NotEnoughR&D?OrMaybeTooMuch?
IntensityofKnowledgeSpilloversandOptimalR&DPolicyin
SchumpeterianGrowthTheory
ElieGray
Abstract
Thispaperpresentsanendogenousgrowthmodel `aAghion&Howitt(1992)inwhichweexplicitly
formalizeknowledgespilloversintheinnovationprocess. WerevisittheissueoftheParetonon-optimality
oftheSchumpeterian equilibriumbyrevealingthepart playedbytheintensityofknowledgespillovers.
Basically,wehighlightthatthemarketincompletenesscharacterizingthistypeofdecentralizedeconomy
(knowledgeisnotpriced)isallthemorelikelytoleadtoanunder-optimal(resp.over-optimal)R&Deffort
astheintensityofknowledgespilloversishigh(resp.low).Thereasonbehindthisisthattheeffectsof
thedistortionofR&Dincentivesresultingfrommarketincompletenessareamplifiedallthemoreasthis
intensityisstrong.Complementarily,wederivetheoptimaltooldedicatedtocorrectthemarketfailure
causedbymarketincompleteness,andwedemonstratethatitclearlydependsontheintensityofknowledge
spillovers: thehigher(resp.lower)theintensityofknowledgespilloversis,themorelikelythispolicytool
shouldconsistinasubsidy(resp.tax).Moreover,ifthisoptimaltoolhappenstobeasubsidy,thenthis
subsidywillbeallthelargerastheintensityishigh.
Keywords:Schumpeteriangrowththeory;Paretosub-optimality;Marketincompleteness;Knowl-
edgespillovers;R&Dincentives;Optimalpolicytools
Howtocitethispaper:Gray,E.(2022)NotEnoughRD?OrMaybeTooMuch?Theoretical
EconomicsLetters,12,1539-1558.https://doi.org/10.4236/tel.2022.126084
Received:July27,2022
Accepted:November6,2022
Published:November9,2022
Correspondingauthor-TBSBusinessSchool,UniversitédeToulouse,Toulouse,France.20Bd.Lascrosses,BP701031068
ToulouseCedex7,France.Tel.:+33(0)5.61.29.49.25.Email:e.gray@tbs-education.fr.
1539
Theoretical Economics Letters, 2022, 12, 1539-1558
https://www.scirp.org/journal/tel
ISSN Online: 2162-2086
ISSN Print: 2162-2078
1Introduction
Thetheoryofendogenousgrowthbasedoninnovationunderlinesthepresenceofavoluntarymechanismat
theoriginoftheaccumulationofknowledgefromwhichstemstechnicalprogress,engineoflong-rungrowth.
Knowledgeisanon-rivalgood-astockofintellectualcapitaldistinctfromphysicalcapitalorhumancapital
-thecreationofwhichdependsonaspecificandendogenousinvestment: knowledgeaccumulatesthroughthe
activityofresearchanddevelopment(R&D).Theprocessofknowledgeaccumulationhasbeenformalizedby
twoseminalparadigmswhichbasicallydifferinhownewknowledgeisinterpreted.WhereasinRomer(1990),it
consistsofnewgoodsornewproductionprocesses(onegenerallyrefersto“horizontal”knowledgeaccumulation),
inAghion&Howitt(1992),itconsistsofanimprovementofthequalityofanalreadyexistinggoodorprocess
(onegenerallyrefersto“vertical”knowledgeaccumulation).
Inordertodealwiththenon-rivalrypropertyofknowledge,thefundamentalpapersbyRomer(1990)and
Aghion&Howitt(1992),focusedondecentralizedeconomieswithincompletemarketsandimperfectcompe-
tition.Amarketandapricearespecifiedforgoodsthatincorporateknowledge,butnotforknowledgeitself.
IncentivestoinvestinthecreationofknowledgegothroughthefactthatagentsinvestingR&Dexpecttoget
somemarketpower. Indeed,R&Dactivityisindirectlyfundedbymonopolyprofitsresultingfromintellectual
propertyrightsgrantedtoinnovators.Romer(1990)considersanequilibriuminwhicheachinnovatorobtains
aninfinitely-livedpatentonthegoodembodyinghisinnovation.InAghion&Howitt(1992)ontheotherhand,
theequilibriumisinspiredbySchumpeter’screativedestructionmechanisminsofarasthefirmwhichmanages
toinnovateinasectorreplacesthepreviousinnovatorandmonopolizesthissectoruntilthenextinnovation
occurs.Hence,suchequilibriaarecharacterizedbytwomarketfailures:firstly,marketpowerensuingfrom
thepresenceofamonopolyoneachintermediategoodincorporatinganinnovation,andsecondly,apositive
externalitywhichconsistsofthemarketincompletenessresultingfromthefactthatthereisnomarketfor
knowledgesinceknowledgeisnotpriced. Becauseofthesetwomarketfailures,Paretonon-optimalityislikely
toariseinthelaisserfaireequilibrium.
EndogenousgrowththeoryhaslongemphasizedthisissueofParetonon-optimality.Inparticular,many
R&D-basedendogenousgrowthmodelspredictthatintheabsenceofpublicpolicies,thedecentralizedeconomy
canleadtoaneitherinsufficientorexcessivelevelofresourcesallocatedtoR&Dactivity,andthustoaeither
sub-optimalorover-optimalgrowthrateoftheeconomy.Thiswell-knownresulthasbeenextensivelydiscussed
inthegrowthliterature,bothinverticaldifferentiationclassofmodels(e.g.,Grossman&Helpman1991;Aghion
&Howitt1992;Segerstrom1998;Li2003)andinexpandingvarietymodelsàlaRomer(e.g.,Benassy1998;
Jones&Williams2000;Alvarez-Pelaez&Groth2005).
Inthepresentpaper,wedevelopastandardendogenousgrowthmodel`aAghion&Howitt(1992)inwhich
wemakeknowledgeaccumulationandknowledgediffusionexplicitintheinnovationprocess;thisfirstnovelty
enablesustoclearlyformalizewhatwecoin“intensityofknowledgespillovers”.Intheendogenousgrowth
literature, theexpression“knowledgespillovers’’referssimultaneouslytotwointertwinedissues whichhave
beenstudiedinalargebodyofliterature(see,forinstance,Romer,1990;Aghion&Howitt1992,1998,2009;
Segerstrom,1998;Li,2002;Peretto&Smulders,2002;Jones,2005;Sener,2008;orAcemoglu,2009). Thefirst
issuerelatestothetechnologyusedinendogenousgrowthmodels:knowledgeproductionfunctionsgenerally
assumethattheknowledgepreviouslycreatedinaparticularsectorspreads(“spillsover”)intotheeconomy,
thusenhancingthecreationofnewknowledgeinothersectors.Thesecondissuesomehowensuesfromthe
firstone:itrelatestotheconsidereddecentralizedeconomywhichischaracterizedbythepresenceofapositive
externalityentailedbymarketincompletenesssinceknowledgeisnotpriced.Thisarticleobviouslyconsiders
bothissues,nevertheless,weusetheexpression“knowledgespillovers”specificallytorefertothefactthatthe
knowledgeinherentinanyinnovationdiffusesacrosssectors.Inparticular,weintroducetheconceptof“intensity
ofknowledgespillovers”toformalizethefactthatknowledgemaydiffusemoreorlessbroadly.
Oncethemodeldeveloped,wecomputetheassociatedfirst-bestsocialoptimum;then,westudytheoutcome
ofaclassicSchumpeterianequilibrium.Thedevelopedframeworkisnoexceptiontotherule:inthelaisserfaire
Schumpeterianequilibrium,theR&Deffort(representedbythequantityoflaborusedinR&Dinthepresent
model)canbesub-optimalorover-optimalasmaybethecaseinstandardSchumpeteriangrowthframeworks
descendingfromtheseminalpaperbyAghion&Howitt(1992).Severalcomplementaryapproachestryingto
understandwhytheR&Deffortcaneitherbesub-optimalorover-optimalcanbefound.Aghion&Howitt(1992,
1998)focusonthevariousmarketfailuresinvolvesbytheequilibriumconsideredinordertounderstandwhy
Paretonon-optimalitymayarise;theyexplainthattheproblemsofsurplusappropriabilityandofknowledge
spilloversbothtendtoleadtowardsunder-investmentinR&D,andthattheeffectsofcreativedestructionand
ofduplicationbothtendtoleadtowardsover-investmentinR&D.Acomplementaryapproachrelatesthefact
1540
thatthereistoolittleortoomuchR&Dtothe“sizeofinnovations”,thatistotheheightofthejumpson
thequalityladder.AccordingtoGrossman&Helpman(1991),onlyintermediate-sizeinnovationsshouldbe
subsidized;small-sizeandlarge-sizeinnovationsshouldbetaxed;whileaccordingtoSegerstrom(1998),itis
optimaltosubsidizesmall-sizeinnovationsandtotaxlarge-sizeinnovations. Theseapproachesfocusonintra-
sectoralknowledgespilloversbutdonotconsiderinter-sectoralknowledgespillovers. ModelsbyLi(2003)and
bySener(2008)generalizetheanalysisofSegerstrom(1998)bytakingthemintoaccount.Sener(2008)confirms
theresultsofSegerstrom(1998),whereasLi(2003)showsthatwheninter-sectoralknowledgespilloverseffects
aresufficientlylarge,R&Dactivitiesshouldbesubsidized. Asamatteroffact,“itiseasytofindmorepapers
inthisliteraturewithmajordifferencesinR&Dpolicyrecommendations”(Sener,2008).
Theanalysisconductedinourpapershedsnewlightontheseissuesinsofarasthemodelwedevelopenables
ustoidentifyaclearlinkbetweentheintensityofknowledgespillovers,theParetonon-optimalityoftheseminal
SchumpeterianequilibriuminitiallyintroducedbyAghion&Howitt(1992),andtheoptimalR&Dpublicpolicy.
Thekeypointmadeinthispaperliesinthatthemarketfailureinvolvedbymarketincompletenesscharacterizing
theSchumpeterianequilibriumisallthemorelikelytoleadtoanunder-optimalR&Deffortastheintensity
ofknowledgespilloversishigh.Conversely, itisallthemorelikelytoleadtoanover-optimalR&Deffort
astheintensityislow.Infact,werevealthattheeffectsofthedistortionofR&Dincentivesresultingfrom
marketincompletenessareamplifiedallthemoreastheintensityofknowledgespilloversishigh.Thisissue
isalsoreflectedinthefactthattheoptimaltooldedicatedtocorrectthemarketfailurecausedbymarket
incompletenessisclearlypositivelydependentontheintensityofknowledgespillovers.Indeed,weshowthat
thehigher(resp. lower)theintensityofknowledgespilloversis,themorelikelythispolicytoolshouldconsist
inasubsidy(resp.tax);andthatifitisasubsidy,thenthissubsidywillbeallthelargerastheintensityis
high.
Theremainderofthepaperisorganizedasfollows.InSection2,weexplicitlyformalizeknowledgespillovers
inanendogenousgrowthmodelwithverticalinnovationsinlinewithAghion&Howitt(1992)andwecompute
thefirst-bestsocialoptimum.InSection3,westudytheseminaldecentralizedeconomyintroducedbyAghion
&Howitt(1992);specifically,wedefine,characterize,andcomputeastandardSchumpeterianequilibrium.In
Section4,werevisittheissueofParetonon-optimalityoftheSchumpeterianequilibriumbyconsideringthe
partplayedbytheintensityofknowledgespillovers;inparticular,wecomparethelaisserfaireequilibriumwith
thefirst-bestsocialoptimum,weimplementthefirst-bestsocialoptimumintheSchumpeteriandecentralized
economybycharacterizingtheoptimalpublictools,andwestudythepropertiesoftheoptimaltooldedicated
tocorrectthemarketfailurecausedbymarketincompleteness.WeconcludeinSection5.
2ModelandFirst-bestSocialOptimum
Thissectiondisplaysacanonicalcontinuous-timeendogenousSchumpeteriangrowthmodel,inwhichweexplic-
itlyformalizeknowledgespillovers.InSection2.1,wepresentthetechnologiesandthepreferences;inparticular,
wedetailthemechanismsunderlyingtheprocessofinnovation,namelythepartplayedbyknowledgeaccumu-
lationanddiffusion.Then,inSection2.2,wecomputethefirst-bestsocialoptimum.
2.1TechnologiesandPreferences
WeconsiderastandardendogenousgrowthmodelwithverticalinnovationsinlinewithGrossman&Helpman
(1991)andAghion&Howitt(1992)inwhichweintroduceexplicitlyknowledgespillovers.Forthatpurpose,we
deriveagenerallawofknowledgeaccumulation,inwhichknowledgespilloversmanifestthroughtwochannels.
Firstly,inanytypeofsector,theR&Dactivityproducesinnovationsusingtheknowledgeinherentinpreviously
createdinnovations. Theseinnovationsmayhavebeenproducedwithinthissector;orinothersectors,which
canbemoreorlesstechnologicallydistantfromtheaforesaidsector.Secondlyandreciprocally,theknowledge
producedinanygivensectorspillsoverintoR&Dactivityofothersectors;thisdiffusionbeingallthemore
likelythatsectorsaretechnologicallyclose.Toformalizetheseknowledgespillovers,weusethecircularproduct
differentiationmodelofSalop(1979):thereisacontinuumQ,ofmeasureN,ofintermediatesectorsuniformly
distributedonaclockwiseorientedcircle.Ateachdatet, ineachsectori, i∈Q, anintermediategoodi
isproducedinquantityx
it
; besides, eachoftheseintermediategoodsisassociatedwithaspecificstockof
1541
knowledgeκ
it
.Thewholestockofknowledgeintheeconomyatdatetis
1
K
t
=
Z
Q
κ
it
di.(1)
EachsectorhasitsownR&Dactivitywhichusestwoinputs: arivalone(labor)andanonrivalone(astock
ofknowledge).
2
Letuspresentthesetofbasicassumptionsunderlyingtheinnovationprocessinourmodel.
First,asinmoststandardSchumpeteriangrowthmodels,theinnovationprocessisuncertain:
Assumption1.Inanyintermediatesectori,i∈Q,innovationsoccurrandomlywithaPoissonarrivalrate
λl
it
,λ>0,wherel
it
istheamountoflabordevotedtoR&Datdatet.
Second, aninnovationatdatetinany given sectoriconsists inan enhancementofthequalityof the
intermediategoodproducedinthissector.Inotherwords,aninnovationcorrespondstoanincreaseinthe
stockofknowledgeκ
it
andtotheincorporationofthisnewstockofknowledgeintheintermediategoodi.This
appearsinAssumption2below,whichformalizesthattheinnovationprocessgoesalongwiththefactthat,
ineachsectori,theR&Dactivityproducesinnovations(andthusnewknowledge)bymakinguseofapool
comprisingpreviouslycreatedknowledge:
Assumption2.Inanyintermediatesectori,i∈Q,ifaninnovationoccursatdatet,theincreaseinknowledge
isκ
it
= θP
it
,θ>0,whereP
it
isthepoolofknowledgefromwhichthissector’sR&Dactivitycandrawfrom
inordertoinnovate.
Third,foranygivensectori,thecompositionofthepoolofknowledgeP
it
atthedisposalofR&Dactivityi
basicallydependsontheusabilityoftheknowledgecreatedbytheR&Dactivitiesofalltheothersectors.The
importanceoftheinfluencethattheR&Dactivitiesofvarioussectorscanhaveoneachotherhasoftenbeen
stressedbyempiricalstudies(e.g.,Griliches,1992and1995;Hall,Mairesse&Mohnen,2010;Hall,2004)and
hasbeenatthecoreoftheseminalendogenousgrowththeory(e.g.,Romer,1990;Aghion&Howitt,1992and
1998;Howitt,1999;Jones,1999).Inparticular,ithasbeenemphasizedthattheR&Dactivityofonesectoris
likelytoentailpositivespilloverseffectsinothersectors;moreover,“suchspilloversareallthemorelikelyand
significantasthesenderandthereceiverarecloselyrelated”(Hall,Mairesse&Mohnen,2010).
Basedontheseideas,weproposeasimpleformalizationofhowthesepoolsofknowledgeareformed.Inany
sectori,theR&Dactivityisbothreceivingandsendingknowledge. Indeed,anygivenR&Dactivityimakes
useoftheknowledgegeneratedbytheinnovationprocessoccurringinothersectors.LetQ
R
i
denotethesubset
ofsectorsofQproducingknowledgewhichentersthepoolP
it
.Besides,throughitsinnovationprocess,any
givenR&DactivityiproducesknowledgethatspillsoverintoR&Dactivitiesofothersectors. LetQ
S
i
denote
thesubsetofsectorsofQthatcanusetheknowledgeproducedbyR&Dactivityi;wenamethemeasureofQ
S
i
the“scopeofdiffusionofknowledgeκ
it
”.Wemakethefollowingassumptionsonthewayknowledgediffuses
acrosssectors:
Assumption3.Inanyintermediatesectori,i∈Q,whenaninnovationoccurs,knowledgespillssymmetrically
overthecircleQ.
Assumption4.Thescopeofdiffusionofknowledgeisidenticalforallsectors;itisdenotedbyϑ,1 ϑN.
Notonlythesetwoassumptionsenablesustomitigateintricacy,buttheyalsoensuefromtheassumptionof
symmetryacrosssectorscommonlymadeinendogenousgrowthmodels.
3
Consequently,thesubsetofQcompris-
ingthesectorsthatusetheknowledgeκ
it
producedbyR&DactivityiisQ
S
i
= [iϑ/2;i+ϑ/2].Besides,R&D
activityimakesuseoftheknowledgeproducedbythesectorsbelongingtothesubsetQ
R
i
= [iϑ/2;i+ϑ/2];
inotherwords,theknowledgeproducedbytheR&Dactivitiesofanysectorj[iϑ/2;i+ϑ/2]contributes
1
Knowledgeisassumedtobeanhomogenousgood.Besides,itsinitialstock,K
0
,isnormalizedtoone.
2
Inthispaper,therivalgoodusedinR&Dislabor;alternatively,onecouldconsidertheuseofphysicalcapital,orofthefinal
good(see,forinstance,inBarro&Sala-i-Martin,2003).Asdetailedbelow,thecompositionofthestockofknowledgemayinclude
onlytheknowledgeproducedwiththesector,alltheknowledgeavailableintheeconomy,oranycaseinbetweenthesetwopolar
cases(seethecommentsafterLemma1).
3
Weprovidemoredetailsonthesymmetryassumptionbelow,attheendofthissection.Asusual,thisstandardassumption
isused inthepresentpapertocomputethefirst-bestsocial optimum(seethe proofof Proposition1 inSection2.2) andthe
Schumpeterianequilibrium(seeSection3.2).
1542
tothepoolofknowledgeusedbyR&Dactivityofsectori.
4
Hence,ateachdatet,inanyintermediatesector
i,thepoolofknowledgeusedbytheR&Dactivityis
P
it
=
Z
Q
R
i
κ
ht
dh,i∈Q,withQ
R
i
= [iϑ/2;i+ϑ/2].(2)
ThelawofknowledgeaccumulationinanysectoriisderivedfromAssumptions1,2,3,and4;itischarac-
terizedinLemma1below.
Lemma1.Ateachdatet,inanyintermediatesectori,knowledgeisproducedalongwith
˙κ
it
= λθl
it
P
it
,i∈Q,whereP
it
isgivenin(2).(3)
Proof.Letk,kN,bethenumberofinnovationsoccurringinagivenintermediatesectori,i∈Q,during
atimeinterval(t,t+∆t).Thestockofknowledgeaccumulatedinsectoriatthebeginningoftheperiodis
κ
it
.UnderAssumptions1and2,thestockofknowledgeattheendoftheperiod,κ
it+∆t
,isarandomvariable
takingthevalues
{κ
it
+P
it
}
kN
withassociatedprobabilities
R
t+∆t
t
λl
iu
du
k
k!
e
R
t+∆t
t
λl
iu
du
kN
,
whereP
it
ensuesfromAssumptions3and4,andisgivenin(2).Theexpectedstockofknowledgeatdatet+∆t
isthus
E[κ
it+∆t
] =
X
k=0
R
t+∆t
t
λl
iu
du
k
k!
e
R
t+∆t
t
λl
iu
du
[κ
it
+P
it
]
=
κ
it
X
k=0
R
t+∆t
t
λl
iu
du
k
k!
+θP
it
Z
t+∆t
t
λl
iu
du
!
X
k=1
R
t+∆t
t
λl
iu
du
k1
(k1)!
e
R
t+∆t
t
λl
iu
du
=
"
κ
it
e
R
t+∆t
t
λl
iu
du
+θP
it
Z
t+∆t
t
λl
iu
du
!
e
R
t+∆t
t
λl
iu
du
#
e
R
t+∆t
t
λl
iu
du
= κ
it
+λθ
Z
t+∆t
t
l
iu
du
!
P
it
.
Hence,denotingbyΛ
iu
aprimitiveofl
iu
withrespecttothetimevariableu,onehas
E[κ
it+∆t
]κ
it
t
= λθ
Λ
it+∆t
Λ
it
t
P
it
.
LettingttendtozerointheNewton’sdifferencequotientsofE[κ
it
]andofΛ
it
,onegets
˙κ
it
E[κ
it
]
∂t
= λθl
it
P
it
.
Thisshowsthattheexpectedknowledgeinanysectori,i∈Q,isadifferentiablefunctionoftime.Itsderiva-
tivegivesthelawofknowledgeaccumulationinsectoriasexhibitedinLemma1(theexpectationoperatoris
droppedtosimplifynotations).
Theformalizationpresentedabovegeneralizesthestandardinnovation-basedendogenousgrowththeoryin-
sofarasthelawofknowledgeaccumulationderivedinLemma1isquitegeneral.Indeed,manystandardlawsof
knowledgeaccumulationconsideredintheendogenousgrowththeoryliteratureturnouttobeparticularcases
4
Becauseoftheassumptionsofsymmetry,onehasQ
S
i
= Q
R
i
.Consideringamoregeneralframeworkinwhicheachsectorihas
aspecificϑ
i
,onewouldhaveQ
S
i
=
n
h∈Q/|ih|≤
ϑ
i
2
o
andQ
R
i
=
n
h∈Q/|ih|≤
ϑ
h
2
o
.
1543
of(3).AsexplainedinAghion&Howitt(1998),Howitt(1999),Jones(1999),Laincz&Peretto(2006),or
Dinopoulos&Sener(2007),mostgrowthmodelsdiffermainlyinthespecificationoftheknowledgeproduction
technology.Infact,Lemma1underlinesthatthemaindistinctionistobefoundintheconstitutionofthepools
ofknowledgeusedbyR&Dactivities,andintheknowledgespilloverstheystemfrom.
Inparticular,Lemma1illustratesthefactthattheR&Dactivityofagivensectoralwaysusestheknowledge
accumulatedsofarinthissectorandpotentiallycapturespartofthemassoftheideascreatedinallothers;this
subsetofK
t
ismoreorlessimportant,asthescopeofknowledgediffusionϑismoreorlesswide. Eventually,
dependingonthechoice ofthe parameterϑ, oneobtainsalargecollectionofpools, P
it
, andthus models
consideringvarioustypesofknowledgespillovers.Letusdisplaytwopolarcases.
Globalknowledgespillovers.Itcanbeassumedthatallknowledgesystematicallyspillsintothewhole
economy.Formally,ifoneassumesthatthescopeofknowledgediffusionismaximal(ϑ=N),onehasQ
S
i
=
Q
R
i
= Q,i∈Q.Eachsectorimakesuseofthewholestockofknowledgeavailableintheeconomy:rewriting
(2)andusing(1),onehasP
it
=
R
Q
κ
ht
dh= K
t
,i∈Q.Then,theresultingknowledgeproductionfunctionin
eachsectoriis ˙κ
it
= λθl
it
K
t
,i∈Q.Thisfirstpolarcaseexhibitsglobalknowledgespillovers.
Itisinterestingtonotethatthislawofknowledgeaccumulationrelatestotheoneoriginallyintroduced
intheseminalpaperofRomer(1990).Indeed,thepresentexpressionofthelawofknowledgeaccumulation-
whichishereendogenouslyderivedfromassumptionsmadeinastochasticqualityladdersmodel-leadstoalaw
ofmotionofthewholedisposableknowledgeformallyidenticaltotheknowledgeproductionfunctioninitially
introducedbyRomer(1990).
5
Nointer-sectoralknowledgespilloversbutonlyintra-sectoralknowledgespillovers.Themodels
ofGrossman&Helpman(1991),Segerstrom(1998),Peretto(1999),Acemoglu(2009-Ch.14),orAghion&
Howitt(2009-Ch. 4)implicitlyconsiderspilloversonlywithineachsector. Ineachsector,thepoolofknowl-
edgeusedbytheR&Dactivityincludesexclusivelytheknowledgepreviouslyaccumulatedwithinthissector.In
ourformalization,thissecondpolarcaseamountstoassumingthatthescopeofknowledgediffusionisminimal
(ϑ= 1);thenonehasP
it
= κ
it
,i∈Q.Theresultinglawofknowledgeaccumulationis ˙κ
it
= λθl
it
κ
it
,i∈Q.
Furthermore,thelawofknowledgeaccumulationderivedinLemma1alsoallowstoconsiderotherstandard
lawsofknowledgeaccumulationusedintheendogenousgrowththeorybyspecifyingthepoolsofknowledgeP
it
onanadhocbasis.
“Leading-edgetechnology”.InthemodelsofAghion&Howitt(1992),Young(1998), Howitt(1999),
Segerstrom(2000),orGarner(2010),itisassumedthatknowledgespilloversdependontheknowledgelevel
reachedbythefrontierfirms(i.e.reachedinthemostadvancedsector).Inourformalization,thisamountsto
assumingthatP
it
= κ
max
t
= max{κ
it
,i∈Q},i∈Q;then,onehas ˙κ
it
= λθl
it
κ
max
t
,i∈Q.
Noknowledgespillovers.InBarro&Sala-i-Martin(2003-Ch. 6)orinPeretto(2007),theknowledge
productiontechnologyusesfinalgoodonly;itisthusconsideredthatthereisneitherinter-sectoralnoreven
intra-sectoralknowledgespillovers.Ourformalizationencompassesasimilarframeworkinwhichknowledge
isproducedonlywithprivateinputs(laborinthepresentmodel); forthispurpose,itcanbeassumedthat
P
it
= 1,i∈Q;thusonehas ˙κ
it
= λθl
it
,i∈Q.
Beforepresentingtheremainderofthemodel,letusprovidesomecommentsonAssumptions1,2,3,4,and
onLemma1.Eachofthetreeparametersλ,θ,andϑaccountsfortheproductivityofR&Dactivities.Asseen
inAssumption1,λstandsfortheproductivityofthelabordevotedtothecreationofinnovations.Asseenin
Assumption2,θstandsfortheproductivityofthepoolofknowledgeintheproductionofinnovations(i.e. of
newknowledge): θaccountsfortheextenttowhichthepoolofknowledgeP
it
contributestotheincreasesin
knowledgeκ
it
resultingfromaninnovation(κ
it
= θP
it
).Inotherwords,θpartlymeasurestheintensityof
knowledgespillovers.AsseeninAssumptions3and4,andintheexpressiongivenin(2)ofthepoolofknowledge
usedbyeachR&Dactivity,thescopeofknowledgediffusion,ϑ,standsfortheoverallinfluenceoftheknowledge
inherentinanyinnovationontheconstitutionofthepoolsofknowledge.Accordingly,ϑalsopartlymeasures
theintensityofknowledgespillovers.Wewillreturntothesepointsbelow(seeinthecommentsofProposition1).
Therestofthemodelisfairlystandardandinlinewithseminalendogenousgrowthmodels.Weconsider
5
Indeed,differentiating(1)withrespecttotime,onegets
˙
K
t
=
R
Q
˙κ
it
di=λθ
R
Q
l
it
di
K
t
˙
K
t
=λθL
R
t
K
t
,whereL
R
t
=
R
Q
l
it
diisthetotalamountoflaborusedinR&D.
1544
aninfinitelylivedrepresentativehouseholdwhohasthefollowingintertemporalpreferences:
U=
Z
0
u(c
t
)e
ρt
dt,(4)
wherec
t
isthepercapitalconsumption,u(c
t
)istheassociatedinstantaneousutilityatdatet,andρisthe
subjectivediscountrate.Ateachdatet,thereareLidenticalhouseholds,eachonebeingendowedwithone
unitoflaborwhichissuppliedinelastically.Inordertolimitthenumberofparameters,wemakethefollowing
simplifyingassumptions.Weconsideru(c
t
) = ln(c
t
);besides,thereisnopopulationgrowth,andthepopulation
sizeisnormalizedtoone.
6
LaborisusedintheR&Dactivityofeachsectori(l
it
,i∈Q)andtoproducethe
finalgood(L
Y
t
);hence,theconstraintonthelabormarketis
1 = L
R
t
+L
Y
t
,whereL
R
t
=
Z
Q
l
it
diisthetotalquantityoflaborusedinR&Dactivity.(5)
Anhomogeneousfinalgoodisproducedwithlaborcombinedwithallavailableintermediategoodsandthe
knowledgeincorporatedineachofthem:
Y
t
= (L
Y
t
)
1α
Z
Q
κ
it
(x
it
)
α
di,0 <α<1.(6)
Ateachdatet,thefinalgoodiseitherconsumedbytherepresentativehousehold(c
t
)orusedtoproducethe
intermediategoods. Itisoftenassumed,thattheproductionfunctionofanygivenintermediategoodi,i∈Q,
ischaracterizedbyincreasingcomplexity(i.e.thelargerthestockofknowledgeinherentinintermediategood
i,themorefinalgoodisneededtoproducethisintermediategood).Weassumelikewise:
x
it
=
y
it
κ
it
,i∈Q,(7)
wherey
it
isthequantityoffinalgoodusedtoproducex
it
unitsofintermediategoodi.Thus,theconstraint
onthefinalgoodmarketwrites
Y
t
= c
t
+
Z
Q
y
it
di.(8)
Asusualinendogenousgrowththeory,computingthefirst-bestsocialoptimumaswellastheSchumpeterian
equilibrium requires atsome point to make the standard assumption ofsymmetry across sectors (see, for
instance,inAghion&Howitt1992or1998-Ch.3,orinPeretto&Smulders2002).
7
Formally,whenthetime
comes,itwillbeassumedbothforcomputingtheoptimum(Section2.2)andforcomputingtheSchumpeterian
equilibrium(Section3.2),thatallsectorshavethesameinitiallevelofknowledge(κ
i0
=κ
0
,i∈Q),that
l
it
=l
t
,i∈Q,andthatκ
it
=κ
t
,i∈Q.
8
Finally,inallthatfollows,therateofgrowth,
˙z
t
z
t
,ofanyvariable
z
t
,isdenotedg
z
t
.
2.2First-bestSocialOptimum
Thefirst-bestsocialoptimumisderivedbymaximizingtherepresentativehousehold’sdiscountedutility(4)
subjectto(1),(2),(3),(5),(6),(7),and(8).Thecontrolvariablesarex
it
,i∈Q,L
Y
t
,l
it
,i∈Q,andc
t
;besides,
6
ThekeyresultsofthepaperaremaintainedifoneusesaC.E.S.instantaneousutilityfunctionofparameterε,u(c
t
) = c
1ε
t
/(1ε)
and/orifoneassumesconstantpopulationgrowth. Thesemoregeneralassumptionsintroduceadditionalparametersbutdonot
addanyrelevantinsighttotheissuesaddressedinthepresentpaper.Furthermore,consideringconstantpopulationgrowthcan
easilybedonewithoutthemodelexhibitingthenondesirablescaleeffectsproperty.Indeed,toconsiderascale-invariantfully
endogenousgrowthmodel,itissufficienttoallowforexpansioninthenumberofsectors(see,forexample,Dinopoulos&Thompson
1998,Peretto1998,Young1998,Howitt1999,Peretto1999,orAghion&Howitt2009-Ch.4);then,removingscaleeffectsin
thepresentframeworkcouldbedonebyassumingthat,ateachdatet,thenumberofsectorsN
t
andthesizeofthepopulation
L
t
areproportional(e.g.,N
t
= γL
t
,γ>0).Thiscommonlyusedassumptionhasbeenjustifiedboththeoreticallyandempirically
(Aghion&Howitt1998-Ch.12,Jones1999,Segerstrom2000,Laincz&Peretto2006,orDinopoulos&Sener2007).SeeinGray
&Grimaud(2016)foramoregeneralversionofthepresentmodel.
7
Formoredetailsonthisassumptionofsymmetryacrosssectors,seeforinstanceinPeretto(1998,1999),orinCozzi,Giordani
&Zamparelli(2007).
8
Bywayofexample,letusrewrite(1),(2),and(3)underthesymmetryassumption.Thewholestockofknowledgeinthe
economyisK
t
=
R
Q
κ
it
di=
t
.ThepoolofknowledgeusedinsectoriisP
it
= P
t
= ϑκ
t
,i∈Q.Theresultinglawofknowledge
accumulationis ˙κ
it
κ
t
= λθϑl
t
κ
t
,i∈Q.
1545
thereisacontinuumofstatevariablesκ
it
,i∈Q(infact,thereisacontinuumofconstraintsrelativetothelaw
ofmotionofknowledge).TheHamiltonianofthedynamicoptimizationproblemcanbewrittenas
H= ln(c
t
)e
ρt
+µ
t
Y
t
c
t
Z
Q
κ
it
x
it
di
+ν
t
1L
Y
t
Z
Q
l
it
di
+
Z
Q
ζ
it
κ
it
]di,
whereY
t
= (L
Y
t
)
1α
R
Q
κ
it
(x
it
)
α
di,˙κ
it
= λθl
it
P
it
,i∈Q,P
it
=
R
Q
R
i
κ
ht
dh;andwhereµ
t
,ν
t
,andζ
it
,i∈Q,are
theco-statevariablesassociatedwiththefinalgoodresourceconstraint,thelaborconstraint,andthecontinuum
ofstatevariables,respectively.
Thefirst-bestsocialoptimumischaracterizedinthefollowingProposition.Fromnowon,thesuperscript
o
” isusedfor“‘first-bestsocialoptimum”.Furthermore,letusintroducethenotationΘθϑ; asdetailed
belowinthecommentsofProposition1,Θisdefinedasthemeasureofthe“intensityofknowledgespillovers”.
Proposition1.Atthefirst-bestsocialoptimum,thepartitionoflabor,thequantityofeachintermediategood
i,andthegrowthratesare
L
Yo
t
= L
Yo
=
ρN
λΘ
;l
o
it
= l
o
=
1
N
ρ
λΘ
,i∈Q;x
o
it
= x
o
= α
1
1α
ρN
λΘ
,i∈Q;
andg
o
c
t
= g
o
Y
t
= g
o
K
t
= g
o
κ
it
= g
o
= λΘl
o
=
λ
N
Θρ,i∈Q,t,withΘ θϑ.
Proof.Thefirst-orderconditionsofthemaximizationprogramare
9
H
∂x
it
= 0,i∈Q⇔µ
t
α(L
Y
t
)
1α
κ
it
(x
it
)
α1
κ
it
= 0,i∈Q,(9)
H
∂L
Y
t
= 0 µ
t
(1α)
Y
t
L
Y
t
= ν
t
,(10)
H
∂l
it
= 0,i∈Q⇔ζ
it
λθ
Z
Q
R
i
κ
ht
dh= ν
t
ζ
it
λθP
it
= ν
t
,i∈Q,(11)
H
∂c
t
= 0 c
1
t
e
ρt
= µ
t
,(12)
H
∂κ
it
=
˙
ζ
it
,i∈Q⇔µ
t
(L
Y
t
)
1α
(x
it
)
α
x
it
+
Z
Q
R
i
ζ
ht
λθl
ht
dh=
˙
ζ
it
,i∈Q.(13)
From(9),onegetstheusualsymmetricuseofintermediategoods:
x
it
= x
t
= α
1
1α
L
Y
t
,i∈Q.(14)
Using(1)and(14),thefinalgoodproductionfunction(6)rewrites
Y
t
= α
α
1α
L
Y
t
K
t
.(15)
Then,from(8),(14),and(15),oneobtains
Y
t
= c
t
+α
1
1α
L
Y
t
K
t
Y
t
= c
t
+αY
t
c
t
Y
t
= 1α.(16)
Log-differentiating(12),(15),and(16)gives
g
c
t
+ρ= g
µ
t
,g
Y
t
= g
L
Y
t
+g
K
t
,andg
c
t
= g
Y
t
,respectively.(17)
Besides,plugging(15)in(10)andin(13),onegets
µ
t
(1α)α
α
1α
K
t
= ν
t
.(18)
andµ
t
(1α)α
α
1α
L
Y
t
+λθ
Z
Q
R
i
ζ
ht
l
ht
dh=
˙
ζ
it
,i∈Q.(19)
9
Plustheusualtransversalityconditionwhichwillbeusedtocharacterizethesteady-stateoptimum.
1546
Letusnowusetheusualassumptionofsymmetryacrosssectors(l
it
=l
t
andκ
it
=κ
t
,i∈Q).
10
The
wholestockofknowledge(1)andthepoolofknowledgeinsectori(2)thenwrite
K
t
=
Z
Q
κ
it
di=
t
,andP
it
=
Z
Q
R
i
κ
ht
dh= P
t
= ϑκ
t
,i∈Q,respectively.(20)
Hence,weobtainthegrowthrateofthestockofknowledgeinanysectoriandofthewholestockofknowledge
intheeconomy:
g
κ
it
= g
κ
t
= g
K
t
= λθϑl
t
,i∈Q.(21)
Besides,thelaborconstraint(5)rewrites
Nl
t
= 1L
Y
t
.(22)
Underthesymmetryassumption,(11)canbeexpressedas
ζ
it
= ζ
t
=
ν
t
λθϑκ
t
,i∈Q.(23)
Then,using(18),(20),and(23),oneobtains
ν
t
= µ
t
(1α)α
α
1α
t
= ζ
t
λθϑκ
t
µ
t
ζ
t
=
λθϑ
(1α)α
α
1α
N
.(24)
Log-differentiating(24),oneobtains
g
µ
t
= g
ζ
t
.(25)
Furthermore,rewriting(19)underthesymmetryassumptiongives
µ
t
ζ
t
(1α)α
α
1α
L
Y
t
+λθϑl
t
=
˙
ζ
t
ζ
t
;then,using
(24)onegetsg
ζ
t
=
˙
ζ
t
ζ
t
=
λθϑ
(1α)α
α
1α
N
(1α)α
α
1α
L
Y
t
+λθϑl
t
=
λθϑ
N
L
Y
t
+Nl
t
.Finally,using(22)and(25)
gives
g
µ
t
= g
ζ
t
=
λθϑ
N
.(26)
Then,theoptimalgrowthrateofper-capitaconsumption,g
o
c
,canbederivedusing(17)and(26):
g
o
c
=
λ
N
θϑρ.(27)
Finally,thefirst-bestsocialoptimumisthesolutionofthefollowingsystemofequations,whichsummarize
theconditionsobtainedin(14),(17),(21),(22),and(27):
g
o
c
=
λθϑ
N
ρ(a)
g
o
Y
= g
o
c
(b)
g
o
L
Y
t
= g
o
Y
g
o
K
t
(c)
g
κ
o
it
= g
κ
o
t
= g
K
o
t
= λθϑl
o
t
,i∈Q (d)
Nl
o
t
= 1L
Yo
t
(e)
x
o
it
= x
o
t
= α
1
1α
L
Yo
t
,i∈Q(f)
Fromequations(a),(b),(c),(d)and(e),oneobtainsthefollowingdifferentialequationinL
Yo
t
:
g
o
L
Y
t
=
λθϑ
N
ρλθϑ
1L
Yo
t
N
g
o
L
Y
t
=
λθϑ
N
L
Yo
t
ρ.
LetX
t
=1/L
Yo
t
,onegetsafirst-orderlineardifferentialequationinX
t
,
˙
X
t
ρX
t
=
λθϑ
N
,thesolutionof
whichis
X
t
=
X
0
λθϑ
ρN
e
ρt
+
λθϑ
ρN
L
Yo
t
=
1
1
L
Yo
0
λθϑ
ρN
e
ρt
+
λθϑ
ρN
.
10
Seethecommentabove(endofSection2.1)onthesymmetryassumptioncommonlymadeinendogenousgrowthmodels.
1547
Usingthetransversalitycondition,weshowthatL
Yo
t
instantlyreachesitssteady-statelevelL
Yo
ss
= ρN/λθϑ;
andthus,onehasL
Yo
t
= L
Yo
ss
,t.Hence,oneobtainstheoptimalpartitionoflabor,andoptimalquantityof
intermediategoods:
L
Yo
=
ρN
λθϑ
,l
o
i
= l
o
=
1
N
ρ
λθϑ
,i∈Q,andx
o
i
= x
o
= α
1
1α
ρN
λθϑ
,i∈Q.(28)
Theoptimalgrowthrateofknowledgeaccumulationinanysectoriandinthewholeeconomyaregivenby
g
κ
o
i
= g
κ
o
= g
K
o
=
λθϑ
N
ρ,i∈Q.(29)
Finally,(27),(28),and(29)proveProposition1.
AsexplainedaboveinthecommentstoAssumptions1,2,3,4,andtoLemma1,thetreeparametersλ,θ,
andϑalldeterminetheproductivityofR&Dactivities.Hence,asshownbytheresultsobtainedinProposition
1,theseparametersobviouslydeterminetheoptimalgrowthrateoftheeconomy.Atthefirst-bestoptimum,an
increaseinλ,θ,and/orϑimpliesareallocationoflaborfromthefinalgoodproductiontowardR&Dactivity;
thusleadingtoahighergrowthrate.
ThepartplayedbyλisratherevidentasitdeterminestheproductivityoflaborinR&D(Assumption1):
themoreproductivetheR&Dis,themoreinnovationsoccur,andthusthehighergrowthrateis.
Therolesplayedbytheparametersθandϑarecloselyrelated:θdeterminestheproductivityofthepoolof
knowledgeintheproductionofnewknowledgeinagivensector(Assumption2),andϑdeterminestheoverall
influenceoftheknowledgeproducedinaparticularsectorontheconstitutionofthepoolsofknowledgeusedby
theR&Dactivitiesoftheothersectors(Assumptions3and4,andequation(2)). Whenaninnovationoccurs
inagivensector,θmeasurestheimpactoftheknowledgeinherentinthisinnovationontheproductionofnew
knowledgeinothersectors;whereasϑmeasuresthesubsetofsectorswhichwillbeusingtheknowledgestemming
fromthisinnovation. Nevertheless,θandϑbothclearlymeasuretheintensityofknowledgespillovers.Inthe
presentmodel,asillustratedinProposition1,thesetwoparametersoftenappearintheformoftheproductθϑ;
therefore,wehaveintroducedthenotationΘθϑ,tostandforthe“intensityofknowledgespillovers”,which
isakeydeterminantintheoptimalgrowthrate.OnehasthefollowingCorollarytoProposition1.
Corollary.ThestrongertheintensityofknowledgespilloversΘintheeconomy,thehighertheoptimalR&D
effortl
o
=
1
N
ρ
λΘ
,andthusthehighertheoptimalgrowthrateg
o
=
λ
N
Θρ.
Toconcludethissection,letusnotethatintheendogenousgrowthliterature,thedenomination“knowledge
spillovers” relatessimultaneouslytotwoissues.First,a“technology-related” issueasitreferstothemecha-
nismbywhichknowledgepreviouslycreatedspillsoverintotheeconomy,thusenhancingthecreationofnew
knowledge.Second,an“equilibirum-related” issueasitreferstomarketincompleteness:inthedecentralized
economiesgenerallyconsidered(e.g.,theequilibriastudiedbyRomer,1990,orbyAghion&Howitt,1992),
knowledgeisnotpriced. Asdetailedintheintroductionofthispaper,knowledgespilloversrelatedissueshave
beenextensivelystudied(e.g.,Romer,1990;Aghion&Howitt1992,1998,2009;Segerstrom,1998;Li,2002;
Peretto&Smulders,2002;Jones,2005;Sener,2008;Acemoglu,2009). Inthissection,wehaveintroducedex-
plicitlyaformalizationofknowledgespilloversinthetechnologyofproductionofknowledge(seeAssumptions
2,3,and4,andLemma1).InSection3below,westudyaSchumpeterianequilibrium`aAghion&Howitt
(1992),andweshedanewlightonthelinkbetweenknowledgespilloversandtheParetonon-optimalityofthe
Schumpeterianequilibriumwhichresultsfrommarketincompleteness.
3DecentralizedEconomy:SchumpeterianEquilibrium
Inthis section, we studya decentralized economy inwhichthe fundingof R&Dactivity (andthusofthe
productionofknowledge)isbasedonassumptionsinspiredbySchumpeter’screativedestructionmechanism.
Formally,wedefine,characterize,andcomputethestandardSchumpeterianequilibrium`aAghion&Howitt
(1992).
3.1DefinitionoftheSchumpeterianEquilibriumandAgents’Behaviors
Consideranysectori,i∈Q.Onceaninnovationoccursinsectori,itsproducerisgivenaninfinitely-lived
patent. Then,ineachsectori,thelatestinnovatorhasamonopolyontheintermediategoodiuntilreplaced
1548
bythenextinnovatorupgradingthequalityofthisintermediategood.Hence,theR&Dactivityofeachsector
-whichbasicallyproduceknowledge-isindirectlyfinancedbyasuccessionofmonopolyonanintermediate
goodthequalityofwhichsequentiallyincreasesastheknowledgeitincorporatesaccumulatesinthesector.
Suchadecentralizedeconomyischaracterizedbytwomarketfailures.First,marketpowerimpliedbythe
presenceofamonopolyoneachintermediategoodmarket.Second,marketincompleteness:knowledgecreation
isindirectlyfundedbymonopolyprofitssincethere isnomarket forknowledge(knowledgeisnotpriced).
Hence,theSchumpeterianequilibriumconsideredinthepresentpaperislikelytobeParetonon-optimal;in
particular,atthelaisserfaireequilibrium,thequantityoflaborusedinR&D(i.e.theR&Deffort)caneither
besub-optimalorover-optimal.Wethusconsidertwotoolsdedicatedtomitigatethesetwomarketfailures.
LetΥ
P
denotethetooltocorrectmarketpower;itiswellknownthatmonopolypowercanbecorrectedby
anadvaloremsubsidyoneachintermediategooddemand.LetΥ
I
denotethepublictooltoalleviatemarket
incompleteness;asitwillbeprovenbelow,thistoolcanconsisteitherinasubsidyorinataxontheprofitsof
eachR&Dactivity.
LetusnowdefineformallythesetofSchumpeterianequilibriaasfunctionsofthepolicytoolsvector
Υ
P
,Υ
I
.
Wedenotethewagebyw
t
,thepriceofintermediategoodibyq
it
,i∈Q,theinterestratebyr
t
;andwenormalize
thepriceofthefinalgoodtoone.
Definition.Ateachvectorofpublicpolicytools
Υ
P
,Υ
I
isassociatedaparticularSchumpeterianequilibrium
whichconsistsoftimepathsofsetofprices
n
w
t
Υ
P
,Υ
I
,
q
it
Υ
P
,Υ
I

i∈Q
,r
t
Υ
P
,Υ
I
o
t=0
andofquantities
n
L
Y
t
Υ
P
,Υ
I
,
l
it
Υ
P
,Υ
I

i∈Q
,
κ
it
Υ
P
,Υ
I

i∈Q
,
x
it
Υ
P
,Υ
I

i∈Q
,c
t
Υ
P
,Υ
I
,Y
t
Υ
P
,Υ
I
o
t=0
suchthat:therepresentativehouseholdmaximizeshisutility;firmsmaximizetheirprofits; thelabormarket,
thefinancialmarket,andthefinalgoodmarketareperfectlycompetitiveandclear;oneachintermediategood
market,theinnovatorisgrantedaninfinitely-livedpatentandmonopolizestheproductionandsaleuntilreplaced
bythenextinnovator;andthereisfreeentryoneachR&Dactivity(i.e.thezeroprofitconditionholdsforeach
R&Dactivity).
Inordertofullycharacterizethedecentralizedeconomy,wenowpresentindetailtheagents’behaviors.For
thepurposeofsimplifyingnotationsthroughoutthefollowingcomputations,wemomentarilydropthe
Υ
P
,Υ
I
argumentsforallvariables.
Representativehousehold.
Therepresentativehouseholdmaximizeshisintertemporalutilitygivenby(4)subjecttohisbudgetconstraint,
˙
b
t
=w
t
+r
t
b
t
c
t
T
t
,whereb
t
denotesthepercapitafinancialassetandT
t
isalump-sumtaxusedbythe
governmenttofinancepublicpolicies.OnegetstheusualKeynes-Ramseycondition:
r
t
= g
c
t
+ρ.(30)
Finalgoodproducer.
Thefinalgoodmarketisassumedtobecompetitive;theprofitofthefinalgoodproducer(recall,thepriceof
thefinalgoodisnormalizedtoone)writes
π
Y
t
= (L
Y
t
)
1α
Z
Q
κ
it
(x
it
)
α
diw
t
L
Y
t
Z
Q
(1Υ
P
)q
it
x
it
di.
Thefirst-orderconditionsoftheprofitmaximizationprogramare
∂π
Y
t
∂L
Y
t
= 0 w
t
= (1α)
Y
t
L
Y
t
,and(31)
∂π
Y
t
∂x
it
= 0,i∈Q⇔
1Υ
P
q
it
= α(L
Y
t
)
1α
κ
it
(x
it
)
α1
,i∈Q,i∈Q.(32)
1549
Intermediategoodsproducers.
Ineachsectori,i∈Q,thelatestinnovatorhasamonopolyontheproductionandsaleofintermediategood
i.GiventhepublicinterventiononR&Dactivity(formalizedbythepublictoolΥ
I
introducedabove),the
incumbentmonopolymaximizestheinstantaneousnetprofit
π
x
i
t
= (1+Υ
I
)(q
it
x
it
y
it
),(33)
wherethedemandforintermediategoodi,x
it
,isgivenby(32).Using(7),themonopolymaximizationprogram
canbewritten:
Max
x
it
π
x
i
t
= (1+Υ
I
)(q
it
x
it
x
it
κ
it
)subjectto
1Υ
P
q
it
= α(L
Y
t
)
1α
κ
it
(x
it
)
α1
.
Thefirst-orderconditionwithrespecttox
it
is
∂π
x
i
t
∂x
it
= 0
∂x
it
(1+Υ
I
)
α(L
Y
t
)
1α
κ
it
(x
it
)
α
1Υ
P
x
it
κ
it

= 0 x
it
=
α
2
1Υ
P
1
1α
L
Y
t
;
replacingin(32),onegets
q
it
=
α
1Υ
P
L
Y
t
x
it
1α
κ
it
=
α
1Υ
P
1Υ
P
α
2
1
1α
!
1α
κ
it
=
κ
it
α
.
Therefore,oneobtainstheusualsymmetricuseofintermediategoodsinthefinalgoodproductionandthe
usualmark-uponthepriceofintermediategoods:
x
it
= x
t
=
α
2
1Υ
P
1
1α
L
Y
t
andq
it
=
κ
it
α
,i∈Q.(34)
Then,using(34)and(1),wecanrewritethemonopolyprofitinanysectori(33),thefinalgoodproduction
function(6),andtheexpressionofthewagegivenin(31)as:
π
x
i
t
= (1+Υ
I
)
1α
α

α
2
1Υ
P
1
1α
L
Y
t
κ
it
,i∈Q,(35)
Y
t
=
α
2
1Υ
P
α
1α
L
Y
t
K
t
,and(36)
w
t
= (1α)
α
2
1Υ
P
α
1α
K
t
.(37)
R&Dactivities.
Ineachsectori,i∈Q,theincumbentinnovatorhavinginnovatedatdatethasamonopolyonintermediate
goodi,andreceives,atanydateτ>t,theinstantaneousnetprofitπ
x
i
τ
withprobabilitye
R
τ
t
λl
iu
du
(i.e.as
longasthereisnootherinnovationinsectoribetweendatetanddateτ).
11
WedenotebyΠ
x
i
t
thevalueat
datetofthelatestinnovationinsectori,itisthesumofthepresentvaluesoftheincumbent’sexpectednet
profitsonthesaleofintermediategoodi:
Π
x
i
t
=
Z
t
π
x
i
τ
e
R
τ
t
(r
u
+λl
iu
)du
,whereπ
x
i
τ
isgivenby(33).(38)
Then,thearbitrageconditioninR&Dactivityiisobtainedbydifferentiating(38)withrespecttotime;one
gets
r
t
+λl
it
=
˙
Π
x
i
t
Π
x
i
t
+
π
x
i
t
Π
x
i
t
,i∈Q.(39)
11
AsdetailedinAssumption1,innovationsinsectorioccursaccordingtoaPoissonarrivalrateλl
it
.
1550
GivenAssumption1,innovationsarriveaccordingtoaPoissonprocessofrateλl
it
; thusthetotalexpected
revenueatdatetwhenoneunitoflaborisinvestedinR&DisλΠ
x
it
.Besides,thecostofoneunitoflaboris
w
t
.Consequently,thefreeentryconditioninanyR&Dactivityiis
w
t
= λΠ
x
i
t
.(40)
Then,using(37),onegetsthefollowingvalueofthelatestinnovationinsectoriatdatet:
Π
x
i
t
= Π
x
t
=
1α
λ
α
2
1Υ
P
α
1α
K
t
,i∈Q.(41)
3.2CharacterizationoftheSchumpeterianEquilibrium
Log-differentiating(36),onehas
g
Y
t
= g
L
Y
t
+g
K
t
.(42)
Using(1),(7),and(34),theconstraintonthefinalgoodmarket(8)rewrites
Y
t
= c
t
+
α
2
1Υ
P
1
1α
L
Y
t
K
t
.(43)
Then,from(36)and(43),oneobtains
c
t
=
1
α
2
1Υ
P
Y
t
.(44)
Log-differentiatingthisexpressiongives
g
c
t
= g
Y
t
.(45)
Furthermore,log-differentiating(41)gives
˙
Π
x
i
t
Π
x
i
t
=g
K
t
;then,using(35)and(41),thearbitragecondition(39)
canthenberewritten
r
t
+λl
it
= g
K
t
+
1+Υ
I
1Υ
P
λαL
Y
t
κ
it
K
t
,i∈Q.(46)
Asexplainedabove,computingtheSchumpeterianequilibriumrequirestoconsiderthestandardassumption
ofsymmetryacrosssector: l
it
=l
t
,i∈Qandκ
it
=κ
t
,i∈Q.
12
Accordingly,thewholestockofknowledge
(1),thepoolofknowledgeinanysectori(2),thegrowthratesofthesestocksofknowledge,andthelabor
constraint(5)canberewrittenasfollows:
13
K
t
=
Z
Q
κ
it
di=
t
;P
it
=
Z
Q
R
i
κ
ht
dh= P
t
= ϑκ
t
,i∈Q;(47)
g
κ
it
= g
κ
t
= g
K
t
= λθϑl
t
,i∈Q;(48)
Nl
t
= 1L
Y
t
.(49)
Hence,inanysectori,i∈Q,thearbitrageconditioninR&D(46)rewrites
r
t
+λl
t
= λθϑl
t
+
1+Υ
I
1Υ
P
λα
N
L
Y
t
.(50)
Eventually,thesetofSchumpeterianequilibriaischaracterizedby(30),(34),(36),(37),(42),(45),(48),(49),
and(50);itisdisplayedinProposition2below.
Proposition2.Ateachdatet,thesetofSchumpeterianequilibriaàlaAghion&Howittischaracterizedas
follows.
12
See,attheendofSection2.1,thecommentonthesymmetryassumptioncommonlymadeinendogenousgrowthmodels.
Furthermore,therelevancyofthesymmetricequilibriumisdiscussedinCozzi,Giordani&Zamparelli(2007).
13
Thesamereasoninghasbeenmadewhencomputingthefirst-bestsocialoptimum;see,(22),(20),and(21).
1551
Thelaborpartitionandthequantitiesofintermediategoodsare
L
Y
t
Υ
P
,Υ
I
= L
Y
Υ
P
,Υ
I
=
ρ+
λ
N

λ
N
1+
1+Υ
I
1Υ
P
α

1
,t;
l
it
Υ
P
,Υ
I
= l
Υ
P
,Υ
I
=
1
N
1L
Y
Υ
P
,Υ
I

,i∈Q,t;
x
it
Υ
P
,Υ
I
= x
Υ
P
,Υ
I
=
α
2
1Υ
P
1
1α
L
Y
Υ
P
,Υ
I
,i∈Q,t.
Thegrowthratesofpercapitaconsumption,ofthefinalgoodoutput,ofthewholestockofknowledgeinthe
economy,andofthestockofknowledgeineachsectorare
g
c
t
Υ
P
,Υ
I
= g
Y
t
Υ
P
,Υ
I
= g
K
t
Υ
P
,Υ
I
= g
Υ
P
,Υ
I
,t;
g
κ
it
Υ
P
,Υ
I
= g
Υ
P
,Υ
I
,i∈Q,t;whereg
Υ
P
,Υ
I
= λΘl
Υ
P
,Υ
I
.
Thestockofknowledgeintheeconomy,thequantityoffinalgood,andthelevelofpercapitaconsumptionare
K
t
Υ
P
,Υ
I
= e
g
(
Υ
P
,Υ
I
)
t
,t,
Y
t
Υ
P
,Υ
I
=
α
2
1Υ
P
α
1α
L
Y
Υ
P
,Υ
I
K
t
Υ
P
,Υ
I
,t,
andc
t
Υ
P
,Υ
I
=
1
α
2
1Υ
P
Y
t
Υ
P
,Υ
I
,t.
Theprices(wage,priceofintermediategoods,andinterestrate)are
w
t
Υ
P
,Υ
I
= (1α)
α
2
1Υ
P
α
1α
K
t
Υ
P
,Υ
I
,t,
q
it
Υ
P
,Υ
I
= q
t
Υ
P
,Υ
I
=
K
t
Υ
P
,Υ
I
αN
,i∈Q,t,
andr
t
Υ
P
,Υ
I
= r
Υ
P
,Υ
I
= g
Υ
P
,Υ
I
+ρ,t.
Proof.From(30),(42),(45),(48),and(50),oneobtains
g
L
Y
t
+λθϑl
t
+ρ+λl
t
= λθϑl
t
+
1+Υ
I
1Υ
P
λα
N
L
Y
t
.
Using(49)andrearrangingthetermsresultsinthefollowingdifferentialequationinL
Y
t
:
g
L
Y
t
+ρ+
λ
N
(1L
Y
t
) =
1+Υ
I
1Υ
P
λα
N
L
Y
t
g
L
Y
t
λ
N
1+
1+Υ
I
1Υ
P
α
L
Y
t
=
ρ+
λ
N
.
UsingthevariablesubstitutionX
t
= 1/L
Y
t
,oneobtains
˙
X
t
ρ+
λ
N
X
t
=
λ
N
1+
1+Υ
I
1Υ
P
α
.
Thesolutionofthisfirst-orderlineardifferentialequationis
X
t
= e
(
ρ+
λ
N
)
t
X
0
1
ρ+
λ
N
λ
N
1+
1+Υ
I
1Υ
P
α
!
+
1
ρ+
λ
N
λ
N
1+
1+Υ
I
1Υ
P
α
.
1552
Consequently,onehas
L
Y
t
=
1
e
(
ρ+
λ
N
)
t
1
L
Y
0
1
ρ+
λ
N
λ
N
h
1+
1+Υ
I
1Υ
P
α
i
+
1
ρ+
λ
N
λ
N
h
1+
1+Υ
I
1Υ
P
α
i
.
ThetransversalityconditionintheprogramoftherepresentativehouseholdimpliesthatL
Y
t
immediatelyjumps
toitssteady-statelevelL
Y
ss
;onehasL
Y
t
= L
Y
ss
,t. Reintroducingthe
Υ
P
,Υ
I
arguments,theequilibrium
quantityoflaborinthefinalgoodproductionis
L
Y
t
Υ
P
,Υ
I
= L
Y
Υ
P
,Υ
I
=
ρ+
λ
N

λ
N
1+
1+Υ
I
1Υ
P
α

1
,t.(51)
Hence,onehasg
L
Y
t
= 0.Therefore,onecannowderivealltheequilibriumquantities,growthrates,andprices.
Replacing(51)in(49)givesthequantityoflaborusedineachsectorR&Dactivity,
l
it
Υ
P
,Υ
I
= l
Υ
P
,Υ
I
=
1
N
1L
Y
Υ
P
,Υ
I

,i∈Q,t.(52)
Replacing(51)in(34)givesthequantityofeachintermediategoodusedinthefinalgoodproduction,x
it
Υ
P
,Υ
I
=
x
Υ
P
,Υ
I
,i∈Q.From(45),(48),and(52),onegetsthegrowthrateofthestockofknowledgeineachsec-
tor,g
κ
it
Υ
P
,Υ
I
=g
Υ
P
,Υ
I
,i∈Q; thegrowthrateofthewholestockofknowledgeintheeconomy,
g
K
t
Υ
P
,Υ
I
=g
Υ
P
,Υ
I
;thegrowthrateoffinalgood,g
Y
t
Υ
P
,Υ
I
=g
Υ
P
,Υ
I
;andthegrowthrateof
percapitaconsumption,g
c
t
Υ
P
,Υ
I
= g
Υ
P
,Υ
I
.Then,thewholestockofknowledgeintheeconomyis
K
t
Υ
P
,Υ
I
= e
g
(
Υ
P
,Υ
I
)
t
,t,whereg
Υ
P
,Υ
I
= λθϑl
Υ
P
,Υ
I
.(53)
From(36),(44),(51),and(53),onegetstheequilibriumlevelsoffinalgoodandofpercapitaconsumption,
Y
t
Υ
P
,Υ
I
andc
t
Υ
P
,Υ
I
.Replacing(53)in(37)andin(34),onegetstheequilibriumwage,w
t
Υ
P
,Υ
I
,
andtheequilibriumpriceofintermediategoodsq
it
Υ
P
,Υ
I
=q
t
Υ
P
,Υ
I
,i∈Q.Finally,using(30)and
(53),onegetstheequilibriuminterestrater
t
Υ
P
,Υ
I
= r
Υ
P
,Υ
I
.ThisprovesProposition2.
4SchumpeterianEquilibriumandParetoNon-Optimality
Asmentionedin3.1,intheabsenceofpublicpolicies,thedecentralizedeconomyconsideredinthispaperis
likelytobeParetonon-optimal.Thepresentsectionaddressesthisissue.Notably,in4.1,werevisitthefact
thatinthelaisserfaireequilibrium,theR&Deffort(i.e.thequantityoflaborusedinR&D)caneitherbe
sub-optimalorover-optimal.Then,in4.2,weimplementthefirst-bestsocialoptimumintheSchumpeterian
decentralizedeconomybycharacterizingtheoptimalpolicytools;thisenablesustoshowhowtheoptimaltool
dedicatedtocorrectthemarketfailurecausedbymarketincompletenessdependsontheintensityofknowledge
spillovers.Finally,in4.3,wehighlightthelinkbetweentheissueofParetonon-optimalityandtheintensityof
knowledgespillovers.
4.1LaisserfaireSchumpeterianequilibrium
FromProposition2, wecanderivestraightforwardlythelaisserfaire Schumpeterianequilibriumbysetting
down
Υ
P
,Υ
I
= (0,0).
Corollary.Ateachdatet,thelaisserfaireSchumpeterianequilibriumàlaAghion&Howittischaracterized
asfollows.
Thelaborpartitionandthequantitiesofintermediategoodsare
L
Ylf
= L
Y
(0,0) =
ρ+
λ
N
λ
N
(1+α)
=
ρN
λ
+1
1+α
;
l
lf
i
= l
lf
= l(0,0) =
1
N
ρ+
λ
N
λ(1+α)
,i∈Q;
x
lf
i
= x
lf
= x(0,0) = α
2
1α
ρ+
λ
N
λ
N
(1+α)
,i∈Q.
1553
Thegrowthratesofpercapitaconsumption,ofthefinalgoodoutput,andofthewholestockofknowledgein
theeconomyare
g
lf
c
t
= g
lf
Y
t
= g
lf
K
t
= g
lf
= g(0,0) = λΘl(0,0) = λΘ
1
N
ρ+
λ
N
λ(1+α)
!
.
Thecomparisonofthelaisserfaire SchumpeterianequilibriumobtainedinthisCorollarywiththefirst-
bestsocialoptimum(derivedinProposition1)enablesustorevisittheissueofParetonon-optimalityofthe
SchumpeterianequilibriumbyhighlightingthecentralroleplayedbytheintensityofknowledgespilloversΘ.
TheSchumpeterianequilibriumlaisserfairegrowthrate,g
lf
=λΘl
lf
,andtheoptimalgrowthrate,g
o
=
λΘl
o
,bothdependpositivelyonΘbutinadifferentwaybecausethepartitionoflabor,andthusthequantitiesof
laborallocatedtoR&Dl
lf
andl
o
differfromeachother.ThequantityoflaborinthelaisserfaireSchumpeterian
equilibrium,l
lf
,doesnotdependontheintensityofknowledgespilloversΘ.Onthecontrary, theoptimal
quantityoflaborinR&D,l
o
,clearlydependspositivelyonΘ.Hence,thehigherΘis,thehighertheR&D
effortshouldbeinordertomaintainoptimality.However,l
lf
isindependentofΘ.
BecausetheSchumpeterianequilibriumexhibitsincompletemarkets,eachR&Dactivitydoesnotinternalize
thepositiveimpactoftheknowledgeitcreatesonotherR&Dactivities;moreover,thisimpactisallthemore
significantastheintensityofknowledgespilloversΘ isstrong.Therefore,ifΘ ishigh(resp.low),itislikelythat
R&Deffortwillbeinsufficient(resp.excessive)withrespecttowhatwouldbeitsoptimallevel.Eventually,
thisexplainswhythelaisserfairegrowthrateg
lf
canbelowerorhigherthantheoptimalgrowthrateg
o
.
Furthermore,itispossibletodetermineathreshold
˜
Θsuchthatg
lf
islower(resp. greater)thang
o
ifand
onlyifΘisabove(resp.below)thisthreshold:
14
g
lf
Sg
o
Θ T
˜
Θ,where
˜
Θ =
(1+α)ρ
ρ+
λ
N
.(54)
TheseresultsareillustratedinFigure1.
Figure1.Paretonon-optimalityoftheLaisserfaireSchumpeterianequilibriumandintensityofknowledge
spillovers.
4.2Implementationofthefirst-bestsocialoptimal
Asdetailedabove,theSchumpeterianequilibriumislikelytobeParetonon-optimalbecauseitinvolvestwo
marketfailures;thenceforth,thefirst-bestsocialoptimalcanbeimplementedbytheuseoftwotools.The
optimalsetoftools
Υ
Po
,Υ
Io
can,forinstance,bedeterminedbyidentifyingtheequilibriumquantitiesof
intermediategoodsandoflaborinR&D,x
Υ
P
,Υ
I
andl
Υ
P
,Υ
I
,withtheoptimalones,x
o
andl
o
.One
getsProposition3below.
Proposition 3. Thefirst-best socialoptimum canbe implemented inthe Schumpeterianequilibrium.The
optimalsetofpublictools
Υ
Po
,Υ
Io
isgivenby
Υ
Po
= 1αandΥ
Io
= Θ
1+
λ
ρN
2.(55)
14
Theproofisstraightforward:g
lf
Sg
o
λΘ
1
N
ρ+
λ
N
λ(1+α)
S
λ
N
ΘρΘ T
(1+α)ρ
ρ+
λ
N
˜
Θ.
1554
Proof.InProposition2,wehavecharacterizedx
Υ
P
,Υ
I
andl
Υ
P
,Υ
I
;inProposition1,wehavecomputed
x
o
andl
o
.TheoptimaltoolsΥ
Po
andΥ
Io
mustsatisfy
x
Υ
Po
,Υ
Io
= x
o
andl
Υ
Po
,Υ
Io
= l
o
.
Fromx
Υ
Po
,Υ
Io
= x
o
,onegets
α
2
1Υ
Po
1
1α
L
Y
Υ
Po
,Υ
Io
= α
1
1α
ρN
λθϑ
,whereL
Y
Υ
Po
,Υ
Io
= L
Yo
=
ρN
λθϑ
α
2
1Υ
Po
1
1α
ρN
λθϑ
= α
1
1α
ρN
λθϑ
α
2
1Υ
Po
= αΥ
Po
= 1α.
From,l
Υ
Po
,Υ
Io
= l
o
onegets
1
N
1
ρ+
λ
N

λ
N
1+
1+Υ
Io
1Υ
Po
α

1
!
=
1
N
ρ
λθϑ
ρ+
λ
N
=
ρ
θϑ
1+
1+Υ
Io
1Υ
Po
α
;
then,usingΥ
Po
= 1α,oneobtains
ρ+
λ
N
=
ρ
θϑ
1+
1+Υ
Io
α
α
Υ
Io
= Θ
1+
λ
ρN
2.
ThisprovesProposition3.
TheresultsderivedinProposition3corroboratetheanalysisofthelaisserfaireconductedin4.1.Regarding
theoptimaltooltocorrectthemarketfailureentailedbythepresenceofamonopoly,Υ
Po
,werecoveraresult
whichisstandardintheendogenousgrowthliterature.Withregardtotheoptimaltooltomendtheexternality
resultingfrommarketincompleteness;wehaveshowninProposition3that-asexpected-itcanconsistina
subsidy(Υ
Io
>0)orinatax(Υ
Io
<0),dependingontheparametersofthemodel.
ThispropertyoftheoptimaltoolΥ
Io
echoestothefactthat,asexplainedabove,instandardSchumpeterian
growthmodels,thedecentralizedR&Deffortcaneitherbesub-optimalorover-optimal.Thekeypointrevealed
hereliesinthatΥ
Io
isanincreasingfunctionofΘ.Thishighlightsthekeyroleplayedbytheintensityof
knowledgespillovers.Indeed, weobtainthecriticalresultaccordingtowhichthestrongertheintensityof
knowledgespilloversΘis,themorelikelytheoptimaltoolΥ
Io
dedicatedtoR&Dshouldconsistinasubsidy;
furthermore,thissubsidywillbeallthehigherasΘishigh.ThereasonforthisliesinthefactthatR&D
incentivesareskewedbymarketincompleteness:ifΘishigh(resp.low),theR&Deffortwillmorelikelybe
insufficient(resp.excessive),thisiswhyR&Dshouldprobablybesubsidized(resp.taxed).
4.3Optimaltooltocorrectmarketincompleteness,Paretooptimality,andinten-
sityofknowledgespillovers
LetusnowstudyinmoredetailsthepropertiesoftheoptimaltoolΥ
Io
.Forthatpurpose,letusfocusonthe
SchumpeterianequilibriuminwhichthemonopolydistortionisoptimallycorrectedbysettingΥ
P
Po
=
1α,andinwhichthereislaisserfaireregardingR&D(Υ
I
= 0).Theassociatedgrowthratewrites
g
Υ
Po
,0
= λΘl
Υ
Po
,0
= λΘ
1
N
1L
Y
Υ
Po
,0

= Θ
λ
N
ρ+
λ
N
2
!
.
Thecomparisonwiththeoptimalgrowthrateyieldsthefollowingresult:
15
g
Υ
Po
,0
Sg
o
Υ
Io
T0.(56)
15
Theproofisstraightforward:
g
Υ
Po
,0
Sg
o
Θ
λ
N
ρ+
λ
N
2
!
S
λ
N
Θρρ
ρ+
λ
N
2
Θ S0 Θ
1+
λ
ρN
2 T0 Υ
Io
T0.
1555
In(56),weprovetheintuitiveresultthatoncethemarketfailureentailedbymarketpowerisoptimallycorrected,
theoptimaltooltocorrectmarketincompleteness,Υ
Io
,isasubsidy(resp.atax)ifandonlyiftheallocationof
laborinR&Dactivity-andthusthegrowthrate-issub-optimal(resp.over-optimal). Again,theunderlying
reasonliesinthatmarketincompletenessdistortsR&DincentivesleadingtoanonoptimalR&Deffort(too
littleortoomuchlaborusedinR&D).
Besides,similarlyasin4.1,herealso,onecandetermineathreshold
˜
˜
Θsuchthat
16
g
Υ
Po
,0
Sg
o
Θ T
˜
˜
Θ,where
˜
˜
Θ =
2ρ
ρ+
λ
N
.(57)
Theresultsobtainedin(56)and(57)aresummarizedinProposition4andillustratedinFigure2.
Figure2.Optimaltooltocorrectmarketincompletenessandintensityofknowledgespillovers.
Proposition4.Thereexistsalevelofintensityofknowledgespillovers
˜
˜
Θsuchthat
Θ T
˜
˜
Θ =
2ρ
ρ+
λ
N
g
Υ
Po
,0
Sg
o
Υ
Io
T0.(58)
Thesefinal resultshighlight thefactalready arguedabove thattheintensity ofknowledge spilloversis
akey determinantintheissue ofParetonon-optimalityoftheSchumpeterian equilibriumandthusinthe
characterizationoftheoptimaltooldedicatedtocompensateformarketincompleteness.
5Conclusion
Inthispaper,wedevelopedastandardendogenousgrowthmodel`aAghion&Howitt(1992)inwhichweexplic-
itlyintroduced(inafairlysimpleway)theconceptofintensityofknowledgespillovers.Thesubsequentanalysis
enabledustoshednewlightontheissueofParetonon-optimalityoftheseminalSchumpeterianequilibrium
initiallyintroducedbyAghion&Howitt(1992)byrevealinghowtheintensityofknowledgespilloversdeter-
minestheimpactofthedistortionofR&Dincentivesduetomarketincompleteness(nomarketforknowledge
isconsideredintraditionalSchumpeterianequilibria).Thekeyresultderivedinthispaperisthatthehigh-
er(resp.lower)theintensityofknowledgespilloversis,themorelikelymarketincompletenesswillinducean
under-optimal(resp.over-optimal)R&Deffort,andthusthemorelikelytheoptimalpolicyaimingatcorrecting
thismarketfailureshouldbetosubsidy(resp.totax)theR&Dactivities.Furthermore,weshowedthatif
theoptimaltooldoesconsistinasubsidy,thelevelofthissubsidyshouldbeallthehigherastheintensityof
knowledgespilloversisstrong.
Theformalizationdevelopedinthepaperremainssomehowsimpleinsofarasweconsiderhomogeneityin
theintensityofknowledgespilloversacrosssectors(thatis,homogeneitybothintheincrementinknowledge
16
Theproofisstraightforward:g
Υ
Po
,0
Sg
o
Θ
λ
N
ρ+
λ
N
2
S
λ
N
ΘρΘ T
2ρ
ρ+
λ
N
˜
˜
Θ.
1556
resultingfromaninnovationandinthescopeofdiffusionofknowledgeintheeconomy).Nevertheless,the
resultsobtainedcanstillbeseenasafirststepindevelopingbasicargumentsinsupportofthefactthatvarious
R&Dactivitiesshouldprobablybetargetedbydifferentpublicpolicies,dependingontheintensityofknowledge
spilloversemanatingfromthem.Forexample,consideringanextensionofthismodelinwhicheachsectorwould
becharacterizedbyaspecificlevelofintensityofknowledgespilloverscouldenablesustoobtainanalytically
resultsinlinewithAkcigit,Hanley,&Serrano-Velarde(2016)whoshowquantitativelythatatype-dependent
R&Dsubsidypolicyenablesthesocialplannertoachievehigherlevelsofwelfare.
References
[1] AcemogluD(2009)Moderneconomicgrowth.PrincetonUniversityPress,PrincetonNJ
[2] AghionP,HowittP(1992)Amodelofgrowththroughcreativedestruction.Econometrica60(2):323-351
[3] AghionP,HowittP(1998)Endogenousgrowththeory.MITPress,CambridgeMA
[4] AghionP,HowittP(2009)Theeconomicsofgrowth.MITPress,CambridgeMA
[5] AkcigitU,Hanley D,Serrano-VelardeN (2016)Backto Basics:Basic ResearchSpillovers, Innovation
PolicyandGrowth.CEPRDiscussionPaperNo11707
[6] Alvarez-PelaezMJ,GrothC(2005)ToolittleortoomuchR&D?EuropeanEconomicReview49(2):437-456
[7] BarroR,Sala-i-MartinX(2003)EconomicGrowth,secondedition.MITPress,CambridgeMA
[8] BenassyJP(1998)Istherealwaystoolittleresearchinendogenousgrowthwithexpandingproductvariety?
EuropeanEconomicReview42(1):61-69
[9] CozziG,GiordaniPE,ZamparelliL(2007)TherefoundationofthesymmetricequilibriuminSchumpete-
riangrowthmodels.JournalofEconomicTheory136(1):788-797
[10] DinopoulosE,SenerF(2007)NewdirectionsinSchumpeteriangrowththeory.In:HanuschH,PykaA
(eds)Theelgarcompaniontoneo-Schumpeterianeconomics,EdwardElgar,Cheltenham
[11] Dinopoulos E, ThompsonP (1998) Schumpeteriangrowth without scaleeffects. Journal ofEconomic
Growth3(4):313-335
[12] GarnerP(2010)Anoteonendogenousgrowthandscaleeffects.EconomicsLetters106(2):98-100
[13] Gray E, GrimaudA (2016)Using theSalop Circle toStudy ScaleEffects inSchumpeterian Growth
Models:WhyInter-sectoralKnowledgeDiffusionMatters.CESifoWorkingPaperSeriesNo.6021
(http://dx.doi.org/10.2139/ssrn.2829265)
[14] GrilichesZ(1992)ThesearchforR&Dspillovers.ScandinavianJournalofEconomics94(supplement):
29-47
[15] GrilichesZ(1995)R&Dandproductivity: econometricresultsandmeasurementissues.In:StonemanP
(ed)Handbookoftheeconomicsofinnovationandtechnicalchange,BlackwellHandbooksinEconomics
[16] GrossmanG,HelpmanE(1991)Qualityladdersinthetheoryofgrowth.ReviewofEconomicStudies
58(1):43-61
[17] HallB(2004)Innovationanddiffusion. In:Fagerberg J,MoweryDC,NelsonRR(eds)Handbookon
innovation,OxfordUniversityPress,Oxford
[18] Hall B, MairesseJ, Mohnen P (2010)Measuring the returns toR&D. In Hall B,Rosenberg N (eds)
Handbookoftheeconomicsofinnovation,Elsevier
[19] HowittP(1999)SteadyendogenousgrowthwithpopulationandR&Dinputsgrowing.JournalofPolitical
Economy107(4):715-730
1557
[20] JonesC(1999)Growth:withorwithoutscaleeffects?AmericanEconomicReviewPapersandProceedings
89(2):139-144
[21] JonesC(2005)Growthandideas.In:AghionP,DurlaufS(eds)HandbookofEconomicGrowth,Elsevier
Volume1B,1063-1111
[22] JonesC,WilliamsJ(2000)Toomuchofagoodthing? TheeconomicsofinvestmentinR&D.Journalof
EconomicGrowth5(1):65-85
[23] LainczC,PerettoP(2006)Scaleeffectsinendogenousgrowththeory:anerrorofaggregationnotspecifi-
cation.JournalofEconomicGrowth11(3):263-288
[24] LiCW(2002)Growthandscaleeffects:theroleofknowledgespillovers.EconomicsLetters74:177-185
[25] LiCW(2003)Endogenousgrowthwithoutscaleeffects:acomment.AmericanEconomicReview
93(3):1009-1017
[26] PerettoP(1998)Technologicalchangeandpopulationgrowth.JournalofEconomicGrowth3(4):283-311
[27] PerettoP(1999)Costreduction,entry,andtheinterdependenceofmarketstructureandeconomicgrowth.
JournalofMonetaryEconomics43(1):173-195
[28] PerettoP(2007)Corporatetaxes,growthandwelfareinaSchumpeterianeconomy.JournalofEconomic
Theory137(1):353-382
[29] PerettoP,SmuldersS(2002)Technologicaldistance,growthandscaleEffects.EconomicJournal
112(481):603-624
[30] RomerP(1990)Endogenoustechnologicalchange.JournalofPoliticalEconomy98(5):71-102
[31] SalopS(1979)Monopolisticcompetitionwithoutsidegoods.BellJournalofEconomics10(1):141-156
[32] SenerF(2008)R&Dpolicies,endogenousgrowthandscaleeffects.JournalofEconomicDynamicsand
Control32(12):3895-3916
[33] SegerstromP(1998)Endogenousgrowthwithoutscaleeffects.AmericanEconomicReview88(5):1290-1310
[34] SegerstromP(2000)Thelong-rungrowtheffectsofR&Dsubsidies.JournalofEconomicGrowth5(3):277-
305
[35] YoungA(1998)Growthwithoutscaleeffects.JournalofPoliticalEconomy106(1):41-63
1558