Home > APM>
Biography

Prof. Samir H. Saker

Department of Mathematics

Mansoura University, Egypt

Professor

 

Email: shsaker@mans.edu.eg

 

Qualifications

2002 Ph.D., Adam Mickiewicz University, Poland

1997 M.Sc., Mansoura University, Egypt

1993 B.Sc., Mansoura University, Egypt

 

Publications (Selected)

  1. M. J. Bohner, Ramy. R. Mahmoud and S. H. Saker, Improvements of dynamic Opialtype inequalities and applications, Dynamic Syst. Appl. 24 (2015). 229-24.
  2. S. H. Saker, D. O'Regan, Hardy's Type Integral Inequalities on Time Scales, Appl. Math. Inf. Sci. 9 No.6 (2015), 1-8.
  3. S. H. Saker, D. O'Regan and R. P. Agarwal, Hardy type inequalities via Opial inequalities, Advances of Dyn. Sys. Appl. 10 (2015), 1-9.
  4. S. H. Saker, D. O'Regan and R. P. Agarwal, Converses of Copson's inequalities on time scales, Math. Ineq. Appl. Volume 18, Number 1 (2015), 241–254.
  5. R. P. Agarwal, M. Bohner and S. H. Saker, Dynamic Littlewood-Type Inequalities, Proceeding of American Math. Soc. 143 (2015), 667-677.
  6. Samir Saker and Mohamed A. Alrahet, Distributions of Zeros of Solutions for Third Order Differential Equations with Variable Coefficients, Mathematical Problems in Engineering, Volume 2015 (2015), Article ID 158460, 9 pages.
  7. Martin J. Bohner, Ramy R. Mahmoud, and Samir H. Saker, Discrete, Continuous, Delta, Nabla, and Diamond-Alpha Opial Inequalities, Math. Ineq. App. 07/2015; 18(3):923-940.
  8. S. H. Saker and M. M. Osman and D. O'Regan and R. P. Agarwal, Some New Opial Dynamic Inequalities with Weighted Functions on Time Scales. Math. Ineq. Appl. 3 (2015), 1171–1187.
  9. S. H. Saker, D. O'Regan and R. P. Agarwal, Dynamic Inequalities of Hardy and Copson types on Time Scales, Analysis: International mathematical journal of analysis and its applications. 34 (4) (2014), 391-402.
  10. S. H. Saker, D. O'Regan and R. P. Agarwal, Littlewood and Bennett Inequalities on time scales, Mediterranean Journal of Mathematics 8 (2014), 1-15
  11. S. H. Saker, R. P. Agarwal, D O'Regan, Higher order dynamic inequalities on time scales, Math. Ineq. Appl. 17 (2014), 461-472.
  12. S. H. Saker, J. Garef, A New Class of Dynamic Inequalities of Hardy's type on Time Scales, Dynamic Systems and Applications 23 (2014), 83-93.
  13. S. H. Saker, Hardy-Leindler type inequalities on Time Scales, Appl. Math. Infor. Sci. 8 (2014) 2957-2981.
  14. S. H. Saker, Some new disconjugacy criteria for second order differential equations with a middle term, Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie 57 (2014), 109-120.
  15. S. H. Saker, D. O'Regan and R. P. Agarwal, Generalized Hardy, Copson, Leindler and Bennett inequalities on Time Scales, Math. Nachr. Volume 287, Issue 5-6, (2014) pages 686–698,
  16. A Sikorska-Nowak, S. H. Saker, Weak solutions for the dynamic equations $x^{\Delta(m)}(t) = f (t; x(t))$ on time scales, Electron. J. Qual. Theory Differ. Eqns 2014 (No. 21), 1-13
  17. S. H. Saker, D. O'Regan, Distribution of Zeros of solutions of Self-adjoint fourth order differential equations, Egyptian J. Basic Appl. Sciences Volume 1, Issue 1, 2014, Pages 49–59
  18. S. H. Saker, D. O'Regan and R. P. Agarwal, Some Dynamic Inequalities of Hardy's type on Time Scales, Math. Ineq. Appl. Volume 17, Number 3 (2014), 1183–1199
  19. Tongxing Li, S. H. Saker, A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales, Communications in Nonlinear Science and Numerical Simulation, 19 ( 2014), Pages 4185–4188.