Influence of Elevation on Carbonate Contents in Stratified Soils, Northern Great Basin and Adjacent Mountains, U.S.A
Arno Kleber
.
DOI: 10.4236/ojss.2011.12009   PDF    HTML   XML   3,625 Downloads   7,325 Views   Citations

Abstract

Many soils in the western U.S.A. contain one or several carbonate-enriched zones (CEZ). Their carbonate admixture is often attributed to steady eolian influx, with intermittent leaching episodes of variable intensity leading to pedogenic enrichment at various depths. This hypothesis would require carbonate contents to decrease and depths to those horizons to increase with elevation. Here I compute correlations for the upper three CEZ of the surface soil and of up to two buried soils between elevation, carbonate content, depth to horizon, and particle-size distribution to test for elevation- dependent trends. Actually, carbonate-content decreases with elevation indicate such trends exist and can be determined with this approach. However, some significant relationship of elevation and depth to CEZ is not supported by the data. Furthermore, influence of local carbonate on CEZ in the surface soils calls for lateral translocation. Gravelly, now-buried sediments collected eolian carbonate better than finer ones, which finding implies these sediments were at the surface once and fossilized later. Altogether, the data indicate cyclical evolution: Several cycles of the formation of colluvial slope deposits with admixed carbonate-bearing loess particles were each followed by pedogenic translocation of the carbonate just to the depth of the next parent-material disconformity. Thus, disconformities are major triggers of soil-carbonate accumulation.

Share and Cite:

A. Kleber, "Influence of Elevation on Carbonate Contents in Stratified Soils, Northern Great Basin and Adjacent Mountains, U.S.A," Open Journal of Soil Science, Vol. 1 No. 2, 2011, pp. 61-69. doi: 10.4236/ojss.2011.12009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. E. Junge and R. T. Werby, “The Concentration of Chloride, Sodium, Potassium, Calcium and Sulfate in Rain Water over the United States,” Journal of Meteorology, Vol. 15, No. 5, 1958, pp. 417-425. doi:org/10.1175/1520-0469(1958)015<0417:TCOCSP>2.0.CO;2
[2] L. D. McFadden and J. C. Tinsley, “Rate and Depth of Pedogenic-Carbonate Accumulation in Soils: Formulation and Testing of a Compartment Model,” Geological Society of America, Special Paper, Vol. 203, 1985, pp. 23-41.
[3] M. A. Goddard, E. A. Mikhailova, C. J. Post, M. A. Schlautman & J. M. Galbraith, “Continental United States Atmospheric Wet Calcium Deposition and Soil Inorganic Carbon Stocks,” Soil Science Society of America Journal, Vol. 73, No. 3, 2009, pp. 989-994. doi:org/10.2136/sssaj2008.0004
[4] M. N. Machette, “Calcic Soils and Calcretes of the Southwestern United States,” Geological Society of America, Special Paper 203, 1985, pp. 1-21.
[5] M. C. Reheis, J. M. Sowers, E. M. Taylor, L. D. McFadden and J. W. Harden, “Morphology and Genesis of Carbonate Soils on the Kyle Canyon Fan, Nevada, USA,” Geoderma, Vol. 52, No. 3-4, 1992, pp. 303-342. doi:org/10.1016/0016-7061(92)90044-8
[6] M. C. Reheis, J. C. Goodmacher, J. W. Harden, L. D. McFadden, T. K. Rockwell, R. Shroba, J. M. Sowers and E. M. Taylor, “Quaternary Soils and Dust Deposition in Southern Nevada and California,” Geological Society of America Bulletin, Vol. 107, 1995, pp. 1003-1022. doi:org/10.1130/0016-7606(1995)107<1003:QSADDI>2.3.CO;2
[7] R. C. Capo and O. A. Chadwick, “Sources of Strontium and Calcium in Desert Soil and Calcrete,” Earth and Planetary Science Letters, Vol. 170, No. 1-2, 1999, pp. 61-72. doi:org/10.1016/S0012-821X(99)00090-4
[8] P. W. Birkeland, R. R. Shroba, S. F. Burns, A. B. Price and P.J. Tonkin, “Integrating Soils and Geomorphology in Mountains—an Example from the Front Range of Colorado,” Geomorphology, Vol. 55, No. 1-4, 2003, pp. 329-344. doi:org/10.1016/S0169-555X(03)00148-X
[9] S. M. Colman, “Clay Mineralogy of Weathering Rinds and Possible Implications Concerning the Sources of Clay Minerals in Soils,” Geology, Vol. 10, No. , 1982, pp. 370-375. doi:org/10.1130/0091-7613(1982)10<370:CMOWRA>2.0.CO;2
[10] A. Kleber, “A Stratigraphy of Slope Deposits and Soils in the Northeastern Great Basin and Its Vicinity,” Zeitschrift für Geomorphologie NF, Vol. 92, 1993, pp. 173-188.
[11] L. C. Munn and L. K. Spackman, “Origin of Silt-Enriched Alpine Surface Mantles in Indian Basin, Wyoming,” Soil Science Society of America Journal, Vol. 54, No. 6, 1990, pp. 1670-1677. doi:org/10.2136/sssaj1990.03615995005400060028x
[12] D. E. Dahms, “Mineralogical Evidence for Eolian Contribution to Soils of Late Qua?ternary Moraines, Wind River Mountains, Wyoming, USA,” Geoderma, Vol. 59, No. 4, 1993, pp. 175-196. doi:org/10.1016/0016-7061(93)90068-V
[13] D. R. Muhs and J. B. Benedict, “Eolian Additions to late Quaternary Alpine Soils, Indian Peaks Wilderness Area, Colorado Front Range,” Arctic Antarctic and Alpine Research, Vol. 38, 2006, pp. 120-130. doi:org/10.1657/1523-0430(2006)038[0120:EATLQA]2.0.CO;2
[14] J. M. McCrea, “On the Isotopic Chemistry of Carbonates and Paleotemperature Scale,” Journal of Physical Chemistry, Vol. 18, No. 6, 1950, pp. 849-857. doi:org/10.1063/1.1747785
[15] M. C. Reheis, “Climatic Implications of Alternating Clay and Carbonate Formation in Semiarid Soils of South- Central Montana,” Quaternary Research, Vol. 27, No. 2, 1987, pp. 270-282. doi:org/10.1016/0033-5894(87)90083-4
[16] A. Kleber, “Compound Soil Horizons with Mixed Calcic and Argillic Properties-Examples from the Northern Great Basin, USA,” Catena, Vol. 41, No. 13, 2000, pp. 111-131. doi:org/10.1016/S0341-8162(00)00111-9
[17] L. H. Gile, J. W. Hawley and R. B. Grossman, “Soils and Geomorphology in the Basin and Range Area of Southern New Mexico,” New Mexico Bureau of Mines and Mineral Resources, Albuquerque, 1981.
[18] M. C. Reheis and R. Kihl, “Dust Deposition in Southern Nevada and California, 1984-1989, Relation to Climate, Source Area and Source Lithology,” Journal of Geophysical Research, Vol. 100, No. D5, 1995, pp. 8893- 8918. doi:org/10.1029/94JD03245
[19] M. C. Reheis, “Dust Deposition in Nevada, California and Utah, 1984-2002,” U.S. Geological Survey Open-file Report, Vol. 03-138, 2003.
[20] D. Goossens, “Quanti?cation of the Dry Aeolian Deposition of Dust on Horizontal Surfaces: An Experimental Comparison of Theory and Measurements,” Sedimentology, Vol. 52, No. 4, 2005, pp. 859-873. doi:org/10.1111/j.1365-3091.2005.00719.x
[21] R. N. Mack, “Alien Plant Invasions into the Intermountain West. A Case History,” Ecological Studies, Vol. 85, 1986, pp. 191-213.
[22] R. R. Blank, J. A. Young and T. Lugaski, “Pedogenesis on Talus Slopes, the Buckskin Range, Nevada, USA,” Geoderma, Vol. 71, No. 1-2, 1996, pp. 121-142. doi:org/10.1016/0016-7061(96)00002-X
[23] O. A. Chadwick and J. O. Davis, “Soil Forming Intervals Caused by Eolian Sediment Pulses in the Lahontan Basin, Northwestern Nevada,” Geology, Vol. 18, No. 3, 1990, pp. 243-246. doi:org/10.1130/0091-7613(1990)018<0243:SFICBE>2.3.CO;2
[24] O. A. Chadwick, W. D. Nettleton and G. J. Staidl, “Soil Polygenesis as a Function of Quaternary Climate Change, Northern Great Basin, USA,” Geoderma, Vol. 68, No. 1-2, 1995, pp. 1-26. doi:org/10.1016/0016-7061(95)00025-J
[25] McFadden, L. D., E. McDonald, S. Wells, K. Anderson, J. Quade and S. Forman, “The Vesicular Layer and Carbonate Collars of Desert Soils and Pavements: Formation, Age and Relation to Climate Change,” Geomorphology, Vol. 24, No. 2-3, 1998, pp. 101-145. doi:org/10.1016/S0169-555X(97)00095-0
[26] P. W. Birkeland, “Soils and Geomorphology,” 2nd Edition, Oxford University Press, New York, Oxford, 1984.
[27] L. Mayer, L. D. McFadden and J. W. Harden, “Distribution of Calcium Carbonate in Desert Soils: A Model,” Geology, Vol. 16, No. 4, 1988, pp. 303-306. doi:org/10.1130/0091-7613(1988)016<0303:DOCCID>2.3.CO;2
[28] E. G. Pendall, J. W. Harden, S. E. Trumbore and O. A. Chadwick, “Isotopic Approach to Soil Carbonate Dynamics and Implications for Paleoclimatic Interpretations,” Quaternary Research, Vol. 42, No. 1, 1994, pp. 60-71. doi:org/10.1006/qres.1994.1054
[29] P. W. Birkeland, “Quaternary Soils of the Western United States,” Soils and Quaternary Land-Scape Evolution, Chichester, John Wiley & Sons, 1985, pp. 303-324.
[30] P. W. Birkeland, “Soils and geomorphology,” 3rd Edition, Oxford University Press, New York, Oxford, 1999.
[31] L. H. Gile, “Holocene Soils and Soil-Geomorphic Relations in a Semiarid Region of Southern New Mexico,” Quaternary Research, Vol. 7, No. 1, 1977, pp. 112-132. doi:org/10.1016/0033-5894(77)90015-1
[32] G. J. Retellack, “The Environmental Factor Approach to the Interpretation of Paleosols,” Soil Science Society of America Special Publications, Vol. 33, 1994, pp. 31-64.
[33] G. J. Retellack, “Depth to Pedogenic Carbonate Horizon as a Peleoprecipitation Indicator?—Comment,” Geology, Vol. 28, 2000, pp. 572.
[34] G. J. Retallack, “Pedogenic Carbonate Proxies for Amount and Seasonality of Precipitation in Paleosols,” Geology, Vol. 33, No. 4, 2005, pp. 333-336. doi:org/10.1130/G21263.1
[35] D. L. Royer, “Depth to Pedogenic Carbonate Horizon as a Peleoprecipitation Indicator?” Geology, Vol. 27, No. 12, 1999, pp. 1123-1126. doi:org/10.1130/0091-7613(1999)027<1123:DTPCHA>2.3.CO;2
[36] D. L. Royer, “Depth to pedogenic carbonate horizon as a peleoprecipitation indicator? - Reply,” Geology, Vol. 28, No. 6, 2000, pp. 572-573. doi:org/10.1130/0091-7613(2000)28<572b:DTPCHA>2.0.CO;2
[37] L. N. Plummer and T. M. L. Wigley, “The dissolution of calcite in CO2 saturated solution at 25?C and 1 atmosphere total pressure,” Geochimica et Cosmochimica Acta, Vol. 40, No. 2, 1976, pp. 191-202. doi:org/10.1016/0016-7037(76)90176-9
[38] A. Klute, “Methods of Soil Analysis. I: Physical and Mineralogical Methods,” 2nd Edition, American Society of Agronomy and Soil, Madison, WI, 1986.
[39] A. Page, R. Miller and D. Keeney, “Methods of Soil Ana- lysis: II. Chemical and Microbiological Properties,” 2nd Edition, American Society of Agronomy and Soil, Madison, WI, 1982.
[40] Soil Survey Staff, “Keys to Soil Taxonomy,” 11th Edition, Pocahontas Press, Blacksburg, Virginia, 2010.
[41] A. Kleber, “Cover-Beds as Relative-Dating Tools-Examples from the Western U.S.A.,” Zeitschrift für Geomorphologie NF, Vol. 43, 1999, pp. 51-59.
[42] Soil Survey Staff, “Soil Taxonomy,” U. S. Department of Agriculture, Handbk, 1975, p. 436.
[43] D. Curtin, H. Steppuhn and F. Selles, “Clay Dispersion in Relation to Sodicity, Electrolyte Concentration and Mechanical Effects,” Soil Science, Vol. 58, No. 3, 1994, pp. 955-961. doi:org/10.2136/sssaj1994.03615995005800030045x
[44] J. A. Mabbutt, “Pavements and Patterned Ground in the Australian Stony Deserts,” Stuttgarter Geographische Studien, Vol. 93, 1979, pp. 107-123.
[45] L. D. McFadden, S. G. Wells and M. J. Jercinovich, “Influences of Eolian Pedogenic Processes on the Origin and Evolution of Desert Pavements,” Geology, Vol. 15, No. 6, 1987, pp. 504-508. doi:org/10.1130/0091-7613(1987)15<504:IOEAPP>2.0.CO;2
[46] R. R. Blank, J. A. Young and F. L. Allen, “Aeolian Dust in a Saline Playa Environment, Nevada, U.S.A.,” Journal of Arid Environments, Vol. 41, No. 1, 1999, pp. 365-381. doi:org/10.1006/jare.1998.0491
[47] A. Kleber, “On the paleoecology of the Northern Great Basin and Adjacent Rocky Mountains,” Zeitschrift für Geomorphologie NF, Vol. 38, 1994, pp. 421-434.
[48] A. Kleber, “Jungquart?re Entwicklung von H?ngen, B?den und Klima im Westen der USA (N?rdliches Great Basin und Randgebirge),” Bayreuther Geowissenschaftliche Arbeiten, Vol. 21, 2001, pp. 1-237.
[49] B. Liu, F. M. Phillips, D. Elmore and P. Sharma, “Depth Dependence of Soil Carbonate Accumulation Based on Cosmogenic 36Cl Dating,” Geology, Vol. 22, No. 12, 1994, pp. 1071-1074. doi:org/10.1130/0091-7613(1994)022<1071:DDOSCA>2.3.CO;2
[50] L. H. Gile, “Eolian and Associated Pedogenic Features of the Jornada Basin Floor, Southern New Mexico,” Soil Science Society of America Journal, Vol. 63, No. 1, 1999, pp. 151-163. doi:org/10.2136/sssaj1999.03615995006300010022x
[51] A. Kleber and A. Schellenberger, (1998). “Slope Hydrology Triggered by Cover-Beds. With an Example from the Frankenwald Mountains, Northeastern Bavaria,” Zeitsch- rift für Geomorphologie NF, Vol. 42, 469-482.
[52] W. D. Sharp, K. R. Ludwig, O. A. Chadwick, R. Am- undson and L. L. Glaser, “Dating Fluvial Terraces by 230Th/U on Pedogenic Carbonate, Wind River Basin, Wyoming,” Quaternary Research, Vol. 59, 2003, pp. 139-150.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.