Structural Properties of Synthetic Na-Hectorite Exchanged with Heavy Metals
Karmous Mohamed Salah
.
DOI: 10.4236/msa.2011.25053   PDF    HTML     6,034 Downloads   9,748 Views   Citations

Abstract

The main objective of this study is to determine the structural characteristics of synthetic Na-Hectorite (H-Na) exchanged with heavy metals: Ni2+, Pb2+, Zn2+, Cd2+, Co2+ and Mg2+ using quantitative analysis based on the comparison between the theoretical and experimental XRD patterns. The different complexes are not homogenous. The hectorite saturated by the lead and cadmium present a segregation distribution of the layers, where as the others complexes present a random distribution.

Share and Cite:

K. Salah, "Structural Properties of Synthetic Na-Hectorite Exchanged with Heavy Metals," Materials Sciences and Applications, Vol. 2 No. 5, 2011, pp. 411-415. doi: 10.4236/msa.2011.25053.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. V. Kharitonova, A. S. Manucharov, N. P. Chizhikova, V. N. Zemlyanukhin and N. I. Chernomorchenko “Interaction of Pb2+ and Zn2+ Salts with Clay Minerals,” International Agrophysics, Vol. 18, No. 3, 2004, pp. 231-238.
[2] M. S. Karmous, W. Oueslati, H. B. Rhaiem, J. L. Robert and A. B. H. Amara, “Simulation of the XRD Patterns, Structural Properties of a Synthetic Na-Hectorite Exchanged Cu2+ and Ca2+,” Zeitschrift fur Kristallographie, Vol. 2, Suppl. 26, 2007, pp. 503-508. doi:10.1524/zksu.2007.2007.suppl_26.503
[3] M. S. Karmous, H. B. Rhaiem, J. L. Robert, B. Lanson, and A. B. H. Amara, “Charge Location Effect on the Hydration Properties of Synthetic Saponite and Hectorite Saturated by Na+,Ca2+ Cations: XRD Investigation,” Applied Clay Science, Vol. 46, No. 1, 2009, pp. 34-50.
[4] P. Stathi, I. T. Papadas, A. Tselepidou and Y. Deligiannakish, “Heavy-Metals Uptake by a High Cation-Exchange- Capacity Montmorillonite,” Global NEST Journal, Vol. 12, No. 3, 2010, pp. 248-255,
[5] M. S. Karmous, H. B. Rhaiem. S. Naamen. W. Oueslati and A. B. H. Amara, “The Interlayer Structure and Thermal Behavior of Cu and Ni Montmorillonites,” Zeitschrift fur Kristallographie, Vol. 2, Suppl. 23, 2006, pp. 431- 436.
[6] R. Naseem and S. S. Tahir, “Removal of Pb(II) from Aqueous/Acidic Solutions by Using Bentonite as an Adsorbent,” Water Research, Vol. 35, No. 16, 2001, pp. 3982-3986. doi:10.1016/S0043-1354(01)00130-0
[7] N. Bektas, B. A. Agim and S. Kara, “Kinetic and Equilibrium Studies in Removing Lead Ions from Aqueous Solutions by Natural Sepiolite,” Journal of Hazardous materials, Vol. 112, No. 1-2, 2004, pp. 115-122. doi:10.1016/j.jhazmat.2004.04.015
[8] G. Krishna and S. S. S. Gupta, “Kaolinite, Montmorillonite and Their Modified Derivatives as Adsorbents for Removal of Cu (II) from Aqueous Solution,” Separation and purification Technology, Vol. 50, No. 3, 2006, pp. 388-397.
[9] D. L. Hamilton, and C. M. B. Henderson, “The Preparation of Silicate Compositions by a Gelling Method,” Mineralogy Magazine, Vol. 36, No. 1, 1968, pp. 832-838. doi:10.1180/minmag.1968.036.282.11
[10] C. H. Pons, C. de la Calle and M. de Vidales,” Quantification Curves for XRD Analysis of Mixed-Layer 14A/ 10A Clay Minerals,” Clays and Clay Minerals, Vol. 43, No. 1, 1995, pp. 246-254. doi:10.1346/CCMN.1995.0430212
[11] V. A. Drits and C. Tchoubar, “X-Ray Diffraction by Disordered Lamellar Structures: Theory and Application to Microdevided Silicates and Carbons,” Springer Verlag, New York, 1990, pp. 165-198.
[12] A. B. H. Amara, J. B. Brahim, A. Plan?on and H. B. Rhaiem, “étude par Diffraction X des Modes d’Empi- lement de la Nacrite Hydratée et Deshydratée,” Journal of Applied Crystallography, Vol. 31, No. 5, 1998, pp. 654-662.
[13] S. A. Howard and K. D. Preston,” Profile Fitting of Powder Diffraction Patterns,” In: D. L. Bish and J. E. Post, Eds., Modern Powder Diffraction, Reviews in Mineralogy 20, Mineralogical Society of America, Wahington D.C., 1989, pp. 217-275.
[14] E. Ferrage, B. Lanson, N. Malikova, A. Plancon, B. A. Sakharov and V. A. Drits, “News Insights in the Distribution of Interlayer H2O Molecules in Bi-Hydrated Smectites from X-Ray Diffraction Profile Modeling of 00l Reflections,” Chemistry of Materials, Vol. 17, No. 13, 2005, pp. 3499-3512. doi:10.1021/cm047995v
[15] E. Ferrage, B. Lanson, B. A. Sakharov and V. A. Drits, “Investigation of Smectites Hydration Properties by Modeling Experimental X-Ray Diffraction Patterns. Part I. Montmorillonite Hydration Properties,” American Mineralogist, Vol. 90, No. 8, 2005, pp. 1358-1374. doi:10.2138/am.2005.1776
[16] N. T. Skipper, K. Refson and J. D. C. McConnell, “Computer Simulation of Interlayer Water in 2:1 Clays,” Journal of Chemical Physics, Vol. 4, No. 11, 1991, pp. 7434- 7445. doi:10.1063/1.460175
[17] J. A. Greathouse, K. Refson and G. Sposito, “Molecular Dynamics Simulation of Water Mobility in Magnesium Smectite Hydrates,” Journal of American Chemical Society, Vol. 122, No. 46, 2000, pp. 11459-11464. doi:10.1021/ja0018769
[18] U. F?rstner and G. T. W. Wittmann, “Metal Pollution in the Aquatic Environment,” Springer, New York, 1983.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.