Analytical Determination of Benzophenone-3 in Sunscreen Preparations Using Boron-Doped Diamond Electrodes

Abstract

A new electroanalytical procedure was developed for the determination of Benzophenone-3 (BENZO) in commercial sunscreen as the active ingredient. The procedure is based on the use of electrochemical methods as cyclic and square-wave voltammetry, with boron-doped diamond (BDD) electrodes. The reduction of BENZO in Britton-Robinson buffer (0.1 mol●L–1) using this type of electrode gives rise to one irreversible peak in –1.30 V (versus Ag/AgCl) in presence of cationic surfactant cetyltrimethylammonium bromide (CTABr). The proposed electrochemical method was successfully applied to the analysis of commercially available pharmaceutical preparations.

Share and Cite:

M. Laranjeira, F. de Lima, S. de Oliveira, V. Ferreira and R. de Oliveira, "Analytical Determination of Benzophenone-3 in Sunscreen Preparations Using Boron-Doped Diamond Electrodes," American Journal of Analytical Chemistry, Vol. 2 No. 3, 2011, pp. 383-391. doi: 10.4236/ajac.2011.23047.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Gonzalez, A. Abrot, O. Larko and A. M. Wennberg, “Percutaneous Absorption of the Sunscreen Benzophenone-3 after Repeated Whole-Body Applications, with and without Ultraviolet Irradiation,” British Journal of Dermatology, Vol. 154, No. 2, 2006, pp .337-340.
[2] T. Suzuki, S. Kitamura, R. Khota, K. Sugihara, N. Fujimoto and S. Ohta, “Estrogenic and Antiandrogenic Activities of 17 Benzophenone Derivatives Used as UV Stabilizers and Sunscreens,” Toxicology and Applied Pharmacology, Vol. 203, No. 1, 2005, pp. 9-17. doi:10.1016/j.taap.2004.07.005
[3] C. G. Daughton, “Environmental Stewardship and Drugs as Pollutants,” Lancet, Vol. 360, No. 9339, 2002, pp. 1035-1036. doi:10.1016/S0140-6736(02)11176-7
[4] M. E. Balmer, H. R. Buser, M. D. Muller and T. Poiger, “Occurrence of Some Organic UV Filters in Wastewater, in Surface Waters, and in Fish from Swiss Lakes,” Environmental Science & Technology, Vol. 39, No. 4, 2005, pp. 953-962. doi:10.1021/es040055r
[5] G. A. Loraine and M. E. Pettigrove, “Seasonal Variations in Concentrations of Pharmaceuticals and Personal Care Products in Drinking Water and Reclaimed Wastewater in Southern California,” Environmental Science & Technology, Vol. 40, No. 3, 2006, pp. 687-695. doi:10.1021/es051380x
[6] S. C. Rastogi and G. H. Jensen, “Identification of UV Filters in Sunscreen Products by High-Performance Liquid Chromatography-Diode Array Detection,” Journal of Chromatography A, Vol. 828, No. 1-2, 1998, pp. 311-316. doi:10.1016/S0021-9673(98)00784-5
[7] V. Vanquerp, C. Rodriguez, C. Coiffard, L. J. M. Coiffard and Y. D. Roeck-Holtzhauer, “High-Performance Liquid Chromatographic Method for the Comparison of the Photostability of Five Sunscreen Agents,” Journal of Chromatography A, Vol. 832, No. 1-2, 1999, pp. 273-277. doi:10.1016/S0021-9673(98)00928-5
[8] A. Chisvert, M. C. Pascual-Marti and A. Salvador, “Determination of UV-Filters in Sunscreens by HPLC,” Fresenius Journal of Analytical Chemistry, Vol. 369, No. 7-8, 2001, pp. 638-641. doi:10.1007/s002160100701
[9] T. Felix, B. J. Hall and J. S. Brodbelt, “Determination of Benzophenone-3 and Metabolites in Water and Human Urine by Solid-Phase Microextraction and Quadrupole Ion Trap GC-MS,” Analytica Chimica Acta, Vol. 371, No. 2-3, 1998, pp. 195-203. doi:10.1016/S0003-2670(98)00293-1
[10] V. Lorena, C. Alberto, C. Antonio, P. Elefteria, L. Alexei, A. Fernando, J. Karen, A. H. James and M. Frank, “Chemically Surface-Modified Carbon Nanoparticle Carrier for Phenolic Pollutants: Extraction and Electrochemical Determination of Benzophenone-3 and Triclosan,” Analytica Chimica Acta, Vol. 616, No. 1, 2008, pp. 28-35. doi:10.1016/j.aca.2008.04.011
[11] A. O. Razak, A. A. Gazy and A. M. Wahbi, “Polarographic Determination of Phenytoin and Benzophenone (as Impurity) in Pharmaceutical Preparations,” Journal Pharmaceutical and Biomedical Analysis, Vol. 28, No. 3-4, 2002, pp. 613-619. doi:10.1016/S0731-7085(01)00669-0
[12] J. C. Cardoso, B. M. L. Armondes, J. B. G. Júnior and V. S. Ferreira, “Simultaneous Electrochemical Determination of Three Sunscreens Using Cetyltrimethylammonium Bromide,” Colloids and Surfaces B: Biointerfaces, Vol. 63, No. 1, 2008, pp. 34-40. doi:10.1016/j.colsurfb.2007.11.001
[13] A. J. Wain, J. D. Wadhawan and R. G. Compton, “Electrochemical Studies of Vitamin K1 Microdroplets: Electrocatalytic Hydrogen Evolution,” Chemical Physics And Physical Chemistry, Vol. 4, No. 9, 2003, pp. 974-982.
[14] J. M. Gong and X. Q. Lin, “Electrochemical Determination of Serotonin and the Competitive Adsorption with Dopamine at 5,5-Ditetradecyl-2-(2-trimethylammonioethyl)-1,3-dioxane Bromide Lipid Film Modified by Glassy Carbon Electrode,” Anaytica Sciences, Vol. 20, No. 6, 2004, pp. 905-909. doi:10.2116/analsci.20.905
[15] H. B. Suffredini, S. A. S. Machado and L. A. Avaca, “The Water Decomposition Reaction on Boron-Doped Diamond Electrode,” Journal Brazilian Chemical Society, Vol. 15, No. 1, 2004, pp. 16-21. doi:10.1590/S0103-50532004000100004
[16] R. Bellagamba, P. A. Michaud, C. Comninellis and N. Vatistas, “Electro-Combustion of Polyacrylates with BoronDoped Diamond Anodes,” Electrochemistry Communication, Vol. 4, No. 2, 2002, pp. 171-176. doi:10.1016/S1388-2481(01)00302-2
[17] J. S. Foord and C. H. Goeting, “Electrochemically Controlled Modification of CVD Diamond Surfaces,” Diamond and Related Materials, Vol. 13, No. 4-8, 2004, pp. 1054-1058. doi:10.1016/j.diamond.2003.12.016
[18] M. C. Granger and G. M. Swain, “The Influence of Surface Interactions on the Reversibility of Ferri/Ferrocyanide at Boron-Doped Diamond Thin-Film Electrodes,” Journal of the Electrochemical Society, Vol. 146, No. 12, 1999, pp. 4551-4558. doi:10.1149/1.1392673
[19] I. Duo, C. Lévy-Clément, A. Fujishima and C. Comninellis, “Electron Transfer Kinetics on Boron-Doped Diamond Part I: Influence of Anodic Treatment,” Journal of Applied Electrochemistry, Vol. 34, No. 9, 2004, pp. 935-943. doi:10.1023/B:JACH.0000040525.76264.16
[20] H. B. Suffredini, V. A. Pedrosa, L. Codognoto, S. A. S. Machado, R. C. Rocha-Filho and L. A. Avaca, “Enhanced Electrochemical Response of Boron-Doped Diamond Electrodes Brought on by a Cathodic Surface Pre-Treatment,” Electrochimica Acta, Vol. 49, No. 22-23, 2004, pp. 4021-4026. doi:10.1016/j.electacta.2004.01.082
[21] G. R. Salazar-Banda, L. S. Andrade, P. A. P. Nascente, P. S. Pizani, R. C. Rocha-Filho and L. A. Avaca, “On the Changing Electrochemical Behaviour of Boron-Doped Diamond Surfaces with Time after Cathodic Pre-Treatments,” Electrochimica Acta, Vol. 51, No. 22, 2006, pp. 4612-4619. doi:10.1016/j.electacta.2005.12.039
[22] M. S. Saha, T. Furuta and Y. Nishiki, “Conversion of Carbon Dioxide to Peroxycarbonate at Boron-Doped Diamond Electrode,” Electrochemistry Communication, Vol. 6, No. 2, 2004, pp. 201-204. doi:10.1016/j.elecom.2003.11.014
[23] J. Iniesta, P. A. Michaud, M. Panizza and C. Comninellis, “Electrochemical Oxidation of 3-Methylpyridine at a Boron-Doped Diamond Electrode: Application to Electroorganic Synthesis and Wastewater Treatment,” Electrochemistry Communication, Vol. 3, No. 7, 2001, pp. 346- 351. doi:10.1016/S1388-2481(01)00174-6
[24] J. W. Strojek, M. C. Granger, T. Dallas, M. W. Holtz and G. M. Swain, “Enhanced Signal-to-Background Ratios in Voltammetric Measurements Made at Diamond Thin-Film Electrochemical Interfaces,” Analytical Chemistry, Vol. 68, No. 13, 1996, pp. 2031-2037. doi:10.1021/ac9506847
[25] M. Hupert, A. Muck, J. Wang, J. Stotter, Z. Cvackova, S. Haymond, Y. Show and G. M. Swain, “Conductive Diamond Thin-Films in Electrochemistry,” Diamond and Related Materials, Vol. 12, No. 10-11, 2003, pp. 1940-1949. doi:10.1016/S0925-9635(03)00260-7
[26] Y. Yano, D. A. Tryk, K. Hashimoto and A. Fujishima, “Electrochemical Behavior of Highly Conductive Boron-Doped Diamond Electrodes for Oxygen Reduction in Alkaline Solution,” Journal of the Electrochemical Society, Vol. 145, No. 6, 1998, pp. 1870-1876. doi:10.1149/1.1838569
[27] N. Vinokur, B. Miller, Y. Avyigal and R. Kalisk, “Electrochemical Behavior of Boron-Doped Diamond Electrodes,” Journal of the Electrochemical Society, Vol. 143, No. 10, 1996, pp. L238-L240. doi:10.1149/1.1837157
[28] T. N. Rao, Y. Yagi, T. Miwa, D. A. Tryk and A. Fujishima, “Electrochemical Oxidation of NADH at Highly Boron-Doped Diamond Electrodes,” Analytical Chemistry, Vol. 71, No. 13, 1999, pp. 2506-2511. doi:10.1021/ac981376m
[29] E. Popa, H. Notsu, T. Miwa, D. A. Tryk and A. Fujishima, “Selective Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid at Anodized Diamond Thin Film Electrodes,” Electrochemistry and Solid-State Letters, Vol. 2, No. 1, 1999, pp. 49-51. doi:10.1149/1.1390730
[30] J. Iniesta, P. A. Michaud, M. Panizza, C. Cerisola, A. Aldaz and C. Comniniellis, “Electrochemical Oxidation of Phenol at Boron-Doped Diamond Electrode,” Electrochimica Acta, Vol. 46, No. 23, 2001, pp. 3573-3578. doi:10.1016/S0013-4686(01)00630-2
[31] M. C. Granger, J. S. Xu, J.W. Strojek and G. M. Swain, “Polycrystalline Diamond Electrodes: Basic Properties and Applications as Amperometric Detectors in Flow Injection Analysis and Liquid Chromatography,” Analytica Chimica Acta, Vol. 397, No. 1-3, 1999, pp. 145-161. doi:10.1016/S0003-2670(99)00400-6
[32] V. A. Pedrosa, L. Codognoto and L. A. Avaca, “Electro-analytical Determination of 4-Nitrophenol by Square Wave Voltammetry on Diamond Electrodes,” Journal of the Brazilian Chemical Society, Vol. 14, No. 4, 2003, pp. 530-535. doi:10.1590/S0103-50532003000400007
[33] V. A. Pedrosa, L. Codognoto and L. A. Avaca, “Is the Boron-Doped Diamond Electrode a Suitable Substitute for Mercury in Pesticide Analyses? A Comparative Study of 4-Nitrophenol Quantification in Pure and Natural Waters,” Journal of Electroanalytical Chemistry, Vol. 573, 2004, pp. 11-18.
[34] V. A. Pedrosa, H. B. Suffredini, L. Codognoto, S. T. Tanimoto, S. A. S. Machado and L. A. Avaca, “Carbon Surfaces for Electrochemical Applications. A Comparative Study,” Analytical Letters, Vol. 38, 2005, pp. 1115-1125.
[35] L. Codognoto, S. A. S. Machado and L. A. Avaca, “Square Wave Voltammetry on Boron-doped Diamond Electrodes for Analytical Determination,” Diamond and Related Materials, Vol. 11, No. 9, 2002. pp. 1670-1675. doi:10.1016/S0925-9635(02)00134-6
[36] G. W. Muna, N. Tasheva and G. M. Swain “Electro-Oxidation and Amperometric Detection of Chlorinated Phenols at Boron-Doped Diamond Electrodes: A Comparison of Microcrystalline and Nanocrystalline Thin Films,” Environmental Science & Technology, Vol. 38, No. 13, 2004, pp. 3674-3682. doi:10.1021/es034656e
[37] C. E. Banks, M. E. Hyde, P. Tomcik, R. Jacobs and R. G. Comptom, “Cadmium Detection via Boron-Doped Diamond Electrodes: Surfactant Inhibited Stripping Voltammetry,” Talanta, Vol. 62, No. 2, 2004, pp.279-286. doi:10.1016/j.talanta.2003.07.008
[38] J. Iniesta, P. A. Michaud, M. Panizza and C. Comninellis, “Electrochemical Oxidation of 3-Methylpyridine at a Boron-Doped Diamond Electrode: Application to Electroorganic Synthesis and Wastewater Treatment,” Electrochemistry Communication, Vol. 3, No. 7, 2001, pp. 346-351. doi:10.1016/S1388-2481(01)00174-6
[39] P. A. Michaud, E. Mahé, W. Haenni, A. Perret and C. Comninellis, “Preparation of Peroxodisulfuric Acid Using Boron-Doped Diamond Thin Film Electrode,” Electrochemistry and Solid-State Letters, Vol. 3, No. 2, 2000, pp. 77-79. doi:10.1149/1.1390963
[40] R. T. S. Oliveira, G. R. Salazar-Banda, M. C. Santos, M. L. Calegaro, D. W. Miwa, S. A. S. Machado and L. A. Avaca, “Electrochemical Oxidation of Benzene on Boron-Doped Diamond Electrodes,” Chemosphere, Vol. 66, No. 11, 2007, pp. 2152-2158. doi:10.1016/j.chemosphere.2006.09.024
[41] E. Brillas, B. Boye, I. Sires, J. A. Garrido, R. M. Rodriguez, C. Arias, P. L. Cabot and C. Comninellis, “Electrochemical Destruction of Chlorophenoxy Herbicides by Anodic Oxidation and Electro-Fenton Using a Boron-Doped Diamond Electrode,” Electrochimica Acta, Vol. 49, No. 25, 2004, pp. 4487-4496. doi:10.1016/j.electacta.2004.05.006
[42] J. F. Zhi, H. B. Wang, T. Nakashima, T. N. Rao and A. Fujishima, “Electrochemical Incineration of Organic Pollutants on Boron-Doped Diamond Electrode. Evidence for Direct Electrochemical Oxidation Pathway,” Journal of Physical Chemistry B, Vol. 107, No. 48, 2003, pp. 13389-13395. doi:10.1021/jp030279g
[43] R. Bellagamba, P. A. Michaud, C. Comninellis and N. Vatistas, “Electro-Combustion of Polyacrylates with Boron-Doped Diamond Anodes,” Electrochemistry Communication, Vol. 4, No. 2, 2002, pp. 171-176. doi:10.1016/S1388-2481(01)00302-2
[44] F. Montilla, E. Morallon, I. Duo, C. Comninellis and J. L. Vazquez, “Platinum Particles Deposited on Synthetic Boron-Doped Diamond Surfaces. Application to Methanol Oxidation,” Electrochimica Acta, Vol. 48, No. 25-26, 2003, pp. 3891-3897. doi:10.1016/S0013-4686(03)00526-7
[45] G. R. Salazar-Banda, H. B. Suffredini and L. A. Avaca, “Improved Stability of PtOx Sol-Gel Modified Diamond Electrodes Covered with a Nafion Film,” Journal of the Brazilian Chemical Society, Vol. 16, No. 5, 2005, pp. 903-906. doi:10.1590/S0103-50532005000600003
[46] H. B. Suffredini, G.R. Salazar-Banda, S. T. Tanimoto, M. L. Calegaro, S. A. S. Machado and L. A. Avaca, “AFM Studies and Electrochemical Characterization of Boron-Doped Diamond Surfaces Modified with Metal Oxides by the Sol-Gel Method,” Journal of the Brazilian Chemical Society, Vol. 17, No. 2, 2006, pp. 257-264. doi:10.1590/S0103-50532006000200007
[47] C. Terashima, T. N. Rao, B. V. Sarada, Y. Kubota and A. Fujishima, “Direct Electrochemical Oxidation of Disulfides at Anodically Pretreated Boron-Doped Diamond Electrodes,” Analytical Chemistry, Vol. 75, No. 7, 2003, pp. 1564-1572. doi:10.1021/ac020583q
[48] T. N. Rao, T. A. Ivandini, C. Terashima, B. V. Sarada and A. Fujishima, “Applications of Bare and Modified Diamond Electrodes in Electroanalysis,” New Diamond Frontier Carbon Technology, Vol. 13, 2003, pp.79-88.
[49] R. T. S. Oliveira, G. R. Salazar-Banda, S. C. Oliveira, V. S. Ferreira and L. A. Avaca, “Electroanalytical Determination of Lidocaine in Pharmaceutical Preparations Using Boron-Doped Diamond Electrodes,” Electroanalysis, Vol. 19, No. 11, 2007, pp. 1189-1194. doi:10.1002/elan.200603840
[50] R. T. S. Oliveira, G. R. Salazar-Banda, S. A. S. Machado and L. A. Avaca, “Electroanalytical Determination of N-Nitrosamines in Aqueous Solution Using a Boron-Doped Diamond Electrode,” Electroanalysis, Vol. 20, No. 4, 2008, pp. 396-401. doi:10.1002/elan.200704055
[51] G. Pastor-Moreno and D. J. Riley, “The Influence of Surface Preparation on the Electrochemistry of Boron-Doped Diamond: A Study of the Reduction of 1,4-Benzoquinone in Acetonitrile,” Electrochemistry Communication, Vol. 4, No. 2, 2002, pp. 218-221. doi:10.1002/elan.200704055
[52] A. Arranz, L. Dolara, S. F. Bet?no, J. M. Moreda, A. Cid and J. F. Arranz, “Electroanalytical Study and Square Wave Voltammetric Techniques for the Determination of β-Blocker Timolol at the Mercury Electrode,” Analytica Chimica Acta, Vol. 389, No. 1-3, 1999, pp. 225-232. doi:10.1016/S0003-2670(99)00214-7
[53] M. Lovri?, K. ?ebojka and W. Murray, “Adsorption Effects in Square-Wave Voltammetry of Totally Irreversible Redox Reactions,” Electrochimica Acta, Vol. 33, No. 6, 1988, pp. 739-744. doi:10.1016/S0013-4686(98)80002-9
[54] M. Lovri? and K. ?ebojka, “Square-Wave Voltammetry of an Adsorbed Reactant,” Journal of Electronalytical Chemistry and Interfacial Electrochemistry, Vol. 248, No. 2, 1988, pp. 239-253. doi:10.1016/0022-0728(88)85089-7
[55] R. Q. Thompson, M. Porter, C. Stuver, H. B. Halsall, W. R. Heineman, E. Buckley and M. R. Smyth, “Zeptomole Detection Limit for Alkaline Phosphatase Using 4-Aminophenyl-Phosphate, Amperometric Detection, and an Optimal Buffer System,” Analytica Chimica Acta, Vol. 271, No. 2, 1993, pp. 223-229. doi:10.1016/0003-2670(93)80049-Q
[56] L. A. Currie, “International Recommendations Offered on Analytical Detection and Quantification Concepts and Nomenclature,” Analytica Chimica Acta, Vol. 391, No. 2, 1999, p. 103. doi:10.1016/S0003-2670(99)00103-8
[57] J. Mocak, A. M. Bond, S. Mitchell and G. Scollary, “A Statistical Overview of Standard (IUPAC and ACS) and New Procedures for Determining the Limits of Detection and Quanti?cation: Application to Voltammetric and Stripping Techniques,” Pure and Applied Chemistry, Vol. 69, No. 2, 1997, pp. 297-328. doi:10.1351/pac199769020297

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.