Molecular Detection and Association of QnrA, QnrB, QnrS and BlaCMY Resistance Genes among Clinical Isolates of Salmonella spp. in Iran
Raheleh Saboohi, Bahareh Rajaei, Nahid Sepehri Rad, Mohamad Reza Razavi, Mohammad Reza Aghasadeghi, Arfa Moshiri, Ahmad Reza Bahremand, Keivan Kave, Peiman Kave, Mehrangiz Zangeneh, Mohammad Rahbar, Sara Khorami Sarvestani, Seyed Davar Siadat
Department of Infectious Diseases, Islamic Azad University, Tehran Medical Branch, Tehran, Iran.
Department of Microbiology, Iranian References Laboratory, Research Center, Ministry of Health and Medical Education, Tehran, Iran.
Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran.
Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran;Department of Mycobacteriology & Lung Research, Pasteur Institute of Iran, Tehran, Iran.
Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran;Department of Stem Cells, Division of Nanobiomaterials and Tissue Engineering, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran;Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Department of Mycobacteriology & Lung Research, Pasteur Institute of Iran, Tehran, Iran.
Department of Veterinary Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Hope Generation Foundation, Tehran, Iran.
School of Management and Medical Informatics, Isfahan University of Medical Sciences, Isfahan, Iran.
DOI: 10.4236/aim.2014.41010   PDF    HTML     4,856 Downloads   7,858 Views   Citations

Abstract

Prevalence of three plasmid-mediated quinolone resistance determinant qnrA, qnrB, qnrS and extended spectrum Cephalosporins determinant blaCMY, among eighty-five isolates of Salmonella spp. collected in the community between 2008 and 2010 was determined by PCR. Not only qnr genes but also bla genes were positive in twenty-four different isolates. PCR assay detected that 22 of 85 (25.8%) Salmonella spp. carried the qnrA, 1 (1.17%) of 85 isolates harbored the qnrB, 1 (1.17%) of them contained the qnrS, 1 (1.17%) isolate carried all the three qnrA, qnrB, qnrS genes, 24 of 85 (28.2%) Salmonella carried blaCMY and 5 (5.88%) isolates carried qnrA and blaCMY. Antimicrobial susceptibility patterns of isolates were as follows: 49 (57.6%) exhibited resistance to Nalidixic acid and none of them to Ciprofloxacin. 33 (38.82%) isolates exhibited resistance to Cephalosporins and 2 (2.35%) of them exhibited ESBL phenotype and 12 (14.1%) isolates resistance to Ampicilin. These results were confirmed by MIC determination test as well. Having detected qnr and bla genes suggested that these genes spread antibiotic resistance among pathogenic bacteria.


Share and Cite:

R. Saboohi, B. Rajaei, N. Rad, M. Razavi, M. Aghasadeghi, A. Moshiri, A. Bahremand, K. Kave, P. Kave, M. Zangeneh, M. Rahbar, S. Sarvestani and S. Siadat, "Molecular Detection and Association of QnrA, QnrB, QnrS and BlaCMY Resistance Genes among Clinical Isolates of Salmonella spp. in Iran," Advances in Microbiology, Vol. 4 No. 1, 2014, pp. 63-68. doi: 10.4236/aim.2014.41010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Z. Shahina, M. D. Jahdul Islam, J. Abedin, A. I. Chowdhury and M. D. Arifuzzaman, “A Study of Antimicrobial Susceptibility and Resistance Pattern of Ecoli Causing Urinary Tract Infection in Chitagong Bangladesh,” Asia Journal of Biological Sciences, Vol. 4, No. 7, 2011, pp. 548-555. http://dx.doi.org/10.3923/ajbs.2011.548.555
[2] F. Mansouri, F. Norouzi, M. Moradi and N. Nakaee, “Comparison of Virulence Factors among Clinical Isolates of Psoedomonase and Non-Producing Extended Spectrum β-Lactamases,” Current Research in Bacteriology, Vol. 4, No. 3, 2011, pp. 85-93.
http://dx.doi.org/10.3923/crb.2011.85.93
[3] T. N. Farivar, M. Naderi, A. H. Mohagheghi Fard, H. O. Oweist and B. Sharifi Moud, “Drug Resistance of Mycobacterium tuberculosis Strains Isolated from Patients with Pulmonary Tuberculosis in South Eastern of Iran,” Journal of Medical Science, Vol. 6, No. 2, 2006, pp. 275-278.
http://dx.doi.org/10.3923/jms.2006.275.278
[4] J. M. Whichard, K. Gay, J. E. Stevenson, K. J. Joyce, K. L. Cooper, M. Omondi, F. Medella, G. A. Jacoby and T. J. Barrett, “Human Salmonella and Concurrent Decrease Susceptibility to Quinolones and Extended-Spectrum Cephalosporins,” Journal of Antimicrobial Chemotherapy, Vol. 13, No. 11, 2007, pp. 1681-1688.
[5] A. Carattoli, F. Tosini, W. P. Giles, M. E. Rupp, S. H. Hinrichs and F. J. Angulo, “Characterization of Plasmids Carrying CMY-2 from Expanded-Spectrum Cephalosporin-Resistant Salmonella Strains Isolated in the United States between 1996-1998,” Antimicrob Agents Chemother, Vol. 46, No. 5, 2002, pp. 1269-1272.
http://dx.doi.org/10.1128/AAC.46.5.1269-1272.2002
[6] T. M. Coque, F. Baquero and R. Canton, “Increasing Prevalence of ESBL-Producing Enterobacteiaceae in Europe,” Eurosurveillance, Vol. 13, No. 47, 2008, pp. 1-10.
[7] O. Vasilaki, E. Ntokou, A. Ikonomidis, D. Sofianou, F. Frantzidou, et al., “Emergence of the Plasmid-Mediated Quinolone Resistance Gene qnrS1 in Esherichia coli Isolates in Greece,” Antimicrobial Agents and Chemotherapy, Vol. 52, No. 8, 2008, pp. 2966-2997.
http://dx.doi.org/10.1128/AAC.00325-08
[8] K. L. Hopkins, L. Wootton, M. R. Day and E. J. Threlfall, “Plasmid-Mediated Quinolone Resistance Determinant qnrs1 Found in Salmonella enterica Strains Isolated in the UK,” Journal of Antimicrobial Chemotherapy, Vol. 59, No. 6, 2007, pp. 1071-1075.
http://dx.doi.org/10.1093/jac/dkm081
[9] K. Veldman, W. V. Pelt and D. Mevius, “First Reports of qnr Genes in Salmonella in the Netherland,” Journal of Antimicrobial Chemotherapy, Vol. 61, No. 2, 2008, pp. 452-453.
http://dx.doi.org/10.1093/jac/dkm495
[10] T. K. M. Cheung, Y. W. Chu, M. Y. Ha, M. A. C. Chu, R. W. H. Yung and K. M. Kam, “Plasmid-Mediated Resistance to Ciprofloxacin and Cefotaxime in Clinical Isolates of Salmonella enterica Serotype Enteritidis in Hong Kong,” Journal of Antimicrobial Chemotherapy, Vol. 56, No. 3, 2005, pp. 586-589. http://dx.doi.org/10.1093/jac/dki250
[11] G. A. Jacoby, N. Chow and K. B. Waits, “Prevalence of Plasmid-Mediate Quinolone Resistance,” Antimicrobial Agents and Chemotherapy, Vol. 47, No. 2, 2003, pp. 559-562.
http://dx.doi.org/10.1128/AAC.47.2.559-562.2003
[12] Y. Jiang, Z. Zhou, Y. Qian, Z. Wei, Y. Yu, S. Hu and L. Li, “Plasmid-Mediated Quinolone Resistance Determinates qnr and acc (6) Ib-Cr Extended-Spectrum β-Lactamace—Producing Escherichia coli and Klebsiella Pneumonia in China,” Journal of Antimicrobial Chemotherapy, Vol. 61, No. 5, 2008, pp. 1003-1006.
http://dx.doi.org/10.1093/jac/dkn063
[13] G. A. Jacoby, K. E. Walsh, D. M. Mills, V. J. Walker, H. Oh, A. Robisk and D. C. Hooper, “qnrB Another Plasmid-Mediated Gene for Quniolone Resistance,” Antimicrobial Agents and Chemotherapy, Vol. 50, No. 4, 2006, pp. 1178-1182.
http://dx.doi.org/10.1128/AAC.50.4.1178-1182.2006
[14] A. Sharma, C. R. Bora and R. K. Chaursia, “Antibiotic Suseptibility and Genetic Analysis of Vibrio Species Isolated from Reverina Environment,” Current Research in Bacteriology, Vol. 2, No. 2, 2009, pp. 36-49.
http://dx.doi.org/10.3923/crb.2009.36.49
[15] J. D. D. Pitout, P. Nordmann, K. B. Laupland and L. Poirel, “Emergence of Enterabacteriaceac Producing Extended-Spectrum β-lactamases of Enterobacteriaceac Producing Extended-Spectrum β-Lactamases (ESBLS) in the Community,” Antimicobial Chemotherapy, Vol. 56, No. 1, 2005, pp. 52-59.
[16] A. M. Ahmed, E. E. A. Younis, Y. Ishida and T. Shimamoto, “Genetic Basis of Multidrug Resistance in Salmonella enterica Serovars Enteritidis and Typhimurium Isolated from Diarrheic Calves in Egypt,” Acta Tropica, Vol. 111, No. 2, 2009, pp. 144-149.
http://dx.doi.org/10.1016/j.actatropica.2009.04.004
[17] CLSI, “Performance Standards for Antimicrobial Susceptibility Testing; Nineteenth Informational Supplement,” M100-S19, CLSI, Wayne, PA, 2009.
[18] M. B. Zaidi, V. Leon, C. Canche, C. Perez, S. Zhao, S. K. Hubert, J. Abbott, K. Blickenstaff and P. F. Mcdermott, “Rapid and Widespread Dissemination of Multidrug-Resistance blaCMY-2 salmonella Typhimurium in Mexico,” Antimicrobial Chemotherapy, Vol. 60, No. 2, 2007, pp. 398401.
[19] L. H. Su, T. L. Wu, J. H. Chia, C. Chu and A. J. Kuo, “Increasing Ceftriaxon Resistance in salmonella Isolates from a University Hospital in Taiwan,” Antimicrobial Chemotherapy, Vol. 55, No. 6, 2005, pp. 846-852.
[20] M. A. Oktem, Z. Gulay, M. Bicmen and D. Gur, “qnrA Prevalence in Extended-Spectrum β-Lactamase-Positive Enterobacteriaceae Isolates from Turkey,” Japanese Journal of Infectious Diseases, Vol. 61, No. 1, 2008, pp. 13-17.
[21] B. Rajaei, S. D. Siadat, N. S. Rad, F. Badmasti, M. R. Razavi, M. R. Aghasadeghi, R. Saboohi, T. Rajaei, A. Moshiri, M. Nejati and A. R. Bahremand, “Molecular Detection of Antimicrobial Resistance Gene Cassettes Associated with Class 2 Integron in Salmonella Serovars Isolated in Iran,” British Microbiology Research Journal, Vol. 4, No. 1, 2014, pp. 132-141.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.