Influences of Age and Length of Education on rCBF-SPECT in Healthy Elderly: Diagnostic Implications for Dementia
Torbjörn Sundström, Anne Larsson, Lars Nyberg, Katrine Riklund
.
DOI: 10.4236/ijcm.2011.22026   PDF    HTML   XML   4,322 Downloads   7,615 Views  

Abstract

Background: Few previous studies have described other than age- and gender related changes in regional cerebral blood flow (rCBF) in healthy elderly. What is the influence of other common clinically relevant variables such as ache, education, MMSE, and smoking history? Purpose: To study rCBF in Swedish healthy elderly by single-photon emission computed tomography (SPECT) and evaluate the influence on rCBF of age, gender, education, MMSE, ache, and smoking with a focus on education in relation to the ‘cognitive reserve’. Methods: Healthy subjects (n = 45, 50 -75 y), sampled from a large longitudinal aging study took part in an extensive examination of health and memory, including cognitive testing and socio-economic survey. After injection of 99 mTc-hexamethylpropylene amine oxime (HMPAO) followed by SPECT the rCBF-SPECT images were analyzed using statistical parametric mapping (SPM). Results: Age-related decreases in uptake were seen in interhemispheric and interlobar regions. There was a positive rCBF correlation with education in the inferior frontal lobe and a higher uptake in the left temporal lobe in an age-gender-matched high education subgroup. Conclusion: The localization of the age related findings except for the medial temporal lobe differs markedly from typical dementia related findings. A reduction close to interhemispheric or interlobar space should always be related to chronological age. Education seems to have an influence on basal brain function at a resting-state condition. Knowledge of normal rCBF variations for variables such as age and education should be considered when making clinical diagnosis. The findings could be interpreted as further support for the theory of cognitive reserve.

Share and Cite:

T. Sundström, A. Larsson, L. Nyberg and K. Riklund, "Influences of Age and Length of Education on rCBF-SPECT in Healthy Elderly: Diagnostic Implications for Dementia," International Journal of Clinical Medicine, Vol. 2 No. 2, 2011, pp. 143-157. doi: 10.4236/ijcm.2011.22026.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] [1] A. Otte, “The Importance of the Control Group in Func-tional Brain Imaging,” European Journal of Nuclear Medicine, Vol. 27, No. 9, 2000, pp. 1420. doi:10.1007/s002590000320
[2] [2] N. J. Dougall, S. Bruggink and K. P. Ebmeier, “System-atic Review of the Diagnostic Accuracy of 99mTc- HMPAO-SPECT in Dementia,” American Journal of Geriatr Psychiatry, Vol. 12, No. 6, 2004, pp. 554-570.
[3] [3] E.E. Camargo, “Brain SPECT in Neurology and Psychia-try,” Journal of Nuclear Medicine, Vol. 42, No. 4, 2001, pp. 611-623.
[4] [4] G. Waldemar, P. Hogh and O. B. Paulson, “Functional Brain Imaging with Single-Photon Emission Computed Tomography in the Diagnosis of Alzheimer’s Disease,” International Psychogeriatrics, Vol. 9, Suppl 1, 1997, pp. 223-227. doi:10.1017/S1041610297004924
[5] [5] A. Lobo, L. J. Launer, L. Fratiglioni, K. Andersen, A. Di Carlo and M. M. Breteler et al., “Prevalence of Dementia and Major Subtypes in Europe: A Collaborative Study of Population-Based Cohorts. Neurologic Diseases in the Elderly Research Group,” Neurology, Vol. 54, No. 11, Suppl 5, 2000, pp. S4-S9.
[6] [6] S. G. Gauthier, “Alzheimer’s Disease: The Benefits of Early Treatment,” European Journal of Neurology, Vol. 12, Suppl 3, 2005, pp. 11-16. doi:10.1111/j.1468-1331.2005.01322.x
[7] [7] K. J. Van Laere and R. A. Dierckx “Brain Perfusion Spect: Age and Sex-Related Effects Correlated with Voxel- Based Morphometric Findings in Healthy Adults,” Radi-ology, Vol. 221, No. 3, 2001, pp. 810-817. doi:10.1148/radiol.2213010295
[8] [8] M. Pagani, D. Salmaso, C. Jonsson, R. Hatherly, H. Jacobsson and S. A. Larsson et al., “Regional Cerebral Blood Flow as Assessed by Principal Component Analy-sis and (99m)Tc-HMPAO SPET in Healthy Subjects at Rest: Normal Distribution and Effect of Age and Gender,” European Journal of Nuclear Medicine and Molecular Imaging, Vol. 29, No. 1, 2002, pp. 67-75. doi:10.1007/s00259-001-0676-2
[9] [9] J. S. Allen, J. Bruss and H. Damasio, “The Aging Brain: The Cognitive Reserve Hypothesis and Hominid Evolu-tion,” American Journal of Human Biology, Vol. 17, No. 6, 2005, pp. 673-689. doi:10.1002/ajhb.20439
[10] [10] J. S. Allen, J. Bruss, C. K. Brown and H. Damasio, “Normal Neuroanatomical Variation due to Age: The Major Lobes and a Parcellation of the Temporal Region,” Neurobiol Aging, Vol. 26, No. 9, 2005, pp. 1245-60. doi:10.1016/j.neurobiolaging.2005.05.023
[11] [11] K. Heininger “A Unifying Hypothesis of Alzheimer’S Disease. IV. Causation and Sequence of Events,” Reviews in the Neurosciences, Vol. 11, No. 0334-1763, 2000, pp. 213-328.
[12] [12] S. Hagstadius and J. Risberg, “Regional Cerebral Blood Flow Characteristics and Variations with Age in Resting Normal Subjects,” Brain and Cognition, Vol. 10, No. 1, 1989, pp. 28-43. doi:10.1016/0278-2626(89)90073-0
[13] [13] D. O. Slosman, C. Chicherio, C. Ludwig, L. Genton, S. de Ribaupierre and D. Hans et al., “(133)Xe SPECT Cerebral Blood Flow Study in a Healthy Population: Determination of T-scores,” Journal of Nuclear Medicine, Vol. 42, No. 6, 2001, pp. 864-870.
[14] [14] C. D. Good, I. S. Johnsrude, J. Ashburner, R. N. Henson, K. J. Friston and R. S. Frackowiak et al., “A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains,” NeuroImage, Vol. 14, No. 1, Part 1, 2001, pp. 21-36.
[15] [15] A. R. Andersen, H. Friberg, K. B. Knudsen, D. I. Barry, O. B. Paulson and J. F. Schmidt et al., “Extraction of [99mTc]-d, l-HM-PAO across the Blood-Brain Barrier,” Journal of Cerebral Blood Flow & Metabolism, Vol. 8, No. 6, 1988, pp. S44-S51. doi:10.1038/jcbfm.1988.32
[16] [16] K. Van Laere, J. Versijpt, K. Audenaert, M. Koole, I. Goethals and E. Achten et al., “99mTc-ECD Brain Perfu-sion Spet: Variability, Asymmetry and Effects of Age and Gender in Healthy Adults,” European Journal of Nuclear Medicine, Vol. 28, No. 7, 2001, pp. 873-87. doi:10.1007/s002590100549
[17] [17] H. Matsuda, T. Ohnishi, T. Asada, Z. J. Li, H. Kanetaka, and E. Imabayashi et al., “Correction for Partial-Volume Effects on Brain Perfusion SPECT in Healthy Men,” Journal of Nuclear Medicine, Vol. 44, No. 8, 2003, pp. 1243-1252.
[18] [18] K. A. Ansari and J. Loch, “Decreased Myelin Basic Pro-tein Content of the Aged Human Brain,” Neurology, Vol. 25, No. 11, 1975, pp. 1045-1050.
[19] [19] W. Meier-Ruge, J. Ulrich, M. Bruhlmann and E. Meier, “Age-Related White Matter Atrophy in the Human Brain,” Annals of the New York Academy of Sciences, Vol. 673, No. 26, 1992, pp. 260-269.
[20] [20] L. R. Barnden, S. Behin-Ain, R. Kwiatek, R. Casse and L. Yelland, “Age Related Preservation and Loss in Opti-mized Brain SPECT,” Nuclear Medicine Communications, Vol. 26, No. 6, 2005, pp. 497-503. doi:10.1097/00006231-200506000-00004
[21] [21] A. Herlitz, L. G. Nilsson and L. Backman, “Gender Dif-ferences in Episodic Memory,” Memory & cognition, Vol. 25, No. 6, 1997, pp. 801-811. doi:10.3758/BF03211324
[22] [22] S. F. Witelson, H. Beresh and D. L. Kigar “Intelligence and Brain Size in 100 Postmortem Brains: Sex, Laterali-zation and Age Factors,” Brain, Vol. 129, No. 2, 2006, pp. 386-398. doi:10.1093/brain/awh696
[23] [23] K. Jones, K. A. Johnson, J. A. Becker, P. A. Spiers, M. S. Albert and B. L. Holman et al., “Use of Singular Value Decomposition to Characterize Age and Gender Differ-ences in SPECT Cerebral Perfusion,” Journal of Nuclear Medicine, Vol. 39, No. 6, 1998, pp. 965-973.
[24] [24] T. Kawachi, K. Ishii, S. Sakamoto, M. Matsui, T. Mori, M. Sasaki et al., “Gender Differences in Cerebral Glucose Metabolism: A PET Study,” J Neurol Sci, Vol. 199, No. 1-2, 2002, pp. 79-83. doi:10.1016/S0022-510X(02)00112-0
[25] [25] Y. Stern, G. E. Alexander, I. Prohovnik and R. Mayeux, “Inverse Relationship between Education and Parieto-temporal Perfusion Deficit in Alzheimer’s Disease,” Journal of the Neurological Sciences, Vol. 32, No. 3, 1992, pp. 371-375.
[26] [26] J. L. Cobb, P. A. Wolf, R. Au, R. White and R. B. D’Agostino, “The Effect of Education on the Incidence of Dementia and Alzheimer’s Disease in the Framingham Study,” Neurology, Vol. 45, No. 9, 1995, pp. 1707-1712.
[27] [27] M. Gatz, C. A. Reynolds, L. Fratiglioni, B. Johansson, J. A. Mortimer and S. Berg et al., “Role of Genes and Envi-ronments for Explaining Alzheimer Disease,” Archives of General Psychiatry, Vol. 63, No. 2, 2006, pp. 168-174. doi:10.1001/archpsyc.63.2.168
[28] [28] J. Marx, “Neuroscience. Preventing Alzheimer’s: A Life-long Commitment?” Science, Vol. 309, No. 5736, 2005, pp. 864-866. doi:10.1126/science.309.5736.864
[29] [29] Y. Stern “What is Cognitive Reserve? Theory and Re-search Application of the Reserve Concept,” Journal of the International Neuropsychological Society, Vol. 8, No. 3, 2002, pp. 448-460. doi:10.1017/S1355617702813248
[30] [30] N. Scarmeas, E. Zarahn, K. E. Anderson, J. Hilton, J. Flynn and R. L. Van Heertum et al., “Cognitive Reserve Modulates Functional Brain Responses during Memory Tasks: A PET Study in Healthy Young and Elderly Sub-jects,” NeuroImage, Vol. 19, No. 3, 2003, pp. 1215-1227. doi:10.1016/S1053-8119(03)00074-0
[31] [31] N. T. Chiu, B. F. Lee, S. Hsiao and M. C. Pai, “Educa-tional Level Influences Regional Cerebral Blood Flow inPatients with Alzheimer’s Disease,” Journal of Nuclear Medicine, Vol. 45, No. 11, 2004, pp. 1860-1863.
[32] [32] E.L. Teng, K. Hasegawa, A. Homma, Y. Imai, E. Larson and A. Graves et al., “The Cognitive Abilities Screening Instrument (CASI): A Practical Test for Cross-Cultural Epidemiological Studies of Dementia,” International Psychogeriatric, Vol. 6, No. 1, 1994, pp. 45-58. doi:10.1017/S1041610294001602
[33] [33] P. Garrard and J. R. Hodges “Semantic Dementia: Clini-cal, Radiological and Pathological Perspectives,” Journal of Neurology, Vol. 247, No. 6, 2000, pp. 409-422. doi:10.1007/s004150070169
[34] [34] Y. C. Liao, R.S. Liu, E. L. Teng, Y. C. Lee, P. N. Wang and K. N. Lin et al., “Cognitive Reserve: A SPECT Study of 132 Alzheimer’s Disease Patients with an Education Range of 0-19 Years,” Dementia and Geriatric Cognitive Disorders, Vol. 20, No. 1, 2005, pp. 8-14. doi:10.1159/000085068
[35] [35] P. H. Ghatan, M. Ingvar, L. Eriksson, S. Stone-Elander, M. Serrander and K. Ekberg et al., “Cerebral Effects of Nicotine during Cognition in Smokers and Non-Smok- ers,” Psychopharmacology, Vol. 136, No. 2, 1998, pp. 179-189. doi:10.1007/s002130050554
[36] [36] E. F. Domino, S. Minoshima, S. Guthrie, L. Ohl, L. Ni and R. A. Koeppe et al., “Nicotine Effects on Regional Cerebral Blood Flow in Awake, Resting Tobacco Smok-ers,” Synapse, Vol. 38, No. 3, 2000, pp. 313-321. doi:10.1002/1098-2396(20001201)38:3<313::AID-SYN10>3.0.CO;2-6
[37] [37] J. E. Rose, F. M. Behm, E. C. Westman, R. J. Mathew, E. D. London and T. C. Hawk et al. “PET Studies of the In-fluences of Nicotine on Neural Systems in Cigarette Smokers,” The American Journal of Psychiatry, Vol. 160, No. 2, 2003, pp. 323-333. doi:10.1176/appi.ajp.160.2.323
[38] [38] Y. Yamamoto, Y. Nishiyama, T. Monden, K. Satoh and M. Ohkawa “A Study of the Acute Effect of Smoking on Cerebral Blood Flow Using 99mTc-ECD SPET,” Euro-pean Journal of Nuclear Medicine and Molecular Imag-ing, Vol. 30, No. 4, 2003, pp. 612-614. doi:10.1007/s00259-003-1119-z
[39] [39] J. K. Zubieta, M. M. Heitzeg, Y. Xu, R. A. Koeppe, L. Ni and S. Guthrie et al., “Regional Cerebral Blood Flow Re-sponses to Smoking in Tobacco Smokers after overnight Abstinence,” The American Journal of Psychiatry, Vol. 162, No. 3, 2005, pp. 567-577. doi:10.1176/appi.ajp.162.3.567
[40] [40] K. Yamashita, S. Kobayashi and S. Yamaguchi, “Cerebral Blood Flow and Cessation of Cigarette Smoking in Healthy Volunteers,” Internal Medicine, Vol. 39, No. 11, 2000, pp. 891-893. doi:10.2169/internalmedicine.39.891
[41] [41] T. Rustoen, A. K. Wahl, B. R. Hanestad, A. Lerdal, S. Paul andC. Miaskowski et al., “Age and the Experience Of Chronic Pain: Differences in Health and Quality of Life Among Younger, Middle-Aged, and Older Adults,” The Clinical Journal of Pain, Vol. 21, No. 6, 2005, pp. 513-523.
[42] [42] T. Sundstrom, M. Guez, C. Hildingsson, G. Toolanen, L. Nyberg, K. Riklund et al., “Altered Cerebral Blood Flow in Chronic Neck Pain Patients but not in Whiplash Pa-tients: A 99mTc-HMPAO rCBF Study,” European Spine Journal, Vol. 15, No. 8, 2006, pp. 1189-1195. doi:10.1007/s00586-005-0040-5
[43] [43] L.-G. Nilsson, L. B?ckman, K. Erngrund, L. Nyberg, R. Adolfsson and G. Bucht et al., “The Betula Prospective Cohort Study: Memory, Health, and Aging,” Aging, Neu-ropsychology, and Cognition, Vol. 4, No. 1, 1997, pp. 1-32. doi:10.1080/13825589708256633
[44] [44] M. F. Folstein, S. E. Folstein and P. R. McHugh, “Mini-Mental State: A Practical Method for Grading the Cognitive State of Patients for the Clinician,” Journal of Psychiatric Research, Vol. 12, No. 3, 1975, pp. 189-198. doi:10.1016/0022-3956(75)90026-6
[45] [45] L. G. Nilsson, R. Adolfsson, L. Backman, C. M. de Frias, B. Molander and L. Nyberg et al., “Betula: A Prospective Cohort Study on Memory, Health and Aging,” Aging, Neuropsychology, and Cognition, Vol. 11, No. 2-3, 2004, pp. 134-148. doi:10.1080/13825580490511026
[46] [46] S. R. Meikle, B. F. Hutton and D. L. Bailey, “A Trans-mission-Dependent Method for Scatter Correction in SPECT,” Journal of Nuclear Medicine, Vol. 35, No. 2, 1994, pp. 360-367.
[47] [47] K. J. Van Laere, J. Versijpt, M. Koole, S. Vandenberghe, P. Lahorte and I. Lemahieu et al., “Experimental Per-formance Assessment of SPM for SPECT Neuroactiva-tion Studies Using a Subresolution Sandwich Phantom Design,” NeuroImage, Vol. 16, No. 1, 2002, pp. 200-216. doi:10.1006/nimg.2001.1047
[48] [48] H. M. Hudson and R. S. Larkin, “Accelerated Image Re-construction Using Ordered Subsets of Projection Data,” IEEE Transactions on Medical Imaging, Vol. 13, No. 4, 1994, pp. 601-609. doi:10.1109/42.363108
[49] [49] K. Tatsch, S. Asenbaum, P. Bartenstein, A. Catafau, C. Halldin, L.S. Pilowsky et al., “European Association of Nuclear Medicine Procedure Guidelines for Brain Perfu-sion SPET Using (99m)Tc-Labelled Radiopharmaceuti-cals,” European Journal of Nuclear Medicine and Mo-lecular Imaging, Vol. 29, No. 10, 2002, pp. BP36-42.
[50] [50] C. R. Genovese, N. A. Lazar and T. Nichols, “Threshold-ing of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate,” NeuroImage, Vol. 15, No. 4, 2002, pp. 870-878. doi:10.1006/nimg.2001.1037
[51] [51] K. Inoue, H. Ito, R. Goto, M. Nakagawa, S. Kinomura, T. Sato et al., “Apparent CBF Decrease with Normal Aging due to Partial Volume Effects: MR-Based Partial Volume Correction on CBF SPECT,” Annals of Nuclear Medicine, Vol. 19, No. 4, 2005, pp. 283-290. doi:10.1007/BF02984620
[52] [52] K. Takahashi, S. Yamaguchi, S. Kobayashi and Y. Ya-mamoto, “Effects of Aging on Regional Cerebral Blood Flow Assessed by Using Technetium Tc 99m Hexa-methylpropyleneamine Oxime Single-Photon Emission Tomography with 3D Stereotactic Surface Projection Analysis,” American Journal of Neuroradiology, Vol. 26, No. 8, 2005, pp. 2005-2009.
[53] [53] L. Sokoloff, “Relation between Physiological Function and Energy Metabolism in the Central Nervous System,” Journal of Neurochemistry, Vol. 29, No. 1, 1977, pp. 13-26. doi:10.1111/j.1471-4159.1977.tb03919.x
[54] [54] P. T. Fox and M. E. Raichle, “Focal Physiological Un-coupling of Cerebral Blood Flow and Oxidative Metabo-lism during Somatosensory Stimulation in Human Sub-jects,” Proceedings of the National Academy of Sciences of the USA, Vol. 83, No. 4, 1986, pp. 1140-1144. doi:10.1073/pnas.83.4.1140
[55] [55] S. Strandgaard and O. B. Paulson, “Cerebral Autoregula- tion,” Stroke, Vol. 15, No. 3, 1984, pp. 413-416.
[56] [56] R. S. Liu, L. Lemieux, G. S. Bell, S. M. Sisodiya, S. D. Shorvon and J. W. Sander et al., “A Longitudinal Study of Brain Morphometrics Using Quantitative Magnetic Resonance Imaging and Difference Image Analysis,” NeuroImage, Vol. 20, No. 1, 2003, pp. 22-33. doi:10.1016/S1053-8119(03)00219-2
[57] [57] N. Raz, F. M. Gunning, D. Head, J. H. Dupuis, J. McQuain and S. D. Briggs et al., “Selective Aging of the Human Cerebral Cortex Observed in Vivo: Differential Vulnerability of the Prefrontal Gray Matter,” Cerebral Cortex, Vol. 7, No. 3, 1997, pp. 268-282. doi:10.1093/cercor/7.3.268
[58] [58] N. Raz, U. Lindenberger, K. M. Rodrigue, K. M. Ken-nedy, D. Head and A. Williamson et al., “Regional Brain Changes in Aging Healthy Adults: General Trends, Indi-vidual Differences and Modifiers,” Cerebral Cortex, Vol. 15, No. 11, 2005, pp. 1676-1689. doi:10.1093/cercor/bhi044
[59] [59] J. Ashburner, “Computational Neuroanatomy,” Ph.D. Thesis, University College London, London, 2000.
[60] [60] J. S. Allen, H. Damasio and T. J. Grabowski, “Normal Neuroanatomical Variation in the Human Brain: An MRI- Volumetric Study,” American Journal of Physical An- thropology, Vol. 118, No. 4, 2002, pp. 341-358. doi:10.1002/ajpa.10092
[61] [61] D. Yanase, I. Matsunari, K. Yajima, W. Chen, A. Fuji- kawa, S. Nishimura et al., “Brain FDG PET Study of Normal Aging in Japanese: Effect of Atrophy Correc- tion,” European Journal of Nuclear Medicine and Mo- lecular Imaging, Vol. 32, No. 7, 2005, pp. 794-805. doi:10.1007/s00259-005-1767-2
[62] [62] H. Matsuda, H. Kanetaka, T. Ohnishi, T. Asada, E. Ima- bayashi and S. Nakano et al., “Brain SPET Abnormalities in Alzheimer’s Disease before and after Atrophy Correc- tion,” European Journal of Nuclear Medicine and Mo- lecular Imaging, Vol. 29, No. 11, 2002, pp. 1502-1505. doi:10.1007/s00259-002-0930-2
[63] [63] Z. J. Li, H. Matsuda, T. Asada, T. Ohnishi, H. Kanetaka and E. Imabayashi et al., “Gender Difference in Brain Perfusion 99mTc-ECD SPECT in Aged Healthy Volun- teers after Correction for Partial Volume Effects,” Nu- clear Medicine Communications, Vol. 25, No. 10, 2004, pp. 999-1005. doi:10.1097/00006231-200410000-00003
[64] [64] N. Scarmeas, S. M. Albert, J. J. Manly and Y. Stern, “Education and Rates of Cognitive Decline in Incident Alzheimer’s Disease,” Journal of Neurology, Neurosur- gery & Psychiatry, Vol. 77, No. 3, 2006, pp. 308-316. doi:10.1136/jnnp.2005.072306
[65] [65] A. Karp, I. Kareholt, C. Qiu, T. Bellander, B. Winblad and L. Fratiglioni et al., “Relation of Education and Oc-cupation-Based Socioeconomic Status to Incident Alz-heimer’s Disease,” American Journal of Epidemiology, Vol. 159, No. 2, 2004, pp. 175-183. doi:10.1093/aje/kwh018
[66] [66] P. J. Nestor, T. D. Fryer and J. R. Hodges, “Declarative Memory Impairments in Alzheimer’s Disease and Seman-tic Dementia,” NeuroImage, Vol. 30, No. 3, 2005, pp. 1010-1020.
[67] [67] M. Lovden, M. Ronnlund, A. Wahlin, L. Backman, L. Nyberg and L. G. Nilsson et al., “The Extent of Stability and Change in Episodic and Semantic Memory in Old Age: Demographic Predictors of Level and Change,” The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, Vol. 59, No. 3, 2004, pp. P130-P134.
[68] [68] W. J. Jagust, “Functional Imaging Patterns in Alzheimer’s Disease. Relationships to Neurobiology,” Annals of the New York Academy of Sciences, Vol. 777, No. 1, 1996, pp. 30-36. doi:10.1111/j.1749-6632.1996.tb34398.x
[69] [69] P. R. Talbot, J. J. Lloyd, J. S. Snowden, D. Neary and H. J. Testa, “A Clinical Role for 99mTc-HMPAO SPECT in the Investigation of Dementia?” Journal of Neurology, Neurosurgery & Psychiatry, Vol. 64, No. 3, 1998, pp. 306-313. doi:10.1136/jnnp.64.3.306
[70] [70] P. M. Kemp, C. Holmes, S. M. Hoffmann, L. Bolt, R. Holmes and J. Rowden et al., “Alzheimer’s Disease: Dif- ferences in Technetium-99m HMPAO SPECT Scan Find- ings between Early Onset and Late Onset Dementia,” Journal of Neurology, Neurosurgery & Psychiatry, Vol. 74, No. 6, 2003, pp. 715-719. doi:10.1136/jnnp.74.6.715
[71] [71] K. Ishii, T. Kawachi, H. Sasaki, A. K. Kono, T. Fukuda, Y. Kojima et al., “Voxel-Based Morphometric Compari-son between Early- and Late-Onset Mild Alzheimer’s Disease and Assessment of Diagnostic Performance of z Score Images,” American Journal of Neuroradiology, Vol. 26, No. 2, 2005, pp. 333-340.
[72] [72] L. Mosconi, S. De Santi, Y. Li, J. Li, J. Zhan and W. H. Tsui et al., “Visual Rating of Medial Temporal Lobe Me-tabolism in Mild Cognitive Impairment and Alzheimer’s Disease Using FDG-PET,” European Journal of Nuclear Medicine and Molecular Imaging, Vol. 33, No. 2, 2006, pp. 210-221. doi:10.1007/s00259-005-1956-z

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.