E. M. AL-ALI

Open Access JAMP

53

[2] C. Rogers and P. Wong, “On reciprocal B€ a Acklund

Transformations of Inverse Scattering Schemes,” Physica

Scripta, Vol. 30, 1984, pp. 10-14.

http://dx.doi.org/10.1088/0031-8949/30/1/003

[3] A. H. Khater, D. K. Callebaut, A. A. Abdalla, A. R. She-

hata and S. M. Sayed, “Backlund Transformations and

Exact Solutions for Self-Dual SU(3) Yang-Mills Equa-

tions,” IL Nuovo Cimento B, Vol. 114, 1999, pp. 1-10.

[4] C. Qu, Y. Si and R. Liu, “On Affine Sawada-Kotera

Equation,” Chaos, Solitons & Fractals, Vol. 15, No. 1,

2003, pp. 131-139.

http://dx.doi.org/10.1016/S0960-0779(02)00121-2

[5] O. C. Wright, “The Darboux Transformation of Some

Manakov Systems,” Applied Mathematics Letters, Vol.

16, No. 5, 2003, pp. 647-652.

http://dx.doi.org/10.1016/S0893-9659(03)00061-2

[6] R. Hirota, “The Direct Method in Soliton Theory,” Cam-

bridge University Press, Cambridge, 2004.

[7] A. H. Khater, D. K. Callebaut and S. M. Sayed, “Exact

Solutions for Some Nonlinear Evolution Equations which

Describe Pseudospherical Surfaces,” Journal of Computa-

tional and Applied Mathematics, Vol. 189, No. 1-2, 2006,

pp. 387-411. http://dx.doi.org/10.1016/j.cam.2005.10.007

[8] S. K. Liu, Z. T. Fu and S. D. Liu, “Jacobi Elliptic Func-

tion Expansion Method and Periodic Wave Solutions of

Nonlinear Wave Equations,” Physics Letters A, Vol. 289,

No. 1-2, 2001, pp. 69-74.

http://dx.doi.org/10.1016/S0375-9601(01)00580-1

[9] E. Fan, “Extended Tanh-Function Method and Its Appli-

cations to Nonlinear Equations,” Physics Letters A, Vol

277, 2000, pp. 212-219.

http://dx.doi.org/10.1016/S0375-9601(00)00725-8

.

[10] W. Malfliet and W. Hereman, “The Tanh Method I. Exact

Solutions of Nonlinear Wave Equations,” Physica Scripta,

Vol. 54, No. 6, 1996, pp. 569-575.

http://dx.doi.org/10.1088/0031-8949/54/6/004

K. Chadan and P. C. Sabatier, “Inverse Problem[11] in Quan-

tum Scattering Theory,” Springer, New York, 1977.

http://dx.doi.org/10.1007/978-3-662-12125-2

[12] M. J. Ablowitz, S. Chakravarty and R. Hal

Painlevé and Darboux-Halphen Type Equatio

burd, “On

ns, in the

Painlevé Property, One Century Later,” In: R. Conte, Ed.,

CRM Series in Mathematical Physics, Springer, Berlin,

1998.

M. Elham Al-Ali, “Traveling Wave Solutions for a Ge[13] n-

eralized Kawahara and Hunter-Saxton Equations,” Inter-

national Journal of Mathematical Analysis, Vol. 7, 2013,

pp. 1647-1666.

S. M. Sayed, “The Bäcklund Transformations, Exa[14] ct So-

lutions, and Conservation Laws for the Compound Modi-

fied Korteweg-de Vries-Sine-Gordon Equations which

describe Pseudospherical Surfaces,” Journal of Applied

Mathematics, Vol. 2013, 2013, pp. 1-7.

http://dx.doi.org/10.1155/2013/613065

[15] V. B. Matveev and M. A. Salle, “Darboux Transforma-

tions and Solitons,” Springer-Verlag, Berlin, 1991.

http://dx.doi.org/10.1007/978-3-662-00922-2

[16] K. Tenenblat, “Transformations of Manifolds and Appli-

cations to Deferential Equations, Pitman Monographs and

Surveys in Pure and Applied Mathematics 93,” Addison

Wesley Longman, England, 1998.

[17] A. M. Wazwaz, “New Compactons, Solitons and Periodic

Solutions for Nonlinear Va

Equations,” Chaos, Solitons & Fractals, Vol. 22, 20

riants of the KdV and the KP

04, pp.

249-260. http://dx.doi.org/10.1016/j.chaos.2004.01.005

[18] A. M. Wazwaz, “Two Reliable Methods for Solving Vari-

ants of the KdV Equation with

Structures,” Chaos, Solitons & Fractals, Vol. 28, No.

Compact and Noncompact

2,

2006, pp. 454-462.

http://dx.doi.org/10.1016/j.chaos.2005.06.004

[19] X. G. Geng and H. Wang, “Coupled Ca

tions, N-Peakons and Infinitely Many Conservat

massa-Holm Equa-

ion Laws,”

Journal of Mathematical Analysis and Applications, Vol.

403, 2013, pp. 262-271.

http://dx.doi.org/10.1016/j.jmaa.2013.02.030

[20] A. H. Khater, D. K. Callebaut and S. M. Sayed, “Conser-

vation Laws for Some Nonlinear Evolution Equations

which Describe Pseudo-Spherical Surfaces,” Journal of

Geometry and Physics, Vol. 51, No. 3, 2004, pp. 332-352.

http://dx.doi.org/10.1016/j.geomphys.2003.11.009

[21] J. A. Cavalcante and K. Tenenblat, “Conservation Laws

for Nonlinear Evolution Equations,” Journal of Mathe-

matical Physics, Vol. 29, 1988, pp. 1044-1059.

http://dx.doi.org/10.1063/1.528020

[22] R. Beals, M. Rabelo and K. Tenenblat, “Backlund Trans-

formations and Inverse Scattering Solutions for Some

Pseudo-Spherical Surfaces,” Studies in Applied Mathe-

matics, Vol. 81, 1989, pp. 125-134.

[23] E. G. Reyes, “Conservation Laws and C

Deformations of Equations Describing

alapso-Guichard

Pseudo-Spherical

Surfaces,” Journal of Mathematical Physics, Vol. 41, 2000,

pp. 2968-2979. http://dx.doi.org/10.1063/1.533284

[24] E. G. Reyes, “On Geometrically Integrable Equations and

Hierarchies of Pseudo-Spherical Type,” Contemporary

Mathematics, Vol. 285, 2001, pp. 145-156.

http://dx.doi.org/10.1090/conm/285/04740

[25] W. T. Wu, “Polynomial Equations-Solving and Its Ap-

or

ons,” Studies in Applied Mathemat-

rg/10.1143/PTP.53.1652

plications,” Algorithms and Computation, Beijing, 1994,

pp. 1-9.

[26] M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur,

“The Inverse Scattering Transform-Fourier Analysis f

Nonlinear Problems,” Studies in Applied Mathematics,

Vol. 53, 1974, pp. 249-257.

[27] S. S. Chern and K. Tenenblat, “Pseudospherical Surfaces

and Evolution Equati

ics, Vol. 74, 1986, pp. 55-83.

[28] K. Konno and M. Wadati, “Simple Derivation of Back-

lund Transformation from Riccati Form of Inverse Me-

thod,” Progress of Theoretical Physics, Vol. 53, 1975, pp.

1652-1656. http://dx.doi.o

erical Sur- [29] R. Sasaki, “Soliton Equations and Pseudosph

faces,” Nuc lear Physics B, Vol. 154, 1979, pp. 343-357.

http://dx.doi.org/10.1016/0550-3213(79)90517-0