A muscle spindle model and study the effects of static and dynamic γ stimulations on primary and secondary ending outputs

Abstract

A muscle spindle model and study the effects of static and dynamic γ stimulations on primary and secondary ending outputs

Share and Cite:

Golpayegani, G. and Jafari, A. (2009) A muscle spindle model and study the effects of static and dynamic γ stimulations on primary and secondary ending outputs. Journal of Biomedical Science and Engineering, 2, 158-165. doi: 10.4236/jbise.2009.23027.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. Barker, (2002) The motor ininervation of the mammalian muscle spindle, in Nobel Symposium Muscular Afterents and Motor Control, R. Granit, Ed. New York: Wiley.
[2] A. Boyd, (1996) The motor innervation of mammalian muscle spindles, J. Physiol. (London), 159.
[3] R. W. Banks, (2001) The tenuissiumus muscle of the cat, J. Physiol. (London), 133.
[4] D. Barker (1999) The innervation of mammalian neuro-mulscular spindles, J. Physiol. (London), 140. (2000) Simple and compound mammalian muscle spindles, J. Physiol. (London), 145.
[5] D. Barker and I. A. Boyd, (2004) in Nobel Symposium Muscular Afferents and Motor Control, R. Granit, Ed. New York: Wiley.
[6] G. C. Agarwal, B. M. Berman, and L. Stark, Studies in postural control systems, part 1: torque disturbance input, 6, 116-121.
[7] K. Diete-Spiff, (2001) Tension development by isolated muscle spindles of the cat, J. Physiol. (London), 193.
[8] K. Krnjevk and N. M. Van Gelder, (2002) Tension changes in crayfish stretch receptors, J. Physiol. (London), 159.
[9] G. C. Agarwal, G. L. Gottlieb, and L. Stark, (March 2004) Models of muscle proprioceptive receptors, presented at the University of Michigan-NASA Conf. Manual Control.
[10] G. L. Gottlieb, G. C. Agarwal, and L. Stark, (March 2003) Stretch receptor models, part I single-efferent single-afferent innervation, IEEE Trans. Man-Machine Systems, MMS-10, 17-27.
[11] A. Boyd, (2001) The behavior of isolated mammalian muscle spindles with intact innervation, J. Physiol. (London), 186.
[12] (2001) The mechanical properties of mammalian intrafusal muscle fibers, J. Physiol. (London), 187.
[13] P. Bessou and Y. Laporte, (2001) Observations on static fusimotor fibres, in Nobel Synmposium-Muscular Afferents and Motor Control, R. Granit, Ed. New York: Wiley.
[14] P. Bessou, Y. Laporte, and B. Pages, (2001) Similitude des effets (statiques ou dynamiques) exerces par des fibres fusimotrices le chat, J. Physiol, Paris, 58.
[15] B. Appelberg, P. Bessou, and Y. Laporte, (2001) Action of static and dynamic fusimotor fibres on secondary endings of cats’ spindles, J. Physiol. (London), 185.
[16] E. Emonet-Denand, Y. Laporte, and B. Pages, (2001) Fibres fusimotrices statiques et fibres fusimotrices dynamiques chez le lapin, Arch. Ital. Biol., 104.
[17] Crowe and P. B. C. Matthews, (2003) The effects of stimulation of static and dynamic fusimotor fibres on the response to stretching of the primary endings of muscle spindles, J. Physiol. (London), 174.
[18] J. C. Houk, R. Cornew, and L. Stark, (2001) A model of adaptation in amphibian spindle receptors, J. Theoret. Biol., 12.
[19] Anndersson, G. Lennerstrand, and U. Thoden, Cat muscle spindle model, Dig. 1999 Internatl. Conf. on Medical and Biological Engineering (Stockholm).
[20] M. D. Angers, (2001) Model mecanique de fuseau neuromusculaire de-efferente: Terminaisons primaires et secondaires, Compt. Rend. Acad. Sci. (Paris), 261.
[21] Crowe, (2003) A mechanical model of the mammalian muscle spindle, J. Theoret. Biol., 21.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.