Effect of Y on the Properties of Sm-Doped Ceria for IT-SOFC Applications

Abstract

The co-doped ceria-based materials with general composition formula Ce0.8-xYxSm0.2O2-δ (x = 0, 0.02, 0.04, 0.06) were prepared through the sol-gel method. The single phase of the prepared materials was confirmed by X-ray diffraction (XRD). The lattice parameters were determined by least square fitting of UNIT CELL programme. The linear variation of lattice parameter with concentration of Y into the samarium doped ceria (SDC) indicates the validity of Vegard’s law. The crystallite size of the samples obtained by using of Scherrer formula is in the range from 34 nm to 49 nm. The thermal expansion studies were carried out by using dilatometric technique in the temperature range from room temperature to 1000°C. It was observed that the thermal expansion increased linearly with increasing temperature for all the samples. The electrical conductivity was studied using impedance spectroscopy. It was observed that the composition Ce0.74Y0.06Sm0.2O2-δ showed higher electrical conductivity and lower activation energy (≈1.05 eV) than other compositions in the present investigation. This composition is thus a possible candidate for use the electrolyte in intermediate temperature solid oxide fuel cells (IT-SOFC).

Share and Cite:

V. Venkatesh and C. Reddy, "Effect of Y on the Properties of Sm-Doped Ceria for IT-SOFC Applications," Journal of Modern Physics, Vol. 4 No. 11, 2013, pp. 1499-1503. doi: 10.4236/jmp.2013.411181.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. C. Liou and S. L. Yang, Journal of Power Sources, Vol. 179, 2008, pp. 553-559.
http://dx.doi.org/10.1016/j.jpowsour.2008.01.012
[2] N. P. Brandon, S. Skinner and B. C. H. Steele, Annual Review of Materials Research, Vol. 33, 2003, pp. 183-213.
http://dx.doi.org/10.1146/annurev.matsci.33.022802.094122
[3] B. C. H. Steele, Solid State Ionics, Vol. 129, 2000, pp. 95-110.
http://dx.doi.org/10.1016/S0167-2738(99)00319-7
[4] C. M. Lapa, D. P. F. De Souza, F. M. L. Figueiredo and F. M. B. Marques, International Journal of Hydrogen Energy, Vol. 35, 2010, pp. 2737-2741.
http://dx.doi.org/10.1016/j.ijhydene.2009.04.056
[5] S. Omer, E. D. Wachsman and J. C. Nino, Solid State Ionics, Vol.178, 2008, pp. 1890-1897.
http://dx.doi.org/10.1016/j.ssi.2007.12.069
[6] S. Omer, E. D. Wachsman and J. C. Nino, Solid State Ionics, Vol. 177, 2006, pp. 3199-3203.
http://dx.doi.org/10.1016/j.ssi.2006.08.014
[7] H. Inaba and H. Tagawa, Solid State Ionics, Vol. 83, 1996, pp. 1-16.
http://dx.doi.org/10.1016/0167-2738(95)00229-4
[8] N. Kim, B. H. Kim and D. Lee, Journal of Power Sources, Vol. 90, 2000, pp. 139-143.
http://dx.doi.org/10.1016/S0378-7753(00)00389-X
[9] S. Lubke and H. D. Wiemhofer, Solid State Ionics, Vol. 117, 1999, pp. 229-243.
http://dx.doi.org/10.1016/S0167-2738(98)00408-1
[10] V. Prashanth Kumar, Y. S. Reddy, G. Prasad, P. Kistaiah and C. Vishnuvardhan Redyy, Materials Chemistry and Physics, Vol. 112, 2008, pp. 711-718.
http://dx.doi.org/10.1016/j.matchemphys.2008.06.030
[11] S. Ramesh, V. Prashanth Kumar, P. Kistaiah and C. Vishnuvadhan Redyy, Solid State Ionics, Vol. 181, 2010, pp. 86-91. http://dx.doi.org/10.1016/j.ssi.2009.11.014
[12] V. Venkatesh, V. Prashanth Kumar, R. Sayanna and C. Vishnuvardhan Reddy, Advances in Materials Physics and Chemistry, Vol. 2, 2012, pp. 5-8.
http://dx.doi.org/10.4236/ampc.2012.24B002
[13] S. Ramesh, G. Upender, K. C. James Raju, G. Padmaja, S. Mohan Reddy and C. V. Reddy, Journal of Modern Physics, Vol. 4, 2013, pp. 859-863.
http://dx.doi.org/10.4236/jmp.2013.46116
[14] Y. F. Zheng, L. Q. Wu, H. T. Gu, L. Gao, H. Chen and L. C. Guo, Journal of Alloys and Compounds, Vol. 486, 2009, pp. 586-589.
http://dx.doi.org/10.1016/j.jallcom.2009.07.011
[15] Y. F. Zheng, S. C. He, L. Ge, M. Zhou, H. Chen and L. C. Guo, International Journal of Hydrogen Energy, Vol. 36, 2011, pp. 5128-5135.
http://dx.doi.org/10.1016/j.ijhydene.2011.01.042
[16] K. Eguchi, T. Setoguchi, T. Inoue and H. Arai, Solid State Ionics, Vol. 52, 1992, pp. 165-172.
http://dx.doi.org/10.1016/0167-2738(92)90102-U
[17] R. D. Shannon, Acta Crystallographica, Vol. A32, 1976, pp. 751-767.
http://dx.doi.org/10.1107/S0567739476001551
[18] K. S. Cole and R. H. Cole, Journal of Chemical Physics, Vol. 9, 1941, pp. 341-351.
http://dx.doi.org/10.1063/1.1750906
[19] A. K. Jonscher, Nature, Vol. 267, 1979, pp. 673-679.
http://dx.doi.org/10.1038/267673a0
[20] J. A Kilner, Solid State Ionics, Vol. 129, 2000, pp. 13-23.
http://dx.doi.org/10.1016/S0167-2738(99)00313-6
[21] D. J. Kim, Journal of the American Ceramic Society, Vol. 72, 1989, pp. 1415-1421.
http://dx.doi.org/10.1111/j.1151-2916.1989.tb07663.x
[22] F. Y. Wang, B. Z. Wan and S. Cheng, Journal of Solid State Electrochemistry Communications, Vol. 9, 2005, pp. 168-173. http://dx.doi.org/10.1007/s10008-004-0575-0
[23] Y. F. Zheng, H. T. Gu, H. Chen, L. Gao, X. F. Zhu and L. C. Guo, Materials Research Bulletin, Vol. 44, 2009, pp. 775-779.
http://dx.doi.org/10.1016/j.materresbull.2008.09.021
[24] W. Lai and S. M. Haile, Journal of the American Ceramic Society, Vol. 89, 2005, pp. 2979-2997.
http://dx.doi.org/10.1111/j.1551-2916.2005.00740.x
[25] S. Ramesh, K. C. James Raju and C. Vishnuvardhan Reddy, Transactions of Indian Ceramic Society, Vol. 70, 2011, pp. 143-147.
http://dx.doi.org/10.1080/0371750X.2011.10600161

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.