Home > APM>
Biography

Dr. Vishnu Narayan Mishra

Department of Mathematics

Indira Gandhi National Tribal University, India


Email: vishnunarayanmishra@gmail.com


Qualifications

2007 Ph.D., Indian Institute of Technology, Roorkee, Uttarakhand, India


Publications (Selected)


  1. A.R. Gairola, V.N. Mishra, K. Singh, A Kantorovich type integral modification of $q-$ Bernstein-Schurer operators, Filomat, Vol. 32, No. 4, (2018), pp. 1335-1348.
  2. V.N. Mishra, P. Sharma, M. Birou, Approximation by Modified Jain-Baskakov Operators, Georgian Mathematical Journal, (2018), in press. Impact Factor: 0.452. ISSN: 1572-9176.
  3. V.N. Mishra, P. Patel, L.N. Mishra, The Integral type Modification of Jain Operators and its Approximation Properties, Numerical Functional Analysis and Optimization, Vol. 39, Issue 12, (2018), pp. 1265-1277.
  4. V.N. Mishra, A.R. Devdhara, R.B. Gandhi, Global Approximation Theorems for the Generalized Sz$\acute{a}$sz-Mirakjan type Operators in Exponential Weight Spaces, Appl. Math. Comp., Vol. 336, (2018), 206-214.
  5. F. Kanca, V.N. Mishra, Identification problem of a leading coefficient to the time derivative of parabolic equation with nonlocal boundary conditions, Iranian J. Sci. & Tech., Transactions A: Science, (2018).
  6. I. Baglan, F. Kanca, V.N. Mishra, Determination of an Unknown Heat Source from Integral Overdetermination Condition, Iranian J. Sci. & Tech., Transactions A: Science, Vol. 42, (2018), pp. 1373-1382.
  7. K. Khatri, V.N. Mishra, Generalized Sz\'{a}sz-Mirakyan operators involving Brenke type polynomials, Applied Mathematics and Computation, 324 (2018), 228-238. 2017.
  8. U. Kadak, V.N. Mishra, S. Pandey, Chlodowsky Type Generalization of $(p,q)$-Sz\'{a}sz Operators Involving Brenke Type Polynomials, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas (RACSAM), Vol. 112, Issue 4, (2018), pp. 1443-1462.
  9. Laurian-Ioan Pi\c scoran$^{\dag}$, Vishnu Narayan Mishra, The variational
  10. problem in Lagrange spaces endowed with a special type of $(\alpha , \beta
  11. )$-metrics, Filomat, Vol. 32, No. 2, (2018), pp. 643-652. 2015.
  12. S. Gupta, S. Husain, V.N. Mishra, Variational inclusion governed by $\alpha\beta$-$H((., .),(., .))$-mixed accretive mapping, Filomat, Vol. 31, No. 20, (2017), 6529–6542.
  13. V.N. Mishra, M. Mursaleen, S. Pandey, A. Alotaibi, Approximation properties of Chlodowsky variant of (p, q) Bernstein-Stancu-Schurer operators, Journal of Inequalities and Applications, (2017).
  14. Laurian-Ioan Pi\c scoran$^{\dag}$, Vishnu Narayan Mishra, S-curvature for a new class of $(\alpha , \beta )$-metrics, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas (RACSAM), Vol. 111, Issue 4, (2017).
  15. A.R. Gairola, K.K. Singh, V.N. Mishra, Rate of Approximation by $q-$Durrmeyer Operators in $L_p([0,1]),$ $1\leqslant p\leqslant \infty$, Annals of Functional Analysis, Vol. 8, No. 3, (2017).
  16. R.B. Gandhi, Deepmala, V.N. Mishra, Local and global results for modified Sz\'{a}sz -Mirakjan operators, Math. Method. Appl. Sci., Vol. 40, Issue 7,(2017), pp. 2491-2504.
  17. Vishnu Narayan Mishra, S. Pandey, On $(p,q)$ Baskakov-Durrmeyer-Stancu Operators, Advances in Applied Clifford Algebras, Vol. 27, Issue 2, (2017), pp. 1633-1646.
  18. I. Ahmad, Vishnu Narayan Mishra, R. Ahmad, M. Rahaman, An iterative algorithm for a system of generalized implicit variational inclusions, SpringerPlus, (2016).
  19. P. Sharma, Vishnu Narayan Mishra, On $q$-analogue of modified Kantorovich-type discrete-Beta operators, Complex Analysis and Operator Theory, Vol. 12 (1), (2018).
  20. Vishnu Narayan Mishra and R.B. Gandhi; A Summation-Integral type modification of Sz\'{a}sz - Mirakjan operators, Mathematical Methods in the Applied Sciences, Vol. 40, (2017), pp. 175-182.
  21. Vishnu Narayan Mishra, P. Sharma; On approximation properties of Baskakov-Schurer- Sz\'{a}sz operators, Applied Mathematics and Computation, Vol. 261 (2016).
  22. Vishnu Narayan Mishra, R.B. Gandhi; Simultaneous approximation by Sz\'{a}sz-Mirakjan-Stancu-Durrmeyer type operators, Periodica Mathematica Hungarica, 74(1), (2017), pp. 118-127.
  23. Laurian-Ioan Pi\c scoran$^{\dag}, Vishnu Narayan Mishra; Projectively flatness of a new class of $(\alpha , \beta )$-metrics, Georgian Math. Journal, 2017.
Profile Details
NULL