e-time studies (Figure 7) the absorbances are found to decrease with [CTAB] when the reaction was carried above the critical micellar concentration of the CTAB. This is due to the association, incorporation and/or solubilization of Mimusops elengi leaf extract into the micellar palisade and Stern layer of CTAB micelles takes place through hydrophobic interactions. On the other hand, Ag+ ions are preferentially

(a) (b)

Figure 3. (a) TEM and (b) SAED images of biosynthesized Ag-nanoparticles using Mimusops elengi (Maulsari) leaf extract. Reaction condition [Ag+] = 10.0 × 10−4 mol・dm−3.

Figure 4. UV-Vis spectra of an aqueous solution of biosynthesized Ag-nanoparticles in presence of CTAB (10.0 × 10−4 mol・dm−3) at 30˚C. Reaction conditions [Ag+] = 10 × 10−4 mol・dm−3.

(a) (b)

Figure 5. (a) TEM and (b) SAED images of biosynthesized Ag-nanoparticles using Mimusops elengi (Maulsari) leaf extract in presence of CTAB (4.0 × 104 mol・dm3). Reaction condition [Ag+] = 10.0 × 104 mol・dm3.

(a) (b)

Figure 6. (a) TEM and (b) SAED images of biosynthesized Ag-nanoparticles using Mimusops elengi (Maulsari) leaf extract in presence of CTAB (10.0 × 10−4 mol・dm−3). Reaction condition [Ag+] = 10.0 × 10−4 mol・dm−3.

Figure 7. Effect of [Ag+] on the SPR of biosynthesized Ag-nanoparticles at 30˚C. Reaction conditions: [Ag+] = 10.0 × 10−4 mol・dm−3, [CTAB] = 4.0 × 10−4 (), 10.0 () and 16.0 × 10−4 mol・dm−3 ().

located in the water rich Stern layer [54] - [56] and the Ag+ ions were reduced into Ago. The reaction site i.e. Stern layer has a high population of Ago atoms. That results, single Ago to adsorb, nucleate or complex with Ag+ and grow into silver clusters [] [46] [47] . Therefore the further reduction of Ag+ ions may be regarded as finished. The nanoparticles are protected, stabilized, and/or capped by a thin layer of Mimusops leaf constituents along with the CTAB (Figure 6(a)).

4. Conclusion

Mimusops elengi, L. (Maulsari) leaves extract with surfactant CTAB was successfully used for the synthesis of bio-conjugated silver nano-materials. This spanking new and simple method for biosynthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology. Interestingly, sub-mi- cellar, post-micellar and dilution effect of CTAB was not observed in the present system because constituents of Mimusops elengi, L. (Maulsari) leaves extract are better capping agents. Carefully monitoring the absorbance- time functions is sensitive technique which allows an easy overview in determining if any nanoparticles aggregation has occurred on to the surface of nano-materials.

Acknowledgements

The authors wish to thank Prof. Zaheer Khan, former Professor in the Department of Chemistry, Jamia Millia Islamia (Central University) for introducing us to green nanochemistry.

Cite this paper

RabiaAhmad,Sajjad HussainParrey,QamerFaisal, (2016) Role of Cetyltrimethylammonium Bromide in the Green Synthesis of Silver Nanoparticles Using Mimusops elengi , Linn. (Maulsari) Leaf Extract. Advances in Nanoparticles,05,44-52. doi: 10.4236/anp.2016.51005

References

  1. 1. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sankar, S.R., Khan, M.I., Parishcha, R., Ajay Kumar, P.V., Alam, M., Kumar, R. and Sastry, M. (2001) Fungus Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelia Matrix: A Novel Biological Approach to Nanopartcle Synthesis. Nano Letters, 1, 515-519.
    http://dx.doi.org/10.1021/nl0155274

  2. 2. Ahmad, A., Mukharjee, P, Mandal, D., Senapati, S., Khan, M.I., Kumar, R. and Sastry, M. (2002) Enzyme Mediated Extracellular Synthesis of CdS Nanoparticles by the Fungus, Fusarium oxysporum. Journal of the American Chemical Society, 124, 12108-12109.
    http://dx.doi.org/10.1021/ja027296o

  3. 3. Sastry, M., Ahmad, A., Khan, M.I. and Kumar, R. (2003) Biosynthesis of Metal Nanoparticles Using Fungi and Actinomycete. Current Science, 85, 162-170.

  4. 4. Shankar, S.S., Ahmad, A. and Sastry, M. (2003) Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles. Biotechnology Progress, 19, 1627-1631.
    http://dx.doi.org/10.1021/bp034070w

  5. 5. Shankar, S.S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A. and Sastry, M. (2004) Biological Synthesis of Triangular Gold Nanoprisms. Nature Materials, 3, 482-488.
    http://dx.doi.org/10.1038/nmat1152

  6. 6. Rai, A., Singh, A., Ahmad, A. and Sastry, M. (2006) Role of Halide Ions and Temperature on the Morphology of Biologically Synthesized Gold Nanotriangles. Langmuir, 22, 736-741.
    http://dx.doi.org/10.1021/la052055q

  7. 7. Gardea-Torresdey, J.L., Parsons, J.G., Dokken, K., Peralta-Videa, J.R., Troiani, H., Santiago, P. and Jose Yacaman, M. (2002) Formation and Growth of Au Nanoparticles inside Live Alfafa Plants. Nano Letters, 2, 397-401.
    http://dx.doi.org/10.1021/nl015673+

  8. 8. Gardea-Torresdey, J.L., Gomez, E., Peralta-Videa, J.R., Parsons, J.G., Troiani, H. and Jose Yacaan, M. (2003) Alfafa Sprouts: A Natural Source for Synthesis of Silver Nanoparticles. Langmuir, 19, 1357-1361.
    http://dx.doi.org/10.1021/la020835i

  9. 9. Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., He, N., Hong, J. and Chen, C. (2007) Biosyntheiss of Silver and Gold Nanoparticles by Novel Sundried Cinnamomum camphora Leaf. Nanotechnology, 18, 105104-105115.
    http://dx.doi.org/10.1088/0957-4484/18/10/105104

  10. 10. Govindaraju, K., Kiruthiga, V., Ganesh Kumar, V. and Singaravelu, G. (2009) Extracellular Synthesis of Silver Nanoparticles by a Marine Alga, Sargassum wightii Grevilli and Their Antibacterial Effects. Journal of Nanoscience and Nanotechnology, 9, 5497-5501.
    http://dx.doi.org/10.1166/jnn.2009.1199

  11. 11. Prakash, P., Gnanaprakasam, P., Emmanuel, R., Arokiyaraj, S. and Saravanan, M. (2013) Green Synthesis of Silver Nanoparticles from Leaf Extract of Mimusops elengi, Linn. for Enhanced Antibacterial Activity against Multi Drug Resistant Clinical Isolates. Colloids and Surfaces B: Biointerfaces, 108, 255-259.
    http://dx.doi.org/10.1016/j.colsurfb.2013.03.017

  12. 12. Sahaa, M.R., Hasana, S.M.R., Aktera, R., Hossaina, M.M., Alamb, M.S., Alam, M.A. and Mazumdar, M.E. (2008) In Vitro Free Radical Scavenging Activity of Methanol Extract of the Leaves of Mimusops elengi Linn. Bangladesh Journal of Veterinary Medicine, 6, 197-202.

  13. 13. Satish, S., Raghavendra, M.P., Mohana, D.C. and Raveesha, K.A. (2008) Antifungal Activity of a Known Medicinal Plant Mimusops elengi L. against Grain Moulds. Journal of Agricultural Technology, 4, 151-165.

  14. 14. Riley, D.K., Classen, D.C., Stevens, L.E. and Burke, J.P. (1995) A Large Randomized Clinical Trial of a Silver-Impregnated Urinary Catheter: Lack of Efficacy and Staphylococcal Superinfection. American Journal of Medicine, 98, 349-356.
    http://dx.doi.org/10.1016/S0002-9343(99)80313-1

  15. 15. Crabtree, J.H., Burchette, R.J., Siddiqi, R.A., Huen, I.T., Hadnott, L.L. and Fishman, D.A. (2003) The Efficacy of Silver-Ion Implanted Catheters in Reducing Peritoneal Dialysis-Related Infections. Peritoneal Dialysis International, 23, 368-374.

  16. 16. Dastjerdi, R., Montazer, M. and Shahsavan, S. (2009) A New Method to Stabilize Nanoparticles on Textile Surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 345, 202-210.
    http://dx.doi.org/10.1016/j.colsurfa.2009.05.007

  17. 17. Yin, H., Yamamoto, T., Wada, Y. and Yanagida, S. (2004) Large-Scale and Size-Controlled Synthesis of Silver Nanoparticles under Microwave Irradiation. Materials Chemistry and Physics, 83, 66-70.
    http://dx.doi.org/10.1016/j.matchemphys.2003.09.006

  18. 18. Zhu, Z., Kai, L. and Wang, Y. (2006) Synthesis and Applications of Hyperbranched Polyesters-Preparation and Characterization of Crystalline Silver Nanoparticles. Materials Chemistry and Physics, 96, 447-453.
    http://dx.doi.org/10.1016/j.matchemphys.2005.07.067

  19. 19. Duran, N., Marcato, P.L., Alves, O.L. and De Souza, G.I. (2005) Mechanistic Aspects of Biosynthesis of Silver Nanoparticles by Several Fusarium oxysporum Strains. Journal of Nanobiotechnology, 3, 1-7.
    http://dx.doi.org/10.1186/1477-3155-3-8

  20. 20. Mitra, D.V.B., Sant, S.B. and Annamalai, A. (2012) Green-Synthesis and Characterization of Silver Nanoparticles by Aqueous Leaf Extracts of Cardiospermum helicacabum L. Drug Invention Today, 4, 340-344.

  21. 21. Jana, N.R., Gearheart, L. and Murphy, C.J. (2001) Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles. Langmuir, 17, 6782-6786.
    http://dx.doi.org/10.1021/la0104323

  22. 22. Pileni, M.-P. (2003) The Role of Soft Colloidal Templates in Controlling the Size and Shape of Inorganic Nanocrystals. Nature Materials, 2, 145-150.
    http://dx.doi.org/10.1038/nmat817

  23. 23. Nikoobakht, B. and El-Sayed, M.A. (2003) Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chemistry of Materials, 15, 1957-1962.
    http://dx.doi.org/10.1021/cm020732l

  24. 24. Esumi, K., Hosoya, T., Suzuki, A. and Torigoe, K. (2000) Formation of Gold and Silver Nanoparticles in Aqueous Solution of Sugar-Persubstituted Poly(amidoamine) Dendrimers. Journal of Colloid and Interface Science, 226, 346-352.
    http://dx.doi.org/10.1006/jcis.2000.6849

  25. 25. Chen, J., Herricks, T. and Xia, Y. (2005) Polyol Synthesis of Platinum Nanostructures: Control of Morphology through the Manipulation of Reduction Kinetics. Angewandte Chemie International Edition, 44, 2589-2592.
    http://dx.doi.org/10.1002/anie.200462668

  26. 26. Bakshi, M.S., Possmayer, F. and Petersen, N.O. (2008) Aqueous-Phase Room-Temperature Synthesis of Gold Nanoribbons: Soft Template Effect of a Gemini Surfactant. The Journal of Physical Chemistry C, 112, 8259-8265.
    http://dx.doi.org/10.1021/jp801306x

  27. 27. Anastas, P.T. and Warner, J.C. (1998) (2010) (2011) Twelve Principles of Green Chemistry. Green Chemistry: Theory and Practice. Oxford University Press, New York.

  28. 28. Kaviya, S., Santhanalakshmi, J. and Viswanathan, B. (2012) Biosynthesis of Silver Nano-Flakes by Crossandra infundibuliformis Leaf Extract. Materials Letters, 67, 64-66.
    http://dx.doi.org/10.1016/j.matlet.2011.09.023

  29. 29. Krishnaraj, C., Jagan, E.G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P.T. and Mohan, N. (2010) Synthesis of Silver Nanoparticles Using Acalypha indica Leaf Extracts and Its Antibacterial Activity against Water Borne Pathogens. Colloids and Surfaces B: Biointerfaces, 76, 50-56.
    http://dx.doi.org/10.1016/j.colsurfb.2009.10.008

  30. 30. MubarakAli, D., Thajuddin, N., Jeganathan, K. and Gunasekaran, M. (2011) Plant Extract Mediated Synthesis of Silver and Gold Nanoparticles and Its Antibacterial Activity against Clinically Isolated Pathogens. Colloids and Surfaces B: Biointerfaces, 85, 360-365.
    http://dx.doi.org/10.1016/j.colsurfb.2011.03.009

  31. 31. Shankar, S.S., Rai, A., Ahmad, A. and Sastry, M. (2004) Rapid Synthesis of Au, Ag, and Bimetallic Au Core-Ag Shell Nanoparticles Using Neem (Azadirachta indica) Leaf Broth. Journal of Colloid Interface Science, 275, 496-502.
    http://dx.doi.org/10.1016/j.jcis.2004.03.003

  32. 32. Yilmaz, M., Turkdemir, H., Akif Kilic, M., Bayram, E., Cicek, A., Mete, A. and Ulug, B. (2011) Biosynthesis of Silver Nanoparticles Using Leaves of Stevia rebaudiana. Materials Chemistry and Physics, 130, 1195-1202.
    http://dx.doi.org/10.1016/j.matchemphys.2011.08.068

  33. 33. Dwivedi, A.D. and Gopal, K. (2010) Biosynthesis of Silver and Gold Nanoparticles Using Chenopodium album Leaf Extract. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 369, 27-33.
    http://dx.doi.org/10.1016/j.colsurfa.2010.07.020

  34. 34. Ghosh, S., Patil, S., Ahire, M., Kitture, R., Kale, S., Pardesi, K., Cameotra, S.S., Bellare, J., Dhavale, D.D., Jabgunde, A. and Chopade, B.A. (2012) Synthesis of Silver Nanoparticles Using Dioscorea bulbifera Tuber Extract and Evaluation of Its Synergistic Potential in Combination with Antimicrobial Agents. International Journal of Nanomedicine, 7, 483-496.

  35. 35. Jegadeeswaran, P., Shivaraj, R. and Venckatesh, R. (2012) Green Synthesis of Silver Nanoparticles from Extract of Padina tetrastromatica Leaf. Digest Journal of Nanomaterials and Biostructures, 7, 991-998.

  36. 36. Burda, C., Chen, X.B., Narayanan, R. and El-Sayed, M.A. (2005) Chemistry and Properties of Nanocrystals of Different Shapes. Chemical Reviews, 105, 1025-1102.
    http://dx.doi.org/10.1021/cr030063a

  37. 37. Khan, Z., Hussain, J.I. and Hashmi, A.A. (2012) Shape-Directing Role of Cetyltrimethylammonium Bromide in the Green Synthesis of Ag-Nanoparticles Using Neem (Azadirachta indica) Leaf Extract. Colloids and Surfaces B: Biointerfaces, 95, 229-234.
    http://dx.doi.org/10.1016/j.colsurfb.2012.03.002

  38. 38. Henglein, A. (1993) Physicochemical Properties of Small Metal Particles in Solution: “Microelectrode” Reactions, Chemisorption, Composite Metal Particles, and the Atom-to-Metal Transition. Journal of Physical Chemistry, 97, 5457-5471.
    http://dx.doi.org/10.1021/j100123a004

  39. 39. Zhai, X. and Efrima, S. (1996) Silver Colloids and Macroemulsions of Metal Interfacial Colloidal Films: Interaction with Dithizone. Journal of Physical Chemistry B, 100, 10235-10242.
    http://dx.doi.org/10.1021/jp9529073

  40. 40. Lou, X.W., Yuan, C. and Archer, L.A. (2006) An Unusual Example of Hyperbranched Metal Nanocrystals and Their Shape Evolution. Chemistry of Materials, 18, 3921-3923.
    http://dx.doi.org/10.1021/cm0606880

  41. 41. Bakr, O.M., Wunsch, B.H. and Stellacci, F. (2006) High-Yield Synthesis of Multi-Branched Urchin-Like Gold Nanoparticles. Chemistry of Materials, 18, 3297-3301.
    http://dx.doi.org/10.1021/cm060681i

  42. 42. Chaudhari, V.R., Haram, S.K., Kulshreshtha, S.K., Bellre, J.R. and Hasan, P.A. (2007) Micelle Assisted Morphological Evolution of Silver Nanoparticles. Colloids and Surfaces A: Physicochemical Engineering Aspects, 301, 475-480.
    http://dx.doi.org/10.1016/j.colsurfa.2007.01.025

  43. 43. Xie, J., Lee, J.Y., Wang, D.I.C. and Ting, Y.P. (2007) Silver Nanoplates: From Biological to Biomimetic Synthesis. ACS Nano, 1, 429-439.
    http://dx.doi.org/10.1021/nn7000883

  44. 44. El-Sayed, M.A. (2001) Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Accounts of Chemical Research, 34, 257-264.
    http://dx.doi.org/10.1021/ar960016n

  45. 45. Mulvaney, P. (1996) Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir, 12, 788-800.
    http://dx.doi.org/10.1021/la9502711

  46. 46. Harada, M., Inada, Y. and Nomura, M. (2009) In Situ Time-Resolved XAFS Analysis of Silver Particle Formation by Photoreduction in Polymer Solutions. Journal of Colloid Interface Science, 337, 427-438.
    http://dx.doi.org/10.1016/j.jcis.2009.05.035

  47. 47. Harada, M., Sayo, K., Sakamoto, N. and Ito, K. (2010) Characterization of Water/AOT/Benzene Microemulsions during Photoreduction to Produce Silver Particles. Journal of Colloid Interface Science, 343, 423-432.
    http://dx.doi.org/10.1016/j.jcis.2009.12.006

  48. 48. Guzman, M.G., Dille, J. and Godet, S. (2008) Synthesis of Silver Nanoparticles by Chemical Reduction Method and Their Antibacterial Activity. World Academy of Science, Engineering and Technology, 43, 357-364.

  49. 49. Jin, R., Cao, Y.W., Mirkin, C.A., Kelly, K.L., Schatz, G.C. and Zheng, J.G. (2001) Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science, 294, 1901-1903.
    http://dx.doi.org/10.1126/science.1066541

  50. 50. Chen, S., Wang, Z.L., Ballato, J., Foulger, S.H. and Carroll, D.L. (2003) Monopod, Bipod, Tripod, and Tetrapod Gold Nanocrystals. Journal of the American Chemical Society, 125, 16186-16187.
    http://dx.doi.org/10.1021/ja038927x

  51. 51. Sau, T.K. and Murphy, C.J. (2004) Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution. Journal of the American Chemical Society, 126, 8648-8649.
    http://dx.doi.org/10.1021/ja047846d

  52. 52. Bakshi, M.S. (2009) A Simple Method of Superlattice Formation: Step-by-Step Evaluation of Crystal Growth of Gold Nanoparticles through Seed-Growth Method. Langmuir, 25, 12697-12705.
    http://dx.doi.org/10.1021/la901767c

  53. 53. Bakshi, M.S. (2010) Room Temperature Surfactant Assisted Crystal Growth of Silver Nanoparticles to Nanoribbons. Journal of Nanoscience and Nanotechnology, 10, 1757-1765.
    http://dx.doi.org/10.1166/jnn.2010.2051

  54. 54. Al-Lohedan, H.A. (1995) Quantitative Treatment of Micellar Effects upon Nucleophilic Substitution. Journal of the Chemical Society, Perkin Transactions, 2, 1707-1713.
    http://dx.doi.org/10.1039/p29950001707

  55. 55. Tascioglu, S. (1996) Micellar Solutions as Reaction Media. Tetrahedron, 52, 11113-11152.
    http://dx.doi.org/10.1016/0040-4020(96)00669-2

  56. 56. Bunton, C.A. (1997) Reactivity in Aqueous Association Colloids. Descriptive Utility of the Pseudophase Model. Journal of Molecular Liquids, 72, 231-249.
    http://dx.doi.org/10.1016/S0167-7322(97)00040-8

NOTES

*Corresponding author.

Journal Menu>>