Structural and Electrical Characterization of GaN Thin Films on Si(100)

Abstract

The Gallium Nitride (GaN) layers grown on silicon substrates by electron beam evaporation technique. X- ray diffraction revealed that polycrystalline GaN was obtained indicating the enhance crystallinity of the films with annealing temperature at 600oC. Crystalline quality of the GaN films was determined by Scanning Electron Microscopy (SEM). The crystalline size increases with increasing annealing temperature. The fab- ricated MIS structures were characterized using Capacitance-Voltage (C-V) measurements, the capacitance remains nearly constant over a large range in higher negative as well as over a large range in higher positive gate voltages and Current-Voltage (I-V) measurements shows low forward and reverse current possibly due to high density defect formation in the thin layer of gallium nitride during its growth.The film is characterized by X-Ray photoelectron spectroscopy (XPS). The XPS spectra show that formation of pure GaN with- out presence of elemental gallium and Ga2O3 in this film.

Share and Cite:

G. Chaudhari, V. Chinchamalatpure and S. Ghosh, "Structural and Electrical Characterization of GaN Thin Films on Si(100)," American Journal of Analytical Chemistry, Vol. 2 No. 8, 2011, pp. 984-988. doi: 10.4236/ajac.2011.28115.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. C. Jain, M. Willander, J. Narayan and R. Van Over- straeten, “III-Nitride: Growth, Characterisation and Pro- perties,” Journal of Applied Physics, Vol. 87, No. 3, 2000, pp. 965-1006. doi:10.1063/1.371971
[2] J. W. Yang, A. Lunev, G. Simin, A. Chitnis, M. Shatalov, M. A. Khan, J. E. Van Nostrand and R. Gaska, “Selec- tive Area Deposited Blue GaN-InGaN Multiple-Quantum Well Light Emitting Diodes over Silicon Substrates,” Ap- plied Physics Letters, Vol. 76, No. 3, 2000, pp. 273-275. doi:10.1063/1.125745
[3] A. Dadgar, J. Christen, T. Riemann, S. Richter, J. Blaesing, A. Diez, A. Krost, A. Alam and M. Heuken, “Formation of Thin GaN Layer on Si(111) for Fabrication of High Temperature Metal Field Effect Transistors,” Applied Physics Letters, Vol. 78, No. 15, 2001, p. 2211. doi:10.1063/1.1362327
[4] J. W. Yang, C. J. Sun, Q. Chen, M. Z. Anwar, M. A. Khan, S. A. Nikishin, G. A. Seryogin, A. V. Qsinsky, L. Chernyak, H. Temkin, C. Hu and S. Mahajan, “High Quality GaN-InGaN Heterostructures Grown on Si(111) Substrates,” Applied Physics Letters, Vol. 69, No. 23, 1996, pp. 3566-3568. doi:10.1063/1.117247
[5] N. P. Kobayashi, J. T. Kobayashi, P. D. Dapkus, W. J. Choi, A. E. Bond, X. Zhang and D. H. Rich, “GaN Growth on Si(111) Substrate Using Oxidized AlAs as an Intermediate Layer,” Applied Physics Letters, Vol. 71, No. 24, 1997, pp. 3569-3571. doi:10.1063/1.120394
[6] L. Wang, X. Liu, Y. Zan, J. Wang, D. Wang, D. Lu and Z. Wang, “Wurtzite GaN Epitaxial Growth on a Si(001) SubStrate Using γ-Al2O3 as an Intermediate Layer,” Applied Physics Letters, Vol. 72, No. 1, 1998, pp. 109-111. doi:10.1063/1.120660
[7] P. W. Deelmann, R. N. Bicknell-Tassius, S. Nikishin, V. Kuryatkov and H. Temkin, “Low-Noise GaN Schottky Diodes on Si(111) by Molecular Beam Epitaxy,” Applied Physics Letters, Vol. 78, No. 15, 2001, p. 2172. doi:10.1063/1.1357448
[8] Y. Hiroyama and M. Tamura, “Effect of Very Thin SiC Layer on Heteroepitaxial Growth of Cubic GaN on Si (001),” Japanese Journal of Applied Physics, Vol. 37, 1998, pp. 630-632. doi:10.1143/JJAP.37.L630
[9] L. T. Romano, J. E. Northrup and M. A. O’Keefe, “In- version Domains in GaN Grown on Sapphire,” Applied Physics Letters, Vol. 69, No. 16, 1996, pp. 2394-2396. doi:10.1063/1.117648
[10] C. Stampfl, J. Neugebauer and C. Van de Walle, “Dop- ing of AlxGa1-xN Alloys,” Material Science Engineer- ing, Vol. 59, 1999, pp. 253-257.
[11] C. Wang and R. F. Davis, “Deposition of Highly Resistive, Undoped, and P-Type, Magnesium-Doped Gallium Nitride Films by Modified Gas Source Molecular Beam Epitaxy,” Applied Physics Letters, Vol. 63, No. 7, 1993, pp. 990-992. doi:10.1063/1.109816
[12] K. Okamoto, H. Ohta, S. F. Chichibu, J. Ichihara and H. Takasu, “Continuous-Wave Operation of m-Plane InGaN Multiple Quantum Well Laser Diodes,” Japanese Journal of Applied Physics, Vol. 46, 2007, pp. L187-L189. doi:10.1143/JJAP.46.L187
[13] J. I. Pankove and T. D. Moustakas, “Gallium Nitride GaN, Semiconductors and Semimetals,” Academic Press, Waltham, 1998.
[14] G. Martin, A. Botchkarev, A. Rockett and H. Morkoc, “Valence-Band Discontinuities of wurtzite GaN, AlN, and InN Heterojunctions Measured by X-Ray Photoemission Spectroscopy,” Applied Physics Letters, Vol. 68, No. 18, 1996, pp 2541-2543. doi:10.1063/1.116177
[15] E. T. Yu and M. O. Manasreh, “III-V Nitride Semi-conductors Applications and Devices,” Taylor & Francis, New York, 2003.
[16] M. O. Manasreh and I. T. Ferguson, “III-V Nitride Semiconductors Growth,” Taylor & Francis, New York, 2003.
[17] M. H. Kim, Y. G. Do, H. C. Kang, D. Y. Noh and S.-J. Park, “Effects of Step-Graded AlxGa1?xN Interlayer on Properties of GaN Grown on Si(111) Using Ultrahigh Vacuum Chemical Vapor Deposition,” Applied Physics Letters, Vol. 79, No. 17, 2001, pp. 2713-2715. doi:10.1063/1.1412824
[18] J. Wan, R. Venugopal, M. R. Melloch, H. W. Liaw and W. J. Rummel, “Growth of Crack-Free Hexagonal GaN Films on Si(100),” Applied Physics Letters, Vol. 79, No. 10, 2001, pp. 1459-1461. doi:10.1063/1.1400770
[19] A. J. Steckl, J. Devrajan, C. Tran and R. A. Stall, “SiC Rapid Thermal Carbonization of the Si(111) Semiconductor-on-Insulator Structure and Subsequent Metalorganic Chemical Vapor Deposition of GaN,” Applied Physics Letters, Vol. 69, No. 15, 1996, pp. 2264-2266. doi:10.1063/1.117528
[20] L. T. Canham, “Silicon Quantum Wire Array Fabrication by Electrochemical and Chemical Dissolution of Wafers,” Applied Physics Letter, Vol. 57, No. 10, 1990, pp. 1046-1048. doi:10.1063/1.103561
[21] K. Abe, S. Nonomura and S. Kobayashi, “Photolumines- cence Study of Nano-Crystalline GaN and AlN Grown by Reactive Sputtering,” Journal of Non-Crystalline Solids, Vol. 227-230, 1998, pp. 1096-1100. doi:10.1016/S0022-3093(98)00293-2
[22] N. Elkashef, R. Srinivasa and S. Major, “Sputter Deposition of Gallium Nitride Films Using a GaAs Target,” Thin Solid Films, Vol. 333, No. 1-2, 1998, pp. 9-12. doi:10.1016/S0040-6090(98)00550-1
[23] M. Dinescu, P. Verardi and C. Boulmer-Leborgne, “GaN Thin Films Deposition by Laser Ablation of Liquid Ga Target in Nitrogen Reactive Atmosphere,” Applied Surface Science, Vol. 127-129, 1998, pp. 559-563. doi:10.1016/S0169-4332(97)00705-8
[24] H. Ishikaua, S. Kobayashi and Y. Koide, “Effects of Surface Treatments and Metal Work Functions on Electrical Proper- ties at p-GaN/Metal Interfaces, Effects of Surface,” Journal of Applied Physics, Vol. 81, No. 3, 1997, pp. 1315-1322. doi:10.1063/1.363912

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.