Home > OJAppS>
Biography

Dr. Jan Valdman

Department of Mathematics and Biomathematics

University of South Bohemia

Associate Professor


Email: jvaldman@prf.jcu.cz


Qualifications

2012 Docent degree (habilitation), applied mathematics, TU of Ostrava, Czech Republic

2002 Dr. rer. nat. degree, applied mathematics, University of Kiel, Germany

1997 Dipl.-Ing. degree, mathematical modelling, UWB in Pilsen, Czech Republic

1997 Master Class certificate from Mathematical Research Institute in the Netherlands, Utrecht


Publications (selected)


  1. M. Cermak, T. Kozubek, S. Sysala, J. Valdman: A TFETI Domain Decomposition Solver for Elastoplastic Problems, Applied Mathematics and Computation 231, 634653 (2014).
  2. P. Neittaanmaki, S. Repin, J. Valdman: Estimates of deviations from exact solutions of elasticity problems with nonlinear boundary conditions, Russian Journal of Numerical Analysis and Mathematical Modelling 28, No.6, 597-630 (2013).
  3. P. Harasim, J. Valdman: Verification of functional a posteriori error estimates for a contact problem in 1D, Kybernetika 49, No. 5, 738-754 (2013).
  4. T. Rahman, J. Valdman, Fast MATLAB assembly of FEM matrices in 2D and 3D: nodal elements, Applied Mathematics and Computation 219, 7151-7158 (2013).
  5. J. Nordbotten, T. Rahman, S. Repin, J. Valdman, Functional a posteriori error estimates for Biot-Barrenblat model in porous media, Computational Methods in Applied Mathematics 10, No. 3, 302-315 (2010).
  6. L. Marcinkowski, T. Rahman, J. Valdman: A 3D Crouzeix-Raviart mortar finite element, Computing 86, No. 4, 313-330 (2009).
  7. S. Repin, J. Valdman: Functional a posteriori error estimates for incremental models in elasto-plasticity, Central European Journal of Mathematics 7, No. 3, 506-519 (2009).
  8. J. Valdman: Minimization of Functional Majorant in A Posteriori Error Analysis based on H(div) Multigrid-Preconditioned CG Method, Advances in Numerical Analysis, vol. 2009, Article ID 164519 (2009).
  9. P. Gruber, J. Valdman: Solution of one-time-step problems in elastoplasticity by a Slant Newton Method, SIAM J. Scientific Computing 31 (2), 1558-1580 (2009).
  10. S. Repin, J. Valdman: Functional a posteriori error estimates for problems with nonlinear boundary conditions, Journal of Numerical Mathematics 16 (1), 51-81 (2008).
  11. P. Gruber, J. Valdman: Implementation of Elastoplastic solver based on Moreau-Yosida Theorem, Mathematics and Computers in Simulation 76, No. 1-3, 73-81 (2007).
  12. A. Hofinger, J. Valdman: Numerical solution of the two-yield elastoplastic minimization problem, Computing 81, 35-52 (2007).
  13. C. Carstensen, A. Orlando, J. Valdman: A convergent adaptive finite element method for the primal problem of elastoplasticity, International Journal for Numerical Methods in Engineering 67, No. 13, 1851-1887 (2006).
  14. M. Brokate, C. Carstensen, J. Valdman: A quasi-static boundary value problem in multi-surface elastoplasticity. II: Numerical solution, Math. Methods Appl. Sci. 28, No. 8, 881-901 (2005).
  15. M. Brokate, C. Carstensen, J. Valdman: A quasi-static boundary value problem in multi-surface elastoplasticity. I: Analysis, Math. Methods Appl. Sci. 27, No. 14, 1697-1710 (2004).



Profile Details

Null


Last Updated: 2014-10-26