Applied Mathematics, 2013, 4, 1278-1286
http://dx.doi.org/10.4236/am.2013.49172 Published Online September 2013 (http://www.scirp.org/journal/am)
Traveling Wavefronts on Reaction Diffusion
Systems with Spatio-Temporal Delays
Xinli Han1, Lijun Pan2
1College of Science, Nanjing University of Posts and Telecommunications, Nanjing, China
2Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Email: xinlihan@126.com, 98010149@163.com
Received November 1, 2012; revised January 1, 2013; accepted January 9, 2013
Copyright © 2013 Xinli Han, Lijun Pan. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
ABSTRACT
By using Schauder’s Fixed Point Theorem, we study the existence of traveling wave fronts for reaction-diffusion sys-
tems with spatio-temporal delays. In our results, we reduce the existence of traveling wave fronts to the existence of an
admissible pair of upper solution and lower solution which are much easier to construct in practice.
Keywords: Schauder’s Fixed Point Theorem; Traveling Wave Fronts; Reaction-Diffusion; Spatio-Temporal Delays
1. Introduction
Traveling wave solutions, usually characterized as solu-
tions invariant with respect to translation in space, have
attracted much attention due to their significant nature in
science and engineering [1-18]. In which, the theory of
wave fronts of reaction diffusion systems is an important
part, and its history traces back to the so-called Fisher-
KPP equation, the celebrated mathematical works by P.
A. Fisher and by Kolmogorov, Petrovskii and Piscunov.
Since then, lots of papers are devoted to the study of
traveling wave solutions of reaction diffusion systems,
and various research methods come forth.
The present paper is mainly devoted to tackle the ex-
istence of traveling wave front solutions of the following
reaction diffusion system with spatial-temporal delays
and with some zero-diffusive coefficients,
 




2
2
1
,,
,,,,
m
Utx Utx
D
tx
F
g U txgU tx


 
(1.1)
where , ; ,
0tx

1
diag,, n
Ddd2
1
0
n
i
i
d
,
0
i
d
Ff
, ,
 

1
,,,,,
n
Utxu txutx


T2
,, ,
n
f
T
1n,

 
,,
t
jj
,dd,
g
Utx gtsxyUsyys

 
 

1,,.jm
Here the kernels of convolutions
1, ,,
j
g
Uj m
satisfy

 
0
0
,dd 1,
,0, ,
j
j
gsyys
gtx tx
 




.
(1.2)
And the kernels used frequently in the reference are as
follows
1)
,;
j
g
txt x

2)
,;
jj
g
txt px
3)
,;
jj
tx tx


4)
,;
jj
g
txq tx
5)
,.
jjj
g
txtp x


The remaining part of this paper is organized as fol-
lows. In the next section, some preliminaries are given.
In Section 3, we state and prove the main result of this
paper.
2. Preliminaries
A traveling wave solution of (1.1) is a special translation
invariant solution of the form

,,Utxx ct 
where
2,n
CRR is the profile of the wave that
propagates through the one-dimensional spatial domain
at a constant velocity c > 0. If is monotone and satis-
fies the asymptotic boundary conditions
lim
s
s
U
 
and
lim ,
s
s
U
 

,Utx x 
ct is called a
C
opyright © 2013 SciRes. AM
X. L. HAN, L. J. PAN 1279
wave front of (1.1), where

T
1,, ,
n
Uu u
 
,UU


T
1,, n
n
Uu u
 
, and U, U+ are equi-
libria of system (1.1). If Y < Z, we also denote


,:, :,
n
BC YZCYtZ t
Let
be the supremum norm in n and

,;
n
Cab,
and











0
;:su
;:s
: max sup
i
nn
t
nn
t
i
d
C
C
t









2
;: p
;: up
;:,,;supand ;,here,0
t
nn
i
tt
BC t
BCt e
BCBCC d


 
 
 




 
where
will be given in the next section. Obviously,
, and are Ba-
nach spaces respectively with the norms

BC ;n

;n
BC


2;n
BC 


0:sup, ;,
n
t
tBC
 



:supe, ;,
tn
t
tBC
 




2
00
20
:max,sup,; .
i
n
i
dt
tBC

 

Substituting into (1.1) and denot-
ing still by t the traveling coordinate
 
,Utxx ct 
x
ct, we obtain
the corresponding wave equations
 

1,, ,
,
m
ctD tFgtgt
t

 
(2.1)
where c > 0 is velocity, , ,
2
1
0
n
i
i
d
0
i
d1, ,in
;
and


0,d
jj d,
g
tgsytycs
 


 ys
(2.2)
Without loss of generality, we assume

T
0,, 0,U0 the as-
ymptotic boundary conditions are replaced by
T
1,, ,
n
UKK
K

lim0,lim.
tt
tt
 
 
K
(2.3)
In the following, we list the basic assumptions of this
paper:
(A1) .
 
,,,, 0FF00KK
(A2) There exist positive constants 1
j
and
j
L,
such that for all
,,
jj
YZ0,
K
1,, ,jm
 
11
1
,, ,,.
j
m
mmjj
j
FYYFZZLYZ

 j
(2.4)
(A3) There exists an constant 0
such that for
and
1,, ,jm
,,BC
K
K
 
0,dd
t
j
gsytycs ys
 
 

(A4) One of the following two cases holds.
1
4
(A)

0,d
j
g
tx t

is uniformly convergent for
,
x
aa , where , i.e., for given 0a0
, there
exists s.t.
0
j
b
b

,dxtgt

for all
,
x
aa ,
1, ,jm
.
2
4
(A)

,d
j
g
tx x


is uniformly convergent for
0,tb, where b > 0, i.e., for given 0
, there exists
, s.t.
0a

j
agtx,dx

and

,dgtxx
a
j

for all
0, ,tb1, ,jm
.
(A5) There exists a matrix
s.t.

1
diag, ,,0,
ni









1
1
,,
,,
m
m
F
gtg tt
F
gtg t
 
 
t
(2.5)
where t
and satisfy
,,
n
C
ˆˆ
0
K
, here and in the sequel, denote the
constant vector function on , taking the value
.
ˆ
U
n

1,, T
Uu u
n
At the end of this section, we give the following two
useful lemmas.

Lemma 2.1. [8] Let be a differentiable
function. If
0
:x
limsup
t

liminf ,
t
x
t

xt

1
n
there are se-
quences

n
s
and

1
nn
t
with
s.t.
lim
 lim
nn
nn
st







limlim infand0,
limlimsupand0.
nn
nt
nn
nt
xsxtx s
xtxtx t
 
 

 
Lemma 2.2. [3,8] Let , and
be a differentiable function. If li
a
t
:,xa

m
x
t
 exists (finite)
and the derivative function
x
t
is uniformly continu-
e. ous on
,a
then lim
t

xt
0.
Copyright © 2013 SciRes. AM
X. L. HAN, L. J. PAN
1280
3. Main Theorem
First, we introduce the definition an upper-lower solution
of wave Equations (2.1)
Definition 3.1. A continuous function

1,,
n

n
 is called an upper solution of (2.1), if
it
and

t
 (if 0d) ex
iiist almost everyw
e essentially bounded, and
here and they
ar i
satisfies almost
whe
every-
re on
  


1,,
iiii m
ctdtfgtgt
  

 (3.1)
A lower solution

1,,
n
 
of (2.1) can be given
in a similar way by reversing the inequality in (3.1)
ns (2.1), we h
.
For wave equatioave the following re-
sults.
Proposition 3.1. Assume (A) holds. If wave e
2qua-
tions (2.1) have a monotone solution
;n
C 
satisfying

lim
ttV
  and

lim ,
ttV
  where
0,VV

K
n
then ,VV


1,, m
F
gtg t
is uniformly continuous in
ow is uniformly
.
Proof. It is not difficult to sh
continuous in , then we k

t
now that 0
sufficiently
small
1
max
,
j
jl
mL L

 , there is a cstant
Lon
, s.t.
for 1
t2
,t
and 12
tt
,

1
12 ,t
y csy cstmL
 
where
 
0
s
, y
, 1
min
j
jl

, and
n in2). In dition, we can obtain

1, ,
jjm
are give (Aad
12ii
g
tg t 
12
0,,1,, .
ii
g
tg tKjm
Then by (A2), we have






 
111 122
12
0
1
,, ,,
,d
j
mm
m
jj
j
d
F
gtg tFgtg t
Lgsytycstycsys
 

 

 




hus, ,
T




1,, m
F
gtgt 
in. This completes the pro
is uniformly con-
position 3.2. Assume (A2) and (A4) hold. If wave
eq
tinuous of of the proposi-
tion.
Pro
uations (2.1) have a monotone solution
;n
C 
satisfying

lim
ttV
  and

lim t,V where
t
0,,
n
VV the

,KVV
 
 n

,, 0FV V
 
. ,FV V
Proof. We only give the proof under thase
an
e c1
4
(A)
d the case 2
4
(A) is similar. Firstly, we show



1
lim, ,,
m
.
t
F
gtg tFV
 V
 
For fixed let , then
by Hence
s.t.
1,, ,jm
know 

1
0,
jm
mL L

0,d
jj
hxg sx s

1, 1,,.dxjm
,
there is a constant
(1.2), we
,


 0A
j
hx
max
j
L
 

 

1
0
1
0
d8,
1,, .
d8,
j
A
A
j
hxxmL
jm
hxxmL




(3.2)
where
1
min .
j
jm

constant B
By , for the above A, there
1
4
(A )
exists a0 s.t.
 

1
0
,d16, 1,,.
i
B
g
tx tmLAjm
(3.3)
holds uniformly for
 
,.
x
AA Since
lim ,
ttV
 
ts for the above constan
,
, m and L, th ere exists an
constant 0T s.t.
 
14, .tVmLt T
  (3.4)
Obviously,
j
g
t ,


0,
j
g
Vt
K, t
,
1, ,jm
, th3. en by (3.2)-(4) and (A2), we have




  
  
 
10
1
0
1
0
,, ,,,dd
,dd,dd
,dd,
.
j
j
m
mji
j
mAB A
jj j
AAB
j
j
A
F
gtgtFVVLgsytycsVys
Lgsyty csVsygsyty csVsy
gsytycs Vsy
tTA
 
 




 





 


Copyright © 2013 SciRes. AM
X. L. HAN, L. J. PAN 1281
Therefore,




1
lim, ,
,, ,
m
t
F
gtg t
FV V


 
similarly,




1
lim, ,
,, .
m
t
F
gtg t
V V


 
F
For the i that di > 0, we denote
:limsup
i
t
Bt
i
> bi. We claim Bi =
.1 we know there
with

:liminf,1,, ,
ii
t
bti


Bi > bi, then by
are sequences

1
NN
s
and
lim lim
NN
NN
st
 
 s.t.
n then Bi
Lemma 2bi, otherwise

1
NN
t



limliminf and
and 0.
iN i
Nt
i iN
st
tt


 




Substituting

1
NN
s
and

1
NN
t
the ith equation of
(2.1), we have

,
i ii
f Vcbf

ness o


0,
lim limsup
iN
iN
Nt
s
t
 

as
tonicity and boundedf exists
(finite). From the ith equat have
i
cB
This contradicts with
, ,V
Bi
,, ,V V


> bi, by the mono- .N

,
it
ion of

lim 0
i
tt

(2.1), we also
 
,VV

exists (fi
1
lim lim
ii
tt
ii
c
tt
dd

 
 
 nite).
Sioof of trmly c
,
i
f
milar to the prhe unifoontinuity of
t
in Proposition 3.1, we can obtain that

it
is uniformly

tt
continuous in . Combining
0, lim V
 

t
en

t

and
Lemma 2.2, lim 0,
i
t therefore,
by the ith equation of (2.1), we have

0.t
lim
t0.
i Th
 
,, lim
iiii
t
fVVct d







For the i that

0,1, ,,
i
di n by Propositio
we know
n 3.1,
 


1,,
ii m
tfgt gtc
.
ering
 
Is uniformly continuous in . Consid
lim
ttV

0. Hence, is finite, by Lemma 2.2, we ve ha

lim i
tt




,,lim 0.fgVgVt ct

1im i
t


,, 0FV V

Then .
Similarly,

,, 0.FV V

ted. The pro2 is comple
Define
of of Proposition 3.


T
1,,:0,;
n
n
HHHBCK BC




T
1
0,,,, n
BCK HHH  sat-
,
s.t.
isfying
 

,
Ht





1,,
.
m
F
gtt
t

 
) g t
(3.5
Then we have the following lemma.
Lemma 3.1. Assume (A1) and (A5) hold, for all
,
0,BC K , the operator H defined by (3.5) satisfi
1)
es
0,HtKt
 .
,.HH
  2) If
3) If
t is nondecreasing in ,
H
is also
nondecreasi
Proof. 1) and 2) can be given directly by (A1) and
(A5).
3) For
ng in .
let
t
 
0,
then



,
1,, .
jj
g
tg
jm
 
t
By the monotonicity of
t we know ˆ
0

ˆ
K
, by 2),
 
,
,
H
tHtHt
t
 
and this complete the proof of Lemma 3.1.
Without loss of generality, we assume 0
i
in (A5),
and denote


2
1
2
2
42
if 0
42
if 0.
iiii
i
iiii
i
ii
ccd d
d
ccd d
d
c


 


 
(3.6)
Defining the integral operator P on
0,BCK ,
0,BC K , t
,
is given by
 

1,,
n
PtPtPt 
T








12
1
21
eded] if
ed if
ii
i
tts ts
iiiii
t
i
tts
i i
Hss Hssdd
Pt
Hssc d







 





0
0
i
(3.7)
Copyright © 2013 SciRes. AM
X. L. HAN, L. J. PAN
1282
w defined by (3.5
tion 3.3. Assume (A2), (A4) and (A5) hold
The integral operator P defined by (3.7) maps
here

T
1,n
H H is).
Then we have the following two propositions.
 

,H
Proposi .
0,BCK
, and ,


2;n
PBC 
0,BC K .
Proof. We on
and the case 2
4
(A
ly give the proof under th case
is similar.
into
0,BC K
e 1
4
(A) ,
)
For
0,BC K , byma 3.1 1 Lem), we have
,HtKt
0,
  thif 0
i
d en,

 

12
21
0ed+ed
itsits
t
iiiiiii
t
PtKsKs dK






 



ii
If 0,
i
d


1
0ed
i
tts
ii
Pt sKcK

 
.
ii
on, similar to the
pr
Therefore,

0.PK
In additi
ˆˆ
oof of Proposition 3.2 we can obtain, 0

m,
its a onstant A > 0 s.t. for 1, ,jm,
L
there exsc
 
1
d8
j
Ahxx ,L K
m

 
1
d8
A
j
hxxmLK

.
nB > 0And for this A, there is a constat s.t. for
jm1,, ,
 

1
,d16, ,
j
B
g
txtmLK xAA


where

1
in .
11
min, min, m
j
ji
jm jm
 
For fixed
im K

LLK


, we can find T > 0 s.t.
,tTT.
t
Since
0,BCK,t is uniformly co ntinuous in
1,cB 1TA TA
 
, hence there is 01
s.t.

1
1,
4
tt tmL



t
 ,
,tTAcBTA
.
Obviously, *
j
g
tt
 ,


*0
j,
g
tK ,
t
1,, ,jm
then by (A2) we
obtain






 





0
,2
dd A
j
A

11
0
1
1
0
1
0
*,,* ,,*
,dd
,4dd,2 dd
j
j
mm
m
jj
j
mAB A
jj j
AAB
j
j
F

,2dd.
*gttg tttg t
Lgsytt ycst ycsys
Lg symLysg syKys
g
 



 

 






 

Fg 
gsyKys  

 
sy Kys
Hence,


1*,,*
m
F
gtgt is continuous in
, then

1*,,*
m
H
tFg t gtt
 
is continuous in In addition, by calculating directly we can obtain the following, if
. 0,
i
d






12
12
eded
ii
tts ts
iiii iii
t
PtHss Hssd






21
i

 











1 2
2 2
1122
ed ed
i i
tts ts
iii iiiiiii
t
PtHss H21
i
Hssd
 
 

 

 

 




.
t

If 0,
i
d


 
ed
i
tts
iiii
Pt HssHtc


 


.
Therefore,


22
0,; .PBCKBC 
3.3 is completed.
The proof
of Proposition
Proposition 3.4. For
0,BC K ,
2;n
BC  ,
 
tP t iff
,DtcttH t
 

.t Especially,
0,BC K
only if
is a solution of wave
if and a fixed point of P.
f. We only prove t
case can be g
Equation (2.1)
is
Proo he case 0,
i
dand the proof
for theiven similarly.
If
0,
i
d
 


ed,c
i
tts
ii i
tP tHss

 
let ,
ii
c
We obtain

.
iii i
ctH t


bove argument
t
, On the other hand, by the a
So we have
 
ii i
cPtPtH

 
.
it
 
0.
ii iii
cPtP t




Then
eit
ii
tPt

  where
is a constant.
Copyright © 2013 SciRes. AM
X. L. HAN, L. J. PAN 1283
0,BC K By Proposition 3.3, we know ,

0,PBC

ii
tP t

K. Since
is bou

2;n
BC  ,
d in , hence

nde 0,
then
And thproof of
By Lemma 3.1, we ca following
lemma on the monotonicity oor P.
Lemma 3.2. Assume (A1
1) If

.
ii
tPt

Proposition 3.4.
is completes the
n easily obtain the
f the integral operat
) and (A5) hold, then
,0,BC K ,d ,

an
.PP
2) If
0,BC K isin , nondecreasing
P
is also .
On the continuity of the i, we have
5. Ass
nondecreasing in
ntegral operator P
2)-(A4) hold. Then
the following.
Proposition 3.ume (A
:0, 0,PBCKBC K
the norm
is continuous with respect to
u
in BC

;, where
,
2
u

1, 2,
0min
iii

 and 12
,,
ii i

are
defined by (3.5) is c
given by
oof. We first claim H ontinuous
in
(3.6).
Pr
0,CK Bwith respect to the norm u
.
For
,0,BCK , we know obvly  ious

j
g
t ,


0,, ,1,,.
j
g
tBCK
t jm 
(A
By (A2) and
3), we obtain
 







1
1
sup* e
e
,Suppose
j
j
mut
jj j
tj
m
j
j
Lg tg t
tt
L
1
max sup t
ii
in t
1
sup ee
j
mtt
j
tj
L

*
1
HH








 

 


re


 


 


 
whe

11
j
jm
 , 1i
jn
min


max


. Thus 0,
choose
1
1
1
min ,1
j
m
j
j
LM












then we have

 
HH
 for ,

i.e., H is continuous in
0,BCK with respect to the
norm u
.
Now, we show
:0, 0,
P
BC KBC K is continu-
ous with respect to the norm u
. For
,
0,BC K ,
sim e is ilar to the method in Ma [4], we obtain ther
G > 0 s.t.
an
constant
  
PP GHH

, we ow P is continuous with
respect tothe norm

By the continuity of Hkn
u
. The proof is completed.
In the following, we state and prove the main theorem
of this paper.
Theorem 3.1. Assume (A1)-(A5) hold. Suppose wave
equations (2.1) has a pair of uppnd lower solution er a
,0,BC K

satisfying
1)
   
suporinf, .
st
st
st tst
 
 
2)
 

, ,0,0,infsup,.
tt
F
VV VttK





Then (2.1) and (2.3have a monotone solution, i.e.,
front sotion.
we define the following profile
set
)
(1.1) has a traveling wavelu
To prove Theorem 3.1,

 
1) is nondecreasing in .
,: :2),0,.
3), ,.
BC K
stMstst
 



 

where
1ii
in
max ,
M
Kc
we first prove two lemmas.
hold,
then for

Lemma 3.3. If the conditions of Theorem 3.1
;n
C with

 , we have
.P

Proof. For t
, we denote
 




,,
n
twtw t
Wt t
 
1
T
11
,,
n
n
P ttPt
T
W
(3.8)
then we have
;n
WBC . In order to obtain
,P
it suffices to prove
0.Wt
0,
i
d By Proposition 3.4, we know if
 
,
iii i
cPtPtHtt
 
From the definition of lower solution, we know


, ...
iii i
cttH taet
 
 

and by Lemma 3.1 2), we obtain Considering
 
0,
.. .
iiiii
cP ttP tt
ae t
 





Let
.t

,
iiii
rtcwwt t
 )
Then
(3.9
0.
i
rt
riant of c
By the continuity of and for-
mula of vaonstants, we have
d, (3.10)

i
wt



ee
i
itts
t
ii
wtrss


where
is a c.1, we k
i
P
onstant. By Lemma 3now ,

P
i
are both by (3.8
i
wt bounded, It follows) that ,
i
wt
are essentially bo , then by (3.9), unded in
Copyright © 2013 SciRes. AM
X. L. HAN, L. J. PAN
1284

i
rt also is essentially bounded in so, 0
in
(3.10), and

ii
P
for 0
i
d
. In a
 , similar way,
we can obtain

ii
P
 ,

fo 0
i
rd
therefore
P
. Similarly, we can prove

.P
 The proof is
completed.
L
then
emma 3.4. If the corem
P is equi-continuous.
nditions of T
heo 3.1 hold,
Proof. For
0, ,BC K if 0,
i
d by Lemma 3.1
1) and Proposition 3.we have, for ,t
3,




1
1ed,
i
tts
iii
i
21ii i
ii
K
Pt Ks

 
dc
and,






2
21
its
i
2i
ted,
i
i
iii
ii
K
Pt Ks
c

d


then,

,
i
Kc this is also
ilar an
ii
Pt
 holds for the
the proof is simmit here. case 0,
i
d d we o
0,
 we choose ,
M
here
1
max ii
in
M
Kc

en for

,
th

0, ,PPBCK by Lagrange theorem,
if 121 2
,, ,tttt

 


1 212
12
,
,,
i
i
tPtP tMtt
tt

 
then
12ii
t
i
P

12
,PtPt
  i.e.,
0,PBCK
f Lemma
is
equi-continuous. This comple 3.4.
Proof of Theorem 3.1. Weroof of Theo-
into five steps.
tes the proof o
divide the p
rem 3.1
Step 1, ,


is a nonempty and convex set.
1) Denote
  
or ,st

sup
st
ts
inf
st
t
 

Ois cng in
then by Lem 3.2 1), reasing in
2) By Them 3.1(a)

is nondec
know
.
bviously,
ontinuous and nondecreasi
ma
ore
,
.

P
, we ˆˆ
0,
K


then by lemma 3.2 1) and Lemma 3.3 we have



.PPP


nd 2) we al3) By the above 1) aso know
0,BC K
,
sie proof of Lemma 3.4milar to th ,we obtain

 
121i
PtPtMt
 
 212
,,.t tt
Therefore,

,,P



then ,


is non-
empty. It is obvious that ,


is convex.
Step 2, ,


is a closed set in i.e.,
if seque

;,
n
BC

nces
 

T
1
11
,, ,
kkk
n
kk


 

converge to with respect to the norm
, then
,.


 Since 


1
max supe0,
t
kk
ii
int
t


 
for the fixed t

e0, as.
t
kk
t
t k
 (3.11)
0,
we choose 3,
M
then by

1,
k
k
 we know
3
kk
ttt
, t
 , t, k1, 2,
.
1), there is a N s.t. for the above ,tt By (3.1

3
Ntt
,
and
 
3.
Ntt tt
 
Therefore, for fixed ,t
if ,t

  
NN
tt t tt
ttt

N
Ntt tt
 
 
i.e.,
t
t
is continuous in In addition, we have .
1) 1
, 2
t
, 12
tt
, sin

12
kk
ttce ,
1,k2,
, by (3.11),
 
1211 22
0,
kk
ttttt t
  
i.e.,
t
t
is continuous in .
2) ,
since

,1,2,,
kttk
 by (3.11),
0.
ktt
t t
 Similarly
, so
0,BC
3
.K
) Since
kk
s
tMst
 , ,st,
k, 1, 2,
 
,
kk
st
s
sMsttt

 
combining with (3.11), we obtain
.
s
tMst
 Therefore, ,.

Step 3,

,,.P



This can be easily

pr lowed by.4. oved fol Proposition 3.3 and Lemma 3.2 - 3
Step 4,
,P
is sequentially compact.
For ,.

by Proposition 3.3 we know
0, ,PBCK then
0,K
i.e.,
P
P,

3.4 thatis uniformly bounded. It follows by Lemma
,P
us.wo opera-
tors
and
satisfying
is equi-continuo We define t


T
1,,: 0,
NN Nn
PPP BCKBC

0,K

 

T
,,:0,, ;
n
Nn
QQQ BCKCNN
1
N
Copyright © 2013 SciRes. AM
X. L. HAN, L. J. PAN
Copyright © 2013 SciRes. AM
1285


 


 


,, ,
,,
,,
N
NtN Qtt
Ptt N
BC
PNt N
 
 
P
,NN
N
Pt N
0, ,K
where NFor

.

,0,,PPBK


 

 
 
,,,,0.FVV FVV
 

C
we have
 
2,
N
PP Ke
N
 
therefore
0, there is an constant s.t.
,N
 
3
N
PP
 
,
,

  
. To the by the above argume,N
nt,


,
N
QP



is uormly bounded and equi-con-
tinuous in
nif
,,NN tela-Ascoli thhen by Arz eorem,


,
N
QP



compact in is sequentially



,, ,.
n
CNN For the ε,

N
QP

,


has
a finite 3
net, we denote this 3
net by


1
J
j
N
j
Q
P
, where ,, 1,,
jjJ




,
i.e.,




1
min3, ,.
j
NN
jJQP QP



Thus

 


 
 



 
 
1
1
1
11
1
min
min
max
min m
max ,
,.
ii
j
jJ
j
NN N
jJ
jJ
j
NN
jJ in
t
jj
NN
jJ
PP
PP PP
P t
PPP P
ax supPt
jj
N
PP




 

 









  
 




Then


1
J
j
j
P
is the finite ε-net of

,P
and so

,P


is sequentially co
) haveotone solution.
By Proposition 3.5, we know
mpact.
Step 5, (2.1) and (2.3 a mon
:, ,P



is continuous with respect to
By Proposition

the norm solution.
3.5, we know :, ,P




is continuous norm with respect to the
, combining
with step 1 -all conditions of Schaude 4, P satisfies r
fixed point theorem in ,


, therefore P has fixed
point in
,


, by Proposition 3.4,
is the
m solution of ). Since onotone(2.1) and (2.3
,0,BC K

 is monot bo
,

and :limVtV xists, by

one andunded in
te Propo-
sition 3.2,
 It follows
by
,0inf ,
t
Vt
 


:lim
tt

 
,


that and
sup .
t
tVK
Then by (A1) and condition (b) of
Theorem 3.1, 0, ,VVK

 i.e., satisfies the as-
efore (1.1) has a
Therymptotic boundary condition (2.3).
wave front
,.Utxx ct And this completes the
proof of Th
Iner, we studs with
spatio-temporal delayrav-
elave fronts by eo-
rem. In our results, we reduce the existence of traveling
tion
ct in practice.
5. Acknowledgements
search is supported by Jiangsu Province Natural
Science Research Projects (No.12KJB110017), NUPT’
Scientific Fund (No. NY208028, NY211140) and NUAA’s
und (No. NS2011001, NN2012048).
REFERENCES
[1] S. Ai, “Traveling Wave Fronts for Generalized Fisher
Equations with Spatio-Temporal Delays,” Journal of Dif-
ferential Equations, Vol. 232, No. 1, 2007, pp. 104-133.
[2] V. Capasso and L. Maddalena, “Convergence to Equilib-
rium States for a Reaction-Diffusion System Modelling
the Spatial Spread of a Class of Bacterial and Viral Dis-
ease,” Journal othematical Biology, Vol. 13, No.
1981, pp. 17i:10.1007/BF00275212
eorem 3.1.
4. Conclusion
this papy reaction-diffusion system
s, and obtain the existence of t
ing wusing Schauder’s Fixed Point Th
wave fronts to the existence of an admissible pair of up-
per soluand lower solution, which are much easier to
constru
This re
s
Scientific F
f Ma 2,
3-184. do
[3] K. Gopalsamy, “Stability and Oscillations in Delay Dif-
ference Differential Equations of Population Dynamics,”
Kluwer Academic, Dordrecht, 1992.
:10.1007/978-94-015-7920-9doi
eling Wavefronts for Delayed Reaction-Dif-
fusion Systems via a Fixed Point Theorem,” Journal of
Differential Equations, Vol. 171, No. 2, 2001, pp. 294-
314.
[5] P. Popivanov, A. Slavova and P. Zecca, “Compact Trav-
eling Waves and Peakon Type Solutions of Several Equa-
tions of Mathematical Physics and Their Cellular Neural
Network Realization,” Nonlinear Analysis: Real World
Applications, Vol. 10, No. 3, 2009, pp. 1453-1465.
[6] K. Schaaf, “Asymptotic Behavior and Traveling Wave
[4] S. Ma, “Trav
X. L. HAN, L. J. PAN
1286
Solutions for Parabolic Functional Differential Equa-
tions,” Transactions of the American Mathematical Soci-
ety, Vol. 302, 1987, pp. 587-615.
[7] Z. Wang, W. Li and S. Ruan, “Traveling Wave Fronts in
Reaction-Diffusion Systems with Spatio-Temporal De-
lays,” Journal of Differential Equations, Vol. 222, No. 1
2006, pp. 185-232. doi:10.1016/j.jde.2005.08.010
[13] W. F. Yan an Critical Speed of
Traveling Wave Fronts in a Modified Vector Disease
,
[8] J. Wu and X. Zou, “Traveling Wave Fronts of Reaction-
Diffusion Systems with Delays,” Journal of Dynamics
and Differential Equations, Vol. 13, No. 3, 2001, pp. 651-
687.
[9] X. Zou and J. Wu, “Existence of Traveling Wavefronts in
Delayed Reaction-Diffusion System via Monotone Itera-
tion Method,” Proceedings of the American Mathematica
ety, Vol. 125
doi:10.1090/S0002-9939-97-04080-X
l
Soci , 1997, pp. 2589-2598.
Xu and X. Z Epidemic
z
[10] D. hao, “Bistable Waves in an
, Model,” Journal of Dynamics and Differential Equations
Vol. 16, No. 3, 2004, pp. 679-707.
doi:10.1007/s10884-004-6113-
ous Dynamical Systems—
[11] X. Zhao and W. Wang, “Fisher Waves in an Epidemic
Model,” Discrete and Continu
Series B, Vol. 4, No. 4, 2004, pp. 1117-1128.
doi:10.3934/dcdsb.2004.4.1117
[12] X. Zhao and D. Xiaoymptotic Speed of Spread
and Travelingves for a Vector DiseasModel,”
Journal of Dynamics and Differential Equation. 18,
, “The As
Wae
s, Vol
No. 4, 2006, pp. 1001-
doi:10.1007/s10884-00
1019.
6-9044-z
d R. Liu, “Existence and
Model with Distributed Delay,” Journal of Dynamical
and Control Systems, Vol. 18, No. 3, 2012, pp. 355-378.
doi:10.1007/s10883-012-9148-1
[14] G. Lin, W. T. Li and S. G. Ruan, “Asymptotic Stability of
Monostable Wavefronts in Discrete-Time Integral Recur-
sions,” Science China Mathematics, Vol. 53, No. 5, 2010,
pp. 1185-1194.
[15] Z.-Q. Xu and P.-X. Weng, “Traveling Waves in Nonlocal
64-482.
Diffusion Systems with Delays and Partial Quasi-Mono-
tonicity,” Applied Mathematics—A Journal of Chinese
Universities, Vol. 26, No. 4, 2011, pp. 4
doi:10.1007/s11766-011-2727-1
[16] S.-L. Wu, H.-Q. Zhao and S.-Y. Liu, “Asymptotic Stabil-
ity of Traveling Waves for Delayed Reaction-Diffusion
Equations with Crossing-Monostability,” Zeitschrift für
Angewandte Mathematik und Physik (ZAMP), Vol. 62,
No. 3, 2011, pp. 377-397.
doi:10.1007/s00033-010-0112-1
[17] H. Y. Wang, “Spreading Speeds and Traveling Waves for
Non-cooperative Reaction—Diffusion Systems,” Journal
of Nonlinear Science, Vol. 21, No. 5, 2011, pp. 747-783.
doi:10.1007/s00332-011-9099-9
[18] X. J. Li, “Existence of Traveling Wavefronts of Nonlocal
Delayed Lattice Differential Equations,” Journal of Dy-
namical and Control Systems, Vol. 17, No. 3, 2011, pp.
427-449. doi:10.1007/s10883-011-9124-1
Copyright © 2013 SciRes. AM