Share This Article:

Facile Synthesis and Thermal Stability of Nanocrystalline Molybdenum Carbide

Abstract Full-Text HTML Download Download as PDF (Size:1253KB) PP. 1313-1316
DOI: 10.4236/msa.2011.29178    4,656 Downloads   8,474 Views   Citations

ABSTRACT

Nanocrystalline molybdenum carbide (Mo2C) was prepared via one simple route by the reaction of metallic magnesium powders with molybdenum trioxide and potassium acetate in an autoclave at the condition of 600℃ and 4 h. X-ray powder diffraction (XRD) pattern indicated that the product was hexagonal α-Mo2C, and the cell constant was a = 3.0091 Å, c = 4.7368 Å. Scanning electron microscopy (SEM) image showed that the sample consisted of particles with an average size of about 100 nm in diameter. The product was also studied by the thermogravimetric analysis (TGA). It had good thermal stability and oxidation resistance below 450℃ in air.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Y. Chen, H. Zhang, J. Zhang, J. Ma, H. Ye, G. Qian, Y. Ye and S. Zhong, "Facile Synthesis and Thermal Stability of Nanocrystalline Molybdenum Carbide," Materials Sciences and Applications, Vol. 2 No. 9, 2011, pp. 1313-1316. doi: 10.4236/msa.2011.29178.

References

[1] T. Hachisuka, “Role of Molybdenum Carbide in Promoting Densification During Sintering of TiC-TiN-Mo sub 2 C-Cr sub 3 C sub 2 Ceramic Composite,” Journal of the Japan Society of Powder and Powder Metallurgy, Vol. 38, No. 2, February1991, pp. 145-152.doi:10.2497/jjspm.38.145
[2] H. C. Kim, H. K. Park, I. K. Jeong, I. Y. Ko and I. J. Shon, “Sintering of Binderless WC-Mo2C Hard Materials by Rapid Sintering Process,” Ceramics International, Vol. 34, No. 6, 2008, pp. 1419-1423. doi:10.1016/j.ceramint.2007.03.029
[3] Z. Guo, J. Xiong, M. Yang, J. Wang, L. Sun, Y. Wu, J. Chen and S. Xiong, “Microstructure and Properties of Ti(C,N)-Mo2C-Fe Cermets,” International Journal of Refractory Metals & Hard Materials, Vol. 27, No. 4, 2009, pp. 781-783.
[4] X. H. Wang, F. Han, X. M. Liu, S. Y. Qu and Z. D. Zou, “Effect of Molybdenum on the Microstructure and Wear Resistance of Fe-Based Hardfacing Coatings,” Materials Science and Engineering A, Vol. 489, No. 1-2, 2009, pp. 193-200. doi:10.1016/j.msea.2007.12.020
[5] G. Z. Jin, J. H. Zhu, X. J. Fan, G. D. Sun and J. B. Gao, “Effect of Ni Promoter on Dibenzothiophene Hydrodesulfurization Performance of Molybdenum Carbide Catalyst,” Chinese Journal of Catalysis, Vol. 27, No. 10, October 2006, pp. 899-903. doi:10.1016/S1872-2067(06)60046-6
[6] M. L. Xiang, D. B. Li , W. H. Li, B. Zhong and Y. H. Sun, “Performances of Mixed Alcohols Synthesis over Potassium Promoted Molybdenum Carbides,” Fuel, Vol. 85, No. 17-18, 2006, pp. 2662-2665. doi:10.1016/j.fuel.2006.05.012
[7] E. C. Weigert, J. South, S. A. Rykov and J. G. Chen, “Multifunctional Composites Containing Molybdenum Carbides as Potential Electrocatalysts,” Catalysis Today, Vol. 99, No. 3-4, 2005, pp. 285-290. doi:10.1016/j.cattod.2004.10.003
[8] M. Lewandowski, A. Szymanska-Kolasa, P. Da Costa and C. Sayag, “Catalytic Performances of Platinum Doped Molybdenum Carbide for Simultaneous Hydrodenitrogenation and Hydrodesulfurization,” Catalysis Today, Vol. 119, No. 1-4, 2007, pp. 31-34. doi:10.1016/j.cattod.2006.08.062
[9] J. M. Cheng and W. Huang, “Effect of Cobalt (Nickel) Content on the Catalytic Performance of Molybdenum Carbides in Dry-Methane Reforming,” Fuel Processing Technology, Vol. 91, No. 2, February 2010, pp. 185-193. doi:10.1016/j.fuproc.2009.09.011
[10] M. Nagai and K. Matsuda, “Low-Temperature Water-Gas Shift Reaction over Cobalt-Molybdenum Carbide Catalyst,” Journal of Catalysis, Vol. 238, No. 2, 2006, pp. 489-496. doi:10.1016/j.jcat.2006.01.003
[11] D. Mordenti, D. Brodzki and G. D. Mariadassou, “New Synthesis of Mo2C 14 nm in Average Size Supported on a High Specific Surface Area Carbon Material,” Journal of Solid State Chemistry, Vol. 141, No. 1, 1998, pp. 114-120. doi:10.1006/jssc.1998.7925
[12] X. H. Wang, H. L. Hao, M. H. Zhang, W. Li and K. Y. Tao, “Synthesis and Characterization of Molybdenum Carbides Using Propane as Carbon Source,” Journal of Solid State Chemistry, Vol. 179, No. 2, 2006, pp. 538-543. doi:10.1016/j.jssc.2005.11.009
[13] L. Díaz Barriga Arceo, E. Orozco, H. Mendoza-León, E. Palacios González, F. Leyte Guerrero and V. Garibay Febles, “Nanostructures Obtained from a Mechanically Alloyed and Heat Treated Molybdenum Carbide,” Journal of Alloys and Compounds, Vol. 434-435, 2007, pp. 799- 802.
[14] L. Norin, U. Jansson and J.-O. Carlsson, “Chemical Vapour Deposition of Molybdenum Carbides Using C60 as a Carbon Source,” Thin Solid Films, Vol. 293, No. 1, 1997, pp. 133-137. doi:10.1016/S0040-6090(96)08987-0
[15] Z. W. Yao, “Exploration on Synthesis of Activated Carbon Supported Molybdenum Carbide, Nitride and Phosphide via Carbothermal Reduction Route,” Journal of Alloys and Compounds, Vol. 475, No. 1, 2009, pp. L38-L41. doi:10.1016/j.jallcom.2008.07.130
[16] T. Miyao, I. S. Kura, M. Matsuoka, M. Nagai and S. T. Oyama, “Preparation and Characterization of Alumina- Supported Molybdenum Carbide,” Applied Catalysis A: General, Vol. 165, No. 1-2, 1997, pp. 419-428.
[17] D.-Y. Wang, C.-L. Chang and W.-Y. Ho, “Oxidation Behavior of Diamond-Like Carbon Films,” Surface and Coatings Technology, Vol. 120-121, 1999, pp. 138-144.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.