therefore every point in the given dataset is a core point,
and the maximum density determines the Eps value in
each cluster according to the density of region where the
initial point resides. Referring to the method presented in
[8], one can find that the DBSCAN algorithm can detect
large number of border points in each cluster. We need
smaller number of points from each cluster as representa-
tives to reduce computational complexity of the merging
stage. So the merging stage will search for k representa-
tives from each sub-cluster using the k-means algorithm.
This means, we apply the k-means algorithm on each
generated sub-cluster from applying the EDBSCAN on
each partition in the second stage. Referring to Figure 3
we have 16 sub-clusters, so the size of clusters is very
small compared to the size of the whole dataset. There-
fore, the time required to get these representatives using
the k-means will be very small and can be neglected. We
use these representatives for merging dense sub-clusters.
Figure 4 depicts the k representatives for each
sub-cluster shown in Fig

Figure 3. Result from applying EDBSCAN on each partition

Figure 4.The k representatives for each cluster generated
from the second stage (k = 8)

Copyright © 2010 SciRes. JSEA

Scalable Varied Density Clustering Algorithm for Large Datasets 597

Two dense sub-clusters with the most nearest repre-
sentatives will be merged together in a hierarchical form.
This idea is similar to that was proposed by CURE algo-
rithm [10]. We need a threshold to stop the merging
process. This may be a simple problem because we al-
ready have some information about the data from the
previous stages; like the number of sub-clusters, Eps in
each cluster (density level of each cluster), distances
among cluster’s representatives. Intuitively, two sub-
clusters in second stage are not allowed to be merged
together if they are belonging to the same partition (super
cluster) in the first stage.

The algorithm arranges the merging distances in as-
cending order. By examining the plot of distances, we
can easily select threshold distance to stop the merging
process. Figure 5 presents the merging distances plot for
the sub-clusters in Figure 3.

Since we have 16 sub-clusters from the second stage,
we need 15 merging steps for merging all sub-clusters
into a single cluster. We search for the gaps in distances
plot. From Figure 5 we notice that only one gap between
distances 28.7 and 47.6. So any value between these two
values will be a threshold distance. The merging process
is applied seven times so that the final number of clusters
will be 16-7 = 9 clusters as shown in Figure 6.

We can get rid of the smallest three clusters as noise,
and return the remaining six clusters as a final result.

3.4 Complexity Analysis

The execution time of the proposed algorithm is com-
posed of three components; the first one is the time for
executing the k-means algorithm on the entire dataset
which is O(n), where n is the size of the input dataset.
The second component is the time for executing the
EDBSCAN algorithm on each part resulting from the k-
means in the first stage, the EDBSCAN requires O(m2) if
it doesn’t use an index structure like R*-tree, or O(m log
m) if it uses R*-tree; where m is the size of the input
dataset, and m is very smaller than n since m is the size
of one part of the original dataset. The third component is
the time for getting the k representatives from each sub-
cluster, and the merging process, this time is very small
and can be neglected, because we apply the k-means al-
gorithm on each sub-cluster which is very small com-
pared with the size of the original dataset, and the total
number of representatives is also very small compared to
the original dataset size. Furthermore, we don’t find the
distances among representatives belonging to the same
part in the initial partition. Hence the entire execution
time of the proposed algorithm is O(n + m log m) which
is definitely smaller than O(n log n).

4. Experimental Results

In this section the performance of the proposed algorithm
is evaluated. This algorithm has been implemented in C++.

Figure 5. Merging distances plot

Figure 6. Natural number of clusters in dataset

We have used many synthetic datasets to test the proposed
algorithm. The experiments have been done on seven
different datasets containing 2D points. The first dataset
has six clusters of different sizes, shapes, and orientation,
as well as random noise points and special artifacts such
as streaks running across clusters, this dataset is used as an
example in Figure 2. The second dataset has six clusters
of different shapes. Moreover, it also contains random
noise and special artifacts, such as a collection of points
forming horizontal streak, this dataset is shown in Figure
7. The third dataset has eight clusters of different shapes,
sizes, and orientation, some of which are inside the space
enclosed by other clusters. Moreover, it also contains
random noise and special artifacts, such as a collection of
points forming vertical streaks. This dataset is shown in
Figure 8. The fourth dataset has eight clusters of different
shapes, sizes, densities, and orientation, as well as random
noise. A particularly challenging feature of this data set is
that the clusters are very close to each other and they have
different densities, this dataset is shown in Figure 9. The
fifth dataset has four clusters of different shape, size, and
density. A particularly challenging feature of this data set
is that, the clusters are very close to each other and they
have different densities, this dataset is shown in Figure 10.
The sixth and seventh datasets have clusters of different

Copyright © 2010 SciRes. JSEA

Scalable Varied Density Clustering Algorithm for Large Datasets 598

Figure 7. Clusters obtained from dataset 2

sizes and densities. These datasets are shown in Figures
11 and 12. The last three datasets are presented here to
insure that the proposed algorithm is very efficient in
discovering varied density clusters without requiring se-
parating regions with low density.

We evaluate the performance of the proposed algorithm
compared to the original EDBSCAN using different
synthetic datasets include noise; the sizes of these datasets
are ranging from 3147 to 10000 points in two-dimensions

Figure 8. Clusters obtained from dataset 3

(2D), and they contain varied shaped, size, and density
clusters. Figure 7 shows the three steps of the proposed
algorithm on dataset 2 of size 8000 points.

For comparing the proposed algorithm with the original
EDBSCAN, the same value for the parameter maxpts in
both EDBSCAN and the proposed algorithm is used in
order to demonstrate the higher enhancement of the pro-
posed algorithm. Figure 8 shows the three steps of the
proposed algorithm on the third dataset containing 10000
points.

Copyright © 2010 SciRes. JSEA

Scalable Varied Density Clustering Algorithm for Large Datasets 599

Figure 9. Clusters obtained from dataset 4

However dataset 3 has clusters of varied shapes that are
nested with each other, the proposed algorithm could
discover the right clusters in the data. There is a small
mistake in the ring cluster that has two different spherical
clusters within it. This cluster has three levels of density in

Figure 10. Clusters obtained from dataset 5

its right half. This mistake resulted from the EDBSCAN
which considered the small cluster as outlier and removed
it from the data, but this problem can easily be resolved by
assigning the outlier clusters to the nearest cluster. Figure
9 shows the three steps of the proposed algorithm on

Copyright © 2010 SciRes. JSEA

Scalable Varied Density Clustering Algorithm for Large Datasets 600

Figure 11. Clusters obtained from dataset 6

dataset 4 of size 8000 points.

Dataset 5 has four clusters of varied shapes, sizes and
densities. The proposed algorithm could successfully
discover the correct clusters. Figure 10 shows the result
on dataset 5 that has varied-density clusters with no sepa-
ration among them.

Figure 12. Clusters obtained from dataset 7

From Figures 11 and 12, one can find that the final
result is the same as the result from EDBSCAN in step 2
of the proposed algorithm. This is because the clusters in
the same part are not allowed to be merged, and each part
has clusters that are totally separated from clusters in other
parts.

Copyright © 2010 SciRes. JSEA

Scalable Varied Density Clustering Algorithm for Large Datasets 601

From the experimental result, we can deduce that the
proposed algorithm is able to discover clusters with varied
shapes, sizes, and densities efficiently. It can easily be
noticed that the result obtained by the proposed algorithm
is not exactly similar to the one of EDBSCAN on the
entire dataset. Instead, the proposed algorithm produces
additional small clusters that are discarded as noise by
EDBSCAN on the entire dataset. This is not an irresolv-
able problem. If we want to get the identical result of
EDBSCAN, we should remove the small clusters as noise.
The results of the original EDBSCAN on the entire data-
sets are shown in Figure 13.

Figure 13. The results from the original EDBSCAN on the
entire datasets

The proposed algorithm is more scalable than EDBS-
CAN algorithm, the scalability of the proposed algorithm
comes from partitioning the original dataset into finite set
of smaller datasets in the first stage, and depending on k
representatives from each sub-cluster to get the actual
clusters in the original dataset. The following Figure 14
depicts the execution time of the proposed algorithm and
EDBSCAN without using an index structure like R*-tree
or canopies. We use only the fist four datasets because
the other datasets are very small. From Figure 14 it is
noticed that the proposed algorithm (SEDBSCAN) rea-
ches a speed up factor 5.25, 5, 5.33, and 5.25 for datasets
1, 2, 3, and 4 respectively.

5. Conclusions

This paper has introduced a scalable and efficient clus-
tering algorithm for discovering clusters with varied
shapes, sizes, and densities. The proposed algorithm has
exploited all the advantages of previous different algo-
rithms (e.g., the scalability of the k-means, and the ability
of discovering clusters from uneven datasets of the
EDBSCAN, and the idea of multiple representatives taken
from the CURE algorithm, and finally the idea of local
density taken from the DENCLUE Algorithm) and has
overcame their disadvantages. So this algorithm collects
ideas from partitioning, hierarchical, and density based
methods. Generally speaking, combining all these ideas
into the proposed algorithm allows it to be scalable and
more efficient in discovering clusters of varied density.
The experimental results have given a clear indication on
the scalability of the proposed algorithm. Furthermore the
proposed algorithm has better performance than EDBSC-
AN with speed up factor up to 5 times. Additionally, the
algorithm can be partially implemented in parallel (in the
second stage) which helps in improving the scalability by
a significant factor.

Figure 14. The execution time comparison

Copyright © 2010 SciRes. JSEA

Scalable Varied Density Clustering Algorithm for Large Datasets

Copyright © 2010 SciRes. JSEA

602

REFERENCES

[1] J. MacLennan, Z. Tang and B. Crivat, “Data Mining with
SQL Server 2008,” Wiley Publishing, Indiana, 2009.

[2] M. Ester, H. P. Kriegel, J. Sander and X. Xu, “A Density
Based Algorithm for Discovering Clusters in large Spatial
Datasets with Noise,” Proceedings of International
Conference on Knowledge Discovery and Data Mining,
1996, pp. 226-231.

[3] A. Hinneburg and D. Keim, “An Efficient Approach to
Clustering in Large Multimedia databases with Noise,”
Proceedings International Conference on Knowledge Dis-
covery and Data Mining, 1998, pp. 58-65.

[4] M. Ankerst, M. Breunig, H. P. Kriegel and J. Sandler,
“OPTICS: Ordering Points to Identify the Clustering
Structure,” Proceedings of the International Conference
on Management of Data (SIGMOD’99), 1999, pp. 49-60.

[5] A. Fahim, G. Saake, A. Salem, F. Torkey and M. Rama-
dan, “Enhanced Density Based Spatial clustering of
Application with Noise,” in Proceedings of the 2009 Inter-
national Conference on Data Mining, Las Vegas, July
2009, pp. 517-523.

[6] C.-F. Tsai and C.-W. Liu, “KIDBSCAN: A New Efficient
Data Clustering Algorithm,” Artificial Intelligence and
Soft Computing-ICAISC, Springer, Berlin/Heidelberg,
2006, pp. 702-711.

[7] R. Xin and C. H. Duo, “An Improved Clustering Algo-
rithm,” International Symposium on Computational Intell-
igence and Design, 2008, pp. 394-397.

[8] Y. El-Sonbaty, M. Ismail and M. Farouk, “An Efficient

Density Based Clustering Algorithm for Large Data-
bases,” Proceedings of the 16th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI),
2004, pp. 673-677.

[9] A. Fahim, A. Salem, F. Torkey and M. Ramadan, “An
Efficient Enhanced k-Means Clustering Algorithm,”
Journal of Zhejiang University Science A, Vol. 7, No. 10,
2006, pp. 1626-1633.

[10] S. Guha, R. Rastogi and K. Shim, “CURE: An Efficient
Clustering Algorithms for Large Databases,” Procee-
dings of ACM SIGMOD International Conference on
Management of Data, Seattle, 1998, pp. 73-84.

[11] A. K. Jain, M. N. Murty and P. J. Flynn, “Data Clustering:
A Review,” ACM Computing Surveys, Vol. 31, No. 3,
September 1999, pp. 264-323.

[12] L. Ertoz, M. Steinbach and V. Kumar, “A New Shared
Nearest Neighbor Clustering Algorithm and its Appli-
cations,” Workshop on Clustering High Dimensional Data
and its Applications at 2nd SIAM International Con-
ference on Data Mining, 2002.

[13] M. Emre Celebi, Y. Alp Aslandogan and P. R. Bergs-
tresser, “Mining Biomedical Images with Density-Based
Clustering,” Proceedings of the International Confer-
ence on Information Technology: Coding and Computing,
Washington, DC, IEEE Computer Society, Vol. 1, 2005,
pp. 163-168.

[14] J. Sander, M. Ester, H.-P. Kriegel and X. Xu “Density-
Based Clustering in Spatial Databases: The Algorithm
GDBSCAN and its Applications,” Data Mining and
Knowledge Discovery, Vol. 2, No. 2, 1998, pp. 169-194.

J. Software Engineering & Applications, 2010, 3, 603-609
doi:10.4236/jsea.2010.36070 Published Online June 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

Dynamic Two-phase Truncated Rayleigh Model
for Release Date Prediction of Software

Lianfen Qian1, Qingchuan Yao2, Taghi M. Khoshgoftaar2

1Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, USA; 2Department of Computer Science and
Engineering, Florida Atlantic University, Boca Raton, USA.
Email: lqian@fau.edu, qingchuan_yao@yahoo.com, taghi@cse.fau.edu

Received October 23rd, 2009; revised November 13th, 2009; accepted November 15th, 2009.

ABSTRACT

Software reliability modeling and prediction are important issues during software development, especially when one has
to reach a desired reliability prior to software release. Various techniques, both static and dynamic, are used for
reliability modeling and prediction in the context of software risk management. The single-phase Rayleigh model is a
dynamic reliability model; however, it is not suitable for software release date prediction. We propose a new multi-phase
truncated Rayleigh model and obtain parameter estimation using the nonlinear least squares method. The proposed
model has been successfully tested in a large software company for several software projects. It is shown that the
two-phase truncated Rayleigh model outperforms the traditional single-phase Rayleigh model in modeling weekly
software defect arrival data. The model is useful for project management in planning release times and defect
management.

Keywords: Software Testing, Weekly Defect Arrival Data, Single-Phase Rayleigh Model, Two-Phase Truncated Rayleigh

Model, Software Reliability

1. Introduction

Software reliability is a key attribute of software qual-
ity. Various models have been developed for software
reliability engineering [1]. The rising complexity, size and
functionality of software systems make software reliabil-
ity prediction difficult. The problem is compounded with
short development times and strict release deadlines.
Consequently, predicting the release date for achieving
pre-specified system reliability has become a very im-
portant issue in software project development. Reliability
modeling can not only assist in fulfilling commitments
and project deadlines, but also aid in efficient resource
management and planning.

Software reliability is the probability of failure-free
software operation for a given period of time in a given
operating environment. The key attribute in software
reliability engineering is the number of defects observed
in specified time intervals (e.g. weeks). Software reli-
ability prediction models assess a software product’s
reliability or estimate the number of latent defects when it
is released to the customers. Such an estimate is important
for two reasons: 1) as an objective statement of the quality
of the product and 2) for resource planning in the software

maintenance phase.
There are two categories of software reliability models:

static and dynamic models. Among the static models,
Bayesian belief networks [2] and utilizing software pro-
cess metrics are relatively popular. Related literature also
proposes various models for software defect prediction
which can be used to indirectly gauge software reliability
[3,4]. The primary drawback among static models can not
effectively capture the software process and its variations
during the course of software project development. On the
other hand, a dynamic software reliability model is re-
flective of the software testing phase and is generally
applicable before product release.

Among dynamic models, the (single-phase) Rayleigh
model has been shown suitable to fit software defect ar-
rival patterns [5,6]. A single-phase Rayleigh model di-
vides the whole software development life cycle into six
stages that are in chronological order: High Level Design
(HLD), Low Level Design (LLD), CODING, Unit Test-
ing (UT), Integration Testing (IT) and System Testing
(ST). The six stages are assigned to a sequence of nu-
merical scales. That is: HLD = 0.5, LLD = 1.5, CODING
= 2.5, UT = 3.5, IT = 4.5 and ST = 5.5 [5]. Those nu-
merical assignments seem rather ad hoc. Instead, we

Dynamic Two-Phase Truncated Rayleigh Model for Release Date Prediction of Software 604

could assign the six stages to, for instance, {t1, t2, t3, t4, t5,

t6}, as long as   satisfies t1 < t2 < t3 < t4 < t5 < t6.

With different numerical assignments for the six stages,
the fitted single-phase Rayleigh models could show a
much different accuracy pattern, as shown in Figure 1.

6

1i i
t



The defects/KLOC in Figure 1 is reconstructed from
the work of Thangarajan et al. [5]. The quadratic fit is
shown to illustrate that the small pairs of data could be
fitted well by an arbitrary model such as quadratic model,
rather than just single-phase Rayleigh model. Also, by
assigning one numerical number to each stage, the data set
now contain only six pairs at most. For prediction pur-
poses, most likely 3, 4 and 5 pairs available, such a small
sample size offers no confidence in the reliability predic-
tion.

During the software development life cycle, collecting
one single representative number for each stage results in
a very small sample size. Furthermore, it is more likely
that the data of major software defects are followed week-
ly, hence allowing project management to monitor the
dynamic progress of the software development process.
Our motivated weekly software development defects data
set, Figure 2, shows the serious inadequacy of the sin-
gle-phase Rayleigh model. This leads to our research on
developing a better dynamic software reliability model to
estimate the number of major defects, hence predict soft-
ware release date.

The existing organizational reliability prediction model
for software release date prediction at a large software
company, where the weekly data in Figure 2 were col-
lected, is the dynamic single-phase Rayleigh model [5,6].
The software process in the organization consisted of two
or more development phases. This is due to the software
production cycles, availability of supporting hardware
(e.g. wingboard/test phones) in the earlier software de-
velopment stages, man-power management (e.g. testers’
rearrangement) during the software development phases,
and other dynamic issues during development. Figure 2,
for instance, shows that the scatter plot overlaid with the
single and the newly proposed two-phase truncated
(piecewise, for short) Rayleigh models for the data set
from the large software company. It is clear that the
two-phase truncated Rayleigh model fits the data much
better than the single-phase Rayleigh model.

Motivated by the example, we propose a multiple-
phase truncated Rayleigh model in this paper. Such a
model is better suited to fit the weekly defect arrival pat-
terns during software development process. For simplicity
reasons, we focus on the two-phase truncated (piecewise)
Rayleigh model. The model can be extended to include
additional phases reflecting the development process. It is
shown through empirical modeling that the model accu-

racy is significantly improved. Furthermore, using the
two-phase truncated Rayleigh model, the release date is
predicted with a much higher confidence level.

The paper is organized as follows: Section 2 summa-
rizes the single-phase Rayleigh model and proposes the
multi-phase model, with a focus on the two-phase trun-
cated Rayleigh model. Section 3 presents the algorithms
of nonlinear least squares estimators of the model pa-
rameters and flowcharts of the dynamic process. Section 4
applies the proposed two-phase truncated Rayleigh model
to defect arrival data of a large real-world software project
from the large software organization. Finally, Section 5
concludes the paper and provides suggestions for future
work.

2. Multi-Phase Truncated Rayleigh Models
for Software Reliability Prediction

The dynamic single-phase Rayleigh model is a standard
technique for software reliability modeling, and has been
widely used for the software project and quality man-
agement in the software industry. The software organiza-
tion, from which our case study data is obtained, has uti-
lized the dynamic single-phase Rayleigh model for sev-
eral of their previous software project developments.

The single-phase Rayleigh model is a parametric re-
gression model with the regression function specified by
the Rayleigh distribution with a multiplier coefficient.
When the parameters of the Rayleigh distribution are
estimated based on the updated data from a software
project, dynamic projections about the number of defects
for the software can be made based on the model over the
software development life cycle.

The Rayleigh distribution is a special case of Weibull
distribution, and has various applications including reli-
ability estimation and life cycle pattern modeling [7,8] in
developing software projects, life testing experiments in
clinical studies dealing with cancer patients [9]. We now
summarize the Rayleigh distribution. Denote tm be the
time at which the single-phase Rayleigh density curve
reaches its peak. The cumulative distribution function of
Rayleigh distribution with the constant multiplier K (the
total number of latent defects) is

2

(; ,) 1 ,tF t K K e    
 

where  =1/(2tm
2) is the scale parameter. The single-phase

Rayleigh model has a regression function parameterized
as,

2

(; ,) 2 tf t K K te    (1)

where both K and  are the two parameters that need to be
estimated using the data.

The single-phase Rayleigh model (1) does not fit the

Copyright © 2010 SciRes. JSEA

Dynamic Two-Phase Truncated Rayleigh Model for Release Date Prediction of Software

Copyright © 2010 SciRes. JSEA

605

Figure 1. Single-Rayleigh model vs. quadratic model for two ad hoc numerical assignments for the ordinal stages in the soft-
ware development life cycle. Solid line is for the single-phase Rayleigh model, while the dashed line is for the quadratic model.
(a) (HLD,LLD, CODING, UT, IT, ST) = (0.5,1.5,2.5,3.5,4.5,5.5); (b) (HLD,LLD, CODING, UT, IT, ST) = (1,3,7,8,8.5,9)

Figure 2. Major defects vs. development time in weeks

case study data set well. Actually it is a very poor fit as
seen in Figure 2, and makes the case for a much needed

improvement in modeling software defect arrival patterns.
We propose a new multi-phase truncated Rayleigh model

Dynamic Two-Phase Truncated Rayleigh Model for Release Date Prediction of Software 606

,  

,

defined as below:

1 1 1

1 2 2 1 1 2

1 1 1

(; ,), 0

(; ,),
(;)

(; ,), d d d d d

f t K t

f t K t
g t

f t K t

 
    



     

 
     

  



where d is the number of phases and T=(1,…, d, K1,…,
Kd, 1,…, d-1, 1,…, d-1) is the model parameter vector.
For simplicity, we will discuss the case with d = 2, the
two-phase truncated (piecewise) Rayleigh model with
regression function parameterized as follows:

1 1

2 2

(; ,), 0
(;)

(; ,),

f t K t
g t

f t K t

 


   
 

    
 (2)

where  is the location of the phase change,  is the
starting location for the second phase. Due to the nature of
the software defect data, we suggest to use the left trun-
cated Rayleigh model for the second phase. Then T = (1,
2, K1, K2, , ) is the parameter vector, need to be esti-
mated.

3. Algorithms for Piecewise Rayleigh Models

In this section, we describe the nonlinear least squares

estimator of the model parameters. Let   1
(,)

n

i i i
t d


 be the

defect arrival data collected over time, where / nit i is

the time index for the ith week, is the total number of

software defects detected during the ith week, and n is the
number of weeks observed. Let

id

2

1

() (;) .
n

i i
i

S d g t 


   

Then the nonlinear least squares estimator is the mi-
nimization of S(). Notice that S() is not differentiable in
the location of phase change point  and the starting point
of second phase . In conjunction with nonlinear least
squares method and Gauss-Newton algorithm, we utilize
a four-step technique (described below) to obtain the
estimators of the parameter vector . The package nls in
R language is used to obtain the estimates of the model
parameters.

Step 1: For any given location of phase change  in (0,
1), fix a  such as 0 <    < 1, we compute the nonlinear
least squares estimators [10], 1 (,)n  

2)

 for the smooth

parameters 1 1 2 1(, , ,T K K   , by minimizing S() over

1.
Step 2: Substitute 1 (,)n  

(,S

 into S() to obtain the

profile objective function,)  . Then we minimize

(,)S   over 0 <    < 1 for the given  to obtain ()  .

Notice that the minimizer ()  is a function of  .

Step 3: Substitute ()  into (,)S   to get ()S  . The

minimizer of ()S  over   (0, 1) is called the change

point estimator, denoted by̂ .

Step 4: Substitute ̂ into ()  to get ̂ and  1
ˆ ˆ,n  

to get 1
ˆ

n . Put them together, we obtain the nonlinear least

squares estimator,  ˆ
1

ˆ ˆ, ,T
n

ˆT
n    of .

Figures 3 and 4 illustrate the flow charts of the dy-
namic process of the algorithm for single-phase and mul-
ti-phase truncated Rayleigh models, respectively. We pro-
vide the flowchart for the single-phase Rayleigh model
for comparison purpose.

4. Application to a Real Software Defect Data
Set

The data set motivated our research were collected from
Feb-25-06 to Aug-04-07 at a large software company.
There are 76 weeks software defects arrival data. Number
of major defects during a week is reported.

4.1 Single-phase vs. Piecewise Rayleigh Models

We illustrate the two-phase truncated Rayleigh model by
fitting the software defect arrival data set. From Figure 2,
it is observed that using two-phase truncated Rayleigh
model improves the model fitting significantly compared
to the single-phase Rayleigh model with respect to model
accuracy and model goodness-of-fit. For comparison

Figure 3. Algorithm for single-phase Rayleigh model

Copyright © 2010 SciRes. JSEA

Dynamic Two-Phase Truncated Rayleigh Model for Release Date Prediction of Software

Copyright © 2010 SciRes. JSEA

607

Figure 4. Algorithm for multi-phase Rayleigh model

purpose, the estimated single-phase Rayleigh regression
function is given by,

2ˆˆˆˆ() 2 ,tg t K te  

where and ˆ 13.7111K  ˆ 1.5297. 
For the two-phase truncated Rayleigh model (2), the

estimated change is at the ̂ = 33rd week with the
starting point estimated at ̂ = 31st week for the second
phase. Hence phase one is from the first week to 33rd
week and phase two is from the 34th week to the 76th
week with estimated starting point at ̂ = 31st week.
The estimated first phase (right truncated) of the regres-
sion function is estimated as

2
2̂ (31/76)

2 2̂
ˆˆ() 2 (31/ 76) ,tg t K t e    

if 33 / 76,t 

with and the second phase

(left truncated) of the regression function is estimated
1 1̂

ˆ 4.3022, 5.2279,K  
 as

2
2̂ (31/76)

2 2̂
ˆˆ() 2 (31/ 76) ,tg t K t e    

if 33/ 76,t 

with . Figure 2 shows the

scatter plot overlaid with the two fitted curves using the
single-phase and two-phase truncated Rayleigh models,
respectively. From the fitted model, one can predict the

future week’s number of software defects and establish
the quality assurance criterion and management for pre-
dicting the release date.

2 2̂
ˆ 7.7731, 11.2445K  

This proposed multi-phase truncated Rayleigh model
can be utilized for modeling any future software devel-
opment projects to obtain better prediction and provide
more efficient estimation of the release date of the soft-
ware product.

4.2 Quality Assurance Criterion for Release Date
Prediction

In this section, we establish the quality assurance crite-
rion for software release. The quality assurance criterion
is determined by 95% and 99.9% confidence levels. That
is, based on the fitted model, if the model shows that
95% or 99.9% of the total expected software defects has
been detected, then we suggest that the software is ready
for release.

For the single-phase Rayleigh model, we estimate
the release date with 95% confidence level. We set

 ˆˆ; , 0.95F t K K  ˆ and solve for t or equivalently

2ˆ
1 0 .95 .te  

This implies that the release date equals to the ceiling of
ˆln(1 .95) 107 weeks,n     where

Hence, with 95% confidence the software project will

ˆ=1.5297.

Dynamic Two-Phase Truncated Rayleigh Model for Release Date Prediction of Software 608

need 107−76 = 31 weeks of further testing before releas-
ing the software product. That is the predicted release
date using the 76 weeks of data is Feb-29-08 based on
the single-phase Rayleigh Model. With 99% confidence,
it will require even much longer testing time.

Alternatively, utilizing the two-phase truncated Ray-
leigh model (2), we set

ˆ/ / 1

ˆ0 / 0
ˆ ˆ ˆ() () 0.999 ()

n i n

n
g t dt g t dt g t dt




   

and solve for i to get the estimated release week with
99.9% confidence level. Equivalently, the estimated re-
lease week number, i, satisfies that

ˆ1 /2 2ˆ ˆˆˆ ˆ
2 2 0 0

2

1
0

2

ˆ ˆ0.999 () ()

ˆ

0.999
,

ˆ

n
i

n n
g t dt g t dt

e e
K

A A
A

K


           

   

    


 

 

(3)

where

2ˆˆˆ
2

0

ˆ /

1 0

1

0

0.9922,

ˆ () 2.6967,

ˆ () 10.2586.

n

n

A e

A g t dt

A g t dt

 



   
  

 

 





Solving Equation (3) to obtain the estimated release
week number:

  1
2 0

2

0.999ˆˆ 1/ ln 76 weeks,
ˆ
A A

i n A
K

 
              



where {x} is the smallest integer greater or equal to x.
This indicates that with 99.9% confidence that the esti-
mated release week is the end of 76th week. That is the
software is ready for release, with almost 100% confi-
dence based on the two-phase truncated Rayleigh model.
We note that the large software organization has adopted
our new two-phase truncated Rayleigh model and is us-
ing it to predict the number of software defects dynami-
cally and release dates for ongoing software projects.
Our new two-phase truncated Rayleigh model has im-
proved the software release life cycle a great deal and
has saved a lot of man-powered resource for the large
software organization.

4.3 Model Performance Check

We utilize three measures of goodness-of-fit to assess the
performance of the models: root mean square error
(RMSE), magnitude of relative error (MRE), and ad-

justed coefficient of determination 2
adjR . The root mean

square error measures the model accuracy defined as the
square root of mean squared residuals. That is,

 2

1

1 ˆ ,
5

n

i i
i

RMSE d d
n 

 
 

where di is the number of defects detected during the ith

week, is the fitted (predicted) value of di. The

smaller the RMSE, the better the model fits.

ˆ
id

The second criterion for assessment of the perform-
ance of model fitting used in the reliability literature is
the mean magnitude of relative error, defined as

1

1

ˆ
(0)

.
(0)

n
i i

i
i i

n

i
i

d d
I d

d
MRE

I d















The implicit assumption in this summary measure is
that the seriousness of the absolute error is proportional
to the size of the observations. The smaller the MRE, the
better the model fits.

The third measure of goodness-of-fit used is the ad-

justed determination of coefficient which is the

adjusted percentage of variation in the number of defects
per week explained by the model. That is

2
adjR

2 / (5)
1 ,

/ (1)adj

SSE n
R

SSTO n


 



where SSE = (n-5)(RMSE)2 and

 2
1

1
 with .

n
n ii

ii

d
SSTO d d d n




   

The higher of the , the better the model fits. 2
adjR

Table 1 summarizes the three performance criteria for
the real-world weekly software defects data set using
both single-phase and two-phase truncated (piecewise)
Rayleigh models. Based on the reported RMSE, MRE

and values, the two-phase truncated Rayleigh mo-

del is much better than the single-phase Rayleigh model.
The MRE is reduced by about 50%, while the good-

ness-of-fit measure is roughly doubled for the two-

phase truncated compared to the single-phase Rayleigh
models. The two-phase truncated Rayleigh model ex-
plains the almost doubled variation in the number of de-
fects than the single-phase Rayleigh model does. Thus,
based on the given data, we conclude that the two-phase
truncated Rayleigh model is an attractive model for pre-
dicting weekly software defects and release date of soft-
ware projects.

2
adjR

2
adjR

Copyright © 2010 SciRes. JSEA

Dynamic Two-Phase Truncated Rayleigh Model for Release Date Prediction of Software

Copyright © 2010 SciRes. JSEA

609

REFERENCES Table 1. Model comparisons using RMSE, MRE and 2
adjR

 Criterion

Model RMSE MRE 2
adjR

Single-phase 5.97 0.76 36.6%
Two-phase 4.13 0.36 70.4%

[1] M. R. Lyu, “Software Reliability: To Use or not to Use?”
Proceedings of 5th International Symposium on Soft-
ware Reliability Engineering, 66-73 November 1994.

[2] Y. Wang and M. Smith, “Release Date Prediction for
Telecommunication Software Using Bayesian Belief
Networks,” Proceedings of the 2002 IEEE Canadian
Conference on Electrical and Computer Engineering,
2002, pp. 738-742. 5. Conclusions

[3] T. M. Khoshgoftaar and N. Seliya, “Fault Prediction
Modeling for Software Quality Estimation: Comparing
Commonly Used Techniques,” Empirical Software
Engineering Journal, Vol. 8, No. 3, 2003, pp. 255-283.

The research was motivated by a real-world software
defect arrival data over many weeks from a large software
organization. The paper proposes a new multi-phase
truncated (focusing on a two-phase truncated model) Ray-
leigh model in fitting weekly defect arrival data.

[4] T. M. Khoshgoftaar and N. Seliya, “Comparative Asse-
ssment of Software Quality Classification Techniques:
An Empirical Case Study,” Empirical Software Engin-
eering Journal, Vol. 9, No. 3, 2004, pp. 229-257.

It is shown that the proposed model is much more ac-
curate than the existing single-phase Rayleigh model. The
single-phase model was previously used by the organiza-
tion during software development. Using both MRE and

 performance measures, the proposed model almost

doubled the prediction accuracy, hence, shortening the
release date prediction with a higher confidence level.
From a software reliability perspective, our proposed
two-phase truncated Rayleigh prediction model will help
in the management and planning of project resources
toward bettering the software release cycle time.

2
adjR

[5] M. Thangarajan and B. Biswas, “Mathematical Model
for Defect Prediction across Software Development Life
Cycle,” The SEPG (Software Engineering Process
Group) Conference, India, 2000. http://www.qaiindia.
com/Conferences/SEPG2000/index.html

[6] S. H. Kan, “Metric and Models in Software Quality
Engineering,” 2nd Edition, Addison Wesley, Massa-
chusetts, 2003.

[7] P. V. Norden, “Useful Tools for Project Management,”
Operations Research in Research and Development, B.
V. Dean, Ed., John Wiley & Sons, New York, 1963.

The two-phase truncated Rayleigh model can be easily
extended to a multi-phase truncated Rayleigh model.
Hence it can be used to predict release date for future
software projects with a higher confidence level. A general
multi-phase Rayleigh software release prediction model
can be developed to automatically detect and reflect all the
change locations and the starting points of the software
development phases so that the multiple-phase truncated
Rayleigh software prediction model can be generated to
automatically forecast the software release time.

[8] L. H. Putman, “A General Empirical Solution to the
Macro Software Sizing and Estimating Problem,” IEEE
Transaction on Software Engineering, Vol. SE-4, 1978,
pp. 345-361.

[9] S. K. Bhattacharya and R. K. Tyagi, “Bayesian Survival
Analysis Based on the Rayleigh Model,” Trabajos de
Estadistica, Vol. 5, No. 1, 1990, pp. 81-92.

[10] D. M. Bates and J. M. Chambers, “Nonlinear Models,”
Chapter 10 of Statistical Models in S. J. M. Chambers and
T. J. Hastie, Eds., Wadsworth & Brooks/Cole, 1992.

J. Software Engineering & Applications, 2010, 3, 610-613
doi:10.4236/jsea.2010.36071 Published Online June 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

An Optimal Shape Design Problem for Fan Noise
Reduction

Bahram Farhadinia

Department of Math, University of Mohaghegh Ardabili, Ardabil, Iran.
Email: farhadinia@uma.ac.ir

Received December 24th, 2009; revised April 10th, 2010; accepted April 12th, 2010.

ABSTRACT

The objective of the present article is to find an optimal design of a fan inlet to reduce the amount of noise radiated to the
far field from the system. Against the gradient-based optimization algorithms, we employ here a method based on
measure theory which does not require any information of gradients and the differentiability of cost function.

Keywords: Shape Optimization, Noise Radiation, Measure Theory, Linear Programming

1. Introduction

Noise generated by the rotating blades of an aircraft tur-
bofan engines continues to pose a challenge for many
researchers and of course, the reduction of the noise have
been received more attention in the recent studies. Wil-
liams and Hall studied aerodynamic sound generation by
turbulent flow around a scattering half plane [1]. Howe in
[2] discussed the trailing edge noise at low Mach numbers.
It is well known that the aircraft noise may be minimized
through the two signification tasks: acoustic shape opti-
mization of the inlet [3] and impedance optimization of
the liner [4]. In much of the pervious work on this topic,
the computational methods are gradient-based that bear
some drawbacks such as mesh regularization and the
requirement of knowledge of derivatives.

The aim of this article is to present a method to find an
optimal solution of a shape design problem that models
reducing the amount of noise radiated from aircraft tur-
bofan engines.

Our method is based on measure theory and has some
features, for instance, the design process is not iterative
and therefore requires no initial design to be suggested; it
is computationally efficient and flexible enough to ac-
commodate general design problem.

The paper proceeds as follows. In Section 2 we first
describe the mathematical formulation of the optimal
control problem and then a brief review of the weak
formulation of the problem is given. In Section 3, we
metamorphose the optimization problem to a linear pro-
gramming problem by the aid of our method. Finally, we
present some numerical results in Section 4.

2. Problem Description and Weak
Formulation

We follow here the same set up as considered in [4] in
where the geometry of the axisymmetric fan is as shown
in Figure 1. We suppose that the model composition of
the aircraft noise source is specified on the source plane

f . The inlet of fan is surrounded by two boundaries:

fixed boundary c and flexible boundary which is

characterized by the function


)(y x

. It is assumed an

acoustic liner exists on the boundary . We let c  be

enough far from the noise source. This implies that the
radiated field treats locally as a plane wave at local inci-
dence and in this case the Sommerfeld radiation boundary
condition is satisfied. If we describe the treatment of the
acoustic velocity potential with the Helmholtz equa-
tion as

u

Ω,,0Δ 2 onuku 

Subject to the boundary conditions

,0Γ|)(

,0Γ|)(

,0Γ|

,0Γ|

),(Γ|
























n

u
xiku

cn

u
xu

an

u

n

u

αg
f

u



An Optimal Shape Design Problem for Fan Noise Reduction 611

Figure 1. Geometry of the axisymmetric fan

then, the problem here is the manipulation of the flexible
boundary  such that the least amount of noise propa-
gates to the far field whereas some constraints on the
boundary shape are satisfied. It is supposed that in the
above equations, both the dependent and the independent
variables are properly nondimensionalized.

Γ

Under consideration in [4], the optimal shape design
problem may be stated as

},0Γ|)(

,0Γ|)(

,0Γ|

,0Γ|

),(Γ|

,Ω,0
2

Δ

Ω ;1
2

))1(0)((λΩ
2
||Ω Ω

2
umin{)P(1


























  

n

u
xiku

c
n

u
xu

a
n

u

α
n

u

αg
f

u

onuku

b

a
dxxxduBdAJ 

where and the three constants A, B and 0x  satisfy

. 02  λA ,02 B

Obviously the determination of domain of the problem,
, depends on the determination of Ω    d,cb,a:  ,

which is a function to be determined by the optimization
process. By virtue of this fact we let)Ω(Ω  .

In order for the optimal shape be exist, we define the
admissible set of functions,  ’s, as

|}.tt||)t()t(|,dc]);b,a([C{A 2121ad   (1)

3. Metamorphosis and Approximation

If we define 0uu  and 1{ (Ω());V u H  

)(

, then the variational formulation of Γ| 0
f

u 

2 2 2

1 11

2

()min{ (,)

| | | ()| (() ())() ()0 0

(,) (,) , , (,), }
() ()

;0

.

p Jv
b

A u d B u d x x
a

v k v x v i k v f v v V
c

dx

 

     

     



        

           

In this portion, we define an artificial control
 satisfying Rbaxw ],[:)(1

e.aαaα

,ba,x,xwxα
dx

d





)()(

][)()(111
1 (2)

In fact, is derivative of the boundary function .

Let be the characteristic function defined

on the set S.

w

{
Γ

}1,0: Sxs

We may now reformulate involving the artificial

control as follows:

）（ vp

},)()(][),()(Vv

,)(Ω 0Γ
)(

Γ
)(

Γ
Ω)k)(Ω v(

)(Ω ;Ω)|)
0

(||
0

|(),(min{)ˆ(

111

1

2

1

22

eaαaba,xxwx
dx

d

dxvik
c

xvxdvfv

α d
D

xuBuAJ



 


 

 









 



where . }))()((0],,[:),{(2
10121211 xxxbaxxxD  

In order to apply the metamorphosis process, one needs
first to have some background knowledge.

We say a triple),,(αwq  is admissible if the fol-

lowing conditions yield: (i) The artificial con ol w
takes its values in a compact set W and holds (2). (ii) The

),

tr

pair ( is the solution of the variational formulation

）vp . We denote the set of all admissible triples byof （

Q .

Let αw SSSSγ  Ω̂1 and S 

where all these se pact and
αSγ  Ω̂2

ts are com  ,,w and 

t their values in  S,S,Sw and S , respectively. Also

om

ge

is t

Ω̂

α

he fixed d ain depicted i

Ω̂)(Ω α .

n Figure 2 and yields

 adA

}  with

homogeneous boundary condition may be considered as
(see [4]) Ω̂ Figure 2. Geometry of the fixed domain

Copyright © 2010 SciRes. JSEA

An Optimal Shape Design Problem for Fan Noise Reduction 612

Now we transfer over Q , into another nonclass-

ical problem that has some interesting properties.

)Ρ̂(

Define two linear, bounded and positive functionals
corresponding to each admissible triple as q

,Ω),,,,,()(:Λ
)(Ω 2111, dαwxxFγCF
αq    (3)

,Γ),,,()(:Λ
)(Ω 2122, dαxxGγCG
αq   (4)

where is the space of all continuous real-valued

functions on .

)(iγC

2,1, iγi

By the use of the latter definition, one can observe that

there exists an injection of into , the

product of dual spaces of functionals defined in (3)-(4).
(See Proposition 4.1 in [5]).

Q)()(2
*

1
* γCγC 

By Riesz representation theorem [6], corresponding to
each , there is a unique positive Radon measure ,

such that
iq,Λ iμ

),(),(Ω),,,,()(Λ 11)(Ω 21 γCFFμdα,wxxFF
αq,1   

(5)

).(),(Γ),,,()(Λ 22)(Ω 212 γCGGμdαxxGGq,   


(6)

Generally, the metamorphosis process deals with inte-
gral form of relations, therefore, in order to convert the
differential Equation (2) into an integral form, let be

an open ball in containing , and be the

space of all real-valued continuous differentiable func-
tions with continuous first partial derivatives on . Let

 and define

B

B

2R Ω̂)(1 BC

)(1 BCψ

),()(),(),,,(1111221 αxψxwαxψαwxxψ xx
w 

for each . αw SSdcbaαwxx ],[],[Ω),,,(121

Thus for each admissible triple the system (2) is

equivalent with

q

.Δ))(,())(,(

)),()(),((),,,(111112121

 

 
aαabαb

dxαxψxwαxψdxαwxxψ
b

a xx

b

a

w

(7)

Now for simplifying the representation of optimal
shape design problem, we set

,vv)(

,)(

,vvv)(

,|)(|||),(

)(Γ)(Γ1

22

2
1

1

2
0

2
00

ααc

D
wψ

D

xikxxv,α,G

xψwα,F

fkv,α,F

λxuBuAαf
















where . }0],,[:),{(21212
wψxbaxxxD 

By virtue of (5)-(6) and the above arrangement, we

may restate by the following measure representa-

tion form:

)Ρ̂(

)}.(,Δ)(

,,0)()(

);(min{)(

1
21

1211

01

BCψψFμ

VvGμFμ

fμP

ψ

α

M





In what follows, we employ a two-phase approxima-
tion procedure that converts to a linear program-

ming (LP) problem. The procedure for constructing a LP
problem whose solution approximates the action of the
optimal pair of measures of is much like as that

given in [5]. In the first phase of approximation proce-
dure, we intend to deal with a problem subject to a finite
number of constraints. Following from Proposition 5.1 in
[5], our intension is fulfilled. Approximating measures
involved in by the unitary atomic measures (see

Proposition 5.2 in [5]) is performed in continuation of the
first phase of approximation procedure and leads to ap-
pear unknown supports. The second phase is devoted to
approximate the unknown supports by specified points.
This task is carried out in cooperation with Proposition
5.3 in [5].

)(MP

)(MP

)(MP

Following the mentioned procedure, the resulting LP
is as

}.2,1,,...,2,1,0

,,...,2,1,Δ)(

,,...,2,1l,0)()(

);(min{)(

212

1

1

1

121

2

1

2
11

1

1

1

10

1

1

1



















iNkξ

mjψzF

mzGzF

zfLP

i
i
k

j
kjψ

N

k
k

k
N

k
k

k
N

k
k

k
N

k
k







The process of extracting a piecewise constant control

function form the optimal solutionw { 0i
k  , k  1, 2,

..., , 1, 2}iN i  of is based on the analysis

given in [7].

）（LP

4. Numerical Result

The data for the parameters of the model are listed as:

.1)(,0)(

,5,...,2,1,

,4,...,2,1l),sin(

,1,8

],2.1,6.0[],1,1[,1],5.2,0[][

1010

21

11l










xαxu

mjxψ

mlxv

λBAk

SSeba,

jw
j

αw

By using a code written in MATLAB 7.1 for solving
, we obtained the optimal approximated and

its corresponding optimal artificial control depicted in
Figure 3.

）（LP Γ

w

Copyright © 2010 SciRes. JSEA

An Optimal Shape Design Problem for Fan Noise Reduction

Copyright © 2010 SciRes. JSEA

613

REFERENCES

[1] J. E. F. Williams and L. H. Hall, “Aerodynamic Sound
Generation by Turbulent Flow in the Vicinity of a Scatt-
ering Half Plane,” Journal of Fluid Mechanics, Vol. 40,
No. 4, 1970, pp. 657-670.

[2] M. S. Howe, “Trailing Edge Noise at Low Mach Num-
bers,” Journal of Sound and Vibration, Vol. 225, No. 2,
1999, pp. 211-238.

[3] A. L. Marsden, M. Wang and J. E. Dennis, “Constrained
Aeroacoustic Shape Optimization Using the Surrogate
Management Framework,” Center for Turbulence Re-
search, Annual Research Briefs, 2003.

[4] Y. Cao and D. Stanescu, “Shape Optimization for Noise
Radiation Problems,” Computers and Mathematics with
Applications, Vol. 44, No. 12, 2002, pp. 1527-1537. Figure 3. Optimal shape of the fan and optimal artificial con-

trol [5] B. Farhadinia, “Shape Optimization of a Nozzle with
Specified Flow Field Including Viscosity Effect,” Acta
Applicandae Mathematicae, Vol. 104, No. 4, 2008, pp.
243-256.

5. Conclusions

This article discusses how to implement a numerical
method based on measure theory for solving an optimal
shape design problem for fan noise reduction. The pro-
posed method has some advantages comparing to the
gradient-based optimization methods. For instance, it does
not require any information of gradients and the differen-
tiability of cost function.

[6] W. Rudin, “Real and Complex Analysis,” McGraw-Hill,
New York and London, 1970.

[7] J. E. Rubio, “Control and Optimization: The Linear
Treatment of Nonlinear Problems,” Manchester University
Press, Manchester, 1986.

J. Software Engineering & Applications, 2010, 3, 614-627
doi:10.4236/jsea.2010.36072 Published Online June 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

An Interactive Method for Validating Stage
Configuration

Abdelrahman Osman Elfaki, Somnuk Phon-Amnuaisuk, Chin Kuan Ho

Center of Artificial Intelligent and Intelligent Computing, Multimedia University, Cyberjaya, Malaysia.
Email: {abdelrahman.osman.06, somnuk.amnuaisuk, ckho}@mmu.edu.my

Received March 21st, 2010; revised April 6th, 2010; accepted April 8th, 2010.

ABSTRACT

Software product Line (SPL) is an emerging methodology for developing software products. Stage-configuration is one
the important processes applying to the SPL. In stage-configuration, different groups and different people make
configuration choices in different stages. Therefore, a successful software product is highly dependent on the validity of
stage-configuration process. In this paper, a rule-based method is proposed for validating stage-configuration in SPL. A
logical representation of variability using First Order Logic (FOL) is provided. Five operations: validation rules,
explanation and corrective explanation, propagation and delete-cascade, filtering and cardinality test are studied as
proposed operations for validating stage-configuration. The relevant contributions of this paper are: implementing
automated consistency checking among constraints during stage-configuration process based on three levels (Variant-
to-variant, variant-to-variation point, and variation point-to-variation point), define interactive explanation and
corrective explanation, define a filtering operation to guide the user within stage-configuration, and define (explicitly)
delete-cascade validation.

Keywords: Software Product Line, Variability, Stage Configuration

1. Introduction

Software Product Line (SPL) has proved to be an effec-
tive strategy to benefit from software reuse [1], allowing
many organizations to reduce development costs and
duration, meanwhile increase product quality [2]. It is an
evolution from software reuse and Commercial Off-
The-Shelf (COTS) methodologies.

Feature Model (FM) [3] appeals to many SPL devel-
opers as essential abstractions that both customers and
developers understand. Customers and engineers usually
speak of product characteristics in terms of those features
the product has or delivers. Therefore, it is natural and
intuitive to express any commonality or variability in
terms of features [4]. Orthogonal Variability Model
(OVM) is another successful approach proposed to docu-
ment variability in SPL [5].

The principal objective for SPL is to configure a suc-
cessful software product from domain-engineering proc-
ess by managing SPL artifacts (variability modeling).
Recently, in [6,7], validation is discussed as important
issue in SPL community. Validating SPL intends to pro-
duce error-free products including the possibility of pro-
viding explanations to the modeler so that errors can be

detected and eliminated. Usually, medium SPL contains
thousands of features [2]. Therefore, validating SPL rep-
resent a challenge because it’s a vital process and non-
feasible to done manually.

The lack of a formal semantics and reasoning support
of FM has hindered the development of validation meth-
ods for FM [8]. The automated validation of FM was
already identified as a critical task in [9-11]. However,
there is still a lack of an automated support for FM vali-
dation.

 The configuration is a task of selecting a valid and
suitable set of features for a single system, and it can
become very complicated task [12]. Supporting user’s
needs in generating a valid and suitable solution is the
basic functionality of a configuration system. In SPL,
selecting a solution from domain-engineering process to
use it in application-engineering process is the meaning
of a configuration. As a conclusion, FM represents the
configuration space of a SPL. An application-engineer
may specify a member of a SPL by selecting the desired
features from the FM within the variability constraints
defined by the model, e.g., the choice of exactly one fea-
ture from a set of alternative features. In stage configura-
tion, different groups and different people make configu-

An Interactive Method for Validating Stage Configuration 615

ration choices in different stages [13].

2. Preliminaries

2.1 Software Product Line

SPL has been defined by Meyer and Lopez as a set of
products that share a common core technology and ad-
dress a related set of market applications [14]. SPL has
two main processes; the first process is the domain-engi-
neering process that represents domain repository and is
responsible for preparing domain artifacts including
variability. The second process is the application-engin-
eering that aims to consume specific artifact, picking
through variability, with regards to the desired applica-
tion specification. The useful techniques to represent va-
riability are FM and OVM. SPL has various members. A
particular product-line member is defined by a unique
combination of features (if variability modeled using FM)
or a unique combination of variants (if variability model-
ed using OVM). The set of all legal features or variants
combinations defines the set of product line members.

2.2 Feature Model

FM [3] is considered as one of the well-known methods
for modeling SPLs [9]. According to Czarnecki and
Eisenecker [12] the two most popular definitions of FM
are 1) an end user visible characteristic of a system 2) a
distinguishable characteristic of a concept (e.g., system,
component, and so on) that is relevant to some stake-
holders of the concept. Features in FM represent essential
abstractions of the SPL (to both developers and custom-
ers). Customers and developers usually speak of product
characteristics in terms of those features the product has
or delivers. Therefore, it is natural and intuitive to ex-
press any commonality or variability in terms of features
[4]. A FM is a description of the commonalities and dif-
ferences between the individual software systems in a
SPL. In more detail, a FM defines a set of valid feature
combinations. The set of all legal features combinations
defines the set of product line members. Each of such
valid feature combinations can be served as a specifica-
tion of a software product [12,15].

A feature model is a hierarchically structure of fea-
tures and consists of: 1) relationships between a parent
feature and its child features, and 2) dependency con-
straints rules between features, which are inclusion or
exclusion. Czarnecki et al. [13] defined Cardinality-
based feature modeling by integrating a number of exten-
sions to the original FODA notation. According to [13]
there are three different versions of FM: basic FM, car-
dinality FM, and extended FM. Figure 1 illustrates basic
FM. Figure 1 is borrowed from [10]. In any type of FMs
there are there are some common properties such as
(examples are based on Figure 1):

Figure 1. A car software product line represented by basic
feature model

Parent Feature: This feature could be described as a
decision point, in which some choices or decisions
should be taken. A parent feature contains one or more of
child feature(s). As example, transmission is a parent
feature.

Child Feature: A feature belongs to parent feature is
called a child feature, for instance, “Electric” is a child
feature belongs to the parent feature “Engine”.

Common Feature: In a common relationship (between
parent and child features), a child feature follows his
parent feature in any product. For instance, “Engine”,
“Transmission”, and “Body” are common features (be-
longs to the parent feature “Car”), which means it must
be including in any product related to car SPL.

Option Feature: Option feature can follow his parent
feature or not. For instance, “Cruise” is an optional fea-
ture.

Selection process: In selection process, one or more
features could be selected from the parent feature. In
basic FM, this operation is known as alternative, where
one child feature can be included in a product when the
parent feature is included. In cardinality FM, the selec-
tion process organizes by two numbers represent maxi-
mum and minimum numbers allowed to be selected from
parent feature.

Constraint dependency: is known also as cross-tree re-
lation. Require and exclude represent the constraint de-
pendency. In the following require and exclude are de-
fined.

Exclude: feature X excludes Y, means that if X is in-
cluded in a product then Y must not be included and vice
versa.

Require: feature X requires Y, means that if X is in-
cluded in a product then Y must be included.

2.3 Orthogonal Variability Model

Orthogonal Variability Model (OVM) [5] is one of the
useful techniques to represent variability, which provides
a cross-sectional view of the variability through all soft-
ware development artifacts. Figure 2 illustrates OVM for
e-shopping system. Figure 2 borrow from [5]. Variabil-

Copyright © 2010 SciRes. JSEA

An Interactive Method for Validating Stage Configuration

Copyright © 2010 SciRes. JSEA

616

ity is described (in OVM) by three terms. These terms
are:

Variation Point: a variation point is a point that could
be select one or more of its variants. For instance,
“Member reward” in Figure 2 is a variation point.

Variant: a variant is a choice belonging to specific
variation point. For instance, “https”, “SSL”, and “SET”
are variants belonging to “Secure payment” variation
point.

Constraint dependencies rules: These rules describe
the dependency relation between variation points and
variants. Require and exclude signify the constraint de-
pendency relation in OVM. These relations are: variation
point requiring or excluding another variation point, va-
riant requiring or excluding another variant and variant
requiring or excluding variation point.

3. Related Work

In this section, we survey the works that related to vali-
dation of SPL regardless the method of modeling vari-
ability used. Inside these studies, we highlight the valida-
tion operations of the configuration. At the end, we justify
our contributions.

Schlich and Hein proved the needs and benefits of using
the knowledge-base representation for configuration sys-
tems in [16]. A knowledge-based product derivation pro-
cess [17,18] is a configuration model that includes three
entities of Knowledge Base. The automatic selection

provides a solution for complexity of product line vari-
ability. In contrast to the proposed method, the knowledge
-based product derivation process does not provide ex-
plicit definition of variability notations and for the selec-
tion process. In addition, knowledge-based product deri-
vation process is not focused on validation operations.

Mannion [19] was the first who connect propositional
formulas to FM. Mannion’s model did not concern cross-
tree constraints (Require and Exclude constraints). Zhang
et al. [20] defined a meta-model of FM using Unified
Modeling Language (UML) core package and took Man-
nion's proposal as foundation and suggested the use of an
automated tool support. Zhang’s model satisfies con-
straint dependency checking in the basic level (feature-to-
feature). By define pre-condition and post-condition for
each feature explanation operation was satisfied but there
is no mentioned for propagation. Batory in [21] proposed
a coherent connection between FM, grammar and pro-
positional formulas. Batory’s study represented basic FM
using context–free grammars plus propositional logic.
This connection allows arbitrary propositional constraints
to be defined among features and enables off-the-shelf
satisfible solvers to debug FM. Batory using solvers sat-
isfied constraint dependency checking and explanation
operations only. Sun and Zhang [22] proposed a formal
semantics for the FM using first order logic. Sun used
Alloy Analyzer (tool for analyzing models written in alloy)
to automate constraint dependency checking (feature-to-

1..1

1..3

0..1

1..n

VP

Payment
by

VP

Secure
payment

VP

Shopping
cart view

VP

Member
reward

VP

Item
Search

https

V

SSL

V

SET

V

Member
view

V

Public view

V

Search name

V

Search
number

V

By category

V

By price

V
similarity

search

V

Search tips

V

Credit card

V

Cash

V

e-Cash

V

Transactions

V

Exchange
rewards

V Collect
rewards

V
Personal

discounts

V

1..2

0..1

Variability model

<<requires>>

Figure 2. OVM represent variability in E-shopping system

An Interactive Method for Validating Stage Configuration 617

feature level) and explanation operations in the configu-
ration process. Asikainen et al. [15] satisfied constraint
dependency checking and explanation by translate the
model into Weigh Constraint Rule Language (WCRL).
WCRL is a general-purpose knowledge representation
language developed based on propositional logic.

Wang et al. [23] proposed Ontology Web Language
(OWL) to Verify FM. Wang used OWL DL ontology to
capture the interrelationships among the features in a FM.
Wang supported constraint dependency checking and
explanation by using FaCT++ (Fast Classification of
Terminologies and RACER (Renamed ABox and Concept
Expression Reasoner) reasoner tools. Falbo et al. [24]
formalized domain-engineering process using ontology.
Falbo et al. mapped the constraint relations in domain
engineering to the synonymous primitive in set theory,
and used hybrid approach based on pure first-order logic,
and set theory for reasoning.

Dedeban [25] used OWL DL and rule based system to
support constraint dependency checking. Dedban’s me-
thod satisfy constraint dependency checking and expla-
nation used FaCT++ reasoner. Shaofeng and Zhang [26]
formalized the FM with description logic to reason con-
straint rules via description logic.

Transforming FM into Unified Modeling Language
(UML) notations, representing, and documenting vari-
ability in SPL is proposed by different methods in litera-
ture. Usability is the main reward for using UML due to
UML standardization. Clauss [27] suggested Object
Constraint Language (OCL) to satisfy constraint depen-
dency rules. Korherr and List [28] proposed a UML 2
profile to model variability. Korherr’s model used OCL to
satisfy the three levels constraint dependency rules. Ziadi
et al. [29,30] used OCL in the form of meta-model level to
satisfy constraint dependency rules. The works in [31-37]
adopted UML (with different views) as a solution for
modeling variability in SPL. These methods implemented
OCL to satisfy dependency constraint rules. Czarnecki
and Antkiewicz [38] proposed a general template-based
approach for mapping FM. Czarnecki and Pietroszek [39]
used object-constraint language (OCL) to validate con-
straint dependency rules.

The use of constraint programming for dealing with
constraint dependency checking and explanation are sug-
gested in [40-42] where FM is translated into a Constraint
Satisfaction Problem (CSP) for automating FM analysis
with a constraint solver. White et al. [43] proposed a
method for automated diagnosis of product-line configu-
ration errors in FM. White’s method starts with transfer-
ring the rules of the FM and the current invalid configu-
ration into a CSP. Later, the solver derives a labeling of
the diagnostic CSP. Finally, the output of the CSP labeling
is transform into a series of recommendations of features
to select or deselect to turn the invalid configuration into a
valid configuration.

Cao et al. [44] developed algorithm to transfer FM into
data structures. This algorithm generates complete feature
instances from a feature diagram under constraints. Cao
used the Generic Modeling Environment (GME) to de-
velop the algorithm. The Cao’s algorithm satisfies con-
straint dependency checking and explanation operations.
Deursern and Klint [45] proposed a feature description
language to describe FM. Using their system constraint
dependency checking and explanation operations are
satisfied. Pohjalainen [46] described subset of regular
expressions that can be used to express a FM. Pohjalainen
presented a compiler for translating a FODA model to a
deterministic finite state machine with support for im-
plementing model constraints via post-augmentation of
the compiled state machines. This model satisfies con-
straint dependency checking and explanation operation.

Cechticky et al. [47] proposed a feature meta-model
and used an XSL-based mechanism to express complex
composition rules for the features. Cechticky et al. de-
scribed a compiler that can translate the constraint model
expressed as a feature diagram into an XSL program and
checks compliance with the constraints at application
model level. Jarzabek and Zhang [48] described a variant
configuration language that allows to instrument domain
models with variation points and record variant depend-
encies. Implementation based on XML and XMI tech-
nologies was also described. Jarzabek’s method satisfies
constraint dependency checking and explanation.

Janota and Kiniry [46] formalized a FM using HOL. As
the best of our knowledge this is the only one work used
HOL for reasoning FM. This formalization satisfied con-
straint dependency checking and explanation operations.
Lengyel et al. [49] proposed an algorithm (to handle con-
straints in FM) based on graph rewriting based topological
model transformation. Implementation is done based on
OCL semantics. Constraint dependency checking is sat-
isfied based on feature-to-feature level.

Comparing with the literature, our propose method (to
satisfy constraint dependency rules, explanation, correc-
tive explanation, propagation and delete cascade, and filt-
ering) is characterized by an interactive mechanism which
is guide users systematically. In addition to constraint
dependency rules (require and exclude), our validation
rules are validate the commonality (is the feature is
common or not), and the cardinality.

4. Modeling Variability Using First Order
Logic

The most popular models for SPL variability modeling
are FM and Orthogonal Variability Model (OVM).
Therefore, the successful validation notations are those
that can validate both FM and OVM. Roos-Frantz [50]
illustrated the differences between FM and OVM. To
overcome the differences we merge the FM and OVM in
the proposed method (benefiting from their advantages),

Copyright © 2010 SciRes. JSEA

An Interactive Method for Validating Stage Configuration

Copyright © 2010 SciRes. JSEA

618

e.g. a variation point is defined explicitly (mandatory or
optional) and hierarchical structure is supported. This
modeling is a prerequisite process for using the validation
operations. OVM and FM can easily become very com-
plex for validating a medium size system, i.e., several
thousands of variation points and variants are needed.

max: Identifies the maximum number allowed to be se-
lected of specific variation point, e.g. max (payment_by, 4).

min: Identifies the minimum number allowed to be
selected of specific variation poin, e.g. min payment_
by, 1). The common variant(s) in a variation point is/
are not included in maximum-minimum numbers of
selection. 4.1 Upper Layer Representation (FM-OVM)

common: Describe the commonality of variation point,
e.g. common (item-search, yes). If the variation point is
not common, the second slot in the predicate will become
No, as example, common (member reward, no).

Figure 3 represents the upper layer of our proposed
method. Optional and mandatory constraints are defined
in Figure 3 by original FM notations [3] and constraint
dependency rules are described using OVM notations.
The FM-OVM has three layers. Member reward is a
variation point having a personal discount as a variant. A
personal discount is also a variation point for three vari-
ants. A personal discount is a variant and variation point
at the same time.

4.2.2. Variant
The Following two predicates (from the above five

predicates) are used to describe variants:
type: Define the type of feature (variant), e.g.: type

(register, variant).
common: Describe the commonality of variant, e.g.

common(search name, yes). If the variant is not common,
the second slot in the predicate will become No -as ex-
ample-common (by price, no).

4.2 Lower Layer of the Proposed Method

Variation points, variants, and dependency constraint
rules are described using predicates as a lower layer of
the proposed method: (examples are based on Figure 3.
Terms starting by capital letters represent variables and
terms starting by lower letters represent constants):

4.2.3. Constraint Dependency Rules
The following six predicates are used to describe con-
straint rules: 4.2.1. Variation Point

requires_v_v: a variant requires another variant, e.g.
requires_v_v (ecash, ssl).

The following five predicates are used to describe each
variation point:

excludes_v_v: a variant excludes another variant, e.g.
excludes_v_v(by price, member view).

type: Define the type of feature; variation point, e.g.:
type (view_type,variationpoint),

requires_v_vp: a variant requires variation point, e.g.
requires_v_vp (member_view, member_reword).

variants: Identifies the variant of specific variation
point, e.g.: variant (view_type, not registered).

(1..3)

(0..1)

Requires-v-v

Requires-v-vp

requires-vp-vp
(1..2)

(1..4)

(1..2)

(1..3)

Excludes-vp-vp

Excludes-v-vp

Excludes-v-v

transfer

registered Search
name

Search
number

By
price

By
category

Exchange
reward

Collect
reward

Personal
discount

Member reward

Member
view

Public view

Shopping-cart-viewItem-search

notregistered

Security payment

Credit card

Https

Credit card types

Set SslCitibankvisa

Payment by

View-type

Special search

e-cashcash

Excludes-v-vp

DescriptionSimilar

(1..2)

(1..2)

30%20%10%

E‐shopping

(1..1)

Figure 3. Representation of e-shopping system using the upper layer (FM-OVM)

An Interactive Method for Validating Stage Configuration 619

excludes_v_vp: a variant excludes variation point, e.g.
excludes_v_vp (notregistered, payment_by).

requires_vp_vp: a variation point requires another
variation point, e.g. requires_vp_vp (item_search, view_
ype).

excludes_vp_vp: a variation point excludes another
variation point, e.g. excludes_vp_vp (security_payment,
credit_card_type).

Table 1 shows the lower layer representation of the
variation point view-type and the variant not registered.
The lower layer models variability in one-to-one map-
ping. The predicate variants emphasize this point.

4.3 Generalization

FM-OVM might compose of many levels (variation point
can contain one or more variation points) for example
form Figure 3: variation point member reward has a
variation point personal discount and variation point
personal discount has a variant 30%. A mathematical
representation of this case is: member reward (personal
discount (30%)). The following facts illustrate the mod-
eling of this case:
type(member_reward,variationpoint) type(personal_discoun
t,variation-point) type(30%,variant) variants(meber_reward
,personal_iscount) variants(personal_discount,30%).

The following rule sformation des this
lation:

(tran rule) conclu
re

x, y, z: variants(x, y) variants(y, z) variants(x, z).

In the next section, we illustrate how the proposed meth-
od can be used for validating stage-configuration in SPL.

5. Operations for Validating
Stage-Configuration in Software
Product Line

5.1 Validation Rules

To validate the configuration process, the proposed me-
thod triggers rules based on constraint dependencies.
With regard to validation process result, the choice is
added to knowledge-base or rejected, then an explanation
of rejection reason is provided and correction actions are
suggested. When a new variant is selected, new predicate
(select or notselect) would be added to the knowledge-
base and the backtracking mechanism validates the entire

Table 1. Snapshot of the lower layer representation

type(view-type, variationpoint). variants(view-type, registered).

variants(view-type, not registered).common (view-type, yes).

min(view-type, 1). max(view-type, 3). requires_p_p(view-ype,

earch_tem). type(not registered, variant).

common(not registered, no). excludes_v_vp(not registered, payment by).

Table 2. Predicates represent constraint dependency rules in
the proposed method

requires_v_v: Variant requires
variant equire_v_v(x,y)| x,y
∈{V}; V= variant

The selection of a variant V1
requires the selection of another
variant V2 independent of the
variation points the variants are
associated with. e.g. requires_v
_v (ecash, ssl).

excludes_v_v: Variant excludes
variant exclude_v_v(x,y)| x,y
∈ {V}; V= variant

The selection of a variant V1
excludes the selection of the
related variant V2 independent of
the variation points the variants
are associated with. e.g. ex-
cludes_v_v(By price, member
view).

requires_v_vp: Variant requires
variation point require_v_vp
(x,y)| x,y ∈{V,VP}; V= vari-
ant.Vp=variation point

The selection of a variant V1
requires the consideration of a
variation point VP2. e.g. re-
quires_v_vp (member_view,
member_reward).

excludes_v_vp: Variant ex-
cludes variation point ex-
cludes_v_vp (x,y) |x,y ∈ {V,
VP}; V = variant. VP=variation
point

The selection of a variant V1
excludes the consideration of a
variation point VP2. e.g. ex-
cludes_v_vp (not registered,
payment_by).

requires_vp_vp: Variation
point requires variation point
require_ vp_ vp (x,y) | x,y ∈
{VP}; VP= variation point

A variation point requires the
consideration of another varia-
tion point in order to be realized.
e.g. requires_vp_vp (item_
search, view_type).

excludes_vp_vp Variation
point excludes variation point
excludes_vp_vp (x,y)|x,y ∈
{VP}; VP= var- iation point

The consideration of a variation
point excludes the consideration
of another variation point. e.g.
excludes_vp_vp (security_
payment, credit_card_type).

knowledge-base. At the end of the configuration process,
select and not notselect predicates represent the product.
Table 3 shows the abstract representation of the main
rules.

Rule 1:
For all variant x and variant y; if x requires y and x is

selected, then y is selected.
Rule 2:
For all variant x and variant y; if x excludes y and x is

selected, then y is assigned by notselect predicate.
Rule 3:
For all variant x and variation point y; if x requires y

and x is selected, then y is selected. This rule is applica-
e as well if the variation oint is selected first: bl p

 x, y: type(x, variant) type(y, variationpoint) re-
quire_v_vp(x, y) select(y) select(x)

For all variant x and variation point y; if x requires y
and y is selected, then x is selected.

Rule 4:
For all variant x and variation point y; if x excludes y

and x is selected, then y assigned by notselected predi-
ate. c

Copyright © 2010 SciRes. JSEA

An Interactive Method for Validating Stage Configuration 620

Ta le 3. Abstract presentation of the main les b re ru

 x, y: type(x, variant) type(y, variant) require_v_v(x, y) select(x) select(y) 1

2 (x

 x, y: type(x, variant) type(y, variationpoint) require_v_vp(x, y) lect(x) lect(y)

 x, y: type(x, variant) type(y, variant) exclude_v_v(x ,y) select) notselect(y)

3 se se

 x, y: type(x, variant) type(variationpoint) exclude_v_vp(x, y) select(x) no ect(y) 4 y, tsel

 x, y: type(x, variationpoint) type(y, variationpoint) require_vp_vp(x, y) select(x) select(y) 5

 x, y: type(x, variationpoint) type(y, variationpoint) exclude_vp_vp(x, y select(x) notselect(y) 6)

 x y: type(x, variant) type(y, variationpoint) select(x) variants(y, x) select(y) 7 ,

y:type(x, variant) pe(y, variationpoint) select(y) v iants(y, x) ect(x) 8 x ty ar sel

 x, y: type(x, variant) type(y, variationpoint) notselect(y) vari ts(y, x) notselect(x) 9 an

 x, y: type(x, variant) typ (y, variationpoin common(x,yes) variants(y, x) select(y) select(x) 10 e t)

 y: type(y, variationpo common(y,yes) elect(y) 11 int) s

 x, y: type(x, variant) type(y, variationpoint) variants(y, x) select(x) sum(y,(x)) ≤ max(y,z) 12

 x, y: type(x, variant) type(y, variationpoint) variants(y, x) select(x) sum(y,(x)) ≥ min(y,z) 13

Th in

 x, y: type(x, variant) type(y, variationpoint) ex-
clu e_v_vp(x, y) select(notselect(x)

is rule is applicable as well, if the variation po t is
selected first:

d y)

 x, y: type(x, variant) type(y, variationpoint) ex-
clude_v_vp(x, y) select(y) notselect(x)

For all variant x and variation point y; if x excludes y
and y selected, then x is assigned by notselect predicate.

Rule 5:
For all variation point x and variation point y, if x re-

quires y and x selected, then y is selected.
Rule 6:
For all variation point x and variation point y, if x ex-

cludes y and x is selected, then y is assigned by notselect
predicate.

Rule 7:
For all variant x and variation point y, where x belongs

to y and x is selected, that means y is selected.
This rule determines the selection of variation point if
one of its variants was selected.

Rule 8:
For all variation point y there exists of variant x, if y

selected and x belongs to y then x is selected.
This rule states that if a variation point was selected, then
there is variant(s) belong to this variation point must be
selected.

Rule 9:
For all variant x and variation point y; where x belongs

to y and y defined by predicate notselect(y), then x is as-
signed by notselect predicate. This rule states that if a
variation point was excluded, then none of its variants
must select.

Rule 10:
For all variant x and variation point y; where x is a

common, x belongs to y and y is selected, then x is se-
lected. This rule states that if a variant is common and its
variation point selected then it is selected.

Rule 11:
For all variation point y; if y is common, then y is se-

lected. This rule states that if a variation point is common
then it is selected in any product.

Rule 12:
For all variant x and variation point y; where x belongs

to y and x is selected, then the summation of x must not
be less than the maximum number allowed to be selected
from y.

Rule 13:
For all variant x and variation point y; where x belongs

to y and x is selected, then the summation of x must not
be greater than the minimum number allowed to be se-
-lected from y.

The notselect predicate prevents feature to be selected,
e.g. rule 9.

Rules 12 and 13 validate the number of variants’ se-
lection considering the maximum and minimum condi-
tions in variation point definition (cardinality definition).
The predicate sum(y, (x)) returns the summation number
of selected variants belongs to variation point y. From

ese rules, the full common variant (variant included in
y product) can e efined as:

th
an b d

x,y:type(x,variant) type(y,variationpoint) variants(y,x)
common(y,yes) common(x,yes) full_common(x)

A full common variant is a common variant belongs to
common variation point. A common variation point in-
cluded in any product (rule 11), a common variant be-
longs to selected variation point is selected (rule 10).

The proposed rules (to validate the configuration) are
based on two layers. The upper layer is a variation point
layer where each rule applied to variation point reflect
into all its variants, e.g. if variant excludes variation
point that means this variant excludes all the variants that
belong to this variation point, rule (9). The lower layer is
a variant layer where each rule is applied for specific
variant.

Copyright © 2010 SciRes. JSEA

An Interactive Method for Validating Stage Configuration 621

5.2 Explanation and Corrective Explanation

This operation is defined (in this paper) for highlighting
the sources of errors within configuration process.
The general pattern that represents failure to select one
feature in the configuration process is:

Feature A excludes Feature B and Feature A is se-
lected then Feature B failed to select.

In the proposed method, there are two possibilities for
the feature: variation point or variant and three possibili-
ties for the exclusion: variant excludes variant, variant
excludes variation point or variation point excludes va-
riation point. Definition 1 describes these possibilities in
the form of rules.

Definition 1:
Selection of variant n, select (n), fails due to selection
 variant x, select(x , in threof) e cases:

x,y,n:type(x,variant) select(x) type(y,variationpoint) varia-
nts(y,x) type(n,variant) excludes_v_vp(n,y) notselect(n).

If the variant x is selected, and it belongs to the varia-
tion point y, this means y is selected (rule 7), and the
variant n excludes the variation point y, this means n as-
signed by notselect predicate (rule 4 is applied also if the

riation point is sele ed). va ct

x,y,z,n:type(x,variant) select(x) type(y,variationpoint) varia
nts(y,x) variants(z,n) excludes_vp_vp(y,z) notselect(n).

If the variant x is selected and x belongs to the varia-
tion point y, that means y is selected (rule 7), and if the
variation point y excludes the variation point z, this
means z is assigned by notselect predicate (rule 6), and
the variant n belongs to variation point z, this means n is

signed by notselec predicate (rule 9). as t

x,n: type(x,variant) select(x) type(n,variant) excludes_v_v
(x,n) notselect(n).

If the variant x is selected, and x excludes the variant n,
which means n is assigned by notselect predicate (rule 2).
In addition to defining the source of error, these rules can
be used to prevent the errors. The predicate notselect(n)
validate users by preventing selection.

Example 1
Suppose the user selects memebr_view before entering

a new selection and request to select by price, the system
rejects the choice and directs the user to deselect mem-
ber_view first. Table 4 describes example 1. This exam-
ple represents rule (3). The example illustrates how the
proposed method guides users to solve the rejection rea-
son. In addition to that, it can be used to prevent rejection
reasons; example 2 explains this.

Example 2
The user asks to select the variant https, the system

accepts the choice and adds notselect(credit_card_types)
to the knowledge-base to validate future selections. Ta-
ble 5 describes example 2. Selection of the variant Https

Table 4. Example 1

? select (by price).

You have to deselect memebr_view

Table 5. Example 2

? select (Https).
Yes
notselect (credit_card_types) added to knowledge base.

from security_payment variation point leads to the selec-
tion of security_payment (rule 7), and secu rity_payment
excludes credit_card_types variation point, which means
credit_card_types must not be selected (rule 6). The
predicate notselect(credit_card_types) prevents the se-
lection of its variants according to rule 9.

The proposed method guides user step by step (in each
choice), if the user’s choice is invalid immediately reject
it and suggest the correct actions (corrective explanation),
see example 1. Moreover, notselect predicate can be as-
signed to some features according to user’s selection, see
example 2. The notselect predicate prevents user from
future errors.

5.3 Filtering

Filtering operation guides the user to develop his product
based on predefined conditions.

Example 3
Suppose price was defined as an extra-functional fea-

ture to security_payment variation point in Figure 3. As
a result three new predicates (price(https,100), price (ssl,
200), and price(set,350)) were added. We want to ask
about the feature with price greater than 100 and less
than 250 (price(X, Y), Y > 100, Y < 250), the system
triggers the variant ssl with price 200. Table 6 describes
example 3.

5.4 Propagation and Delete-Cascade

In this operation, some features are automatically se-
lected (or deselected).

The general pattern that represents selection of feature
based on selection of another feature is:
Feature A requires feature B and feature A is selected
then feature B is auto-selected.

In the proposed method, there are two possibilities for
the feature: variation point or variant and three possibili-
ties for the requiring: variant requires variant, variant
requires variation point or variation point requires varia-
tion point. Definition 2 describes these possibilities in the
form of rules.

Definition 2:
Selection of variant n, select(n), is propagated fromse-

le tion of variant x, select(x), in three cases: c

i. x,y,z,n:type(x,variant) variants(y,x) select(x) requires_vp_

Copyright © 2010 SciRes. JSEA

An Interactive Method for Validating Stage Configuration 622

Table 6. Example 3

? price(X, Y), Y > 100, Y< 250.
X = ssl

Y = 200

vp(y,z) type(n,variant) variants(z,n) common(n,yes)
autoselect(n).

If x is a variant and x belongs to the variation point y
and x is selected, that means y is selected (rule 7), and the
variation point y requires a variation point z, that means z
is selected also (rule 5), and the variant n belongs to the

variation point z and the variant n is common that means
the variant n is selected (rule 10).

ii. x,n:type(x,variant) type(n,variant) select(x) requires_v_v(
x,n) autoselect(n).

If the variant x is selected and it requires the variant n,
that means the variant n is selected, (rule 1). The selec-
tion of variant n propagated from the selection of variant x.

iii. x,z,n:type(x,variant) select(x) type(z,variationpoint) requ
ires_v_vp(x,z) type(n,variant) variants(z,n) common(n,yes)

 autoselect(n).

If the variant x is selected and it requires the variation
point z that means the variation point z is selected (rule 3),
and the variant n is common and belongs to the variation
point z that means the variant n is selected (rule 10). The
selection of variant n propagated from the selection of
variant x.

Example 4
Suppose the user enters this choice, select(register),

the system answered yes (acceptance of user selection) ,
user announced by selection of the variant search_name,
as propagated from selection of the variant register. This
example illustrates case 1: view_type variation point re-
quires item_search variation point and search_name is
common variant belongs to the variation point item_
search. The direct selection of variant register makes
view_ type variation point selected (rule 7), and the se-
lection of view_type variation point makes the item_
search variation point selected (rule 5), then the common
variant search_name (belongs to item_search variation
point) is selected (rule 10). The main result of this exam-
ple is the additions of two new facts select (register) and
autoselect (search_name) to the knowledge base. Table
7 illustrates example one.

Delete-Cascade Operation:
This operation validates configuration process in the

execution time. The following scenario describes the
problem: If the variant x is selected in time N and x re-
quires two variants y and k, then the solution (at time N)
= {x, y, k}. In time (N + 1), the variant m is selected, and

m excludes x, then x is remove from the solution. The
solution at time (N + 1) = {m, y, k}. The presence of the
variants y and k is not a real selection. Rule 2 (Subsection
5.1) assign notselect predicate (to the excluded variant)
as a result from the exclusion process. The following
rules added to the knowledge base to implement delete-
cascade.

i. x,y:type(x,variant) type(y,variant) requires_v_v(y,x) autos
elect(x) select(y) notselect(y) notselect(x).

ii. x,y:type(x,variant) type(y,variant) requires_v_v(y,x) auto
select(x) autoselect(y) notselect(y) notselect(x).

For all variants x, and y; if the variant y is requires x, y
is selected or auto selected, x is auto selected and y as-
signed by notselect predicated, that means y is excluded
within the configuration process, and x was selected ac-
cording to selection of y (propagation) then the presence
of x after exclusion of y is not true. The output for this
operation is the assigning of the variant x with notselect
predicate. This assigning permits backtracking mecha-
nism to perform delete-cascade operation to verify the
products.

5.5 Cardinality Test

Cardinality test operation validates the cardinality of
each selected variation point. At the begging of this op-
eration, all auto-selected variants must be assigned by
select predicate, which constructs all selected variants in
the configuration process assign by select predicate.
The following rule assiges select predicate to all auto-

lected variantse s.

x: autoselect(x) select(x).

The following rule converts all selected variants be-
longing to the variation point y to a list, i.e. the list con-

ins only variants belong g to one variation point: ta in

y,x:variants(y,x),select(x) list(y,[x]).

The following rules test the maximum and minimum
rdinality for each selected variation pointca .

y,x,len,m: length(list(y,[x]),len) max(y,m) len > m
ror. er

y,x,len,m: length(list(y,[x]),len) min(y,m) len < m
error.

In the above two rules, the length of a list compares
against cardinality of its variation point and alert mes-
sages triggers out in case of error.

6. Implementation and Scalability Testing

In this section, technical details are present and discuss.
Table 8 shows an interactive configuration program. All
programs are implemented based on prolog SWI soft-
ware.

Copyright © 2010 SciRes. JSEA

An Interactive Method for Validating Stage Configuration 623

The program in Table 8 guides user step by step to com-
plete his selections. First, user enters his choice (the
variant X). Later, two subroutines validate the selection.
The first subroutine (interactive_validate_require) works
to figure out all variants required by the selected variant
X based on the three constraints: variant requires variant,
variant requires variation point, and variation point re-
quires variation point. The second subroutine (interacttive_
validate_exclude) works to figure out all variants excluded
by the selected variant X based on the three constraints:
variant excludes variant, variant excludes variation point,
and variation point excludes variation point.

Table 9 shows a program to generate the maximum
product. A maximum product defined as a product contains
all variant in SPL considering the constraint dependency
rules [42].

The program to generate the maximum product (Table
9) contains five subroutines: sel_common, sel_variant,
validate_exclude, del_cascade, and make_product. In the
following, each subroutine is discussed:

sel_common: this subroutine selects the common vari-
ants, i.e., common variant belonging to common varia-
tion point.

sel_variant: select all the variants (that are not se-
lected before as common variants) are the mission of this
subroutine.

validate_exclude: This subroutine validates exclude
constraint. In subroutine, all variants are compared
against each other. The excluded variant is assigned by
notselect predicate.

del_cascade: this subroutine implements the de-
lete-cascade operation that is defined in Subsection 5.4 in
this paper.

Table 7. Example 4

? select (view_type.register).
Yes

You selected also…. search_name

Table 8. An interactive configuration program

sel:-
read(X),
interactive_validate_exclude(X),
interactive_validate_require(X).

interactive_validate_require(X):-
type(N,variant), X \==N,
((requires_v_v(X,N), write(' you have to de select '), write(N),nl);
(variants(M,N), requires_v_vp(X,M), common(N,yes),write(' you
have to select '), write(N),nl);
(variants(Y,X), variants(M,N), requires_vp_vp(Y,M), common
(N,yes), write (' you have to select '), write(N).

interactive_validate_exclude(X):-
type(N,variant), X \==N,
((excludes_v_v(X,N), write(' you have to de select '), write(N),nl);
(variants(M,N), excludes_v_vp(X,M),write(' you have to deselect '),
write(N),nl) ;
(variants(Y,X), variants(M,N), excludes_vp_vp(Y,M),write(' you
have to deselect '),write(N).

Table 9. A program to generate the maximum product

max_product:-
sel_common,
sel_variant,
validate_exclude,
del_cascade,
make_product.

sel_common:-
variants(Y,X),
common(Y,yes),
common(X,yes),
write('select'),write('('), write(X), write(').').

sel_variant:-
type(X, variant),
not(select(X)),
write('select'),write('('), write(X), write(').').

validate_exclude:-
select(N), select(X), X \==N,
((excludes_v_v(X,N), write('notselect'),write('('), write(X), write (').'), nl);
(variants(M,N),excludes_v_vp(X,M),write('notselect'),write('('),
write(X), write(').'),nl) ;
(variants(Y,X), variants(M,N), excludes_vp_vp (Y,M),write ('notse-
lect'), write('('), write(X), write(').'),nl)).

del_cascade:-
select(N),
requires_v_v(M,N),
notselect(M), % that means M was selected and then deleted
write('notselect'),write('('), write(N), write(').').

make_product:-
write('S/wproduct.'),
select(X),not(notselect(X)),
write(X),write(', ').

make_product: This subroutine print out the maximum
product. The maximum product is represented by all
variant assigned by select predicate and not assign by
notselect predicate.

6.1 Scalability Test

Scalability is a key factor in measuring the applicability
of the techniques dealing with variability modeling in
SPL [51]. The output time is a measurement key for sca-
lability. A system consider scalable for specific problem
if it can solve this problem in a reasonable time. In the
following, we describe the method of our experiments:

Generate the domain engineering as a data set: Do-
main engineering is generated in terms of predicates
(variation points, and variants). We generated four sets
containing 1000, 1500, 3000, and 50000 variants. White
et al. [43] defines 5000 features as a suitable number to
mimic industrial SPL. Variants are defined as numbers
represented in sequential order, as example: In the first
set (1000 variants) the variants are: 1, 2, 3,…, 1000. In
the last set (5000 variants) the variants are: 1, 2, 3, …,
5000. The number of variation point in each set is equal
to number of variant divided by five, which means each
variation point has five variants. As example in the first

Copyright © 2010 SciRes. JSEA

An Interactive Method for Validating Stage Configuration 624

set (1000 variants) number of variation points equal 1000.
Each variation point defined as sequence number having
the term vp as postfix, e.g. vp12.

Define the assumptions: We have three assumptions:
1) each variation point and variant has a unique name, 2)
each variation point is orthogonal, and 3) all variation
points have the same number of variants.

Set the parameters: The main parameters are the num-
ber of variants and the number of variation points. The
remaining eight parameters (common variants, common
variation points, variant requires variant, variant excludes
variant, variation point requires variation point, variation
point excludes variation points, variant requires variation
point, and variant excludes variation point) are defined as
a percentage. The number of the parameters related to
variant (such as; common variant, variant requires vari-
ant, variant excludes variant, variant requires variation
point, and variant excludes variation point) is defined as
a percentage of the number of the variants. The number
of parameters related to variation point (such as; varia-
tion point requires variation point) is defined as a per-
centage of the number of variation points. We found that
the maximum ratio of constraint dependency rules used
in literature is 25% [51]. Therefore, we defined the ratio
of the parameters in our experiments as 25%. Table 10
represents snapshots of an experiment’s dataset, i.e., the
domain engineering in our experiments.

Calculate the output: we tested two programs for each
program, we made thirty experiments, and calculated the
execution time as average. The experiments were done
with the range (1000-50000) variant, and percentage
range of 25%.

Experimental platform:
The experiments were performed on a computer with

an Intel centrino Duo 1.73GHZ CPU, 2 gigabytes of
memory, Windows XP home edition. In the following
parts, the results are presented. The results show the exe-
cution time compared with number of variants, number
of variation points, and the parameters.

6.1.1. Test Scalability of a Program to Validate
Product in Interactive Mode

In this subsection, we test the scalability of interactive
configuration program (Table 8). Instead of read the
user’s input one by one, we define additional parameter,
the predicate select(c), where c is random variant. This
predicate simulates the user’s selection. Number of select
predicate (defined as a percentage of number of variant)
is added to the domain engineering (dataset) for each ex-
periment. Table 11 contains a program to validate the
product in interactive mode. This program is modifica-
tion of the program in Table 8. This modification allows
us to test the scalability.

Table 12 shows the result of scalability test for a pro-
gram to validate product in interactive mode.

6.1.2. Test Scalability of a Program to Define the
Maximum Product

In this subsection, the scalability test for a program to
define the maximum product is discussed. Table 13
shows the results.

In [51] the execution time for 200-300 features is 20 min
after applying atomic sets to enhance the scalability. With
compare to the literature, our proposed method is scalable.

7. Conclusions and Future Work

In this paper, a method to validate SPL in stage-con-

Table 10. Snapshot of experiment’s dataset

type(vp1,variationpoint).type(1,variant).
variants(vp1,1).
common(570,yes).
Common(vp123,yes).
requires_v_v(7552,2517).
requires_vp_vp(vp1572,vp1011).
excludes_vp_vp(vp759,vp134).
excludes_v_v(219,2740).
requires_v_vp(3067,vp46).
excludes_v_vp(5654,vp1673).

Table 11. A program to validate product in interactive mode

sel:-
interactive_validate_exclude,
interactive_validate_require.

interactive_validate_exclude:-
select(N), select(X), X \==N,
((excludes_v_v(X,N), write(' you have to de select '), write(N),nl);
(variants(M,N), excludes_v_vp(X,M),write(' you have to deselect '),
write(N),nl) ;
(variants(Y,X), variants(M,N), excludes_vp_vp(Y,M),write(' you
have to deselect '), write (N), nl)).

interactive_validate_require:-
type(N,variant), select(X), not(select(N)),
((requires_v_v(X,N), write(' you have to de select '), write(N),nl);
(variants(M,N), requires_v_vp(X,M), common (N,yes), write (' you
have to select '), write(N),nl);
(variants(Y,X), variants(M,N), requires_vp_vp(Y,M), com- mon
(N,yes), write (' you have to select '), write(N),nl)).

Table 12. Results of scalability test for a program to vali-
date product in interactive mode

Number of variants Time (Min)

1000 0.4
1500 1.6
3000 12.8
5000 59.6

Table 13. Results of scalability test for a program to gener-
ate the maximum product

Number of variants Time (Min)

1000 1.98
1500 6.85
3000 54
5000 251

Copyright © 2010 SciRes. JSEA

An Interactive Method for Validating Stage Configuration 625

figuration process is presented. Firstly, modeling vari-
ability using FOL predicates was proposed. By this mod-
eling, we can get formalized variability specifications,
support and validate selection process within variability
more precisely. The proposed method provides auto-
mated consistency checking among constraints (during
configuration process) based on three levels (i.e. variant-
to-variant, variant-to-variation point, and variation point-
to-variation point). The proposed method guides users
interactively step-by-step (in each choice). If the user’s
choice is invalid, immediately is rejected and correction
actions are suggested (corrective explanation). Moreover,
the proposed method can be used to correct future selec-
tions using notselect predicate (rule 9). All variants se-
lected directly (by user) assigned by select predicate. All
variants selected using propagation process assigned by
autoselect predicate. The delete-cascade operation vali-
dates auto-select variants. Before cardinality test, all
variants in the configured product converted to assign by
select predicate. Finally, cardinality test validate the
number of selection of each variation point.

Many methods are applying empirical results to test
scalability by generating random FMs [43,52-54]. Com-
paring with literature, our test range (1000–5000 variants)
is sufficient to test scalability. The proposed method is
limited to work only in certain environment, i.e. where
constraint dependency rules are well known in all cases.

We plan to complete the proposed method by defining
operations for validating SPL in static mode. In addition,
we plan to implement our method in real life case from
industry.

REFERENCES

[1] J. Bosch, “Maturity and Evolution in Software Product
Lines,” Proceedings of the Second International Software
Product Line Conference, Springer LNCS, San Diego, Vol.
2379, 19-22 August 2002, pp. 257-271.

[2] P. Clements and L. Northrop, “Software Product Lines:
Practices and Patterns,” Addison Wesley, Boston, 2001.

[3] K. Kang, J. Hess, W. Novak and S. Peterson, “Feature
Oriented Domain Analysis (FODA) Feasibility Study,”
Technical Report No. CMU/SEI-90-TR-21, Software En-
gineering Institute, Carnegie Mellon University, 1990.

[4] K. Kang, J. Lee and P. Donohoe, “Feature-Oriented Prod-
uct Line Engineering, IEEE Software, Vol. 19, No. 4,
2002, pp. 58-65.

[5] K. Pohl, G. Böckle and F. van der Linden, “Software
Product Line Engineering Foundations Principles and
Techniques,” Springer, Verlag Heidelberg Germany,
2005.

[6] D. Benavides, A. Ruiz-Cort´es, D. Batory and P. Heymans,
First International Workshop on Analyses of Software
Product Lines (ASPL’08), Limerick, Ireland, 2008.

[7] D. Benavides, A. Metzger and U. Eisenecker, “Third
International Workshop on Variability Modelling of Soft-
ware-intensive Systems,” ICB-Research Report No. 29,
University of Duisburg Essen, Duisburg, 2009.

[8] H. Wang, H. Li, J. Sun, H. Zhang and J. Pan, “Verifying
Feature Models Using OWL,” Journal of Web Semantics:
Science, Services and Agents on the World Wide Web, Vol.
5, No. 2, 2007, pp. 117-129.

[9] D. Batory, D. Benavides and A. Ruiz-Cortés, “Automated
Analyses of Feature Models: Challenges Ahead,” Com-
munications of the ACM (Special Section on Software
Product Lines), 2006.

[10] K. Czarnecki and U. Eisenecker, “Generative Program-
ming: Methds, Tools, and Applications,” Addison-Wesley,
Boston, 2002.

[11] T. Massen and H. Litcher, “Determining the Variation
Degree of Feature Models,” Software Product Lines Con-
ference, LNCS 3714, Rennes, 2005, pp. 82-88.

[12] T. Asikainen, T. Männistö and T. Soininen, “Using a
Configurator for Modelling and Configuring Software
Product Lines Based on Feature Models,” Proceedings of
the Workshop on Software Variability Management for
Product Derivation, Software Product Line Conference
(SPLC3), Boston, 2004.

[13] K. Czarnecki, S. Helsen and U. Eisenecker, “Staged Con-
figuration Using Feature Models,” Proceedings of Third
International Conference of Software Product Lines
SPLC2004, Boston, 2004.

[14] H. Meyer and H. Lopez, “Technology Strategy in a Soft-
ware Products Company, Product Innovation Manage-
ment,” Blackwell Publishing, Vol. 12, No. 4, 1995, pp.
294-306.

[15] T. Asikainen, T. Mnnistand and T. Soininen, “Represent-
ing Feature Models of Software Product Families Using a
Configuration Ontology,” Proceedings of the General
European Conference on Artificial Intelligence (ECAI)
Workshop on Configuration, Berlin, 2004.

[16] M. Schlick and A. Hein, “Knowledge Engineering in
Software Product Lines,” Proceedings of the 14th Euro-
pean Conference on Artificial Intelligent Workshop on
Knowledge-Based Systems for Model-Based Engineering,
Berlin, 2000.

[17] L. Hotez and T. Krebs, “Supporting the Product Deriva-
tion Process with a Knowledge Base Approach,” Pro-
ceedings of the 25th International Conference on Software
Engineering ICSE2003, Oregon, 2003.

[18] L. Hotez and T. Krebs, “A Knowledge Based Product
Derivation Process and Some Idea How to Integrate Prod-
uct Development,” Proceedings of the Software Variabil-
ity Management Workshop, Groningen, The Netherlands,
2003.

[19] M. Mannion, “Using First-Order Logic for Product Line
Model Validation,” Proceedings of the Second Software
Product Line Conference SPLC2, San Diego, 2002.

[20] W. Zhang, H. Zhao and H. Mei, “A Propositional Logic-
Based Method for Verification of Feature Models,” The

Copyright © 2010 SciRes. JSEA

An Interactive Method for Validating Stage Configuration 626

6th International Conference on Formal Engineering
Methods ICFEM04, LNCS 3308, 2004, pp. 115-130.

[21] D. Batory, “Feature Models, Grammars, and Propositional
Formulas,” Proceedings of the 9th International Software
Product Lines Conference SPLC05, Rennes France, 2005.

[22] J. Sun and H. Zhang, “Formal Semantics and Verification
for Feature Modeling,” Proceedings of the 10th IEEE In-
ternational Conference on Engineering of Complex Com-
puter Systems (ICECCS05), Shanghai, 2005.

[23] H. Wang, H. Li, J. Sun, H. Zhang and J. Pan, “A Semantic
Web Approach to Feature Modeling and Verification,”
Proceedings of Workshop on Semantic Web Enabled
Software Engineering (SWESE’05), Galway, 2005.

[24] R. Falbo, G. Guizzardi and K. Duarte, “An Ontological
Approach to Domain Engineering,” Proceedings of 14th
International Conference on Software Engineering and
Knowledge Engineering, Ischia, 2002.

[25] V. Dedeban, “Ontology-Driven and Rules-Based System
for Management and Pricing of Family of Product,”
Master Thesis, Norwegian University of Science and
Technology Department of Computer and Information
Science, Norway, 2007.

[26] F. Shaofeng and N. Zhang, “Feature Model Based on
Description Logics,” Proceedings of 10th International
Conference on Knowledge-Based and Intelligent Infor-
mation and Engineering Systems KES2006, Springer-
Verlag Berlin Heidelberg, 2006, pp. 1144-1151.

[27] M. Clauss, “Modeling Variability with UML,” GCSE 2000
-Young Researchers Workshop, 3rd GCSE, Erfurt, 2001.

[28] B. Korherr and B. List, “A UML 2 Profile for Variability
Models and their Dependency to Business Processes,”
18th International Workshop on Database and Expert
Systems Applications, IEEE, Regensburg, 2007.

[29] T. Ziadi, J. Jezequel and F. Fondement, “Product Line
Derivation with UML,” Software Variability Management
Workshop, Groningen, Netherlands, 2003, pp. 94-102.

[30] T. Ziadi and J. Jézéquel, “Product Line Engineering with
the UML: Deriving Products,” Chapter in Software Prod-
uct Lines, Springer, 2006, pp. 557-586.

[31] E. Oliveira, I. Gimenes, E. Huzita and J. Maldonado, “A
Variability Management Process for Software Product
Lines,” The 2005 Conference of the Centre for Advanced
Studies on Collaborative Research, IBM Centre for Ad-
vanced Studies Conference, Toranto, Ontario, 2005, pp.
225-241.

[32] S. Robak, B. Franczyk and K. Politowicz, “Extending the
UML for Modelling Variability for System Families,” In-
ternational Journal of Applied Mathematics and Computer
Science, Vol.12, No. 2, 2002, pp. 285-298.

[33] A. Schnieders, “Modeling and Implementing Variability in
State Machine Based Process Family Architectures for
Automotive Systems,” The 3rd International Workshop on
Software Engineering for Automotive Systems ICSE06,
Shanghai, 2006.

[34] H. Gomaa and E. Shin, “Automated Software Product
Line Engineering and Product Derivation,” The 40th An-

nual Hawaii International Conference on System Sciences,
Big Island, Hawaii, 2007.

[35] I. Philippow, M. Riebisch and K. Boell, “The Hyper/UML
Approach for Feature Based Software Design,” The 4th
AOSD Modeling with UML Workshop Collocated 6th In-
ternational Conference on the Unified Modeling Language
UML, San Francisco, 2003.

[36] M. Riebisch, K. B¨ollert, D. Streitferdt and I. Philippow,
“Extending Feature Diagrams with UML Multiplicities,
6th World Conference on Integrated Design & Process
Technology (IDPT2002), California, 2002.

[37] D. Streitferdt, M. Riebisch and I. Philippow, “Details of
Formalized Relations in Feature Models Using OCL,”
10th IEEE International Conference on Engineering of
Computer–Based Systems (ECBS 2003), Huntsville, IEEE
Computer Society, 2003, pp. 45-54.

[38] K. Czarnecki and M. Antkiewicz, “Mapping Features to
Models: A Template Approach Based on Superimposed
Variants, Proceedings of the 4th International Conference
on Generative Programming and Component Engineering
GPCE’05, Tallinn, Estonia, 2005.

[39] K. Czarnecki and K. Pietroszek, “Verifying Feature-Based
Model Templates against Well-Formedness OCL Con-
straints,” Proceedings of the 5th International Conference
on Generative Programming and Component Engineering
GPCE’06, Oregon, 2006.

[40] D. Benavides, A. Ruiz-Cort´es and P. Trinidad, “Auto-
mated Reasoning on Feature Models,” 17th International
Conference (CAiSE05), Porto, 2005, pp. 491-503.

[41] D. Benavides, S. Segura, P. Trinidad and A. Ruiz-Cort´es,
“Using Java CSP Solvers in the Automated Analyses of
Feature Models,” Post-Proceedings of the Summer School
on Generative and Transformational Techniques in Soft-
ware Engineering (GTTSE), LNCS 4143, 2006.

[42] D. Benavides, “On the Automated Analysis of Software
Product Line Using Feature Models, A Framework for
Developing Automated Tool Support,” Ph.D. Dissertation,
University of Sevilla, Sevilla, 2007.

[43] J. White, D. Schmidt, D. Benvides, P. Trinidad and A.
Ruiz-Cortes, “Automated Diagnosis of Product Line Con-
figuration Errors on Feature Models,” Proceedings of 12th
International Conference of Software Product Line, Lim-
erick Irland, 2008.

[44] F. Cao, B. Bryant and C. Carol, “Automating Fea-
ture-Oriented Domain Analysis,” Proceedings of Interna-
tional Conference on Software Engineering Research and
Practice (SERP’03), 2003, pp. 944-949.

[45] A. Deursen and P. Klint, “Domain-Specific Language
Design Requires Feature Descriptions,” Journal of Com-
puting and Information Technology, Vol. 10, No. 1, 2002,
pp. 1-17.

[46] M. Janota and J. Kiniry, “Reasoning about Feature Models
in Higher-Order Logic,” Proceedings of the 11th Interna-
tional Software Product Line Conference (SPLC07),
Kyoto, 2007.

[47] V. Cechticky, A. Pasetti, O. Rohlik and W. Schaufelber-
ger, “XML-Based Feature Modeling,” Proceedings of the

Copyright © 2010 SciRes. JSEA

An Interactive Method for Validating Stage Configuration

Copyright © 2010 SciRes. JSEA

627

8th International Conference on Software Reuse (ICSR-8),
Madrid, 2004.

[48] S. Jarzabek and H. Zhang, “XML-Based Method and Tool
for Handling Variant Requirements in Domain Models,”
5th IEEE International Symposium on Requirements En-
gineering RE01, IEEE Press, Toronto, 2001. pp. 116-173.

[49] L. Lengyel, T. Levendovszky and H. Charaf, “Constraint
Handling in Feature Models,” Proceedings of 5th Inter-
national Symposium of Hungarian Researchers on Com-
putational Intelligence, Budapest, 2004.

[50] F. Roos-Frantz, “A Preliminary Comparison of Formal
Properties on Orthogonal Variability Model and Feature
Models,” Proceedings of the 3rd International Workshop
on Variability Modeling of Software-Intensive Systems,
Sevilla, 2009.

[51] S. Segura, “Automated Analysis of Feature Models Using

Atomic Sets,” The 1st International Workshop on Analy-
ses of Software Product Lines (ASPL’08), Collocated with
SPLC08, Limerick Ireland, 12-15 September 2008.

[52] P. Trinidad, D. Benavides, A. Dura´n, A. Ruiz-Cortes and
M. Toro, “Automated Error Analysis for the Agilization of
Feature Modeling,” Systems and Software, Vol. 81, No. 6,
2008, pp. 883-896.

[53] P. Trinidad, D. Benavides, A. Ruiz-Cort´es, S. Segura and
A. Jimenez, “FAMA Framework,” 12th Software Product
Lines Conference (SPLC), Limerick, 2008.

[54] H. Yan, W. Zhang, H. Zhao and H. Mei, “An Optimization
Strategy to Feature Models’ Verification by Eliminating
Verification-Irrelevant Features and Constraints,” Book
Chapter in Formal Foundations of Reuse and Domain
Engineering, Springer Berlin/Heidelberg, 2007, pp. 65-75.

	cover 1
	cover 2
	cover
 3
	cover 4
	JSEA 3.6 (Colour).pdf
	JSEA 3.6 Content
	journal information jsea
	1-9301006
	2-9301042
	3-9301066
	4-9301061
	5-9301065
	6-9301055
	7-9301050
	8-9301054
	9-9301058
	10-9301026
	11-9300195
	12-9300180
	13-9301019
	14-9301060

