
Robust Low-Power Algorithm for Random Sensing Matrix for Wireless
ECG Systems Based on Low Sampling-Rate Approach
Copyright © 2013 SciRes. JSIP
systems based on CS will be able to deliver healthcare
not only to patients in hospita l; but also in t heir homes.
REFERENCES
[1] M. Balouchestani, K. Raahemifar and S. Krishnan, “Low
Power Wireless Body Area Networks with Compressed
Sensing Theory,” in Circuits and Systems (MWSCAS),
55th IEEE International Midwest Symposium on, 2012,
pp. 916-919.
[2] A. S. Alvarado, C. Lakshminarayan and J. C. Principe,
“Tim e -Based Compression and Classification of Heart-
beats,” Biomedical Engineering, IEEE Transactions on,
Vol. 59, 2012, p p. 16 41-1648.
doi:10.1109/TBME.2012.2191407
[3] A. M. R. Dixon, E. G. Allstot, D. Gangopadhyay and D. J.
Allstot, “Compressed Sensing System Considerations for
ECG and EMG Wireless Biosensors,” Biomedical Cir-
cuits and Systems, IEEE Transactions on, Vol. 6, pp.
156-166, 2012. doi:10.1109/TBCAS.2012.2193668
[4] B. H. Tracey and E. L. Miller, “Nonlocal Means Denois-
ing of ECG Signals,” Biomedical Engineering, IEEE
Transactions on, Vol. 59, No. 9, 2012, pp.
2383-2386. doi:10.1109/TBME.2012.2208964
[5] H. Sjoland, J. B. Anderson, C. Bryant, R. Chandra, O.
Edfors, A. J. Johansson, N. S. Mazloum, R. Meraji, P.
Nilsson, D. Radjen, J. N. Rodrigues, S. M. Y. Sh erazi an d
V. Owall, “A Recei ver Archit ecture for Devic es in Wire-
less Body Area Networks,” Emerging and Selected Top-
ics in Circuits and Systems, IEEE Journal on, Vol. 2,
2012, pp. 82-95. doi:10.1109/JETCAS.2012.2186681
[6] Y. Hamad a, K. Takizawa and T. I kegami, “Highly Relia-
ble Wireless Body Area Network Using Error Correcting
Codes,” in Radio and Wireless Symposium (RWS), 2012,
pp. 231-234.
[7] C. A. Chin, G. V. Crosby, T. Ghosh and R. Murimi,
“Advances and Challenges of Wireless Body Area Net-
works for Healthcare Applications,” in Computing, Net-
working and Communications (ICNC), International
Conference on, 2012, pp. 99-103.
[8] C.-H. Kang, S.-J. Wu and J.-H. Tarng, “A Novel Folded
UWB Antenna for Wireless Body Area Network,” An-
tennas and Propagation, IEEE Transactions on, Vol. 60,
2012, pp. 1139 -1142. doi:10.1109/TAP.2011.2173101
[9] T. Bonnici, C. Orphanidou, D. Vallance, A. Darrell and L.
Tarassenko, “Testing of Wearable Monitors in a
Real-world Hospital Environment: What Lessons can be
Learnt?” in Wearable and Implantable Body Sensor Net-
works (BSN), Ninth International Conference on, 2012,
pp. 79-84.
[10] W. B. Xu, D. H. Wang, K. Niu, Z. Q. He and J. R. Lin,
“A Channel Estimation Method Based on Distributed
Compressed Sensing and Time-domain Kalman Filtering
in OFDM Systems,” in Broadband Network and Multi-
media Technology (IC-BNMT), 4th IEEE International
Conference on, 2011, pp. 157-161.
[11] S. Atapattu, C. Tellambura and H. Jian g, “P erfo rmance o f
an Energy Detector over Channels with Both Multipath
Fading and Shadowing,” Wireless Communication s, IEEE
Transactions on, Vol. 9, No. 12, 2010, pp.
3662-3670. doi:10.1109/TWC.2010.100110.091042
[12] H. Su and X. Zhang, “Battery-dynamics Driven Tdma
mac Protocols for Wireless Body-area Monitoring Net-
works in Healthcare Applications,” Selected Areas in
Communications, IEEE Journal on, Vol. 27, No. 4, 2009,
pp. 424-434. doi:10.1109/JSAC.2009.090507
[13] M. Balouchestani, K. Raahemifar and S. Krishnan, “Ro-
bust Wireless Sensors with Comoressed Sensing Theory,”
Communication in Computer and Information Science
Journal of Springer, Vol. 293, 2012, pp.
608-619. doi:10.1007/978-3-642-30507-8_50
[14] P. K. Baheti and H. Garudadri, “An Ultra Low Power
Pulse Oximeter Sensor Based on Compressed Sensing,”
in Wearable and Implantable Body Sensor Networks,
BSN 2009. Sixth International Workshop on, 2009, pp.
144-148.
[15] M. Balouchestani, K. Raahemifar and S. Krishnan,
“Wireless Body Area Networks with Compressed Sens-
ing Theory,” in Complex Medical Engineering (CME),
ICME International Conference on, 2012, pp. 364-369.
[16] H. Kim, R. F. Yazicioglu, P. Merken, C. Van Hoof and
Hoi-Jun Yoo, “ECG Signal Compression and Classifica-
tion Algorithm With Quad Level Vector for ECG Holter
System,” Information Technology in Biomedicine, IEEE
Transac tions on, Vol. 14, 2010, pp. 93-100.
[17] S. M. Jadhav, S. L. Nalbalwar and A. Ghatol, “Artificial
Neural Network Based Cardiac Arrhythmia Classification
Using ECG Signal Data, ” Electronics and Information
Engineering (ICEIE), International Conference on, 2010,
pp. V1-228-V1-231.
[18] H. Mamaghanian, N. Khaled, D. Atienza and P. Van-
dergheynst, “Compressed Sensing for Real-Time Ener-
gy-Efficient ECG Compression on Wireless Body Sensor
Nodes,” Biomedical Engineering, IEEE Transactions on,
Vol. 58, No. 9, 2011, p p. 2456-2466.
doi:10.1109/TBME.2011.2156795
[19] L. F. Polania, R. E. Carrillo, M. Blanco-V elasco and K. E.
Barner, “Compressed Sensing Based Method for ECG
Compression,” in Acoustics, Speech and Signal
Processing (ICASSP), IEEE International Conference on,
2011, pp. 761-764.
[20] W. Dullaert, H. Rogier, L. De Camillis and T. Dhaene,
"Improving Link Quality of UWB Communication Links
by Means of PSWF-basis Persuit Denoising,” in Antennas
and Propagation in Wireless Communications (APWC),
IEEE-APS Topical Conferen c e on, 2011, pp. 126-129.
[21] K. Kanoun, H. Mamaghanian, N. Khaled and D. Atien za,
“A Real-time Compressed Sensing-based Personal Elec-
trocardiogram Monitoring System, ” in Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE),
2011, pp . 1-6.
[22] A. S. Alvarado, C. Lakshminarayan and J. C. Principe,
“Tim e -Based Compression and Classification of Heart-
beats,” Biomedical Engineering, IEEE Transactions on,
Vol. 59, 2012, pp. 16 41-1648.