Share This Article:

Applications of Thermal Imaging in Agriculture—A Review

Abstract Full-Text HTML Download Download as PDF (Size:2624KB) PP. 128-140
DOI: 10.4236/ars.2014.33011    13,589 Downloads   23,990 Views   Citations

ABSTRACT

In thermal remote sensing the invisible radiation patterns of objects are converted into visible images and these images are called thermograms or thermal images. Thermal images can be acquired using portable, hand-held or thermal sensors that are coupled with optical systems mounted on an airplane or satellite. This technology is a non-invasive, non-contact and non-destructive technique used to determine thermal properties and features of any object of interest and therefore it can be used in many fields, where heat is generated or lost in space and time. Potential use of thermal remote sensing in agriculture includes nursery and greenhouse monitoring, irrigation scheduling, plants disease detection, estimating fruit yield, evaluating maturity of fruits and bruise detection in fruits and vegetables. This paper reviews the application of thermal imaging in agriculture and its potential use in various agricultural practices.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Ishimwe, R. , Abutaleb, K. and Ahmed, F. (2014) Applications of Thermal Imaging in Agriculture—A Review. Advances in Remote Sensing, 3, 128-140. doi: 10.4236/ars.2014.33011.

References

[1] Prakash, A. (2000) Thermal Remote Sensing: Concepts, Issues and Applications. International Archives of Photogrammetry and Remote Sensing, 33, 239-243.
[2] Sabins Jr., F.F. (1996) Remote Sensing: Principles and Interpretation. 3rd Edition, W.H. Freeman, New York.
[3] Mallick, J. (2006) Satellite Based Analysis of the Role of Land Use/Land Cover and Vegetation Density on Surface Temperature Regime of Delhi, India. Master’s Thesis, University of Twente, The Netherlands.
[4] Dale, Q.A. and Luvall, C.J. (2004) Thermal Remote Sensing in Land Surface Processing. CRC Press, Boca Raton.
[5] Short, N.M. (2005) Federation of American Scientist. Federation of American Scientist.
http://fas.org/irp/imint/docs/rst/Sect9/Sect9_1.html
[6] Vadivambal, R. and Jayas, D.S. (2011) Applications of Thermal Imaging in Agriculture and Food Industry—A Review. Food Bioprocess Technology, 4, 186-199. http://dx.doi.org/10.1007/s11947-010-0333-5
[7] Manickavasagan, A., Jayas, D., White, N., and Paliwal, J. (2005) Applications of Thermal Imaging in Agriculture—A Review. The Canadian Society for Engineering in Agriculture, Food, and Biological Systems, 05-002.
[8] Liu, Q., Gu, X., Li, X., Jacob, F., Hanocq, J., Friedl, M., et al. (2000) Study on Thermal Infrared Emission Directionality over Crop Canopies with TIR Camera Imagery. Science in China Series E: Technological Sciences, 43, 95-103. http://dx.doi.org/10.1007/BF02916583
[9] Hu, Z., Du, W. and He, X. (2011) Application of Infrared Thermography Technology for Irrigation Scheduling of Winter Wheat. 2011 International Conference on Multimedia Technology (ICMT), 26-28 July 2011, Hangzhou, 494-496.
[10] Nilsson, H. (1995) Remote Sensing and Image Analysis in Plant Pathology. Annual Review of Phytopathology, 33, 489-527. http://dx.doi.org/10.1146/annurev.py.33.090195.002421
[11] Hellebrand, H., Beuche, H. and Linke, M. (2002) Thermal Imaging: A Promising High-Tec Method in Agriculture and Horticulture. In: Blahovec, J. and Kutilek, M., Eds., Physical Methods in Agriculture: Approach to Precision and Quality, Kluwer Academic/Plenum Publishers, New York, 411-427.
[12] Pu, R., Gong, P. and Biging, G.S. (2003) Simple Calibration of AVIRIS Data and LAI Mapping of Forest Plantation in Southern Argentina. International Journal of Remote Sensing, 24, 4699-4714.
http://dx.doi.org/10.1080/0143116031000082433
[13] Ullah, S. (2013) Thermal Plant. Characterizing Vegetation Parameters Using Mid to Thermal Infrared Hyperspectral Remote Sensing. PhD Thesis, University of Twente, Enschede.
http://www.itc.nl/library/papers_2013/phd/ullah.pdf
[14] Tempfli, K. (Editor), Huurneman, G. (Editor), Bakker, W. (Editor), Janssen, L. (Editor), Bakker, W., Feringa, W., Gieske, A., Grabmaier, K., Hecker, C., Horn, J., et al. (2009) Principles of Remote Sensing: An Introductory Textbook. 4th Edition, ITC, Enschede.
[15] Chappelle, E., Kim, M. and McMurtrey, J. (1992) Ratio Analysis of Reflectance Spectra (RARS): An Algorithm for the Remote Estimation of the Concentrations of Chlorophyll A, Chlorophyll B, and Carotenoids in Soybean Leaves. Remote Sensing of Environment, 39, 239-247.
http://dx.doi.org/10.1016/0034-4257(92)90089-3
[16] Pinter, P., Hatfield, J., Schepers, J., Barnes, E., Moran, M.S., Daughtry, C., et al. (2003) Remote Sensing for Crop Management. Photogrammetric Engineering and Remote Sensing, 69, 647-664.
http://dx.doi.org/10.14358/PERS.69.6.647
[17] Slaton, M., Hunt, E. and Smith, W. (2001) Estimating near Infrared Leaf Reflectance from Leaf Structural Characteristics. American Journal of Botany, 88, 278-284. http://dx.doi.org/10.2307/2657019
[18] Asner, G.P. (1998) Biophysical and Biochemical Sources of Variability in Canopy Reflectance. Remote Sensing of Environment, 64, 234-253. http://dx.doi.org/10.1016/S0034-4257(98)00014-5
[19] Curran, P., Dungan, J. and Peterson, D. (2001) Estimating the Foliar Biochemical Concentration of Leaves with Reflectance Spectrometry Testing the Kokaly and Clark Methodologies. Remote Sensing of Environment, 76, 349-359. http://dx.doi.org/10.1016/S0034-4257(01)00182-1
[20] Clevers, J., De Jong, S., Epema, G., Van der Meer, F., Bakker, W., Skidmore, A., et al. (2002) Derivation of the Red Edge Index Using the MERIS Standard Band Setting. International Journal of Remote Sensing, 23, 3169-3184. http://dx.doi.org/10.1080/01431160110104647
[21] Asner, G.P. and Vitousek, P.M. (2005) Remote Analysis of Biological Invasion and Biogeochemical Change. Proceedings of the National Academy of Sciences of the United States of America, 102, 4383-4386.
[22] Darvishzadeh, R., Skidmore, A., Schlerf, M. and Atzberger, C. (2008) Inversion of a Radiative Transfer Model for Estimating Vegetation LAI and Chlorophyll in a Heterogeneous Grassland. Remote Sensing of Environment, 112, 2592-2604. http://dx.doi.org/10.1016/j.rse.2007.12.003
[23] Schlerf, M., Atzberger, C., Hill, J., Buddenbaum, H., Werner, W. and Schuler, G. (2010) Retrieval of Chlorophyll and Nitrogen in Norway Spruce (Picea abies L. Karst.) Using imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 12, 17-26.
http://dx.doi.org/10.1016/j.jag.2009.08.006
[24] Ribeiro da Luz, B. (2006) Attenuated Total Reflectance Spectroscopy of Plant Leaves: A Tool for Ecological and Botanical Studies. New Phytologist, 172, 305-318.
http://dx.doi.org/10.1111/j.1469-8137.2006.01823.x
[25] Fabre, S., Lesaignoux, A., Olioso, A. and Briottet, X. (2011) Influence of Water Content on Spectral Reflectance of Leaves in the 3-15 μm Domain. IEEE Geoscience and Remote Sensing Letters, 8, 143-147. http://dx.doi.org/10.1109/LGRS.2010.2053518
[26] Gerber, F., Marion, R., Olioso, A., Jacquemoud, S., da Luz, B. and Fabre, S. (2011) Modeling Directional-Hemispherical Reflectance and Transmittance of Fresh and Dry Leaves from 0.4 μm to 5.7 μm with the PROSPECT-VISIR Model. Remote Sensing of Environment, 115, 404-414.
http://dx.doi.org/10.1016/j.rse.2010.09.011
[27] Coblentz, W.W. (1913) The Diffuse Reflecting Power of Various Substances. Bulletin of the Bureau of Standards, 9, 283-325. http://dx.doi.org/10.6028/bulletin.214
[28] Gates, D.M. and Tantraporn, W. (1952) The Reflectivity of Deciduous Trees and Herbaceous Plants in the Infrared to 25 Microns. Science, 115, 613-616. http://dx.doi.org/10.1126/science.115.2997.613
[29] Wong, C.L. and Blevin, W.R. (1967) Infrared Reflectance’s of Plant Leaves. Australian Journal of Biological Science, 20, 501-508.
[30] Kranner, I., Kastbergerb, G., Hartbauerb, M. and Pritcharda, H.W. (2010) Noninvasive Diagnosis of Seed Viability Using Infrared Thermography. Proceedings of the National Academy of Sciences of the United States of America, 107, 3912-3917.
[31] Eitel, J.U., Keefe, R.F., Long, D., Davis, A. and VierlingL, A. (2010) Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries. Sensors, 10, 2843-2850.
http://dx.doi.org/10.3390/s100402843
[32] Lee, S.H. and Kim, Y.H. (2004) Thermal and Visual Image Characteristics of Potato Transplants as Affected by Photosynthetic Photon Flux and Electrical Conductivity. 2004 ASAE Annual Meeting, American Society of Agricultural and Biological Engineers, 044101.
[33] Weatherspoon P. and Laacke R.J. (1984) Infrared Thermography for Assessing Seedling—Condition Rationale and Preliminary Observations. California. Proceedings of the Workshop on Evaluating Seedling Quality: Principles, Procedures, and Predictive Abilities of Major Tests, United States Department of Agriculture, Forest Service, California, 127-135.
[34] Zhang, X., Liu, F., He, Y. and Li, X. (2012) Application of Hyperspectral Imaging and Chemometric Calibrations for Variety Discrimination of Maize Seeds. Sensors, 12, 17234-17246.
http://dx.doi.org/10.3390/s121217234
[35] Ljungberg, S. and Jonsson, O. (2002) Infrared Thermography: A Tool to Map Temperature Anomalies of Plants in a Greenhouse Heated by Gas Fired Infrared Heaters. Proceedings of Thermosense XXIV, 4710, 399-406.
[36] Martin, E. (2009) Methods of Determining When to Irrigate. Cooperative Extension. College of Agriculture and Life Sciences, The University of Arizona, Tucson.
http://extension.arizona.edu/sites/extension.arizona.edu/files/pubs/az1220.pdf
[37] Jones, H., Serraj, R., Loveys, B., Xiong, L., Wheaton, A. and Price, A. (2009) Thermal Infrared Imaging of Crop Canopies for the Remote Diagnosis and Quantification of Plant Responses to Water Stress in the Field. Functional Plant Biology, 36, 978-989. http://dx.doi.org/10.1071/FP09123
[38] Idso, S. (1982) Non-Water-Stressed Baselines: A Key to Measuring and Interpreting Plant Water Stress. Agriculture Meteorology, 27, 59-70.
[39] Idso, S., Pinter, J. and Reginato, R. (1990) Non-Water-Stressed Baselines: The Importance of Site Selection for Air Temperature and Air Vapor Pressure Deficit Measurements. Agricultural and Forest Meteorology, 53, 73-80. http://dx.doi.org/10.1016/0168-1923(90)90125-P
[40] Alves, I. and Pereira, L. (2000) Non-Water-Stressed Baselines for Irrigation Scheduling with Infrared Thermometers: A New Approach. Irrigation Science, 19, 101-106.
http://dx.doi.org/10.1007/s002710050007
[41] Alderfasi, A. and Nielsen, D. (2001) Use of Crop Water Stress Index for Monitoring Water Status and Scheduling Irrigation in Wheat. Agricultural Water Management, 47, 69-75.
http://dx.doi.org/10.1016/S0378-3774(00)00096-2
[42] Wanjura, D. and Upchurch, D.R. (2002) Water Status Response of Corn and Cotton to Altered Irrigation. Irrigation Science, 21, 45-55. http://dx.doi.org/10.1007/s00271-001-0049-4
[43] Gontia, N. and Tiwari, K. (2008) Development of Crop Water Stress Index of Wheat Crop for Scheduling Irrigation Using Infrared Thermometry. Agriculture Water Management, 95, 1144-1152.
http://dx.doi.org/10.1016/j.agwat.2008.04.017
[44] Leinonen, I. and Jones, H.G. (2004) Combining Thermal and Visible Imagery for Estimating Canopy Temperature and Identifying Plant Stress. Journal of Experimental Botany Volume, 55, 1423-1431.
http://dx.doi.org/10.1093/jxb/erh146
[45] O’Shaughnessy, S. and Evett, S. (2010) Canopy Temperature Based System Effectively Schedules and Controls Center Pivot Irrigation of Cotton. Agricultural Water Management, 97, 1310-1316.
http://dx.doi.org/10.1016/j.agwat.2010.03.012
[46] Bockhold, D.L., Thompson, A.L., Sudduth, K.A. and Henggeler, J.C. (2011) Irrigation Scheduling Based on Crop Canopy Temperature for Humid Environments. American Society of Agricultural and Biological Engineers, 54, 2021-2028.
[47] O’Shaughnessy, S.A., Evett, S., Colaizzi, P. and Howell, T.A. (2012) A Crop Water Stress Index and Time Threshold for Automatic Irrigation Scheduling of Grain Sorghum. Agricultural Water Management, 107, 1310-1316. http://dx.doi.org/10.1016/j.agwat.2012.01.018
[48] Ballester, C., Castel, J., Jiménez-Bello, M., Castel, J. and Intrigliolo, D. (2013) Thermographic Measurement of Canopy Temperature Is a Useful Tool for Predicting Water Deficit Effects on Fruit Weight in Citrus Trees. Agricultural Water Management, 122, 1-6.
http://dx.doi.org/10.1016/j.agwat.2013.02.005
[49] Bajons, P., Klinger, G. and Schlosser, V. (2005) Determination of Stomatal Conductance by Means of Infrared Thermography. Infrared Physics and Technology, 46, 429-439.
http://dx.doi.org/10.1016/j.infrared.2004.09.001
[50] Blonquist, J.J., Normanb, J. and Bugbeec, B. (2009) Automated Measurement of Canopy Stomatal Conductance Based on Infrared Temperature. Agricultural and Forest Meteorology, 149, 1931-1945. http://dx.doi.org/10.1016/j.agrformet.2009.06.021
[51] Granta, O., Daviesa, M.J., Jamesa, M.C., Johnsona, A.W., Leinonenb, I. and Simpsona, D.W. (2012) Thermal Imaging and Carbon Isotope Composition Indicate Variation amongst Strawberry (Fragaria × ananassa) Cultivars in Stomatal Conductance and Water Use Efficiency. Environmental and Experimental Botany, 76, 7-15. http://dx.doi.org/10.1016/j.envexpbot.2011.09.013
[52] Jones, H.G. (2004) Irrigation Scheduling: Advantages and Pitfalls of Plant-Based Methods. Journal of Experimental Botany, 55, 2427-2436. http://dx.doi.org/10.1093/jxb/erh213
[53] Padhi, J., Misra, R. and Payero, J. (2012) Estimation of Soil Water Deficit in an Irrigated Cotton Field with Infrared Thermography. Field Crops Research, 44, 231-237.
[54] Wanga, X., Yang, W., Wheaton, A., Cooley, N. and Moran, B. (2010) Automated Canopy Temperature Estimation via Infrared Thermography: A First Step towards Automated Plant Water Stress Monitoring. Computers and Electronics in Agriculture, 73, 74-83. http://dx.doi.org/10.1016/j.compag.2010.04.007
[55] Asher, B.J., Bar Yosef, B. and Volinsky, R. (2012) Ground-Based Remote Sensing System for Irrigation Scheduling. Biosystems Engineering, 114, 444-453.
http://dx.doi.org/10.1016/j.biosystemseng.2012.09.002
[56] Panigadaa, C., Rossinia, M., Meronia, M., Ciliaa, C., Busettoa, L., Amaduccid, S., et al. (2014) Fluorescence, PRI and Canopy Temperature for Water Stress Detection in Cereal Crops. International Journal of Applied Earth Observation and Geoinformation, 30, 167-178.
http://dx.doi.org/10.1016/j.jag.2014.02.002
[57] Abbas, A., Khanb, S., Hussainc, N., Hanjra, M. and Saud, A. (2013) Characterizing Soil Salinity in Irrigated Agriculture Using a Remote Sensing Approach. Physics and Chemistry of the Earth, Parts A/B/C, 55-57, 43-52. http://dx.doi.org/10.1016/j.pce.2010.12.004
[58] Ben-Dor, E., Metternicht, G., Goldshleger, N., Mor, E., Mirlas, V. and Basson, U. (2008) Review of Remote SensingBased Methods to Assess Soil Salinity. In: Metternichtand, G. and Zinck, A., Eds., Remote Sensing of Soil Salinization Impact on Land Management, CRC Press, Boca Raton, 377.
[59] Urrestarazu, M. (2013) Infrared Thermography Used to Diagnose the Effects of Salinity in a Soilless Culture. Quantitative InfraRed Thermography Journal, 10, 1-8.
http://dx.doi.org/10.1080/17686733.2013.763471
[60] Xu, H., Zhu, S., Ying, Y. and Jiang, H. (2006) Early Detection of Plant Disease Using Infrared Thermal Imaging. Proceedings of Optics for Natural Resources, Agriculture, and Foods, 6381, 638110.
[61] Olivier, M., Heming, S. and Adams, G.G. (2003) Exploring the Spatial Variation of Take-All (Gaeumannemyces graminis var. tritici) for Site-Specific Management. In: 4th European Conference on Precision Agriculture, Wageningen Academic Publishers, Berlin, 481-486.
[62] Moshou, D., Bravo, C., West, J., Wahlcn, S., McCann, A. and Ramon, H. (2004) Automatic Detection of Yellow Rust in Wheat Using Reflectance Measurements and Neural Networks. Computers and Electronics in Agriculture, 44, 173-188. http://dx.doi.org/10.1016/j.compag.2004.04.003
[63] Oerke, E.-C., Steiner, U., Dehne, H.-W. and Lindenthal, M. (2006) Thermal Imaging of Cucumber Leaves Affected by Downy Mildew and Environmental Conditions. Experimental Botany, 57, 2121-2132. http://dx.doi.org/10.1093/jxb/erj170
[64] Lindenthal, M., Steiner, U., Dehne, H.-W. and Oerke, E.-C. (2005) Effect of Downy Mildew Development on Transpiration of Cucumber Leaves Visualized by Digital Infrared Thermography. Phytopathology, 95, 233-240. http://dx.doi.org/10.1094/PHYTO-95-0233
[65] Oerke, E.-C., Lindenthal, M., Frohling, P. and Steiner, U. (2005) Digital Infrared Thermography for the Assessment of Leaf Pathogens. The 5th European Conference on Precision Agriculture, Uppsala, 9-12 June 2005, 91-98.
[66] Oerke, E.-C., Frohling, P. and Steiner, U. (2011) Thermographic Assessment of Scab Disease on Apple Leaves. Precision Agriculture, 12, 699-715. http://dx.doi.org/10.1007/s11119-010-9212-3
[67] Stoll, M., Schultz, H.R. and Loehnertz, B.B. (2008) Exploring the Sensitivity of Thermal Imaging for Plasmopara viticola Pathogen Detection in Grapevines under Different Water Status. Functional Plant Biology, 35, 281-288. http://dx.doi.org/10.1071/FP07204
[68] Smith, R., Barrs, H., Steiner, J. and Stapper, M. (1985) Relationship between Wheat Yield and Foliage Temperature: Theory and Its Application to Infrared Measurements. Agricultural and Forest Meteorology, 36, 129-143. http://dx.doi.org/10.1016/0168-1923(85)90005-X
[69] Stajnko, D., Lakota, M. and Hocevar, M. (2004) Estimation of Number and Diameter of Apple Fruits in an Orchard during the Growing Season by Thermal Imaging. Computer and Electronics in Agriculture, 42, 31-42. http://dx.doi.org/10.1016/S0168-1699(03)00086-3
[70] Bulanon, D.M., Burks, T.F. and Alchanatis, V. (2008) Study on Temporal Variation in Citrus Canopy Using Thermal Imaging for Citrus Fruit Detection. Biosystems Engineering, 101, 161-171.
http://dx.doi.org/10.1016/j.biosystemseng.2008.08.002
[71] Du, W., Zhang, L., Hu, Z., Shamaila, Z., Zeng, A., Song, J., et al. (2011) Utilization of Thermal Infrared Image for Inversion of Winter Wheat Yield and Biomass. Spectroscopy and Spectral Analysis, 33, 1587-1592.
[72] Hu, Z.-F., Zhang, L.-D., Wang, Y.-X., Shamaila, Z., Zeng, A.-J., Song, J.-L., Liu, Y.-J., Wolfram, S., Joachim, M., He, X.-K. (2013) Application of BP Neural Network in Predicting Winter Wheat Yield Based on Thermography Technology. Spectroscopy and Spectral Analysis, 33, 1587-1592.
[73] Wang, Q., Nuske, S., Bergerman, M. and Singh, S. (2012) Automated Crop Yield Estimation for Apple Orchards. In: Desai, J.P., Dudek, G., Khatib, O. and Kumar, V., Eds., Experimental Robotics: The 13th International Symposium on Experimental Robotics, Springer, 745-758.
[74] Jensen, T., Apan, A. and Zeiler, L. (2009) Crop Maturity Mapping Using a Low Cost Low Altitude Remote Sensing System. Proceedings of Surveying and Spatial Sciences Institute Biennial International Conference, Adelaide, 28 September-2 October 2009, 1231-1242.
[75] Scotford, I. and Miller, P. (2004) Combination of Spectral Reflectance and Ultrasonic Sensing to Monitor the Growth of Winter Wheat. Biosystems Engineering, 87, 27-38.
http://dx.doi.org/10.1016/j.biosystemseng.2003.09.009
[76] Linke, M., Geyer, M., Beuche, H. and Hellebrand, H.J. (2000) Possibilities and Limits of the Use of Thermography for the Examination of Horticultural Products. Agrartechnische Forschung, 6, 110-114.
[77] Danno, A., Miyazato, M. and Ishiguro, E. (1980) Quality Evaluation of Agricultural Products by Infrared Imaging Method: Maturity Evaluation of Fruits and Vegetables. Memoirs of the Faculty of Agriculture, Kagoshima University, Kagoshima, 157-164.
[78] Hellebrand, H.J., Linke, M., Beuche, H., Herold, B. and Geyer, M. (2000) Horticultural Products Evaluated by Thermography. Institute of Agricultural Engineering Bornim, Potsdam, Germany. http://www2.atb-potsdam.de/Hauptseite-deutsch/Institut/Abteilungen/abt2/Mitarbeiter/jhellebrand/jhellebrand/Publikat/AgEng2000PH3.pdf
[79] Mohsenin, N. (1986) Physical Properties of Plant and Animal Materials. 2nd Edition, Routledge, London.
[80] Pen, C., Bilanski, W. and Fuzzen, D. (1985) Classification Analysis of Good and Bruised Peeled Apple Tissue Using Optical Reflectance. Transactions of the ASABE, 28, 326-330.
http://dx.doi.org/10.13031/2013.32251
[81] Upchurch, B., Affeldt, H., Hruschka, W., Norris, K. and Troop, J. (1990) Spectrophotometric Study of Bruises on Whole, “Red Delicious” Apples. American Society of Agricultural and Biological Engineers, 33, 585-589. http://dx.doi.org/10.13031/2013.31370
[82] Upchurch, B., Throop, J. and Aneshansley, D. (1994) Influence of Time, Bruise-Type, and Severity on Near-Infrared Reflectance from Apple Surfaces for Automatic Bruise Detection. American Society of Agricultural and Biological Engineers, 37, 1571-1575. http://dx.doi.org/10.13031/2013.28243
[83] Wen, Z. and Tao, Y. (2000) Dual-Camera NIR/MIR Imaging for Stem-End/Calyx Identification in Apple Defect Sorting. Transaction of the ASABE, 43, 449-452. http://dx.doi.org/10.13031/2013.2724
[84] Gowen, A., O’Donnell, C., Cullen, P., Downey, G. and Frias, J. (2007) Hyperspectralmaging—An Emerging Process Analytical Tool for Food Quality and safety Control. Trends in Food Science & Technology, 18, 590-598. http://dx.doi.org/10.1016/j.tifs.2007.06.001
[85] Ueno, A., Shu, Z. and Takahashi, T. (2008) Determination of Spectral Wavelengths for Detecting Bruise Defects on Apple Fruits. Journal of the Japanese Society of Agricultural Machinery, 70, 63-68.
[86] Zhao, J., Liu, J., Chen, Q. and Vittayapadung, S. (2008) Detecting Subtle Bruises on Fruits with Hyperspectral Imaging. Transactions of Chinese Society for Agricultural Engineering, 39, 106-109.
[87] Varith, J., Hyde, G., Baritelle, A., Fellman, J. and Sattabongkot, T. (2003) Non-Contact Bruise Detection in Apples by Thermal Imaging. Innovative Food Science and Emerging Technologies, 4, 211-218. http://dx.doi.org/10.1016/S1466-8564(03)00021-3
[88] Danno, A., Miyazato, M. and Ishiguro, E. (1978) Quality Evaluation of Agricultural Products by Infrared Imaging Method: Grading of Fruits for Bruise and Other Surface Defects. Memoirs of the Faculty of Agriculture, Kagoshima University, 14, 123-138.
[89] Vanlinden, V., Vereycken, R., Bravo, C., Ramon, H. and De Baerdemaeker, J. (2003) Detection technique for tomato bruise damage by thermal imaging. Acta Horticulturae, 599, 389-394.
[90] Baranowski, P., Mazurek, W., Wozniak, J. and Majewska, U. (2009) Detection of Early Bruises in Apples Using Hyperspectral Data and Thermal Imaging. Food Engineering, 110, 345-355.
http://dx.doi.org/10.1016/j.jfoodeng.2011.12.038
[91] Wu, A., Salerno, A., Schonbach, B., Hallin, H. and Busse, G. (1997) Phase-Sensitive Modulation Thermography and Its Applications for NDE. An International Conference on Thermal Sensing and Imaging Diagnostic Applications, 3056, 176-182. http://dx.doi.org/10.1117/12.271641
[92] Kim, G., Kim, G.-H., Park, J., Kim, D.-Y. and Cho, B.-K. (2014) Application of Infrared Lock-In Thermography for the Quantitative Evaluation of Bruises on Pears. Infrared Physics & Technology, 63, 133-139. http://dx.doi.org/10.1016/j.infrared.2013.12.015

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.