Share This Article:

Bioremediation of Bisphenol A by Glycosylation with Immobilized Marine Microalga Amphidinium crassum
——Bioremediation of Bisphenol a by Immobilized Cells

Abstract Full-Text HTML Download Download as PDF (Size:211KB) PP. 90-95
DOI: 10.4236/aces.2011.13015    5,208 Downloads   9,338 Views   Citations

ABSTRACT

Glycosylation of bisphenol A, which is an endocrine disrupting chemical, was investigated using immobilized marine microalga and plant cells from the viewpoint of bioremediation of bisphenol A. Immobilized marine microalga of Amphidinium crassum glucosylated bisphenol A to the corresponding glucoside. On the other hand, bisphenol A was glycosylated to its glucoside, diglycoside, gentiobioside, and gentiobiosylglucoside, which was a new compound, by immobilized plant cells of Catharanthus roseus.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Shimoda, R. Yamamoto and H. Hamada, "Bioremediation of Bisphenol A by Glycosylation with Immobilized Marine Microalga Amphidinium crassum
——Bioremediation of Bisphenol a by Immobilized Cells," Advances in Chemical Engineering and Science, Vol. 1 No. 3, 2011, pp. 90-95. doi: 10.4236/aces.2011.13015.

References

[1] D. Seidlová-Wuttke, H. Jarry, J. Christoffel, G. Rimoldi and W. Wuttke, “Effects of Bisphenol-A (BPA), Dibu-tylphtalate (DBP), Benzophenone-2 (BP2), Procymidone (Proc), and Linurone (Lin) on Fat Tissue, a Variety of Hormones and Metabolic Parameters: A 3 Months Com-parison with Effects of Estradiol (E2) in Ovariectomized (ovx) Rats,” Toxicology, Vol. 213, No. 1-2, 2005, pp. 13-24. doi:10.1016/j.tox.2005.05.001
[2] G. Pojana, A. Gomiero, N. Jonkers and A. Marcomini, “Natural and Synthetic Endocrine Disrupting Compounds (EDCs) in Water, Sediment and Biota of a Coastal La-goon,” Environment International, Vol. 33, No. 7, 2007, pp. 929-936. doi:10.1016/j.envint.2007.05.003
[3] L. Yuan, G. M. Zeng, C. Zhang, J. Yu and J. M. Xu, “Isolation, Identification and Degradation Characteristics of Bisphenol a Degrading Strain,” Huanjing Kexue, Vol. 27, No. 10, 2006, pp. 2095-2099.
[4] T. Iwasaki, K. Miyauchi, E. Masai and M. Fukuda, “Mul-tiple-Subunit Genes of the Aromatic-Ring-Hydroxylating Dioxygenase Play an Active Role in Biphenyl and Poly-chlorinated Biphenyl Degradation in Rhodococcus sp. Strain RHA1,” Applied and Environmental Microbiology, Vol. 72, No. 8, 2006, pp. 5396-5402. doi:10.1128/AEM.00298-06
[5] H. Yamanaka, K. Moriyoshi, T. Ohmoto, T. Ohe and K. Sakai, “Degradation of Bisphenol A by Bacillus Pumilus Isolated from Kimchi, a Traditionally Fermented Food,” Applied Biochemistry and Biotechnology, Vol. 136, No. 1, 2007, pp. 39-51. doi:10.1007/BF02685937
[6] L. Y. Jia, A. P. Zheng, L. Xu, X. D. Huang, Q. Zhang and F. L. Yang, “Isolation and Characterization Of Compre-hensive Polychlorinated Biphenyl Degrading Bacterium, Enterobacter sp. LY402,” Journal of Microbiology and Biotechnology, Vol. 18, No. 5, 2008, pp. 952-957.
[7] T. Artham and M. Doble, “Biodegradation of aliphatic and aromatic polycarbonates,” Macromolecular Bioscience, Vol. 8, No. 1, 2008, pp. 14-24. doi:10.1002/mabi.200700106
[8] H. Yamanaka. K. Moriyoshi, T. Ohmoto, T. Ohe and K. Sakai, “Efficient Microbial Degradation of Bisphenol A in the Presence of Activated Carbon,” Journal of Biosci-ence and Bioengineering, Vol. 105, No. 2, 2008, pp. 157-160. doi:10.1263/jbb.105.157
[9] E. Lewinson, E. Berman, Y. Mazur and J. Gressel, “Glu-cosylation of Exogenous Flavanones by Grapefruit (Cit-rus paradisi) Cell Cultures,” Phytochemistry, Vol. 25, No. 11, 1986, pp. 2531-2535.
[10] M. Tabata, Y. Umetani, M. Ooya and S. Tanaka, “Glu-cosylation of phenolic compounds by plant cell cultures,” Phytochemistry, Vol. 27, No. 11, 1988, pp. 809-813. doi:10.1016/0031-9422(88)84097-4
[11] B. Upmeier, J. E. Thomzik and W. Barz, “Nicotinic Acid-N-Glucoside in Heterotrophic Parsley Cell Suspen-sion Cultures,” Phytochemistry, Vol. 27, No. 11, 1988, pp. 3489-3493. doi:10.1016/0031-9422(88)80754-4
[12] T. Furuya, M. Ushiyama, Y. Ashida and T. Yoshikawa, “Biotransformation of 2-Phenylpropionic Acid in Root Culture of Panax Ginseng,” Phytochemistry, Vol. 28, No. 2, 1989, pp. 483-487. doi:10.1016/0031-9422(89)80036-6
[13] M. Ushiyama, T. Asada, T. Yoshikawa and T. Furuya, “Biotransformation of Aromatic Carboxylic Acids by Root Culture of Panax Ginseng,” Phytochemistry, Vol. 28, No. 7, 1989, pp. 1859-1869. doi:10.1016/S0031-9422(00)97875-0
[14] S. Kwon, K. Shimoda, H. Hamada, K. Ishihara, N. Ma-suoka and H. Hamada, “High Production of Thujap-licin Glycosides by Immobilized Plant Cells of Nicotiana Tabacum,” Acta Biologica Hungarica, Vol. 59, No. 3, 2008, pp. 347-355.
[15] H. Katsuragi, K. Shimoda, A. Ohiro and H. Hamada, “Glycosylation of Capsaicinoids with Panax Ginseng Stimulated by Salicylic Acid,” Acta Biologica Hungarica, Vol. 61, No. 4, 2010, pp. 449-456. doi:10.1556/ABiol.61.2010.4.8
[16] T. Suga and T. Hirata, “Biotransformation of Exogenous Substrates by Plant Cell Cultures,” Phytochemistry, Vol. 29, No. 8, 1990, pp. 2393-2406. doi:10.1016/0031-9422(90)85155-9
[17] K. Ishihara, H. Hamada, T. Hirata and N. Nakajima, “Biotransformation Using Plant Cultured Cells,” Journal of Molecular Catalysis B: Enzymatic, Vol. 23, No. 2-6, 2003, pp. 145-170. doi:10.1016/S1381-1177(03)00080-8
[18] K. Morohoshi, F. Shiraishi, Y. Oshima, T. Koda, N. Na-kajima, J. S. Edmonds and M. Morita, “Synthesis and Es-trogenic Activity of Bisphenol a Mono- and di-beta-D- Glucopyranosides, Plant Metabolites of Bisphenol A,” Environmental Toxicology and Chemistry, Vol. 22, No. 10, 2003, pp. 2275-2279. doi:10.1897/02-464
[19] N. Nakajima, T. Teramoto, F. Kasai, T. Sano, M. Tama-oki, M. Aono, A. Kubo, H. Kamada, Y. Azumi and H. Saji, “Glycosylation of Bisphenol A by Freshwater Mi-croalgae,” Chemosphere, Vol. 69, No. 6, 2007, pp. 934-941. doi:10.1016/j.chemosphere.2007.05.088
[20] N. Nakajima, Y. Oshima, J. S. Edmonds and M. Morita, “Glycosylation of Bisphenol A by Tobacco BY-2 Cells,” Phytochemistry, Vol. 65, No. 10, 2004, pp. 1383-1387. doi:10.1016/j.phytochem.2004.02.027

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.