Tea Identification through Surface-Assisted Laser Desorption/Ionization Mass Spectrometry

Abstract

We have applied surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) usingtitanium dioxide nanoparticles(TiO2NPs)as the matrix and captopril (CAP) as internal standard for the determination of the concentrations of theanine and four catechins—catechin, (_)-epigallocatechin (EGC), (_)-epicatechin gallate (ECG), and (_)-epigallocatechin gallate (EGCG).Under the optimal conditions (240 nM TiO2 NPs and 10 μM CAP), this SALDI-MS approach provides linearity of 0.3– 80 (r= 0.990), 1.2–100 (r= 0.987), 4–120 (r= 0.995), 6–120 (r= 0.983), and 2–120 μM (r= 0.991) for theanine, catechin, EGC, ECG, and EGCG, respectively. The limits of detection (LODs; S/N = 3)for theanine, catechin, EGC, ECG, and EGCG provided by this SALDI-MS approach are 0.1, 0.35, 1.0, 1.45, and 0.5 μM, respectively. This approach provides spot-to-spot and batch-to-batch variations of less than 10% and 13%, respectively, for the analysis of tea samples.With advantages of simplicity, accuracy, precision, and great reproducibility, we have applied the SALDI-MS approach for the analysis of tea samples, with identified peaks for theanine, catechin, EGC, ECG, and EGCG. Tea samples from Taiwan and four other areas have various SALDI-MS profiles, showing their potential for differentiation of tea samples from different sources. Our result also shows that tea samples harvested in different seasons and counties in Taiwan provide significantly different MS profiles. The amounts of theanine and EGC in the Oolong tea from Lishan are much higher than those in the other tea samples.

Share and Cite:

Chen, W. and Chang, H. (2013) Tea Identification through Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. International Journal of Analytical Mass Spectrometry and Chromatography, 1, 11-21. doi: 10.4236/ijamsc.2013.11003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. Lee and M. Karas and F. Hillenkamp, “Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons,” Analytical Chemistry, Vol. 60, No. 20, 1988, pp. 2299-2301. doi:10.1021/ac00171a028
[2] K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida and T. Matsuo, “Protein and Polymer Analysis Up to m/z 100,000 by Laser Ionization Time-of-Flight Mass Spectrometry,” Rapid Communications in Mass Spectrometry, Vol. 2, No. 8, 1988, pp. 151-153. doi:10.1002/rcm.1290020802
[3] A. Tholey and E. Heinzle, “Ionic (Liquid) Matrices for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry-Applications and Perspectives,” Analytical and Bioanalytical Chemistry, Vol. 386, No. 1, 2006, pp. 24-37. doi:10.1007/s00216-006-0600-5
[4] Y. Wada, T. Yanagishita and H. Masudata, “Ordered Porous Alumina Geometries and Surface Metals for Surface-Assisted Laser Desorption/Ionization of Biomolecules:? Possible Mechanistic Implications of Metal Surface Melting,” Analytical Chemistry, Vol. 79, No. 23, 2007, pp. 9122-9127. doi:10.1021/ac071414e
[5] Y. C. Chen and J. Y. Wu, “Analysis of Small Organics on Planar Silica Surfaces Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry,” Rapid Communications in Mass Spectrometry, Vol. 15, No. 20, 2001, pp. 1899-1903. doi:10.1002/rcm.451
[6] J. Sunner, E. Dratz and Y.-C. Chen, “Graphite Surface- Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Peptides and Proteins from Liquid Solutions,” Analytical Chemistry, Vol. 67, No. 23, 1995, pp. 4335-4342. doi:10.1021/ac00119a021
[7] H.-P. Wu, C.-L. Su, H.-C. Chang and W.-L. Tseng, “Sample-First Preparation:? A Method for Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Analysis of Cyclic Oligosaccharides,” Analytical Chemistry, Vol. 79, No. 16, 2007, pp. 6215-6221. doi:10.1021/ac070847e
[8] C.-K. Chiang, W.-T. Chen and H.-T. Chang, “Nanoparticle-Based Mass Spectrometry for the Analysis of Bio- molecules,” Chemical Society Reviews, Vol. 40, No. 3, 2011, pp. 1269-1281. doi:10.1039/c0cs00050g
[9] J. A. McLean, K. A. Stumpo and D. H. Russell, “Size-Selected (2-10 nm) Gold Nanoparticles for Matrix Assisted Laser Desorption Ionization of Peptides,” Journal of the American Chemical Society, Vol. 127, No. 15, 2005, pp. 5304-5305. doi:10.1021/ja043907w
[10] Y.-F. Huang and H.-T. Chang, “Analysis of Adenosine Triphosphate and Glutathione through Gold Nanoparticles Assisted Laser Desorption/Ionization Mass Spectrometry,” Analytical Chemistry, Vol. 79, No. 13, 2007, pp. 4852-4859. doi:10.1021/ac070023x
[11] H. Kawasaki, T. Sugitani, T. Watanabe, T. Yonezawa, H. Moriwaki and R. Arakawa, “Layer-by-Layer Self-Assembled Mutilayer Films of Gold Nanoparticles for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry,” Analytical Chemistry, Vol. 80, No. 19, 2008, pp. 7524-7533. doi:10.1021/ac800789t
[12] T.-C. Chiu, L.-C. Chang, C.-K. Chiang and H.-T. Chang, “Determining Estrogens Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry with Silver Nanoparticles as the Matrix,” Journal of the American Society for Mass Spectrometry, Vol. 19, No. 9, 2008, pp. 1343-1346. doi:10.1016/j.jasms.2008.06.006
[13] S. F. Ren, L. Zhang, Z. H. Cheng and Y. L. Guo, “Immobilized Carbon Nanotubes as Matrix for MALDI- TOF-MS Analysis: Applications to Neutral Small Carbohydrates,” Journal of the American Society for Mass Spectrometry, Vol. 16, No. 3, 2005, pp. 333-339. doi:10.1016/j.jasms.2004.11.017
[14] X. Wen, S. Dagan and V. H. Wysocki, “Small-Molecule Analysis with Silicon-Nanoparticle-Assisted Laser Desorption/Ionization Mass Spectrometry,” Analytical Chemistry, Vol. 79, No. 2, 2007, pp. 434-444. doi:10.1021/ac061154l
[15] F. Torta, M. Fusi, C. S. Casari, C. E. Bottani and A. Bachi, “Titanium Dioxide Coated MALDI Plate for On Target Analysis of Phosphopeptides,” Journal of Proteome Research, Vol. 8, No. 4, 2009, pp. 1932-1942. doi:10.1021/pr8008836
[16] C.-K. Chiang, Z. Yang, Y.-W. Lin, W.-T. Chen, H.-J. Lin and H.-T. Chang, “Detection of Proteins and Protein- Ligand Complexes Using HgTe Nanostructure Matrices in Surface-Assisted Laser Desorption/Ionization Mass Spectrometry,” Analytical Chemistry, Vol. 82, No. 11, 2010, pp. 4543-4550. doi:10.1021/ac100550c
[17] W.-T. Chen, C.-K. Chiang, C.-H. Lee and H.-T. Chang, “Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry to Detect Proteins and Protein-Protein Complexes,” Analytical Chemistry, Vol. 84, No. 4, 2012, pp. 1924-1930. doi:10.1021/ac202883q
[18] W.-T. Chen, M.-F. Huang and H.-T. Chang, “Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry to Detect ss- and ds-Oligodeoxynucleotides,” Journal of the American Society for Mass Spectrometry, Vol. 24, No. 6, 2013, pp. 877-883. doi:10.1007/s13361-013-0595-z
[19] W.-Y. Chen and Y.-C. Chen, “Affinity-Based Mass Spectrometry Using Magnetic Iron Oxide Particles as the Matrix and Concentrating Probes for SALDI MS Analysis of Peptides and Proteins,” Analytical and Bioanalytical Chemistry, Vol. 386, No. 3, 2006, pp. 699-704. doi:10.1007/s00216-006-0427-0
[20] J. J. Dalluge and B. C. Nelson, “Determination of Tea Catechins,” Journal of Chromatography A, Vol. 881, No. 1-2, 2000, pp. 411-424. doi:10.1016/S0021-9673(00)00062-5
[21] R. A. Riemersma, C. A. Rice-Evans, R. M. Tyrrell, M. N. Clifford and M. E. J. Lean, “Tea Flavonoids and Cardio- vascular Health,” Quarterly Journal of Mathematics, Vol. 94, No. 5, 2001, pp. 277-282. doi:10.1093/qjmed/94.5.277
[22] C. Cabrera, R. Gimenez and M. C. Lopez, “Determination of tea components with antioxidant activity,” Journal of Agricultural and Food Chemistry, Vol. 51, No. 15, 2003, pp. 4427-4435. doi:10.1021/jf0300801
[23] H. Schulz, U. H. Engelhardt, A. Wegent, H. Drews and S. Lapczynski, “Application of Near-Infrared Reflectance Spectroscopy to the Simultaneous Prediction of Alkaloids and Phenolic Substances in Green Tea Leaves,” Journal of Agricultural and Food Chemistry, Vol. 47, No. 12, 1999, pp. 5064-5067. doi:10.1021/jf9813743
[24] I. Khan, P. L. Sangwan, S. T. Abdullah, B. D. Gupta, J. K. Dhar, R. Manickavasagar and S. Koul, “Ten Marker Compounds-Based Comparative Study of Green Tea and Guava Leaf by HPTLC Densitometry Methods: Antioxidant Activity Profiling,” Journal of Separation Science, Vol. 34, No. 7, 2011, pp. 749-760. doi:10.1002/jssc.201000718
[25] M. Li, J. Zhou, X. Gu, Y. Wang, X. Huang and C. Yan, “Quantitative Capillary Electrophoresis and Its Application in Analysis of Alkaloids in Tea, Coffee, Coca Cola, and Theophylline Tablets,” Journal of Separation Science, Vol. 32, No. 2, 2009, pp. 267-274. doi:10.1002/jssc.200800529
[26] L.-F. Wang, J.-Y. Lee, J.-O. Chung, J.-H. Baik, S. So and S.-K. Park, “Discrimination of Teas with Different Degrees of Fermentation by SPME-GC Analysis of the Characteristic Volatile ?avour Compounds,” Food Chemistry, Vol. 109, No. 1, 2008, pp. 196-206. doi:10.1016/j.foodchem.2007.12.054
[27] A. P. Neilson, R. J. Green, K. V. Wood and M. G. Ferruzzi, “High-Throughput Analysis of Catechins and Thea?avins by High Performance Liquid Chromatography with Diode Array Detection,” Journal of Chromatography A, Vol. 1132, No. 1-2, 2006, pp. 132-140. doi:10.1016/j.chroma.2006.07.059
[28] D. Guillarme, C. Casetta, C. Bicchi and J.-L. Veuthey, “High Throughput Qualitative Analysis of Polyphenols in Tea Samples by Ultra-High Pressure Liquid Chromatography Coupled to UV and Mass Spectrometry Detectors,” Journal of Chromatography A, Vol. 1217, No. 44, 2010, pp. 6882-6890. doi:10.1016/j.chroma.2010.08.060
[29] K. S. Abhijith, P. V. Sujith Kumar, M. A. Kumar and M. S. Thakur, “Immobilised Tyrosinase-Based Biosensor for the Detection of Tea Polyphenols,” Analytical and Bio- analytical Chemistry, Vol. 389, No. 7-8, 2007, pp. 2227- 2234. doi:10.1007/s00216-007-1604-5
[30] K.-H. Lee, C.-K. Chiang, Z.-H. Lin and H.-T. Chang, “Determining Enediol Compounds in Tea Using Surface- Assisted Laser Desorption/Ionization Mass Spectrometry with Titanium Dioxide Nanoparticle Matrices,” Rapid Communications in Mass Spectrometry, Vol. 21, No. 13, 2007, pp. 2023-2030. doi:10.1002/rcm.3058
[31] T. Rajh, L. X. Chen, K. Lukas, T. Liu, M. C. Thurnauer and D. M. Tiede, “Surface Restructuring of Nanoparticles: An Efficient Route for Ligand-Metal Oxide Crosstalk,” The Journal of Physical Chemistry B, Vol. 106, No. 41, 2002, pp. 10543-10552. doi:10.1021/jp021235v
[32] R. Knochenmuss and R. Zenobi, “MALDI Ionization: In- Plume Processes,” Chemical Reviews, Vol. 103, No. 2, 2003, pp. 441-452. doi:10.1021/cr0103773
[33] C.-K. Chiang, Y.-W. Lin, W.-T. Chen and H.-T. Chang, “Accurate Quantitation of Glutathione in Cell Lysates through Surface-Assisted Laser Desorption/Ionization Mass Spectrometry Using Gold Nanoparticles,” Nano- medicine: Nanotechnology, Biology and Medicine, Vol. 6, No. 4, 2010, pp. 530-537. doi:10.1016/j.nano.2010.01.006
[34] W.-T. Chen, C.-K. Chiang, Y.-W. Lin and H.-T. Chang, “Quantification of Captopril in Urine through Surface- Assisted Laser Desorption/Ionization Mass Spectrometry Using 4-Mercaptobenzoic Acid-Capped Gold Nanoparticles as an Internal Standard,” Journal of the American Society for Mass Spectrometry, Vol. 21, No. 5, 2010, pp. 864-867. doi:10.1016/j.jasms.2010.01.023
[35] Chinese Culture: Quality of Tea. http://www.traditionalstudies.org/

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.