Share This Article:

Experimental Validation and Simulation of Fourier and Non-Fourier Heat Transfer Equation during Laser Nano-Phototherapy of Lung Cancer Cells: An in Vitro Assay

Abstract Full-Text HTML XML Download Download as PDF (Size:4275KB) PP. 2125-2141
DOI: 10.4236/jmp.2014.518208    3,436 Downloads   3,947 Views   Citations

ABSTRACT

This paper investigated the numerical scheme extended to solve the hyperbolic non-Fourier form of bioheat transfer equation and the experimental trials were conducted to validate the numerical simulation. MNPs were prepared via co-precipitation and modified with a silica layer. The amino modified Fe3O4/SiO2 nanoshells were covered with gold colloids producing nanoshells of Fe3O4/SiO2/Au (MNSs). In vitro assays were performed to determine the effect of apoptosis of QU-DB lung cancer cells based on the cells morphology changes. Cell damage was reduced by decreasing the power density of laser. Also, a larger area of damage on cell culture plates was observed at longer intervals of laser irradiation. The effect of nanoshell concentration and irradiation rate has been evaluated. A maximum temperature rise of 6°C was achieved at 184 W/cm2 and concentration of 0.01 mg/ml. The experiment confirmed a hyperbolic behaviour of thermal propagation. The results revealed that the three-dimensional implementation of bioheat equation is likely to be more accurate than the two-dimensional study.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Khosroshahi, M. , Ghazanfari, L. and Khoshkenar, P. (2014) Experimental Validation and Simulation of Fourier and Non-Fourier Heat Transfer Equation during Laser Nano-Phototherapy of Lung Cancer Cells: An in Vitro Assay. Journal of Modern Physics, 5, 2125-2141. doi: 10.4236/jmp.2014.518208.

References

[1] World Health Organization.
http://www.who.int/
[2] Mansoori, A.G., Mohazzabi, P., McCormack, P. and Jabbari, S. (2007) World Review of Science, Technology and Sustainable Development, 4, 226-257.
http://dx.doi.org/10.1504/WRSTSD.2007.013584
[3] Choi, Y.E., Kwak, J.W. and Park, J.W. (2010) Sensors, 10, 428-455.
http://dx.doi.org/10.3390/s100100428
[4] Srinivas, P.R., Barker, P. and Srivastava, S. (2002) Laboratory Investigation, 82, 657-662.
http://dx.doi.org/10.1038/labinvest.3780460
[5] Jolesz, F.A. and Hynynen, K. (2002) Cancer Journal, 1, S100-S112.
[6] Seki, T., Wakabayashi, M., Nakagawa, T., Imamura, M., Tamai, T., Nishimura, A., Yamashiki, N., Okamura, A. and Inoue, K. (1999) Cancer, 85, 1694-1702.
http://dx.doi.org/10.1002/(SICI)1097-0142(19990415)85:8<1694::AID-CNCR8>3.0.CO;2-3
[7] Gazelle, G.S., Goldberg, S.N., Solbiati, L. and Livraghi, T. (2000) Radiology, 217, 633-646.
http://dx.doi.org/10.1148/radiology.217.3.r00dc26633
[8] Mirza, A.N., Fornage, B.D., Sneige, N., Kuerer, H.M., Newman, L.A., Ames, F.C. and Singletary, S.E. (2001) Cancer Journal, 7, 95-102.
[9] Khosroshahi, M.E. and Ghazanfari, L. (2012) Iranian Journal of Medical Physics, 9, 253-263.
[10] Amin, Z., Donald, J.J., Masters, A., Kant, R. Steger, A.C., Bown, S.G. and Lees, W.R. (1993) Radiology, 187, 339-347.
http://dx.doi.org/10.1148/radiology.187.2.8475270
[11] Nolsøe, C.P., Torp-Pedersen, S., Burcharth, F., Horn, T., Pedersen, S., Christensen, N.E., Olldag, E.S., Andersen, P.H., Karstrup, S., Lorentzen, T., et al. (1993) Radiology, 187, 333-337.
http://dx.doi.org/10.1148/radiology.187.2.8475269
[12] Vogl, T.J., Mack, M.G., Muller, P.K., Straub, R., Engelmann, K. and Eichler, K. (1999) European Radiology, 9, 1479-1487.
http://dx.doi.org/10.1007/s003300050874
[13] Maiman, T.H. (1960) Nature, 187, 493-494.
http://dx.doi.org/10.1038/187493a0
[14] Kapany, N.S., Peppers, N.A., Zweng, H.C. and Flocks, M. (1963) Nature, 199, 146-149.
http://dx.doi.org/10.1038/199146a0
[15] Hall, R.R., Beach, A.D., Baker, E. and Morison, P.C.A. (1971) Nature, 232, 131-132.
http://dx.doi.org/10.1038/232131a0
[16] McKenzie, A.L. and Carruth, J.A. (1984) Physics in Medicine and Biology, 29, 619-641.
http://dx.doi.org/10.1088/0031-9155/29/6/001
[17] Wang, K.K.H., Finlay, J.C., Busch, T.M., Hahn, S.M. and Zhu, T.C. (2010) Journal of Biophotonics, 3, 304-318.
http://dx.doi.org/10.1002/jbio.200900101
[18] Khosroshahi, M.E. and Ghazanfari, L. (2012) Materials Chemistry and Physics, 133, 55-62.
http://dx.doi.org/10.1016/j.matchemphys.2011.12.047
[19] Simon, T., Boca-Farcau, S., Gabudean, A.M., Baldeck, P. and Astilean, S. (2013) Journal of Biophotonics, 6, 950-959.
[20] Nicolodelli, G., Angarita, D.P.R., Inada, N.M., Tirapelli, L.F. and Bagnato, V.S. (2014) Journal of Biophotonics, 7, 631-637.
[21] Huang, X., Jain, P.K., El-Sayed, I.H. and El-Sayed, M.A. (2007) Nanomedicine, 2, 681-693.
http://dx.doi.org/10.2217/17435889.2.5.681
[22] Skrabalak, S.E., Chen, J., Au, L., Lu, X., Li, X. and Xia, Y. (2007) Advanced Materials, 19, 3177-3184.
http://dx.doi.org/10.1002/adma.200701972
[23] Loo, C., Lowery, A., Halas, N.J., West, J.L. and Drezek, R. (2005) Nano Letters, 5, 709-711.
http://dx.doi.org/10.1021/nl050127s
[24] Khosroshahi, M.E., Nourbakhsh, M.S. and Ghazanfari, L. (2011) Journal of Modern Physics, 2, 944-953.
http://dx.doi.org/10.4236/jmp.2011.29112
[25] Khanadeev, V.A., Khlebtsov, B.N., Staroverov, S.A., Vidyasheva, I.V., Skaptsov, A.A., Ileneva, E.S., Bogatyrev, V.A., Dykman, L.A. and Khlebtsov, N.G. (2011) Journal of Biophotonics, 4, 74-83.
[26] Avetisyan, Y.A., Yakunin, A.N. and Tuchin, V.V. (2012) Journal of Biophotonics, 5, 734-744.
http://dx.doi.org/10.1002/jbio.201100074
[27] Hasannejad, Z. and Khosroshahi, M.E. (2013) Optics Materials, 35, 644-651.
http://dx.doi.org/10.1016/j.optmat.2012.10.019
[28] Loo, C., Hirsch, L., Lee, M.H., Chang, E., West, J., Halas, N.J. and Drezek, R. (2005) Optics Letters, 30, 1012-1014.
http://dx.doi.org/10.1364/OL.30.001012
[29] Sokolov, K., Follen, M., Aaron, J., Pavlova, I., Malpica, A., Lotan, R. and Richards-Kortum, R. (2003) Cancer Research, 63, 1999-2004.
[30] Kumar, S., Aaron, J. and Sokolov, K. (2008) Nature Protocols, 3, 314-320.
http://dx.doi.org/10.1038/nprot.2008.1
[31] Jain, R.K. (1999) Annual Review of Biomedical Engineering, 1, 241-263.
http://dx.doi.org/10.1146/annurev.bioeng.1.1.241
[32] Khosroshahi, M.E. and Ghazanfari, L. (2012) Materials Science and Engineering C, 32, 1043-1049.
[33] Pankhurst, Q.A., Connolly, J., Jones, S.K. and Dobson, J.J. (2003) Journal of Physics D: Applied Physics, 36, R167-R181.
http://dx.doi.org/10.1088/0022-3727/36/13/201
[34] Lewinski, N., Colvin, V. and Drezek, R. (2008) Small, 4, 26-49.
http://dx.doi.org/10.1002/smll.200700595
[35] Murphy, C.J., Gole, A.M., Stone, J.W., Sisco, P.N., Alkilany, A.M., Goldsmith, E.C. and Baxter, S.C. (2008) Accounts of Chemical Research, 41, 1721-1730.
http://dx.doi.org/10.1021/ar800035u
[36] Elliott, A., Schwartz, J., Wang, J., Shetty, A., Hazle, J. and Stafford, J.R. (2008) Lasers in Surgery and Medicine, 40, 660-665.
http://dx.doi.org/10.1002/lsm.20682
[37] Vera, J. and Bayazitoglu, Y. (2009) International Journal of Heat and Mass Transfer, 52, 3402-3406.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.02.014
[38] Pennes, H.H. (1948) Journal of Applied Physiology, 1, 93-122.
[39] Khosroshahi, M.E. and Ghazanfari, L. (2012) Materials Chemistry and Physics, 133, 55-62.
http://dx.doi.org/10.1016/j.matchemphys.2011.12.047
[40] Pham, T., Jackson, J.B., Halas, N. and Lee, T.R. (2002) Langmuir, 18, 4915-4920.
http://dx.doi.org/10.1021/la015561y
[41] Ji, X., Ruping, S., Elliott, A.M., Stafford, R.J., Esparza-Coss, E., Bankson, J.A., et al. (2007) Journal of Physical Chemistry C, 111, 6245-6251.
http://dx.doi.org/10.1021/jp0702245
[42] Joanitti, G.A., Azevedo, R.B. and Freitas, S.M. (2010) Cancer Letters, 293, 73-81.
http://dx.doi.org/10.1016/j.canlet.2009.12.017
[43] Kong, G., Braun, R.D. and Dewhirst, M.W. (2000) Cancer Research, 60, 4440-4445.
[44] Lee, Y.Y., Wong, K.T., Tan, J., Toh, P.C., Mao, Y., Brusic, V., et al. (2009) Journal of Biotechnology, 143, 34-43.
http://dx.doi.org/10.1016/j.jbiotec.2009.05.013
[45] Nikfarjam, M., Muralidharan, V. and Christophi, C. (2005) Journal of Surgical Research, 127, 208-223.
http://dx.doi.org/10.1016/j.jss.2005.02.009
[46] Clark, A.W., Robins, H.I., Vorpahl, J.W. and Yatvin, M.B. (1983) Cancer Research, 43, 1716-1723.
[47] Soto-Cerrato, V., Montaner, B., Martinell, M., Vilaseca, M., Giralt, E. and Perez-Tomas, R. (2005) Biochemical Pharmacology, 71, 32-41.
http://dx.doi.org/10.1016/j.bcp.2005.10.020
[48] Joanitti, G.A., Azevedo, R.B. adn Freitas, S.M. (2010) Cancer Letters, 293, 73-81.
http://dx.doi.org/10.1016/j.canlet.2009.12.017
[49] Pustovalov, V., Astafyeva, L. and Jean, B. (2009) Nanotechnology, 20, Article ID: 225105.
[50] Missirlis, Y.F. and Spiliotis, A.D. (2002) Biomolecular Engineering, 19, 287-294.
http://dx.doi.org/10.1016/S1389-0344(02)00033-3
[51] Joseph, D.D. and Preziosi, L. (1989) Reviews of Modern Physics, 61, 41-73.
http://dx.doi.org/10.1103/RevModPhys.61.41
[52] Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R. and Phillpot, S.R. (2003) Journal of Applied Physics, 93, 793-818.
http://dx.doi.org/10.1063/1.1524305
[53] Cattaneo, C. (1958) Comptes Rendus, 247, 431-433.
[54] Vernotte, P. (1961) Comptes Rendus, 252, 2190-2191.
[55] Tzou, D.Y. (1996) Macro- to Microscale Heat Transfer, the Lagging Behavior. Taylor & Francis, Washington DC.
[56] Liu, J., Zhang, X., Wang, C., Lu, W. and Ren, Z. (1997) Chinese Science Bulletin, 42, 289-292.
http://dx.doi.org/10.1007/BF02882462
[57] Welch, A.J. and van Gemert, M.J.C. (1995) Optical-Thermal Response of Laser-Irradiated Tissue. Plenum Press, New York.
http://dx.doi.org/10.1007/978-1-4757-6092-7
[58] Duderstadt, J. and Hamilton, L. (1976) Nuclear Reactor Analysis. Wiley, New York.
[59] Wyman, D., Patterson, M. and Wilson, B. (1989) Applied Optics, 28, 5243-5249.
http://dx.doi.org/10.1364/AO.28.005243
[60] Buongiorno, J. (2006) Journal of Heat Transfer, 128, 240-250.
http://dx.doi.org/10.1115/1.2150834
[61] Pak, B.C. and Cho, Y.I. (1998) Experimental Heat Transfer, 11, 151-170.
http://dx.doi.org/10.1080/08916159808946559
[62] Avsec, J. and Oblak, M. (2007) International Journal of Heat and Mass Transfer, 50, 4331-4341.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.01.064
[63] Carrara, N. (2010) Dielectric Properties of Body Tissues.
http://niremf.ifac.cnr.it/tissprop/
[64] Duck, F.A. (1990) Physical Properties of Tissue: A Comprehensive Reference Book. Academic Press, London.
[65] Tong, L., Zhao, Y., Huff, T.B., Hansen, M.N., Wei, A. and Cheng, J.X. (2007) Advanced Materials, 19, 3136-3141.
http://dx.doi.org/10.1002/adma.200701974

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.