Share This Article:

Optimization of Micromechanical Cleavage Technique of Natural Graphite by Chemical Treatment

DOI: 10.4236/graphene.2014.31001    4,818 Downloads   9,502 Views   Citations


In this work,we report a method to improve the efficiency of the micromechanical cleavage technique to obtain few-layers graphene samples, from natural graphite flakes, which were previously submitted to two chemical treatment times with H2SO4(17 and 25 hours). After the chemical treatment times, Raman spectroscopy reveals a hydrogenation of the few-layer graphene samples, which were obtained from the treated graphite flakes. To analyze the hydrogenation of the samples, the G and 2D bands of the Raman spectra of the treated and un-treated samples were analyzed and compared, as well as the I(2D)/I(G) ratio, revealing a p-doping on the treated samples when compared with the untreated samples. Our studies could be of great importance to obtain larger and greater amount of few-layer graphene samples.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Torres, L. , Gomez Armas, L. and Carlos Seabra, A. (2014) Optimization of Micromechanical Cleavage Technique of Natural Graphite by Chemical Treatment. Graphene, 3, 1-5. doi: 10.4236/graphene.2014.31001.


[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306, No. 5696, 2004, pp. 666-669.
[2] F. Banhart, J. Kotakoski and A. V. Krasheninnikov, “Struc- tural Defects in Graphene,” ACS Nano, Vol. 5, No. 26, 2011, pp. 26-41.
[3] M. Begliarbekov, O. Sul, S. Kalliakos, E.-H. Yang and S. Strauf, “Determination of Edge Purity in Bilayer Graphene Using μ-Raman Spectroscopy,” Applied Physics Letters, Vol. 97, No. 3, 2010, Article ID: 031908.
[4] A. Das, B. Chakraborty, S. Piscanec, S. Pisana, A. K. Sood and A. C. Ferrari, “Phonon Renormalization in Doped Bilayer Graphene,” Physical Review B, Vol. 79, No. 15, 2009, Article ID: 155417.
[5] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Physical Review Letters, Vol. 97, No. 18, 2006, Article ID: 187401.
[6] S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari and F. Mauri, “Breakdown of the Adiabatic Born-Oppenheimer Approximation in Graphene,” Nature Materials, Vol. 6, No. 3, 2007, pp. 198-201.
[7] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, W. S. Novoselov, H. R. Krish- namurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, “Mo- nitoring Dopants by Raman Scattering in an Electrochemically Top-Gated Graphene Transistor,” Nature Nanotechnology, Vol. 3, No. 4, 2008, pp. 210-215.
[8] A. Gupta, G. Chen, P. Joshi, S. Tadigadapa and P. C. Eklund, “Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films,” Nano Letters, Vol. 6, No. 12, 2006, pp. 2667-2673.
[9] Y. F. Hao, Y. Y. Wang, L. Wang, Z. H. Ni, Z. Q. Wang, R. Wang, C. K. Koo, Z. X. Shen and J. T. L. Thong, “Probing Layer Number and Stacking Order of Few-Layer Graphene by Raman Spectroscopy,” Small, Vol. 6, No. 2, 2010, pp. 195-200.
[10] N. A. Cordero and J. A. Alonso, “The Interaction of Sulfuric Acid with Graphene and Formation of Adsorbed Crystals,” Nanotechnology, Vol. 18, No. 48, 2007.
[11] I. G. Ayala, N. A. Cordero and J. A. Alonso, “Surfactant Effect of Sulfuric Acid on the Exfoliation of Bilayer Graphene,” Physical Review B, Vol. 84, No. 16, 2011, Article ID: 165424 .
[12] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, “Two-Dimensional Atomic Crystals,” Proceedings of the National Academy of Sciences of the USA, Vol. 102, No. 30, 2005, pp. 10451-10453.
[13] S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohl- haas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, “Graphene-Based Composite Materials,” Nature, Vol. 442, 2006, pp. 282-286.
[14] M. Bostr?m and B. E. Sernelius, “Repulsive van der Waals Forces Due to Hydrogen Exposure on Bilayer Graphene,” Physical Review A, Vol. 85, No. 1, 2012, Article ID: 012508.
[15] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Mo- rozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim and K. S. Novoselov, “Control of Graphene’s Properties by Reversible Hydrogenation,” Science, Vol. 323, No. 5914, 2009, pp. 610-613.
[16] Z. Q. Luo, T. Yu, K.-J. Kim, Z. H. Ni, Y. M. You, S. Lim, Z. X. Shen, S. Z. Wang and J. Y. Lin, “Thickness-Dependent Reversible Hydrogenation of Graphene Layers,” ACS Nano, Vol. 3, No. 7, 2009, pp. 1781-1788.
[17] A. Castellanos-Gomez, M. Wojtaszek, Arramel, N. Tombros and B. J. van Wees, “Reversible Hydrogenation and Bandgap Opening of Graphene and Graphite Surfaces Probed by Scanning Tunneling Spectroscopy,” Small, Vol. 8, No. 10, 2012, pp. 1607-1613.
[18] D. W. Boukhvalov, “Hydrogen on Graphene: Electronic Structure, Total Energy, Structural Distortions and Magnetism from First-Principles Calculations,” Physical Review B, Vol. 77, No. 3, 2008, Article ID: 035427.
[19] C. Casiraghi, “Raman Intensity of Graphene,” Status Solidi B, Vol. 248, No. 11, 2011, pp. 2593-2597.
[20] Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen and J. Y. Lin, “Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy,” The Journal of Physical Chemistry C, Vol. 115, No. 5, 2011, pp. 1422-1427.
[21] L. M. Malard, J. Nilsson, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, A. H. Castro Neto and M. A. Pimenta, “Probing the Electronic Structure of Bilayer Graphene by Raman Scattering,” Physical Review B, Vol. 76, No. 20, 2007, pp. 201401-201404.

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.