Structural and Magnetic Properties of BaCoxFe12xO19 (x = 0.2, 0.4, 0.6, &1.0) Nanoferrites Synthesized via Citrate Sol-Gel Method

Abstract

Cobalt substituted barium ferrites, BaCoxFe12-xO19 (x = 0.2, 0.4, 0.6 & 1.0) have been synthesized via citrate sol-gel method. All the samples have been annealed at 1000℃ and characterized using Fourier Transform Infra Red spectroscopy, X-Ray Diffractography and Vibrating Sample Magnetometry. The FT-IR spectra of the samples exhibit two frequency bands in the range of 580 cm-1 and 460 cm-1, corresponding to the formation of metal oxides. The XRD studies reveal a crystallite size of ~55 nm. The saturation magnetization decreases from 96.3 emu/g to 47.8 emu/g with increasing concentration of cobalt due to the lower magnetic moment of Co2+ (3 µB) as compared to Fe3+ (5 µB). The coercivity values also show a decreasing behaviour from 3800 Oe to 1750 Oe with increasing cobalt concentration due to reduced magnetocrystalline anisotropy.

Share and Cite:

S. Singhal, K. Kaur, S. Jauhar, S. Bhukal and S. Bansal, "Structural and Magnetic Properties of BaCoxFe12xO19 (x = 0.2, 0.4, 0.6, &1.0) Nanoferrites Synthesized via Citrate Sol-Gel Method," World Journal of Condensed Matter Physics, Vol. 1 No. 3, 2011, pp. 101-104. doi: 10.4236/wjcmp.2011.13016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Koleva, P. Atanasov, R. Tomov, O. Vankov, C. Matin, C. Ristoscu, I. Mihailescu, D. Iorgov, S. Angelova, C. Ghelev and N. Mihailov, “Pulsed Laser Deposition of Barium Hexaferrite (BaFe12O19) Thin Films,” Applied Surface Science, Vol. 154-155, 2000, pp. 485-491. doi:10.1016/S0169-4332(99)00404-3
[2] H. S?zeri, ?. Kü?ük and H. ?zkan, “Improvement in Magnetic Properties of La Substituted BaFe12O19 Particles Prepared with an Unusually Low Fe/Ba Molar Ratio,” Journal of Magnetism and Magnetic Materials, Vol. 323, No. 13, 2011, pp. 1799-1804. doi:10.1016/j.jmmm.2011.02.012
[3] R. Carey, P. A. Gago-Sandval, D. M. Newman and B. W. J. Thomas, “The Magnetic and Magneto-Optical Properties of Co, Cr, Mn, and Ni Substituted Barium Ferrite Films,” Journal of Applied Physics, Vol. 75, No. 10, 1994, pp. 6789-6791. doi:10.1063/1.356831
[4] T. Yamauchi, Y. Tsukahara, T. Sakata, H. Mori, T. Chikata, S. Katoh and Y. Wada, “Barium Ferrite Powders Prepared by Microwave-Induced Hydrother-mal Reaction and Magnetic Property,” Journal of Magnetism and Mag- netic Materials, Vol. 321, No. 1, 2009, pp. 8-11. doi:10.1016/j.jmmm.2008.07.005
[5] X. Ping, H. Xijiang and M. Wang, “Synthesis and Magnetic Properties of BaFe12O19 Hexaferrite Nanoparticles by a Reverse Microemulsion Tech-nique,” The Journal of Physical Chemistry C, Vol. 111, No. 16, 2007, pp. 5866- 5870. doi:10.1021/jp068955c
[6] D. Lisjak, K. Bobzin, K. Richardt, M. Begard, G. Bolelli, L. Lusvarghi, A. Hujanen, P. Lintunen, M. Pasquale, E. Olivetti, M. Drofenik and T. Schlafer, “Preparation of Barium Hexaferrite Coatings Using Atmospheric Plasma Spraying,” Journal of the European Ceramic Society, Vol. 29, No. 11, 2009, pp. 2333-2341. doi:10.1016/j.jeurceramsoc.2009.01.028
[7] V. K. Sanda-ranarayanan and D. C. Khan, “Mechanism of the Formation of Nanoscale M-Type Barium Hexaferrite in the Citrate Precursor Method,” Journal of Magnetism and Magnetic Materials, Vol. 153, No. 2, 1996, pp. 337- 346. doi:10.1016/0304-8853(95)00537-4
[8] G. Mendoza-Suarez, K. K. Johal, H. Mancha-Mohinar, J. I. Escalante-Garcia and M. M. Cisneros-Guerrero, “Magnetic Properties of Zn-Sn-Substituted Ba-Ferrite Powders Prepared by Ball Mill-ing,” Materials Research Bulletin, Vol. 36, No. 15, 2001, pp. 2597-2603. doi:10.1016/S0025-5408(01)00751-6
[9] J. Kresisel, H. Vincent, F. Tasset, M. Pate and J. P. Ganne, “An Investigation of the Magnetic Anisotropy Change in BaFe12?2xTixCoxO19 Single Crystals,” Journal of Magnetism and Magnetic Materials, Vol. 224, No. 1, 2001, pp. 17-29. doi:10.1016/S0304-8853(00)01355-X
[10] G. B. Teh, S. Na-galingam and D. A. Jefferson, “Preparation and Studies of Co(II) and Co(III)-Substituted Barium Ferrite Prepared by Sol-Gel Method,” Materials Chemistry and Physics, Vol. 101, No. 1, 2007, pp. 158-162. doi:10.1016/j.matchemphys.2006.03.008
[11] A. Ghasemi and A. Morisako, “Static and High Frequency Magnetic Properties of Mn-Co-Zr Substituted Ba-Ferrite,” Journal of Alloys and Compounds, Vol. 456, No. 1-2, 2008, pp. 485-491. doi:10.1016/j.jallcom.2007.02.101
[12] X. F. Yang, Q. L. Li, J. X. Zhao, B. D. Li and Y. F. Wang, “Preparation and Magnetic Properties of Controllable-Morphologies Nano-SrFe12O19 Par-ticles Prepared by Sol-Gel Self-Propagation Synthesis,” Jour-nal of Alloys and Compounds, Vol. 475, No. 1-2, 2009, pp. 312-331. doi:10.1016/j.jallcom.2008.08.019
[13] L. A. Garc′?a-Cerda, O. S. Rodr′?guez-Fernández, and P. J. Reséndiz-Hernández, “Study of SrFe12O19 Synthesized by the Sol-Gel Method,” Journal of Alloys and Compounds, Vol. 369, No. 1-2, 2004, pp. 182-184. doi:10.1016/j.jallcom.2003.09.099
[14] M. J. Iqbal and Bar-ket-ul-Ain, “Synthesis and Study of Physical Properties of Zr4+-Co2+ Co-doped Barium Hexagonal Ferrites,” Materials Science and Engineering B, Vol. 164, No. 1, 2009, pp. 6-11.
[15] B. D. Cullity, “Elements of X-Ray Diffraction,” Addison-Wesly Publishing, Boston, 1976.
[16] M. Kishimoto, S. Kitahata and M. Amemiya, “Effect of Magnetic Anisotropy of Ba-Ferrite Particles on Squareness of Perpendicular Re-cording Media,” Journal of Applied Physics, Vol. 61, No. 8, 1987, pp. 3875-3877. doi:10.1063/1.338626
[17] G. Mendoza-Suarez, L. P. Rivas-Vazquez, J. C. Corral-Huacuz, A. F. Fuentes and J. I. Escalante-Garcia, “Magnetic Properties and Microstructure of BaFe11.6?2x- TixMxO19 (M = Co, Zn, Sn) Compounds,” Physica B: Condensed Matter, Vol. 339, No. 2-3, 2003, pp. 110-118.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.