Home > JMF>
Biography

Prof. Raymond Honfu Chan

Department of Mathematics

The Chinese University of Hong Kong


Email: rchan@math.cuhk.edu.hk


Qualifications

1985 Ph.D., Applied Mathematics, Courant Institute of Mathematical Sciences, New York University, USA

1984 M.Sc., Applied Mathematics, Courant Institute of Mathematical Sciences, New York University, USA

1980 B.Sc., First Class Honours, The Chinese University of Hong Kong, China


Publications (Selected)

  1. R.H. Chan, S. T. Lee and W. K. Wong, Technical Analysis and Financial Asset Forecasting: From Simple Tools to Advanced Techniques, World Scientific, (2014).
  2. R.H. Chan and J. Ma, A Multiplicative Iterative Algorithm for Box-constrained Penalized Likelihood Image Restoration, IEEE Trans, Image Process, 21 (2012), 3168–3181.
  3. Y.W. Wen and R.H. Chan, Parameter Selection for Total Variation Based Image Restoration Using Discrepancy Principle, by IEEE Trans, Image Process, 21 (2012), 1770–1781.
  4. Y.W. Wen, R.H. Chan and A.M. Yip, A Primal-Dual Method for Total Variation-Based Wavelet Domain Inpainting, IEEE Trans, Image Process, 21 (2012), 106–114.
  5. R.H. Chan, H.F. Chan, H.M. Yeung and R.W. Wang, Composition Composition Vector Method based on Maximum Entropy Principle for Sequence Comparison, IEEE/ACM Trans. Comput, Biology Bioinformatics, 9 (2012), 79–87.
  6. R.H. Chan, J.F. Yang and X.M. Yuan, Alternating Direction Method for Image Inpainting in Wavelet Domain, SIAM J, Imag. Sci., 4 (2011), 807–826.
  7. R.H. Chan, H.X. Liang and J. Ma, Positive Constrained Total Variation Penalized Image Restoration, Adv. Adapt, Data Anal., 3 (2011), 187–201.
  8. R.H. Chan and T. Wu, Memory-Reduction Method for Pricing American-Style Options under Exponential Levy Processes, East Asian J. Applied Math., 1 (2011), 20–34.
  9. W.Y. Wen, R.H. Chan and W.K. Ching, Simultaneous Cartoon and Texture Reconstruction for Image Restoration by Bivariate Function, Applicable Analysis, 90 (2011), 1275–1290.
  10. J.F. Cai, R.H. Chan and Z.W. Shen, Simultaneous Cartoon and Texture Inpainting, Inverse Problems and Imaging, 4 (2010), 379–395.
  11. R.H. Chan, Y.Q. Dong and M. Hintermuller, An Efficient Two-Phase L1-TV Method for Restoring Blurred Images with Impulse Noise, IEEE Trans, Image Proc., 19 (2010), 1731–1739.
  12. R.H. Chan and K. Chen, A Multilevel Algorithm for Simultaneously Denoising and Deblurring Images, SIAM J. Sci. Comput., 32 (2010), 1043–1063.
  13. B. Morini, M. Porcelli and R. H. Chan, A Reduced Newton Method for Constrained Linear Least-Squares Problems, J. Comp. Applied Math., 233 (2010), 2200–2212.
  14. J.F. Cai, R.H. Chan and M. Nikolova, Fast Two-Phase Image Deblurring under Impulse Noise, J. Math. Imaging Vis., 36 (2010), 46–53.
  15. R.H. Chan, Y.W. Wen and A.M. Yip, A Fast Optimization Transfer Algorithm for Image Inpainting in Wavelet Domains, IEEE Trans, Image Proc., 18 (2009), 1467–1476.
  16. J.F. Cai, R.H. Chan, L.X. Shen and Z.W. Shen, Simultaneously Inpainting in Image and Transformed Domains, Numer. Math., 112 (2009), 509–533.
  17. J.F. Cai, R.H. Chan, L.X. Shen and Z.W. Shen, Convergence Analysis of Tight Framelet Approach for Missing Data Recovery, Adv. Comput. Math., 31 (2009), 87–113.
  18. S.Q. Zhang, W.K. Ching, L.Y. Wu and R.H. Chan, Construction and Control of Genetic Regulatory Networks: A Multivariate Markov Chain Approach, J. Biomedical Sci. Engng., 1 (2008), 15–21.
  19. R.H. Chan, S. Setzer and G. Steidl, Inpainting by Flexible Haar-Wavelet Shrinkage, SIAM J. Img. Sci., 1 (2008), 273–293.
  20. J.F. Cai, R.H. Chan and M. Nikolova, Two-Phase Approach for Deblurring Images Corrupted by Impulse Plus Gaussian Noise, Inverse Problems and Imaging, 2 (2008), 187–204.


Profile Details

http://www.math.cuhk.edu.hk/~rchan/