Open Journal of Discrete Mathematics, 2011, 1, 127-135
doi:10.4236/ojdm.2011.13016 Published Online October 2011 (http://www.SciRP.org/journal/ojdm)
Copyright © 2011 SciRes. OJDM
The Equilibrium Distribution of Counting
Random Variables
Shuanming Li
Centre for Actuarial Studies, Department of Economics, the University of Melbourne, Australia
E-mail: shli@unimelb.edu.au
Received July 1, 2011; revised August 3, 2011; accepted August 15, 2011
Abstract
We study the high order equilibrium distributions of a counting random variable. Properties such as moments,
the probability generating function, the stop—loss transform and the mean residual lifetime, are derived. Ex-
pressions are obtained for higher order equilibrium distribution functions under mixtures and convolutions of
a counting distribution. Recursive formulas for higher order equilibrium distribution functions of the
-family of distributions are given.
,,0ab
Keywords: Counting Random Variable, Equilibrium Distribution, Stop-Loss Transform, Mean Residual Life,
Family, Recursive Formulas, Probability Generating Function
,,0ab
1. Introduction
Recently, there has been much attention given to higher
order equilibrium distributions associated with a given
distribution function (d.f.), see e.g., Fagiuoli and Pellerey
[1,2], Nanda, Jain and Singh [3], Hesselager, Wang and
Willmot [4] and the references therein. Equilibrium dis-
tributions arise naturally in ruin theory and play an im-
portant in various settings.
The first order equilibrium distribution of a claim size
d.f., in classical risk theory, can be interpreted as the
distribution of the amount of the first drop below the
initial reserve, given there is such a drop (see for instance
Bowers et al. [5], Chapter 12). Many results on the mo-
ments of the time to ruin, the surplus before ruin and the
deficit at ruin, heavily depend on the equilibrium distri-
bution of the claim size d.f. [see Lin and Willmot [6,7]
for details].
Some classifications of reliability distributions are
based on properties of higher order equilibrium distribu-
tions. Whence, bounds for the right tail of the total claims
distribution and ruin probabilities, can be obtained from
the properties of equilibrium distributions associated
with the single claim size d.f., see [7-9].
Although much attention has been paid to the equilib-
rium distributions associated with a given d.f., most re-
sults are for continuous random variables. Instead, we
discuss higher order equilibrium distributions associated
with a discrete probability function (p.f.). Throughout the
paper,
=0,1,2, and

=1,2, .

2. Notation and Definitions
Let X be a non-negative r.v. taking integer values, with
probability function (p.f.) survival
function
 
==pxPX x,

1
= ,
yx
P
=>xPXx py

x
and
-th moment n=.
n
nEX
Consider the equilibrium distribution of p, defined as
  
1
1
11
1
:= =,.
yx
Px
pxpy x


Now, define
 
:= n
nEX

n
xx
to be the n-th factorial
moment of X, where de-
notes the n-th factorial power of x and It is
well known in summation calculus (see e.g. Hamming

=1x xn

0=1.x
1
[10], p.182) that


 
11
=
1
=,
1
nn
yn
kx
yx
kn

for
,n
,xy ,
and .
y
Hence the n-th factorial
moment

1: n
of is given by
1
p
 





1
1:
11
1
1
2=1
1
1
==
1
=,1,
nn
nxxy
yn
yx
1x
x
pxx py
py xn



128 S. M. LI

 





11
2
1
1
11
1
1
==
11
=,for=.
1
nn
y
n
y
py nn
n
1



(1)
Similarly, the probability generating function (p.g.f.)
of the equilibrium distribution is given by
1
p
 

11
01
ˆ
1
ˆ==,1
1
x
x
ps
ps spxs
s
 
1,
with and its survival function is

1
ˆ1=1p
 
 
11
11
1
1
1
1
==
1
=1.
yxyx ky
kx
Pxp ypk
pk kx
 





1
(2)
Now define the equilibrium distribution of 1 or
equivalently, the second order equilibrium distribution
of
,p
:p
 

1
2
1:1
1
1:1 1
=
1
=1,,
yx
Px
px
yx pyx


 

where 1:1
is the first order moment of 1. The facto-
rial moments of are obtained as in (1) to be
p
2
p






1: 11: 1
2:
1:1 1: 1
==
11
nn
nnn
.



Then the p.g.f. of is given by

2
px
 

1
22
01:1
ˆ
1
ˆ==,1<
1
x
x
ps
ps spxs
s
<1,
with and the corresponding survival function

2
ˆ1=1,p


22
1
=.
kx
Px pk

Define similarly the subsequent equilibrium distribu-
tions of from the third order
,p

32:12
=1px Px
up to the n-th order

1:1 1
=1
nnn
pxP x
 for
where the following theorem gives an expres-
sion for
,x

n
Px and

1.
n
px
Theorem 1 The survival function

,
n
Px of the n-th
order equilibrium distribution can be expressed as
n
p
  

1
1
:1
=0
1
=1
!
n
nnyx
l
l
Pxpy yxx
n




,,
(3)

 

1
1
=1,
n
yx
n
py yx



(4)


 

1
1
1
1
=1
n
nyx
n
n
px pyyx




,
(5)
where :1l
is the mean of -th order equilibrium dis-l
tribution and 0:1 1
=
is the mean of p (or 0-th order
equilibrium distribution).
Proof: (2) shows that (3) holds for =1.n By induc-
tion, assume that (3) holds for any ,n then
 
and accordingly
 




  

11
11
:1
1
2=1
:1
=0
2
2=0
:1
=0
1
1
:1
=0
1
1
=1
!
1
=
!
1
=1,
1!
nn n
txtx n
yn
nyx tx
l
l
yx n
nyx k
l
l
n
nyx
l
l
py y t
n
py k
n
py yx
n

 
 










verifies (3) also for
==Px ptPt

1.n
Further, since
1=1,
n
P
we conclude from (3) th
1n
n
at

:1
=0
!=,
ln
l
n
. (6)
Hence
n
Px
is also given by (4). To prove (5), use

1
:1
= and (6).
n
nn
Px
px
Example 1: Ifetrically distributed with X is geom
=1
x
px
and survival function
1
=,
x
Px
for x
and
0,1
then


 




1
11
0
11
1
=1=,
m
myx
m
m
xy x
y
m
Py x
y
  




where the last equality holds true as
,
by definition.
that any order equilibrium distribution of
=1
y
x



=1
y
my


0
m
y
This shows
the geometric distribution is identical to the original dis-
tribution.
Example 2: Let X be a discrete uniform with

1
=,px 1m
=0,1,2,, .
x
m





1
=0
1
==
11
n
n
m
nx
m
x
mmn

A
s ,
1
C
opyright © 2011 SciRes. OJDM
S. M. LI 129
then for ,nm









 



1
=1
1
1
1=0
1
1
=1
1
1
=
1
1
=,0,
1
mn
nyx
n
mx n
ny
n
n
n
pxy x
m
nn y
m
nmx
x
mn
m




  
while for
3. Properties of the Equilibrium Distribution
Lemma 1 The relationships between raw and factorial
>,nm

0.
n
px
In deriving the properties of the higher order equilibrium
distributions of p, the following lemmas will be needed.
moments are given by
nn
 
=1
=,and= ,,
=1k
nn
kk n k
nk
k
Ssn


(7)
where called the first and the
secondectively, are given
sively by
,,
nn
kk
Ss
Stirlin
=1,2,, ,kn
g numbers resprecur-
111
11 1
====1, =,
with
nn n
nnkk k
n
SSS SSnS
0
11
1
11 1
0
= 0 ,
====1, =,
with=0and1.
nn
nnnn n
nnkk k
n
S
ss s ssks
skn


Proof: See p.160 in [10]
Lemma 2 For and
.
n,y


 

11
=!
ny
yn
n
1
=0 =
1
1
!,
!
11
nk k
x
y
k
ns
nn
xk
ss
x
sn
ys
k
ss


(8)

 
1
0
=!, 0,1.
1
n
nx
n
x
s
xs ns
s
Proof: Let .
(9)

1
=0
=
yn
x
nx
I
xs
It is easy to show that

1
1
1
=,
1
n
y
nn
s
I
nI ys
s
while
s
01
1
=.
y
s
I
s
Then
(8) is verified by mathematical induction. To prove (9),
simply let in (8).
Lemma 3 For and
y
,ym ,n


 
1

1
.
1!
yx y
(10)
Proof: Since
=0xmn
!!
=
ynnm
mmn
x



1
=0
1
=
1
m
ym
x
y
xm
,
then (
when and Assuming that it also holds
for an arbitrary and then for
10) holds
=0n.m
=nk ,m=1nk


th of (1mee left-hand-sides (LHS)




0) beco

















 


=0
LH
=
ym
x
yy
k
mm
xy yxk
yx yxxmx

 
=0 =0
12
1
S =
1!!1!1!
=1! 2!
1!!
1!
!!
=11!
k
k
xx
k
m
mk
mk
x
yx
mk yx
yymk ykm
mk
km
mk
yymk
mk


 
=0
1
y
x
mk
mk
x
mk
mky
mk




















2
2
!1
=1.
mk
mk
km y
mk y
mk



Remark: (10) rete version of the formula
!1
2!
!1!
2!
mk


is a disc
 
 

1
0
111
=.
2
nm nm
ynm

 

d=1, 1
yn
mmn
xyx xymn


Let

11
0
ˆ=x
nn
x
ps spx

be the p.g.f. of 1.
n
p
The folloxpression for wing theorem gives an e
1.ps
ˆn
Theorem 2



 

11
1
ˆ
1
!
ˆ=
1
nn
n
ps
ps s







1
=1
1
11
1! 1
.
!1
n
nk
nk
nk
k
n
n
n
ks



(11)
Proof: Since


 

11
1
1
=1
n
nyx
n
n
px pyyx



,

 


 

11
0
01
1
1
1=0
1
ˆ=
1
=1
1
=1
x
nn
x
n
x
xyx
n
yn
x
yx
n
ps spx
nspyyx
npysyx










Copyright © 2011 SciRes. OJDM
130 S. M. LI




 





 



1
1
1=0
1
1
1
1
1
1
1
1
=1
1
1
1
=
1
11
=1!
1
1! 1
,by Lemma 2,
!1
ˆ
1
11!
=
1
yn
yx
yx
n
yy
n
y
n
y
n
nk y
k
n
nk
k
n
n
n
npyssx
s
npys ns
s
ny
ks
s
ps
n
s

















1
=1
1
1!1
.
!1
nk
nk
nk
k
n
n
ks


Theorem 3




:
!!
=,,
!
nm
nm n
nm mn
mn ,
(12)



:
=1
!
!
=,
!
m
mk
nm nk
k
n
ks
nmn
nk



,,
(13)
hwere :nm
is
.
the -th moment of the distribution
Proof:
m
n
p













:( )
0
11
1=0
1
=
=1
=!
!!
=.
!
m
nm n
x
yn
m
yx
n
y
n
nm
n
xpx
npyxyx
nm
nm
mn




To prove (13), use as stated in
Lemma 1, and (12)
Consider now the stop-loss transform
!1
!
,by Lemma 3,
nm mn
npyy

::
=1
=,
mm
nmk nk
ks

.
 
π=
x
EX x

of the r.v. X (where the notation
=>0aaIa
). For n
p-loss tra
nd by
. Theorem
and denote by
h stonX (with
p) a its n-th fac-
formma 1 show
,x
sform of


n
x
d Lem

n
EX x
the n-t
probability function
torial stop-loss trans
tha
EX
1 an
t




nx=
n
n
EX xP
1 and



P x
=1 kk
k
k
=EX x1.
Let
nn
s
n
m
X
ity function
al st
be a ra
to b
factori
ndom variable following the probabil-
Define

n
mx
e the n-th
op-loss transform of m
p and

n
m
EX x
.
m
p

EX
to be the n-th stop-loss transformmhe following
theorem holds.
Th
of T
eorem 4 For
.p
n
and, ,mx










=!
!!
=1
!
n
nm
m
Exmn
mn Px
mn
(14)
!!
,
nm
m
m
nm
EXx
mn
X









=1
=1
!
!
=!
mk
k
m
EX x E
mk
!
!
=1
!
n
n
k
m
n
nkmk
mk
k
m
ks
mX x
ks
mPx
mk
n
(15)
Proof: The argument is similar to that in the above
proof.
Now define
=>,,x
mmm
rx EXxXx


,m
to be the mean residual lifetime (MR
and
L) of
,
m
p


=
=m
mm
PX x
hx PXx to be the hazard
function of Then the following result holds.
rate
.
m
p
Theorem 5 For x
and ,m






11
mm
Px
mPx
=1 1
mm
m
rx
(16 )
 
1
1
=.
m
xrx
m
h (17)
Proof:
 

  









1
11
1
11
=>=
1
=
1
=1
=1,by (14).
1
m
kx
mmm
mm
kx kx
m
m
mm
m
m
kxpk
rx EXxXx
k xpkpk
EX x
Px
Px
mPx

 


 





while
m
Px
m
Px

  






11
1
1
==
1
11
==,by (16).
1
m
mm
mm
m
mm
m
m
m
px
hx Px
px Px
px
mrx
Px
Px
This proves the conclusion.
C
opyright © 2011 SciRes. OJDM
S. M. LI 131
4. Equilibrium Distribution and
Convolutions
section studies the equilibrium distribution of te
n-th fold convolution of a counting distribution.
The following lemma shows that the usual formulas
This h

=0
=
nnknk
k
n
x
yx
k



y
and

1
12
!
nl
l
m
n
1
=
11
=
!!
m
ll
n
mm
,
m
x
xxxx
ll

(18)
for ,n also hold for factorial integer powers.
Lemma 4 For n

  
=0
=,
n
nknk
k
n
xy xy
k





  

12
12
12
=12
12
ll l nm
m

lds for =1.n Assume it
!
=.
!! !
n
m
l
ll m
m
xx x
nxxx
lll

(19)
(18) h holds
fo then
and (18) holds by induction. A similar argument proves
(19)
Next we will discuss the high order equilibrium d-
tributions of the convolution of with itself.
Let 1
be the n-th fold
convo and be the
m-th onsider
Proof: Clearly o
r an arbitrary
,n





 
 
 
 
 
1
=0
11
=0 =0
11
=1 =0
11
=0
=
=
=
1
1
=
nn
nknk
k
nn
knk knk
kk
n
knk knk
kk
nknk
k
xyxyxyn
nxyxk ynk
k
nn
xy xy
kk
y xy
kk
nxy
k
 
 


 
 

 
 
 
 
 
 




1
=
n
nn
x
.
is
p
 
**
=0
=x
nn
k
pxpkp xk
lution of ,p with *1 =,pp
order equilibrium distribution of
*n
m
p
*.
n Cp

*,
n
k
the k-th factorial moment of *,
n
p then





 
12
=12
12
=,
!!! lln
ll l kn
n
k
ll l

e 12
,,,
n
1
!
l
wher
*
1
=k
nn
kEX X



1
1
=1
!
=!!
l
ln
n
ll
kn
n
k
EX
X
ll





X
XX are i.i.d. wiommonth c p.f.
whicrecursively by
,p
h can be computed




 



*
12 1
12 1
=0
*1
=0
=
=
=.
k
nnn
k
klkl
nn
l
kn
kl
l
l
EXXX X
kEX XXEX
l
k
l


 

 

 




The following Theorem gives an expression for
*n.
m
px
Theorem 6 ,m

2,3,n and ,x
For





  


*1
*1
*
*
*1
*
=1
=*
1
.
n
mn
n
mm
n
m
mnl
lml
nl
m
pxpp x
mpx
l




(20)
Proof:


 


















1
**
*
1
1
*1
*
1=0
1
*1
*
=0 1
1
*1
*
1
*
0
=
n
mn
m
xp
1
=1
=1
1
=
m
n
yx
m
ym
n
nyxk
m
xm
n
nkyx
m
m
n
nkxyk
m
nktx
m
pyyx
mpk pykyx
mpkpykyx
mpkpykyx
mpk


















 















 




1
*1
1
1
*1
*
10
*1
*1
**
=0 1
1
*1 1
0=0
*1
*
1
1
=
1
1
=
m
n
k
m
n
nkx y
m
nx
mn
m
nn
kkx
mm
ml
nml
yl
n
m
m
pttxk
mpkpy ykx
m
pk pxkpk
m
pykx y
l



































 

*1
*
1
1*1
1
=0
*1 1*1
*1
1
**
=0
1
*
1
1
1
=*
1
n
m
nn
kx
m
mln
ml
l
nm
mn
n
mml
nn
l
mm
l
kx
m
pp xpk
mkx
l
m
m
pp xl
pk kx

















Copyright © 2011 SciRes. OJDM
132 S. M. LI







 







 


*1 1
*1
**
=0
1
*1
1
1
*1
*1
**
=1
*1
1
=*
1
1
=*
.
nm
mn
m
nn
l
mm
l
nl
ml
nm
mn
m
nn
l
mm
nl
lml
m
m
pp xl
px
l
m
pp xl
px










This completes the proof.
Remark: Theorem 6 gives a recursive formula for the
high order equilibrium distributions of the convolution
First obtain
*.
n
m
p
l
px and

*,
k
l
for
om
=0,1,,lm
starting p.f. and =1,2, ,kn. Then cpute the
, followed

.
xample 3 Con
m
px
*n
m
px
E
by the co
sider
nvols ution

*2
m
px up to
X
negative binomial
,,
for 2
and at is
,

1, th
1
0,
 
=1
x
x
px x



 for .x
Since the

,NB
distribution can be viewed as the
-th cof a geometric distribution onvolution
,
 
=1
x
gx
th
can be used
en and the above
 
*
=pxg x
to compute theorem

*
=
mm
g x
px re
Here the k-th factorial moment of
-
cursively.

g
x is



0
=1= !,
1
k
kx
kxxk
 



by Lemma 1. Now

1
=
x
k
Px
and

 




*
12
=12
12
=
12
1
!
=!! !
=!1
1
1
=!.
11!
kll l
lll k
k
lll k
k
k
ll l
k
k
k
 











After some simplifications, we have






  





1
1
x
m

*1
*1
*
1
m
g x
x
m
m

*=*
m
gx g
*
1
*
=1
*1
1
1
=*
mm
m
m
l
lml
l
m
mp
l
gg x




 
*1
=*1,
m
zg gxx

 
z g
where 1
=.
1
zm
This shows that the m-th order
ution onomial is a mix-
ture of the distributions

*1
*m
gg
equilibrium distribf a negative bi
and ,
g
where the
mixing factor 1
=.
1
zm
5. Equilibrium Distribut i o n o f a M i x t ure
ses the equil distribution of a This section discusibrium
mixed p.f.. For let

,px
.x
be the conditional
distribution of X, given =.
First assume that
has a continuous distribution
function U with dens over Then the p.f. of
X, given by
ity u

0, .



U
0
=d,px px
equilibriu
igh
is a Uixture
of distributions. The h order m distributions
of p are given in the following theorem.
Theorem 7 The n-th order equilibrium distribution of
the mixed p.f.
-m



=d,pxpx U
0
is given by



0
=d
nnn
pxpx U,
(21)
where




d=
n
nn
EX dU
UEX .




Proof


 


















=d.
nn
px U
(1)
1
1
1
0
0
=1
1
=
1d
n
nyx
n
n
n
nn
nn
n
pxpyy x
EX x
nEX
n
X xEX U
EX EX
1n
0
=1d
nEX x U
EX

=
E
n










 
 
shows n-th
. is the mixture of the n-th or-
de
ant i






This theorem that the order equilibrium
distribution of a mixed p.f
r equilibrium distribution of the conditional p.f., mixed
by a new distribution .
n
U
An importxture of geometric
p.f.’s, where
  
1
0
=1d .
x
px U
special case is the m

Geometric
mixtures benefit from an important property, is that they
C
opyright © 2011 SciRes. OJDM
S. M. LI 133
ar
0, for all Then
e completely monotone distributions, in the sense that
 
1
nnpx , .xn
=
n
px

1
x
and















()
0
d
1d
0
1
d=
=
1d
=
1d !
=,by()
1
d,
1
n
nn
nx
x
n
nx
nx
n
n
n
n
EX U
UEX
xU
EX
Ux
EX
Un
EX
U

















at the n-th order equilibrium distribution of a
U-mixture is still a geometric, with same pa-
ter. Here the new mixing density is proportional to
al one,
showing th
geometric
rame
the origin
 
.
1
n
n
uu



Example 4 (Waring Distribution)
If


=1,
x
px

for ,x and
  
1
1
1
=1,
,
b
a
u

ab
for (0, 1),
then
 







11
01
=,
bxa d
px ab
 

,1
=,
=,
1
xab
ab
bab xa
axab

 

Waring distribution.
which is called a
It follows that
 
 
1
1
=
n
px
which is a
Then
=1,1,
bn
xa
n
n
px
u

 



distribution when

,anbn
 >.bn
 


1
0
=1 d
,1
px



=1
bn abxan
an xab
 

when ,bn
then
does not exist.
n
px
If instead, the geometric p.f. is mixed over another
discrete p.f., that ,
is

=1
=1


k
x
j
j
f j
j
px
for
=,
x
nn
U
xanbn
anbn

 

,x
1, where 0< <
j
0f and

>j =1
k
j

f
j
=1
, then
,
where
 

=1,
kx
nnjj
pxfjx


=1
j



=1
1
=,
1
n
j
j
nn
ki
ii
fj
fj
f
i







for =1,2,, .jk
The following theorem gives the aging properties of
the higher order equilibrium distributions of geometric
mixtures.
um distribution of Theorem 8 The n-th order equilibri
a gure is DFR and eometric mixtd.
d
I
MRL Also
n
Px
,Px for
1n
equivalently, 0,x or 1
<.
nstn
pp
ixture, it is
Proof: Sincege
completely monotone. Then is see [9].
Further,
p
nis also a ometric m
n
pd
DFR ,
1
=1 ,
nn
rxh x
by (1nce is 7), hen
p
.
d
I
MRL Lastly,



1
01
=1
1
nn
nn
Px r
Px rx
,
by (16).
6. Equilibrium Distribution of the (a,b)
Family
nside tions of the
We cor here the equilibrium distribu
,b class of discrete distributions, or more precisely,
the important subclass of the

,ab famthe
a
of ily called
,,0ab class, see [11 dis-
the non-negative integers
h the re
,12]. Thounting
tributions has support on on
whiccurrence relation
is class of c

=1pxabx px
holds for . The members of the this class are
binomial, Poisson and negative binomial distributions
(with their corresponding special cases). It is easily seen
that
=1
,2,x
 

1
1=and= ,
k
for2.
11
k
ak b
ab k
aa

Then we have the following recursive formula for .
n
p
Theorem 9 The n-th order equilibrium distribution
n
p in the
,,0ab class of distributions satisfies the
following recursion for n
:
Copyright © 2011 SciRes. OJDM
134 S. M. LI
 
 


 
11
,.
n
nana b axpx x
nanab
 


The starting poinursion are
1
11 1
=1
n
nn
na
xn
ap xnanab
 


1
1
p x
a
(22)
ts of the rec
px



1
1
1
=,px Px



1
1
1
0= 1
0pp
and


  
11
=1
0= 110!
nn
nk
k
n
pp
k




1
1
!,
nk
n

r
Pro
fo 2.n
of:
 
=1,
b
pxapx
x



 or equivalently,

=1 1,x pxaxpx
for =0,1,2, .x
Then

abpx

 




 


 

1
=2
n
n
yp y yx
ay n

1
n
n


1
1
1
2
1
1
1
1
yx
n
n
yx
yx
yx
yx
ab
ay
pyyx
xpyyx
ax n



1
1
1
=1
,1
=111
n
yx
n
n
py yxn
nypy yx

abpx
n
n





 


 









 



 


 



 






 
1
2
1
1
1
1
1
1
1
1
1
1
=2
2
1
1
=111
1
,
1
n
n
yx
n
n
yx
n
n
yx
n
n
yx
n
n
nn
n
n
nn
n
py yx
npyyx
n
apyyx
nx n
apyyx
npxxnpx
n
n
apxaxnpx
n















 

in turns implies
1
nxnpy yx


which
 






11
1
1
1
1= 1
1
,1
n
nnn
n
n
n
n
n
px apxpx
n
nan ab axpxn
n

 



1
1
=,
n
n
a
an a b
Since we get (22).
Finally, we have






 



 


 

1
1
11
1=0
1
1
=0 1
1
1
1
=1
0= 1
1
=1
1
!
=!
1
!
=1102.
!
n
ny
n
nnk k
yk
n
nk
nk
ky
n
nk
n
n
k
k
n
n
ppyy
n
npy y
k
npyy
k
npIn k












This completes the proof.
For another subclass of the family, the

,ab
,,1ab class of distributions, ttion he rela
=px
1abxpx
holds forere x2, wh
0p is
an arbitrarily selected value in
0,1. In this
easy to see that
case, it is
 
1
=,
1
kk
ak b
a

for The
above recursive formula (22) and those for the starting
points still hold true here, the only change being that
2.k



1
11
=.
1
pabp
a
 
0
7. Conclusions
This paper investigates the higher order equilibrium dis-
tributions of counting random variables. The above re-
sults can be used in Risk Theory to derive bounds of ruin
probabilities in the discrete time risk model. They also
leade factorial momentated random
va the surplus before t at ruin and
the ti Garrido [13] for details).
8. References
[1] E. Fagiuoli and F. Pellerey, “New Partial Orderings and
Applications,” Naval Research Logistics, Vol. 40, No. 6,
1993, pp. 829-842.
to ths of three rel
riables:ruin, the defici
me of ruin (see Li and
doi:10.1002/1520-6750(199310)40:6<829::AID-NAV322
0400607>3.0.CO;2-D
[2] E. Fagiuoli and F. Pellerey, “Preservation of Certain
C
opyright © 2011 SciRes. OJDM
S. M. LI
Copyright © 2011 SciRes. OJDM
135
Classes of Life Distributions under Poisson Shock Mod-
els,” Journal of Applied Probability, Vol. 31, No. 2, 1994,
pp. 458-465. doi:10.2307/3215038
[3] A.K. Nanda, H. Jain and H. Singh, “On Closure of Some
Partial Orderings under Mixture,” Journal of Applied
Probability, Vol. 33, No. 3, 1996, pp. 698-706.
doi:10.2307/3215351
[4] O. Hesselager, S. Wang and G.E. Willmot, “Exponential
and Scale Mixture and Equilibrium Distributions,” Scan-
dinavian Actuarial Journal, Vol. 20, No. 2, 1994, pp.
125-142.
[5] Kickman, D. Jones and C.
atics,” 2nd Edition, Socie
[6] X. Lin ve Re
newal Equationuin T
Vol.
M. Bowers, H. Gerber, J.
Nesbitt, “Actuarial Mathem
ty of
Actuaries, Schaumburg, 1997.
and G. E. Willmot, “Analysis of a Defecti-
Arising in Rheory,” Insurance:
Mathematics and Economics, 25, No. 1, 1999, pp.
63-84. doi:10.1016/S0167-6687(99)00026-8
[7] X. Lin and G. E.ents ofime of Willmot, “The Mom the T
Ruin, the Surplus before Ruin, and the Deficit at Ruin,”
Insurance: Mathematics and Economics, Vol. 27, No. 1,
2000, pp. 19-44. doi:10.1016/S0167-6687(00)00038-X
[8] G. E. Willmot, “Bounds for Compound Distributions
Based on Mean Residual Lifetimes and Equilibrium Dis-
tributions,” Insurance: Mathematics and Economics, Vol.
21, No. 1, 1997, pp. 25-42.
doi:10.1016/S0167-6687(97)00016-4
[9] G. E. Willmot and J. Cai, “Aging and other Dist
Properties of Discrete
ributional
Compound Geometric Distribu-
tions,” Insurance: Mathematics and Economics, Vol. 28,
No. 3, 2001, pp. 361-379.
doi:10.1016/S0167-6687(01)00062-2
[10] R. W. Hamming, “Numerical methods for scientists and
Bulletin, Vol. 12, No. 1,
Engineers,” 2nd Edition, Dover, New-York, 1973.
[11] H. H. Panjer, “Recursive Evaluation of a Family of Com-
pound Distributions,” ASTIN
1981, pp. 22-26.
[12] S. A. Klugman, H. H. Panjer and G. E. Willmot, “Loss
Models,” Wiley, New-York, 1998.
[13] S. Li and J. Garrido, “On the Time Value Ruin of Dis-
crete Time Risk Process,” Working Paper 02-18, Univer-
sidad Carlos III of Madrid, Madrid, 2002.