Share This Article:

Scalar Particles’ Tunneling and Effect of Quantum Gravity

Abstract Full-Text HTML XML Download Download as PDF (Size:237KB) PP. 134-139
DOI: 10.4236/jamp.2015.32020    3,025 Downloads   3,547 Views   Citations

ABSTRACT

According to the generalized uncertainty principle (GUP), the Klein-Gordon equation is corrected by the quantum gravity exactly. Hence, the corrected Klein-Gordon equation will be more precise on the expression of the tunneling behavior. Then, the corrected Hawking temperature of the Gibbons-Maeda-Dilaton black hole is obtained near the horizon by quantum gravity. Analyzing the results carefully, it is obvious for us that the tunneling result is not only related to the mass of black hole, but also related to the mass and energy of outgoing fermions. Finally, we also infer that the tunneling radiation would be stopped at some particular temperature.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Li, G. and Zu, X. (2015) Scalar Particles’ Tunneling and Effect of Quantum Gravity. Journal of Applied Mathematics and Physics, 3, 134-139. doi: 10.4236/jamp.2015.32020.

References

[1] Hawking, S.W. (1974) Black Hole Explosions. Nature, 30, 248.
[2] Hawking, S.W. (1975) Particle Creation by Black Hole. Commun Math Phys., 43, 199. http://dx.doi.org/10.1007/BF02345020
[3] Zhao, Z. (1992) A Universal Method Determining Hawking Effect in Sherically Symmetric or Plane-Symmetric Non- Static Space-Times. Chin Phys Lett, 9, 401.
[4] Kraus, P. and Wilczek, F. (1995) Self-Interaction Correction to Black Hole Radiance. Nucl Phys B, 433. arXiv: 9408003[gr-qc]
[5] Kraus, P. and Wilczek, F. (2000) Hawking Radiation as Tunnelling. Phys Rev Lett, 85, 5042. http://dx.doi.org/10.1103/PhysRevLett.85.5042
[6] Kerner, R. and Mann, R.B. (2008) Charged Fermions Tunnelling from Kerr Newman Black Holes. Phys Lett B, 665, 277-283. http://dx.doi.org/10.1016/j.physletb.2008.06.012
[7] Li, G.P., Zhou, Y.G. and Zu, X.T. (2013) Particles Tunneling of the Spherically Symmetric Black Hole with Dark Matter. Int J Theo.Phy, 52, 4025.
[8] Chen, D.Y. and Yang, S.Z. (2007) Hamilton-Jacobi Ansatz to Study the Hawking Radiation of Kerr-Newman-Kasuya Black Holes. Int J Mod Phys A, 22, 5173. http://dx.doi.org/10.1142/S0217751X07038207
[9] Lin, K. and Yang, S.Z. (2009) Fermion Tunneling from Higher-Dimensional Black Holes. Phys Rev D, 79, Article ID: 064035. http://dx.doi.org/10.1103/PhysRevD.79.064035
[10] Chen, D. and Yang, S.Z. (2007) Hawking Radiation of the Vaidya Bonner de Sitter Black Hole. New J Physi, 9, 252. http://dx.doi.org/10.1088/1367-2630/9/8/252
[11] Jiang, Q.Q. (2008) Dirac Particle Tunneling from Black Rings. Phys Rev D, 78, Article ID: 044009. http://dx.doi.org/10.1103/PhysRevD.78.044009
[12] Chen, D.Y. and Yang, S.Z. (2007) Charged Particle Tunnels from the Stationary and Non-Stationary Kerr-Newman Black Holes. Gen Relat Grav, 39, 1503. http://dx.doi.org/10.1007/s10714-007-0478-3
[13] Kempf, A., Mangano, G. and Mann, R.B. (1995) Hilbert Space Re-presentation of the Minimal Length Uncertainty Relation. Phys Rev D, 52, 1108. arXiv:9412167[hep-th]
[14] Nozari, K and Saghafi, S. (2012) Parikh-Wilczek Tunneling from Noncommutative Higher Di-Mensional Black Holes. JHEP, 11, 005. arXiv:1206.5621[hep-th]
[15] Chen, D.Y., Wu, H.W. and Yang, H.T. (2014) Observing Remnants by Fermions' Tunneling. JCAP, 3, 036.
[16] Chen, D.Y. (2014) Dirac Particles’ Tunnelling from 5-Dimensional Rotating Black Strings Influenced by the Generalized Uncertainty Principle. EPJC, 74, 2687. http://dx.doi.org/10.1140/epjc/s10052-013-2687-0
[17] Chen, D.Y., Jiang, Q.Q., Wang, P. and Yang, H.T. (2013) Remnants, Fermions’ Tunnelling and Effects of Quantum Gravity. JHEP, 1311, 176. http://dx.doi.org/10.1007/JHEP11(2013)176
[18] Chen, D.Y. and Li, Z.H. (2014) Remarks on Remnants by Fermions’ Tunnelling from Black Strings. Adv. High Energy Phys. arXiv:1404.6375
[19] Townsend, P.K. (1977) Small-Scale Structure of Spacetime as the Origin of the Gravitational Constant. Phys Rev D, 15, 2795. http://dx.doi.org/10.1103/PhysRevD.15.2795
[20] Amati, D., Ciafaloni, M. and Veneziano, G. (1989) Can Spacetime Be Probed below the String Size? Phys Lett B, 216, 41. http://dx.doi.org/10.1016/0370-2693(89)91366-X
[21] Konishi, K., Paffuti, G. and Provero, P. (1990) Minimum Physical Length and the Generalized Uncer-Tainty Principle in String Theory. Phys Lett B, 234, 276. http://dx.doi.org/10.1016/0370-2693(90)91927-4
[22] Garay, L.J. (1995) Quantum Gravity and Minimum Length. Int J Mod Phys A., 10, 145. [arXiv:9403008[gr-qc]
[23] Amelino-Camelia, G. (2002) Relativity in Space-Times with Short-Distance Structure Governed by an Observer-Independent (Planckian) Length Scale. Int J Mod Phys D, 11, .35. arXiv:0012051[gr-qc]
[24] Wang, P., Yang, H.T. and Ying, S.X. (2014) Quantum Gravity Corrections to the Tunneling Radiation of Scalar Particles. arXiv:1410.5065[gr-qc]

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.