The Effect of Baroreflex Function on Blood Pressure Variability

Abstract

Objective: The aim of this study was to assess the relationship of blood pressure variability (BPV) and heart rate variability (HRV) to investigate the effect of baroreflex function on blood pressure variability. Methods: This study consisted of 111 subjects, including 32 normotensives and 79 hypertensives. All the subjects were given two concurrent tests: 24-hour Holter ECG and ambulatory blood pressure monitoring. According to standard deviation of normal-to-normal sinus RR intervals (SDNN) derived from the Holter ECG, the hypertensives were divided into two groups: an HRV normal group with SDNN > 100 ms and an HRV abnormal group with SDNN < 100 ms. HRV analysis used the time domain measure SDNN and two frequency domain analyses using low-frequency and high-frequency power. BPV analysis involved a formula correlated to each blood pressure value. Results: BPV was significantly higher in the HRV abnormal group compared with the HRV normal group in the hypertensives (0.018 ± 0.0033 vs 0.014 ± 0.0032, P < 0.05). In the HRV abnormal group, BPV value of the older hypertensive participants was higher than the younger participants (0.019 ± 0.0024 vs 0.017 ± 0.0037, P = 0.048). BPV and HRV were correlated in the younger hypertensives (r = ﹣0.314, P < 0.05) and older hypertensives (r = ﹣0.692, P < 0.001). Conclusions: Baroreflex function had effect on BPV. Factors like aging could cause damage to the baroreflex sensitivity, which in turn had influence on BPV. There may be benefits in restoration of baroreflex function to reduce BPV, especially in hypertensive patients.

 

Share and Cite:

X. Wei, X. Fang, L. Ren, Y. Meng, Z. Zhang, Y. Wang and G. Qi, "The Effect of Baroreflex Function on Blood Pressure Variability," International Journal of Clinical Medicine, Vol. 4 No. 9, 2013, pp. 378-383. doi: 10.4236/ijcm.2013.49068.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. F. Su and C. Y. Miao, “Blood Pressure Variability and Organ Damage,” Clinical and Experimental Pharmacology and Physiology, Vol. 28, No. 9, 2001, pp. 709-715. doi:10.1046/j.1440-1681.2001.03508.x
[2] M. G. Moertl, D. Ulrich, K. I. Pickel, P. Klaritsch, M. Schaffer, D. Flotzinger, I. Alkan, U. Lang and D. Schlembach, “Changes in Haemodynamic and Autonomous Nervous System Parameters Measured Non-Invasively throughout Normal Pregnancy,” European Journal of Obsterics & Gynecology and Reproductive Biology, Vol. 144, No. 1, 2009, pp. 179-183. doi:10.1016/j.ejogrb.2009.02.037
[3] M. Cymerys, A. Miczke, W. Bryl, M. Kujawska-Luczak, P. Bogdański and D. Pupek-Musialik, “Circardian Rhythm and Variability of Blood Pressure and Target Organ Damage in Essential Hypertension,” Polskie Archiwum Medycyny Wewnetrznej, Vol. 108, 2002, pp. 625-631.
[4] N. A. Zakopoulos, G. Tsivgoulis, G. Barlas, C. Papamichael, K. Spengos, E. Manios, I. Ikonomidis, V. Kotsis, I. Spiliopoulou and K. Vemmos, “Time Rate of Blood Pressure Variation Is Associated with Increased Common Carotid Artery Intima-Media Thickness,” Hypertension, Vol. 45, 2005, pp. 505-512. doi:10.1161/01.HYP.0000158306.87582.43
[5] A. Frattola, G. Parati, C. Cuspidi, F. Albini and G. Mancia, “Prognostic Value of 24-Hour Blood Pressure Value,” J Hypertens, Vol. 11, No. 10, 1993, pp. 1133-1137. doi:10.1097/00004872-199310000-00019
[6] D. Sander and J. Klingelhofer, “Diurnal Systolic Blood Pressure Variability Is the Strongest Predictor of Early Carotid Atherosclerosis,” Neurology, Vol. 47, No. 2, 1996, pp. 500-507. doi:10.1212/WNL.47.2.500
[7] L. C. Vanderlei, C. M. Pastre, R. A. Hoshi, T. D. Carvalho and M. F. Godoy, “Basic Notions of Heart Rate Variability and Its Clinical Applicability,” Revista Brasileira de Cirurgia Cardiovascular, Vol. 24, No. 2, 2009; pp. 205-217. doi:10.1590/S0102-76382009000200018
[8] E. von Borell, J. Langbein, G. Després, S. Hansen, C. Leterrier, R. Marchant-Forde, M. Minero, E. Mohr, A. Prunier, D. Valance and I. Veissier, “Heart Rate Variability as a Measure of Autonomic Regulation of Cardiac Activity for Assessing Stress and Welfare in Farm Animals: A Review,” Physiology & Beavior, Vol. 92, No. 3, 2007, pp. 293-316. doi:10.1016/j.physbeh.2007.01.007
[9] K. D. Monahan, “Effect of Aging on Baroreflex Function in Humans,” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, Vol. 293, No. 1, 2007, pp. 3-12. doi:10.1152/ajpregu.00031.2007
[10] R. E. De Meersman and P. K. Stein, “Vagal Modulation and Aging,” Biological Psychology, Vol. 74, No. 2, 2007, pp. 165-173. doi:10.1016/j.biopsycho.2006.04.008
[11] C. Fukusaki, K. Kawakubo and Y. Yamamoto, “Assessment of the Primary Effect of Aging on Heart Rate Variability in Humans,” Clinical Autonomic Research, Vol. 10, No. , 2000, pp. 123-130. doi:10.1007/BF02278016
[12] L. T .Mainardi, “On the Quantification of Heart Rate Variability Spectral Parameters Using Time-Frequency and Time-Varying Methods,” Philosophical Transactions of the Royal Society A, Vol. 367, 2009, pp. 255-275.
[13] R. L.Sun, N. Wu, S. H.Yang, Z. Y. Lu, L. N. Guo, J. S. Qu, Y. L .Huang, W. H. Qi and W. P. Jiang,, “The Clinical Application Suggestions of Heart Rate Variability Detection,” Chinese Journal of Cardiology, Vol. 4, 1998, pp. 252-255.
[14] O. Tochikubo, N. Miyazaki, Y. Yamada and M. Fukuoka, “Mathematical Evaluation 24-h Blood Pressure Variability in Young, Middle-Aged and Elderly Hypertensive Patients,” Japanese Circulation Journal, Vol. 51, No. 10, 1987, pp. 1123-1130. doi:10.1253/jcj.51.1123
[15] Y. Nishioka, H. Sashika, N. Andho and O. Yochikubo, “Relation between 24-h Heart Rate Variability and Blood Pressure Fluctuation during Exercise in Stroke Patients,” Circulation Journal, Vol. 69, No. 6, 2005, pp. 717-721. doi:10.1253/circj.69.717
[16] K. McGarry, M. Laher, D. Fitzgerald, J. Horgan, E. O’Brien and K. O’Malley, “Baroreflex Function in Elderly Hypertensives,” Hypertension, Vol. 5, 1983, pp. 763-767. doi:10.1161/01.HYP.5.5.763
[17] M. N. Bartels, S. Jelic, P. Ngai, G. Gates, D. Newandee, S. S. Reisman, R. C. Basner and R. E. De Meersman, “The Effect of Ventilation on Spectral Analysis of Heart Rate and Blood Pressure Variability during Exercise,” Respiratory Physiology & Neurobiology, Vol. 144, No. 1, 2004, pp. 91-98. doi:10.1016/j.resp.2004.08.002
[18] P. M. Rothwell, S. C. Howard, E. Dolan, E. O’Brien, J. E. Dobson, B. Dahlof, N. R. Poulter and P. S. Sever, “ASCOT-BPLA and MRC Trial Investigators. Effects of β Blockers and Calcium-Channel Blockers on Within-Individual Variability in Blood Pressure and Risk of Stroke,” Lancet Neurology, Vol. 9, No. 5, 2010, pp. 469-480. doi:10.1016/S1474-4422(10)70066-1
[19] D. L. Eckberg and P. Sleight, “Human Baroreflexes in Health and Disease,” Clarendon Press, Oxford, 1992.
[20] G. Mancia, G. Parati, G. Pomidossi, R. Casadei, M. Di Rienzo and A. Zanchetti, “Arterial Baroreflexes and Blood Pressure and Heart Rate Variabilities in Humans,” Hypertension, Vol. 8, 1986, pp. 147-153. doi:10.1161/01.HYP.8.2.147
[21] Y. Imai, A. Aihara, T. Ohkubo, K. Nagai, I. Tsuji, N. Minami, H. Satoh and S. Hisamichi, “Factors That Affect Blood Pressure Variability: A Community-Based Study in Ohasama, Japan,” American Journal of Hypertension, Vol. 10, No. 11, 1997, pp. 1281-1289. doi:10.1016/S0895-7061(97)00277-X
[22] T. Laitinen, J. Hartikainen, L. Niskanen, G. Geelen and E. Lansimies, “Sympathovagal Balance Is Major Determinant of Short-Term Blood Pressure Variability in Healthy Subjects,” American Journal of Physiology-Heart and Circulatory Physiology, Vol. 276, 1999, pp. 1245-1252.
[23] S. Goulopoulou, T. Baynard, R. M. Franklin, B. Fernhall, R. Carhart, R. Weinstock and J. A. Kanaley, “Exercise Training Improves Cardiovascular Autonomic Modulation in Response to Glucose Ingestion in Obese Adults with and without Type 2 Diabetes Mellitus,” Metabolism Clinical and Experimental, Vol. 59, No. 6, 2010, pp. 901-910. doi:10.1016/j.metabol.2009.10.011
[24] Y. Akehi, H. Yoshimatsu, M. Kurokawa, T. Sakata, H. Eto, S. Ito and J. Ono, “VLCD-Induced Weight Loss Improves Heart Rate Variability in Moderately Obese Japanese,” Experimental Biology and Medicine, Vol. 226, 2001, pp. 440-445.
[25] J. Erblich, D. H. Bovbjerg and R. P. Sloan, “Exposure to Smoking Cues: Cardiovascular and Autonomic Effects,” Addictive Behaviors, Vol. 36, No. 7, 2011, pp. 737-742. doi:10.1016/j.addbeh.2011.02.011

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.