The Mixture of New Integral Transform and Homotopy Perturbation Method for Solving Discontinued Problems Arising in Nanotechnology

In this paper, a reliable algorithm based on mixture of new integral transform and homotopy perturbation method is proposed to solve a nonlinear differential-difference equation arising in nanotechnology. Continuum hypothesis on nanoscales is invalid, and a differential-difference model is considered as an alternative approach to describing discontinued problems. The technique finds the solution without any discretization or restrictive assumptions and avoids the round-off errors. Comparison of the approximate solution with the exact one reveals that the method is very effective. It provides more realistic series solutions that converge very rapidly for nonlinear real physical problems.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Shah, K. and Singh, T. (2015) The Mixture of New Integral Transform and Homotopy Perturbation Method for Solving Discontinued Problems Arising in Nanotechnology. Open Journal of Applied Sciences, 5, 688-695. doi: 10.4236/ojapps.2015.511068.

 [1] Lyapunov, A.M. (1992) The General Problem of the Stability of Motion. International Journal of Control, 55, 531-534. http://dx.doi.org/10.1080/00207179208934253 [2] Karmishin, A.V., Zhukov, A.I. and Kolosov, V.G. (1990) Methods of Dynamics Calculation and Testing for Thin- Walled Structures. Mashinostroyenie, Moscow. [3] He, J.H. (1999) Homotopy Perturbation Technique. Computer Methods in Applied Mechanics and Engineering, 178, 257-262. http://dx.doi.org/10.1016/S0045-7825(99)00018-3 [4] Saberi-Nadjafi, J. and Ghorbani, A. (2009) He’s Homotopy Perturbation Method: An Effective Tool for Solving Nonlinear Integral and Integro Differential Equations. Computers & Mathematics with Applications, 58, 1354-1351. http://dx.doi.org/10.1016/j.camwa.2009.03.032 [5] Hirota, R. (1971) Exact Solutions of the Korteweg-De Vries Equation for Multiple Collisions of Solitons. Physical Review Letters, 27, 1192-1194. http://dx.doi.org/10.1103/PhysRevLett.27.1192 [6] Wazwaz, A.M. (2010) On Multiple Soliton Solutions for Coupled KdV-mkdV Equation. Nonlinear Science Letters A, 1, 289-296. [7] Adomian, G. (1994) Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publication, Boston. http://dx.doi.org/10.1007/978-94-015-8289-6 [8] Wu, G.C. and He, J.H. (2010) Fractional Calculus of Variations in Fractal Spacetime. Nonlinear Science Letters A, 1, 281-287. [9] He, J.H. (1999) Variational Iteration Method—A Kind of Nonlinear Analytical Technique: Some Examples. International Journal of Nonlinear Mechanics, 34, 699-708. http://dx.doi.org/10.1016/S0020-7462(98)00048-1 [10] He, J.H. and Wu, X.H. (2007) Variational Iteration Method: New Development and Applications. Computers & Mathematics with Applications, 54, 881-894. http://dx.doi.org/10.1016/j.camwa.2006.12.083 [11] El Naschie, M.S. (2007) Deterministic Quantum Mechanics versus Classical Mechanical Indeterminism. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 5-10. http://dx.doi.org/10.1515/IJNSNS.2007.8.1.5 [12] El Naschie, M.S. (2007) A Review of Applications and Results of E-Infinity Theory. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 28-56. [13] El Naschie, M.S. (2007) Probability Set Particles. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 117-119. http://dx.doi.org/10.1515/IJNSNS.2007.8.1.117 [14] El Naschie, M.S. (2009) Nanotechnology for the Developing World. Chaos, Solitons & Fractals, 30, 769-773. http://dx.doi.org/10.1016/j.chaos.2006.04.037 [15] Liu, Y. and He, J.H. (2007) Bubble Electrospinning for Mass Production of Nanofibers. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 393-396. http://dx.doi.org/10.1515/ijnsns.2007.8.3.393 [16] He, J.H., Wan, Y.Q. and Xu, L. (2007) Nano-Effects, Quantum-Like Properties in Electrospun Nanofibers. Chaos, Solitons & Fractals, 33, 26-37. http://dx.doi.org/10.1016/j.chaos.2006.09.023 [17] He, J.H., Liu, Y.Y. and Xu, L. (2007) Micro Sphere with Nanoporosity by Electrospinning. Chaos, Solitons & Fractals, 32, 1096-1100. http://dx.doi.org/10.1016/j.chaos.2006.07.045 [18] He, J.H. and Zhu, S.D. (2008) Differential-Difference Model for Nanotechnology. Journal of Physics: Conference Series, 96, Article ID: 012189. http://dx.doi.org/10.1088/1742-6596/96/1/012189 [19] Zhu, S.D. (2007) Exp-Function Method for the Hybrid-Lattice System. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 461-464. http://dx.doi.org/10.1515/ijnsns.2007.8.3.461 [20] Zhu, S.D. (2007) Exp-Function Method for the Discrete mKdV Lattice. International Journal of Nonlinear Sciences and Numerical Simulation, 8, 465-469. http://dx.doi.org/10.1515/ijnsns.2007.8.3.465 [21] Zhu, S.D. (2008) Discrete (2+1)-Dimensional Toda Lattice Equation via Exp-Function Method. Physics Letters A, 372, 654-657. http://dx.doi.org/10.1016/j.physleta.2007.07.085 [22] Mokhtari, R. (2008) Variational Iteration Method for Solving Nonlinear Differential-Difference Equations. International Journal of Nonlinear Sciences and Numerical Simulation, 9, 19-24. http://dx.doi.org/10.1515/IJNSNS.2008.9.1.19 [23] Zhu, S.D., Chu, Y.M. and Qiu, S.L. (2009) The Homotopy Perturbation Method for Discontinued Problems Arising in Nanotechnology. Computers and Mathematics with Applications, 58, 2398-2401. http://dx.doi.org/10.1016/j.camwa.2009.03.048 [24] Singh, J., Kumar, D. and Kumar, S. (2013) A Reliable Algorithm for Solving Discontinued Problems Arising in Nanotechnology. Scientia Iranica, 20, 1059-1062. [25] Nik, H.S. and Golchaman, M. (2011) The Homotopy Analysis Method for Solving Discontinued Problems Arising in Nanotechnology. World Academy of Science, Engineering and Technology, 76, 891-894. [26] Kashuri, A. and Fundo, A. (2013) A New Integral Transform. Advances in Theoretical and Applied Mathematics, 8, 27-43. [27] Kashuri, A., Fundo, A. and Kreku, M. (2013) Mixture of a New Integral Transform and Homotopy Perturbation Method for Solving Nonlinear Partial Differential Equations. Advances in Pure Mathematics, 3, 317-323. http://dx.doi.org/10.4236/apm.2013.33045 [28] Shah, K. and Singh, T. (2015) A Solution of the Burger’s Equation Arising in the Longitudinal Dispersion Phenomenon in Fluid Flow through Porous Media by Mixture of New Integral Transform and Homotopy Perturbation Method. Journal of Geoscience and Environment Protection, 3, 24-30. http://dx.doi.org/10.4236/gep.2015.34004 [29] Ghorbani, A. (2009) Beyond Adomian’s Polynomials: He Polynomials. Chaos, Solitons & Fractals, 39, 1486-1492. http://dx.doi.org/10.1016/j.chaos.2007.06.034 [30] Mohyud-Din, S.T., Noor, M.A. and Noor, K.I. (2009) Traveling Wave Solutions of Seventh-Order Generalized KdV Equation Using He’s Polynomials. International Journal of Nonlinear Sciences and Numerical Simulation, 10, 227- 233. http://dx.doi.org/10.1515/IJNSNS.2009.10.2.227