Electronic Transport Study of ZnTe and ZnSe

Abstract

The transport properties of electrons in ZnTe and ZnSe are of great interest because of their numerous technological applications. This paper investigates several calculation results of Monte Carlo device simulation. The average quantities directly accessible by the simulation are the drift velocity, the carriers’ energy and diffusion. The method we choosed to study the transport phenomena uses a three valley model (Γ, L, X) non-parabolic. The results have been obtained by applying the electric field in the direction <100>. Finally we compared our results with those obtained previously.

Share and Cite:

S. Khedim, N. Sari, B. Benyoucef and B. Bouazza, "Electronic Transport Study of ZnTe and ZnSe," Materials Sciences and Applications, Vol. 2 No. 5, 2011, pp. 364-369. doi: 10.4236/msa.2011.25047.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. Stojanovic and R. Kostic, “Quasistationary Electron States for CdTe/ZnTe/CdTe Open Spherical Quantum Dots,” Acta Physica Polonica A, Vol. 117, No. 5, 2010, pp. 768-771.
[2] J. Jaeck, “Emission Infrarouge Sous Champ électrique dans le Cristal de ZnSe Dopé au Chrome,” Ph.D. Dis- sertation, Onera Paristech, Paris, 2009.
[3] N. Mazumdar, R. Sarma, B. K. Sarma and H. L. Das, “Photoconductivity of ZnTe Thin Films at Elevated Temperatures,” Bulletin of Materials Science, Vol. 29, No. 1, February 2006, pp. 11-14. doi:10.1007/BF02709347
[4] T. A. Gessert, P. Sheldon, X. Li, D. Dunlavy, D. Niles, R. Sasala, S. Albright and B. Zadler, “Studies of Znte Back Contacts to CdS/CdTe Solar Cells,” Photovoltaic Specialists Conference, Conference Record of the Twenty- Sixth IEEE, Anaheim, 1997, pp. 419-422.
[5] T. Tanaka, K. M. Yu, P. R. Stone, J. W. Beeman, O. D. Dubon, L. A. Reichertz, V. M. Kao, M. Nishio and W. Walukiewicz,, “Demonstration of Homojunction ZnTe Solar Cells,” Journal of Applied Physics, Vol. 108, No. 2, 2010, pp. 024502-024502-3. doi:10.1063/1.3463421
[6] J. Bang, J. Park, J.-H. Lee, N. Won, J. Nam, J. Lim, B.-Y. Chang, H.-J. Lee, B. Chon, J. Shin, J.-B. Park, J.-H. Choi, K. Cho, S.-M. Park, T. Joo and S. Kim, “ZnTe/ZnSe (Core/Shell) Type-II Quantum Dots: Their Optical and Photovoltaic Properties,” Chemistry of Materials, Vol. 22, 2010, pp. 233-240. doi:10.1021/cm9027995
[7] A. Ohtake, J. Nakamura, M. Terauchi, F. Sato, M. Tanaka, K. Kimura and T. Yao, “Wurtz-ite-Zinc-Blende Polytypism in ZnSe on GaAs(111)A,” Physical Review B, Vol. 63, No. 19, 2005, pp. 195325-1-195325-4.
[8] N. G. Szwacki, “Structural Proper-ties of MnTe, ZnTe and ZnMnTe,’’ Acta Physica Polonica A, Vol. 106, No. 8, 2004, p. 233.
[9] W. Stutius, “Preparation of Low-Resistivity n-Type ZnSe by Organometallic Chemical Vapor Deposition,” Applied Physics Letters, Vol. 38, No. 5, 1981, pp. 352-354. doi:10.1063/1.92374
[10] F. Bogani, S. Grifoni, M. Gurioli and L. Morolli, “Band- Edge Dynamics and Trapping in ZnSe Crystals,” Physical Review B, Vol. 52, No. 4, 1995, pp. 2543-2549. doi:10.1103/PhysRevB.52.2543
[11] T. Yao, T. Takeda and R. Watanuki, “Photoluminescence Properties of ZnSe Single Crystalline Films Grown by Atomic Layer Epitaxy,” Applied Physics Letters, Vol. 48, No. 23, 1986, pp. 1615-1616. doi:10.1063/1.96834
[12] S. Yamauchi and T. Hariu. “Plasma-Assisted Epitaxial Growth of ZnSe Films In Hydrogen Plasma,” MRS Proceedings, Vol. 161, 1989, pp. 147-152. doi:10.1557/PROC-161-147
[13] H. M. Wong, J.-B. Xia and K. W. Cheah, “Luminescence properties of ZnSe films grown by hot wall epitaxy,” Applied Physics A Materials Science & Processing, Vol. 64, No. 5, 1994, pp. 507-509.
[14] Q. J. Meng, B. J. Chen, G. H. Hou, L. M. Wu and G. Dong, “Modi-fied Hot Wall Epitaxy (HWE) Apparatus and Preparation of ZnSxSe1?x Films,” Journal of Crystal Growth, Vol. 121, No. 1-2, 1992, pp. 191-196. doi:10.1016/0022-0248(92)90186-M
[15] P. D. Lao, J. Wang, W. H. Yao and S. D. Zheng, Chin. Phys, 12, 193 (1992).
[16] J. George, “Preparation of Thin Films,” Marcel Dekker, New York, 1992.
[17] H. Ruda, “Widegap II-VI Compounds for Opto-Electronic Applications,” Chapman & Hall, London, 1992.
[18] K. Huang and A. Rhys, “Theory of Light Absorp-tion and Nonradiative Transitions in F-Centers,” Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, Vol. 204, 1950, 406-423. doi:10.1098/rspa.1950.0184
[19] Y. Zhang, W. K. Ge, M. D. Sturge, J. S. Zheng and B. X. Wu, “Phonon Sidebands of Exci-tons Bound to Isoelectronic Impurities in Semiconductors,” Physical Review B, Vol. 47, No. 11, 1993, pp. 6330-6339. doi:10.1103/PhysRevB.47.6330
[20] B. K. Ridley, “Quantum Processes in Semiconductors,” 3rd Edition, Oxford Science Publications, Oxford, 1993.
[21] X. Liu, M. E. Pistol and L. Samuelson, “Excitons Bound to Nitrogen Pairs in GaAs,” Physical Review B, Vol. 42, No. 12, 1990, pp. 7504-7512. doi:10.1103/PhysRevB.42.7504
[22] M. A. Littlejohn, J. R. Hauser and T. H. Glisson, “Velocity-Field Characteristics of GaAs with Γc6-Lc6-Xc6 Conduction-Band Ordering,” Journal of Applied Physics, Vol. 48, No. 11, 1977, pp. 4587-4590. doi:10.1063/1.323516
[23] O. Madelung, “Semiconductors: Data Handbook,” 3rd Edition, Springer, Berlin, 2004. doi:10.1007/978-3-642-18865-7
[24] N. Bachir, A. Hamdoune, B. Bouazza and N. E. Chabane- Sari, “The Study of the Phe-nomenon of Transport in the cubic Gallium Nitride and Alu-minium Nitride and Indium Nitride by the Monte Carlo Method of Simulation,” Inter- national Review of Physics, Vol. 4, No. 1, 2010, pp. 35-38.
[25] M. Weber, “Analysis of Zincblende-Phase GaN, Cubic-Phase SiC, and GaAs MESFETs including a Full-Band Monte Carlo Simulator,” Ph.D. Disserta-tion, School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, December 2005.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.