Biotechnology and Plant Disease Control-Role of RNA Interference

Abstract

Development of crop varieties which are resistant against many economically important diseases is a major challenge for plant biotechnologists worldwide. Although much progress in this area has been achieved through classical genetic approaches, this goal can be achieved in a more selective and robust manner with the success of genetic engineering techniques. In this regard, RNA interference (RNAi) has emerged as a powerful modality for battling some of the most notoriously challenging diseases caused by viruses, fungi and bacteria. RNAi is a mechanism for RNA-guided regulation of gene expression in which double-stranded ribonucleic acid (dsRNA) inhibits the expression of genes with complementary nucleotide sequences. The application of tissue-specific or inducible gene silencing in combination with the use of appropriate promoters to silence several genes simultaneously will result in protection of crops against destructive pathogens. RNAi application has resulted in successful control of many economically important diseases in plants.

Share and Cite:

S. Wani, G. Sanghera and N. Singh, "Biotechnology and Plant Disease Control-Role of RNA Interference," American Journal of Plant Sciences, Vol. 1 No. 2, 2010, pp. 55-68. doi: 10.4236/ajps.2010.12008.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] G. W. Chang, H.-W. Lin and S.-K. Chen, “Modeling Characteristics of Harmonic Currents Generated by High-Speed Railway Traction Drive Converters,” Transactions on Power Delivery, IEEE, Vol. 19, No. 2, April 2004, pp. 766-773.
[2] L. Manczinger, Z. Antal and L. Kredics, “Ecophysiology and Breeding of Mycoparasitic Trichoderma Strains (a Review),” Acta Microbiologica et Immunologica Hungarica, Vol. 49, 2002, pp. 1-14.
[3] D. Hoisington, M. Khairallah, T. Reeves, J. M. Ribaut, B. Skovmand, S. Taba and M. Warburton, “Plant Genetic Resources: What can they Contribute toward Increased Crop Productivity,” Proceedings of the National Academy of Sciences of the USA, Vol. 96, 1999, pp. 5937-5943.
[4] M. Lee, “Genome Projects and Gene Pools: New Germplasm for Plant Breeding,” Proceedings of the National Academy of Sciences of the USA, Vol. 95, 1998, pp. 2001-2004.
[5] V. Frankard, M. Ghislain and M. Jacobs, “Two Feedback-Insensitive Enzymes of the Aspartate Pathway in Nicotiana sylvestris,” Plant Physiology, Vol. 99, 1992, pp. 1285-1293.
[6] G. Galili, S. Galili, E. Lewinsohn and Y. Tadmor, “Genetic, Molecular and Genomic Approaches to Improve the Value of Plant Foods and Feeds,” Critical Reviews in Plant Sciences, Vol. 21, 2002, pp. 167-204.
[7] M. D. de Bakker, M. Raponi and G. M. Arndr, “RNA-Meditaed Gene Silencing in Non-Pathogenic and Pathogenic Fungi,” Current Opinion in Microbiology, Vol. 5, 2002, pp. 323-329.
[8] R, Almeida and R. C. Allshire, “RNA Silencing and Genome Regulation,” Trends in Cell Biology, Vol. 15, 2005, pp. 251-258.
[9] H. Nakayashiki, “RNA Silencing in Fungi: Mechanisms and Applications,” Federation of European Biochemical Societies Letters, Vol. 579, 2005, pp. 5950-5970.
[10] D. C. Baulcombe, “RNA silencing in Plants,” Nature, Vol. 431, 2004, pp. 356-363.
[11] S. H. Wani and G. S. Sanghera, “Genetic Engineering for Viral Disease Management in Plants,” Notulae Scientia Biologicae, Vol. 2, 2010, pp. 20-28.
[12] M. A. Escobar, E. L. Civerolo, K. R. Summerfelt and A.M Dandekar, “RNAi-Mediated Oncogene Silencing Confers Ressitance to Crown Gall Tumorigenesis,” Proceedings of the National Academy of Sciences USA, Vol. 98, 2001, pp. 13437-13442.
[13] P. Brodersen and O. Voinnet, “The Diversity of RNA Silencing Pathways in Plants,” Trends in Genetics, Vol. 22, 2006, pp. 268-280.
[14] M. R. Godge, A. Purkayastha, I. Dasgupta and P. P. Kumar, “Virus-Induced Gene Silencing for Functional Analysis of Selected Genes,” Plant Cell Reporter, Vol. 27, 2008, pp. 209-219.
[15] S. M. Shahinul Islam, T. Miyazaki, F. Tanno and K. Itoh, “Dissection of Gene Function by RNA Silencing,” Plant Biotechnology, Vol. 22, 2005, pp. 443-446.
[16] O. Milhavet, D. S. Gary and M. P. Mattson “RNA Interference in Biology and Medicine,” Pharmacological Reviews, Vol. 55, 2003, pp. 629-648.
[17] G. J. Hannon, “RNA Interference,” Nature, Vol. 418, 2002, pp. 244-251.
[18] H. Vaucheret, F. Vazquez, P. Crete, and D. P. Bartel, “The Action of ARGONAUTE1 in the miRNA Pathway and Its Regulation by the miRNA Pathway are Crucial for Plant Development,” Genes and Development, Vol. 18, 2004, pp. 187-1197.
[19] P. M. Waterhouse, M. B. Wang and T. Lough, “Gene Silencing as an Adaptive Defense against Viruses,” Nature, Vol. 411, 2001, pp. 834-842.
[20] A. S. Pickford and C. Cogoni, “RNA-Mediated Gene Silencing,” Cellular and Molecular Life Science, Vol. 60, 2003, pp. 871-882.
[21] S. M. Hammond, E. Bernstein, D. Beach and G. J. Hannon, “An RNA-Directed Nuclease Mediates Post-Transcriptional Gene Silencing in Drosophila Cells,” Nature, Vol. 404, 2000, pp. 293-296.
[22] A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E .Driver and C. C. Mello, “Potent and Specific Genetic Interference by Double-Stranded RNA in Caenorhabditis elegans,” Nature, Vol. 391, 1998, pp. 806-811.
[23] E. Bernstein, A. A. Caudy, S. M. Hammond and G. J. Hannon, “Role for a Bidentate Ribonuclease in the Initiation Step of RNA Interference,” Nature, Vol. 409, 2001, pp. 363-366.
[24] S. V. Wesley, C. A. Helliwell, N. A. Smith, M. B. Wang, D. T. Rouse, Q. Liu, P. S. Gooding, S. P. Singh, D. Abbott, P. A. Stoutjesdijk, S. P. Robinson, A. P. Gleave, A. G. Green, and P. Waterhouse, “Construct Design for Efficient, Effective and High-Throughput Gene Silencing in Plants,” Plant Journal, Vol. 27, 2001, pp. 581-590.
[25] G. Tang, B. J. Reinhart, D. Bartel and P. D. Zamore, “A Biochemical Framework for RNA Silencing in Plants,” Genes and Development, Vol.17, 2003, pp. 49-63.
[26] O. Voinnet, “Non-Cell Autonomous RNA Silencing,” Federation of European Biochemical Societies Letters, Vol. 579, 2005, pp. 5858-5871.
[27] R. Lu, A. M. Martin-Hernandez, J. R. Peart, I. Malcuit and D. C. Baulcombe, “Virus Induced Gene Silencing in Plants,” Methods, Vol. 30, 2003, pp. 296-303.
[28] P. Dunoyer, C. Himber, V. Ruiz-Ferrer, A. Alioua and O. Voinnet, “Intra- and Intercellular RNA Interference in Arabidopsis thaliana Requires Components of the MicroRNA and Heterochromatic Silencing Pathways,” Nature Genetics, Vol. 39, 2007, pp. 848-856.
[29] U. Klahre, P. Crete, S. A. Leuenberger, V. A. Iglesias and F. Meins, “High Molecular Weight RNAs and Small Interfering RNAs Induce Systemic Post Transcriptional Gene Silencing in Plants,” Proceedings of the National Academy of Sciences of the USA, Vol. 99, 2002, pp. 11981-11986.
[30] A. J. Herr, A. Molnar, A. Jones and D. C. Baulcombe, “Defective RNA Processing Enhances RNA Silencing and Influences Flowering of Arabidopsis,” Proceedings of the National Academy of Sciences of the USA, Vol. 103, 2006, pp. 14994-15001.
[31] G. Hutvagner and P. D. Zamore, “A microRNA in a Multiple-Turnover RNAi Enzyme Complex,” Science, Vol. 297, 2002, pp. 2056-2060.
[32] C. Himber, P. Dunoyer, G. Moissiard, C. Ritzenthaler and O. Voinnet, “Transitivity Dependent and Independent Cell-to-Cell Movement of RNA Silencing,” The EMBO Journal, Vol. 22, 2003, pp. 4523-4533.
[33] K. Kobayashi and P. Zambryski, “RNA Silencing and Its Cell-to-Cell Spread during is Embryogenesis,” The Plant Journal, Vol. 50, 2007, pp. 597-604.
[34] F. Li, and S. W. Ding, “Virus Counter Defense: Diverse Strategies for Evading the RNA Silencing Immunity,” Annual Review of Microbiology, Vol. 60, 2006, pp. 503-531.
[35] C. F. Chuang and E. M. Meyerowtiz, “Specific and Heritable Genetic Interference by Double-Stranded RNA in Arabidopsis thaliana,” Proceedings of the National Academy of Sciences of the USA, Vol. 97, 2000, pp. 985-4990.
[36] P. Schweizer, J. Pokorny, P. Schulze-Lefert and R Dudler, “Double Stranded RNA Interference with Gene Functions at the Single Cell in Cereals,” The Plant Journal, Vol. 24, 2000, pp. 895-903.
[37] Y. L. Liu, M. Schiff and S. P. Dinesh-Kumar, “Virus Induced Gene Silencing in Tomato,” The Plant Journal, Vol. 31, 2002a, pp. 777-786.
[38] T. Dalmay, A. J. Hamilton, E. Mueller and D. C. Baulcombe, “Potato Virus X Amplicons in Arabidopsis Mediate Genetic and Epigenetic Gene Silencing,” The Plant Cell, Vol. 12, 2000, pp. 369-380.
[39] H. Liu, T. R. Cottrell, L. M. Pierini, W. E. Goldman and T. L. Doering, “RNA Interference in the Pathogenic Fungus Cryptococcus neoformans,” Genetics, Vol. 160, 2002b, pp. 463-470.
[40] W. Tang, D. A. Weidner, B. Y. Hu, R. J. Newton and X. Hu, “Efficient Delivery of Small Interfering RNA to Plant Cells by a Nanosecond Pulsed Laser-Induced Wave for Post Transcriptional Gene Silencing,” Plant Science, Vol. 171, 2006, pp. 375-81.
[41] J. M. Hilly, and Z. Liu, “An Overview of Small RNAs,” In: C. L. Bassett, Ed., Regulation of Gene Expression in Plants, Springer-Verlag, Berlin, 2007, pp. 123-147.
[42] L. K. Johansen, and J. C. Carrington, “Silencing on the Spot. Induction and Suppression of RNA Silencing in the Agrobacterium-Mediated Transient Expression System,” Plant Physiology, Vol. 126, 2001, pp. 930-938.
[43] O. Voinnet, “RNA Silencing as a Plant Immune System against Viruses,” Trends in Genetics, Vol. 17, 2001, pp. 449-459.
[44] S. Mlotshwas, O. Voinnet, M. F. Mette, M. Matzke, H. Vaucheret, S. W. Ding, G. Pruss and G. B. Vance, “RNA Silencing and Its Mobile Silencing Signal,” The Plant Cell, Vol. 14, 2002, pp. 289-301.
[45] F. Tenllado, B. Martinez-Garcia, M. Vargas and J. R. Diaz-Ruiz, “Crude Extracts of Bacterially Expressed dsRNA can be Used to Protect Plants against Virus Infection,” BMC Biotechnology, Vol. 3, 2003, pp. 3-14.
[46] M. Timmermans, O. Das and J. Messing, “Geminivirus and Their Uses as Extrachromosomeal Replicons,” Annual Review of Plant Physiology, Vol. 45, 1994, pp. 79-112.
[47] G. P. Pogue, J. A. Lindbo, S. J. Garger and W. P. Fitzmaurice, “Making an Ally from an Enemy: Plant Virology and the New Agriculture,” Annual Review of Phytopathology, Vol. 40, 2002, pp. 45-74.
[48] M. H. Kumagai, J. Donson, G. della-Cioppa, D. Harvey, K. Hanley and L. K. Grill, “Cytoplasmic Inhibition of Carotenoid Biosynthesis with Virus-Derived RNA,” Proceedings of the National Academy of Sciences of the USA, Vol. 92, 1995, pp. 1679-1683.
[49] S. M. Angell and D. C. Baulcombe, “Technical Advance: Potato Virus X Amplicon Mediated Silencing of Nuclear Genes,” The Plant Journal, Vol. 20, 1999, pp. 357-362.
[50] S. A. MacFarlane, and A. H. Popovich, “Efficient Expression of Foreign Proteins in Roots from Tobravirus Vectors,” Virology, Vol. 267, 2000, pp. 29-35.
[51] A. C. Mallory, G. Parks, M. W. Endres, D. Baulcombe and L. H. Bowman, “The Amplicon-Plus System for High-Level Expression of Transgenes in Plants,” Nature Biotechnogy, Vol. 20, 2002, pp. 622-625.
[52] K. E. Palmer and E. P. Rybicki, “Investigation of the potential of maize streak virus to act as an infectious gene vector in maize plants,” Archives of Virology, Vol. 146, 2001, pp. 1089-1104.
[53] S. Kjemtrup, K. S. Sampson, C. G. Peele, L. V. Nguyen and M. A. Conkling, “Gene Silencing from Plant DNA Carried by a Geminivirus,” Plant Journal, Vol. 14, 1998, pp. 91-100.
[54] M. J. Dallwitz and E. J. Zurcher, “Plant Viruses Online,” In: A. A. Brunt, K. Crabtree, M. J. Dallwitz, A. J. Gibbs, L. Watson and E. J. Zurcher, Ed., Descriptions and Lists from the VIDE Database, CAB International, UK, 1996, pp. 1484.
[55] Q. Liu, S. P. Singh, and A. G. Green, “High-Stearic and High-Oleic Cottonseed Oils Produced by Hairpin RNA-Mediated Post-Transcriptional Gene Silencing,” Plant Physiology, Vol. 129, 2002c, pp. 1732-1743.
[56] M. A. Turnage, N. Muangsan, C. G. Peele and D. Robertson, “Geminivirus-Based Vectors for Gene Silencing in Arabidopsis,” The Plant Journal, Vol. 30, 2002, pp. 107-117.
[57] C. Cogoni, N. Romano and G. Macino, “Suppression of Gene Expression by Homologous Transgenes,” Antonie Leeuwenhoek International Journal of General Molecular Microbiology, Vol. 65, 1994, pp. 205-209.
[58] P. Y. Teycheney and M Tepfer, “Virus Specific Spatial Differences in the Interference with Silencing of the chs-A Gene in Non-Transgenic Petunia,” Journal of General Virology, Vol. 82, 2001, pp. 1239-1243.
[59] W. Hamada and P. D. Spanu, “Co-Suppression of the Hydrophobin Gene Hcf-1 is Correlated with Antisense RNA Biosynthesis in Cladosporium fulvum,” Molecular and General Genetics, Vol. 259, 1998, pp. 630-638.
[60] N. Kadotani, H. Nakayashiki, Y. Tosa and S. Mayama, “RNA Silencing in the Pathogenic Fungus Magnaporthe oryzae,” Molecular Plant-Microbe Interaction, Vol. 16, 2003, pp. 769-776.
[61] J. A. Kim, K. Cho, R. Singh, Y. H. Jung, S. H. Jeong, S. H. Kim, J. E. Lee, Y. S. Cho, G. K. Agrawal, R. Rakwal, S. Tamogami, B. Kersten, J. S. Jeon, G. An and N. S. Jwa, “Rice OsACDR1 (Oryza sativa Accelerated Cell Death and Resistance 1) is a Potential Positive Regulator of Fungal Disease Resistance,” Molecules and Cells, Vol. 30, 2009, pp. 431-439.
[62] L. Chen, K. Shiotani, T. Togashi, D. Miki, M. Aoyama, H. L. Wong, T. Kawasaki and K. Shimamoto, “Analysis of the Rac/Rop Small GTPase Family in Rice: Expression, Subcellular Localization and Role in Disease Resistance,” Plant and Cell Physiology, Vol. 51, 2010, pp. 585-595.
[63] A. Fitzgerald, J. A. Van Kha and K. M. Plummer, “Simultaneous Silencing of Multiple Genes in the Apple Scab Fungus Venturia inaequalis, by Expression of RNA with Chimeric Inverted Repeats,” Fungal Genetics and Biology, Vol. 41, 2004, pp. 963-971.
[64] M. Goldoni, G. Azzalin, G. Macino and C. Cogoni, “Efficient Gene Silencing by Expression of Double Stranded RNA in Neurospora crassa,” Fungal Genetics and Biology, Vol. 41, 2004, pp. 1016-1024.
[65] T. M. Hammond and N. P. Keller, “RNA Silencing in Aspergillus nidulans is Independent of RNA-Dependent RNA polymerase,” Genetics, Vol. 169, 2005, pp. 607-617.
[66] P. Spanu, “HCf-1, a Hydrophobin from the Tomato PathoGen Cladosporium fulvum,” Gene, Vol. 93, 1997, pp. 89-96.
[67] G. C. Segers, W. Hamada, R. P. Oliver and P. D. Spanu, “Isolation and Characteristaion of Five Different Hydrophobin-Encoding cDNA from the Fungal Tomato Pathogen Cladosporium fulvum,” Molecular and General Genetics, Vol. 261, 1999, pp. 644-652.
[68] J. C. Abbott, A. Barakate, G. Pincon, M. Legrand, C. Lapierre, I. Mila, W. Schuch and C. Halpin, “Simultaneous Suppression of Multiple Genes by Single Transgenes. Down-Regulation of Three Unrelated Lignin Biosynthetic Genes in Tobacco,” Plant Physiology, Vol. 128, 2002, pp. 844-853.
[69] N. J. Talbot, M. J. Kershaw, G. E. Wakley, O. M. H. de Vries, J. G. H. Wessels and J. E. Hamer, “MPG1 Encodes a Fungal Hydrophobin Involved in Surface Interactions during Infection-Related Development of Magnaporthe grisea,” Plant Cell, Vol. 8, 1996, pp. 985-999.
[70] Q. B. Nguyen, N. Kadotani, S. Kasahara, Y. Tosa, S. Mayama and H. Nakayashiki, “Systematic Functional Analysis of Calcium-Signalling Proteins in the Genome of the Rice-Blast Fungus, Magnaporthe oryzae, Using a High-Throughput RNA-Silencing System,” Molecular Microbiology, Vol. 68, 2008, pp. 1348-1365.
[71] R. J. Weld, K. M. Plummer, M. A. Carpenter, and H. J. Ridgway, “Approaches to Functional Genomics in Filamentous Fungi,” Cell Research, Vol. 16, 2006, pp. 31-44.
[72] H. Nakayashiki and Q. B. Nguyen, “RNA Interference: Roles in Fungal Biology,” Current Opinion in Microbiology, Vol. 11, 2008, pp. 1-9.
[73] H. Peng, Q. Zhang, Y. Li, C. Lei, Y. Zhai, X. Sun, D. Sun, Y. Sun and T. Lu, “A Putative Leucine-Rich Repeat Receptor Kinase, OsBRR1, is Involved in Rice Blast Resistance,” Planta, Vol. 230, 2009, pp. 377-385.
[74] S. Katiyar-Agarwal, R. Morgan, D. Dahlbeck, O. Borsani, J. A. Villegas, J. Zhu, B. J. Staskawicz and H. Jin, “A Pathogen-Inducible Endogenous siRNA in Plant Immunity,” Proceedings of the National Academy of Sciences of the USA, Vol. 103, 2006, pp. 47-52.
[75] S. Katiyar-Agarwal, S. Gao, A. Vivian-Smith and H. Jin, “A Novel Class of Bacteria-Induced Small RNAs in Arabidopsis,” Genes and Development, Vol. 21, 2007, pp. 3123-3134.
[76] L. Navarro, P. Dunoyer, F. Jay, B. Arnold, N. Dharmasini, M. Estelle, O. Vionnet and J. D. Jones, “A Plant miRNA Contributes to Antibacterial Resistance by Repressing Auxin Signaling,” Science, Vol. 312, 2006, pp. 436-439.
[77] V. Bitko and S. Barik, “Phenotypic Silencing of Cytoplasmic Genes with Sequence Specific Double Stranded Short Interfering RNA and Its Applications in the Reverse Genetics of Wild Type Negative Strand RNA Virus,” BMC Microbiology, Vol. 1, 2001, pp. 34-44.
[78] L. Gitlin, S. Karelsky, and R. Andino, “Short Interference Confers Intracellular Antiviral Immunity in Human Cells,” Nature, Vol. 4, 2002, pp. 418-430.
[79] J. M. Jacque, K. Triques and M. Stevenson, “Modulation of HIV-1 Replication by RNA Interference,” Nature, Vol. 418, 2002, pp. 435-438.
[80] C. D. Novina, M. F Murray, D. M. Dykxhoorn, P. J. Beresford, J. Riess, S. K. Lee, R. G. Collman, J. Lieberman, P. Shanker and P. A. Sharp, “siRNA-Directed Inhibition of HIV-1 Infection,” Nature Mediterranean, Vol. 8, 2002, pp. 681-686.
[81] E. Ullu, A. Djikeng, H. Shi, and C. Tschudi, “RNA Interference: Advances and Questions,” Philosophical Transactions of the Royal Society of London British Biological Science, Vol. 29, 2002, pp. 65-70.
[82] P. M. Waterhouse, M. W. Graham and M. B. Wang, “Virus Resistance and Gene Silencing in Plants can be Induced by Simultaneous Expression of Sense and Antisense RNA,” Proceedings of the National Academy of Sciences of the USA, Vol. 95, 1998, pp. 13959-13964.
[83] E. J. Chapman, A. I. Prokhnevsky, K. Gopinath, V. V. Dolja and J. C. Carrington, “Viral RNA Silencing Suppressors Inhibit the micro-RNA Pathway at an Interphase Step,” Genes and Development, Vol. 18, 2004, pp. 1179-1186.
[84] M. Pooggin, P. V. Shivaprasad, K. Veluthambi and T. Hohn, “RNAi Targetting of DNA Viruses,” Nature Biotechnology, Vol. 21, 2003, pp. 131-32.
[85] R. Vanitharani, P. Chellappan and C. M. Fauquet, “Short Interfering RNA-Mediated Interference of Gene Expression and Viral DNA Accumulation in Cultured Plant Cells,” Proceedings of the National Academy of Sciences of the USA, Vol. 100, 2003, pp. 9632-9636.
[86] V. Ruiz-Ferrer and O. Voinnet, “Viral Suppression of RNA Silencing: 2b Wins the Golden Fleece by Defeating Argonaute,” Bioassays, Vol. 29, 2007, pp. 319-323.
[87] J. Chen, W. X. Li, D. Xie, J. R. Peng, and S. W. Ding, “Viral Virulence Protein Suppresses RNA Silencing-Mediated Defense but Upregulates the Role of microRNA in Host Gene Regulation,” Plant Cell, Vol. 16, No. 5, 2004, pp. 1302-1313.
[88] Z. Merai, Z. Kerenyi, A. Molnar, E. Barta, A. Valcozi, G. Bistray, Z. Havelda, J. Burgyan and D. Silhavy, “Aureusvirus P14 is an Efficient RNA Silencing Suppressor that Binds Double Stranded RNAs without Size specificity,” Journal of Virology, Vol. 79, 2005, pp. 7217-7226.
[89] A. Takeda, M. Tsukuda, H. Mizumoto, K. Okamoto, M. Kaido, K. Mise and T. Okuno, “A Plant RNA Virus Suppressor RNA Silencing through RNA Replication,” The EMBO Journal, Vol. 24, 2005 pp. 3147-3157.
[90] X. Cao, P. Zhou, X. Zhang, S. Zhu, X. Zhong, Q. Xiao, B. Ding and Y. Li, “Identification of an RNA Silencing Suppressors from a Plant Double Stranded RNA Virus,” Journal of Virology, Vol. 79, 2005, pp. 13018-13027.
[91] Q. W. Niu, S. S. Lin, J. L. Reyes, K. C. Chen, H. W. Wu, S. D. Yeh and N. H. Chua, “Expression of Artificial microRNAs in Transgenic Arabidopsis thaliana Confers Virus Resistance,” Nature Biotechnology, Vol. 24, 2006, pp. 1420-1428.
[92] J. Qu, J. Ye and R. X. Fang, “Artificial microRNA-Mediated Virus Resistance in Plants,” Journal of Virology, Vol. 81, 2007, pp. 6690-6699.
[93] J. A. Díaz-Pendón and S. W. Ding, “Direct and Indirect Roles of Viral Suppressors of RNA Silencing in Pathogenesis,” Annual Review of Phytopathology, Vol. 46, 2008, pp. 303-326.
[94] S. M. Elbashir, W. Lendeckel, and T. Tuschl, “RNA Interference is Mediated by 21 and 22-Nucleotide RNAs,” Genes and Development, Vol. 15, 2001, pp. 188-200.
[95] H. Tyagi, S. Rajasubramaniam, M. V. Rajam and I. Dasgupta, “RNA Interference in Rice against Rice Tungro Bacilliform Virus Results in Its Decreased Accumulation in Inoculated Rice Plants,” Transgenic Research, Vol. 17, 2008, pp. 897-904.
[96] Y. J. Kung, T. A. Yu, C. H. Huang, H. C. Wang, S. L. Wang and S. D. Yeh, “Generation of Hermaphrodite Transgenic Papaya Lines with Virus Resistance via Transformation of Somatic Embryos Derived from Adventitious Roots of in vitro shoots,” Transgenic Research, 2009, in press.
[97] S. K. Mangrauthia, P. Singh and S. Praveen, “Genomics of Helper Component Proteinase Reveals Effective Strategy for Papaya Ringspot Virus Resistance,” Molecular Biotechnology, Vol. 44, 2010, pp. 22-29.
[98] I. B. Fofana, A. Sangare, R. Collier, C. Taylor and C. M. Fauquet, “A Geminivirus-Induced Gene Silencing System for Gene Function Validation in Cassava,” Plant Molecular Biology, Vol. 56, 2004, pp. 613-624.
[99] S. Holzberg, P. Brosio, C. Gross and G. P. Pogue, “Barley Stripe Mosaic Virus-Induced Gene Silencing in a Monocot Plant,” Plant Journal, Vol. 30, 2002, pp. 315-327.
[100] S. R. Scofield, L. Huang, A. S. Brandt and B. S. Gill, “Development of a Virus-Induced Gene Silencing System for Hexaploid Wheat and Its Use in Functional Analysis of the Lr21-Mediated Leaf Rust Resistance Pathway,” Plant Physiology, Vol. 138, 2005, pp. 2165-2173.
[101] C. Cakir and M. T?r, “Factors Influencing Barley Stripe Mosaic Virus-Mediated Gene Silencing in Wheat,” Physiological and Molecular Plant Pathology, Vol. 74, 2010, pp. 246-253.
[102] C. Zhang and S. A. Ghabrial, “Development of Bean Pod Mottle Virus-Based Vectors for Stable Protein Expression and Sequence-Specific Virus-Induced Gene Silencing in Soybean,” Virology, Vol. 344, 2006, pp. 401-411.
[103] C. Zhang, C. Yang, S. A. Whitham and J. H. Hill “Development and Use of an Efficient DNA-Based Viral Gene Silencing Vector for Soybean,” Molecular Plant Microbe Interaction, Vol. 22, 2009, pp. 123-131.
[104] C. Zhang, J. D. Bradshaw, S. A. Whitham and J. H. Hill “The Development of an Efficient Multi-Purpose BPMV Viral Vector Set for Foreign Gene Expression and RNA Silencing,” Plant Physiology, 2010, in press.
[105] X. S. Ding, W. L. Schneider, S. R. Chaluvadi, R. M. Rouf Mian and R. S. Nelson, “Characterization of a Brome Mosaic Virus Strain and Its Use as a Vector for Gene Silencing in Monocotyledonous Hosts,” Molecular Plant Microbe Interaction, Vol. 19, 2006, pp. 1229-1239.
[106] G. D. Constantin, B. N. Krath, S. A. MacFarlane, M. Nicolaisen, I. E. Johansen and O. S. Lund, “Virus-Induced Gene Silencing as a Tool for Functional Genomics in a Legume Species,” Plant Journal, Vol. 40, 2004, pp. 622-631.
[107] M. Naylor, J. Reeves, J. I. Cooper, M. L. Edwards and H. Wang, “Construction and Properties of a Gene Silencing Vector Based on Poplar Mosaic Virus (Genus Carlavirus),” Journal of Virology Methods, Vol. 124, 2005, pp. 27-36.
[108] M. T. Ruiz, O. Voinnet and D. C. Baulcombe, “Initiation and Maintenance of Virus-Induced Gene Silencing,” Plant Cell, Vol. 10, 1998, pp. 937-946.
[109] O. Faivre-Rampant, E. M. Gilroy, K. Hrubikova, I. Hein, S. Millam, G. J. Loake, P. Birch, M. Taylor and C. Lacomme, “Potato Virus X-Induced Gene Silencing in Leaves and Tubers of Potato,” Plant Physiology, Vol. 134, 2004, pp. 1308-1316.
[110] V. V. Gossele, I. I. Fache, F. Meulewaeter, M. Cornelissen and M. Metzlaff, “SVISS-a Novel Transient Gene Silencing System for Gene Function Discovery and Validation in Tobacco,” The Plant Journal, Vol. 32, 2002, pp. 859-866.
[111] F. Ratcliff, A. M. Martin-Hernandez and D. C. Baulcombe, “Tobacco Rattle Virus as a Vector for Analysis of gene Functions by Silencing,” Plant Journal, Vol. 25, 2001, pp. 237-245.
[112] G. Brigneti, A. M. Martin-Hernandez, H. Jin, J. Chen, D. C. Baulcombe, B. Baker, and J. D. Jones, “Virus-Induced Gene Silencing in Solanum Species,” The Plant Journal, Vol. 39, 2004, pp. 264-272.
[113] E. Chung, E. Seong, Y. C. Kim, E. J. Chung, S. K. Oh, S. Lee, J. M. Park, Y. H. Joung and D. Choi, “A Method of High Frequency Virus Induced Gene Silencing in Chili Pepper Capsicum annuum L. cv. Bukang),” Molecular Cell, Vol. 17, 2004, pp. 377-380.
[114] L. C. Hileman, S. Drea, G. Martino, A. Litt and V. F. Irish, “Virus Induced Gene Silencing is an Effective Tool for Assaying Gene Function in the Basal Eudicot Species Papaver somniferum (Opium Poppy),” The Plant Journal, Vol. 44, 2005, pp.334-341.
[115] B. Gould and E. M. Kramer, “Virus-Induced Gene Silencing as a Tool for Functional Analyses in the Emerging Model Plant Aquilegia (columbine, Ranunculaceae),” BMC Plant Methods, Vol. 12, 2007, pp. 6.
[116] H. Hou and W. Qiu, “A Novel Co-Delivery System Consisting of a Tomato Bushy Stunt Virus and a Defective Interfering RNA for Studying Gene Silencing,” Journal of Virology Methods, Vol. 111, 2003, pp. 37-42.
[117] C. Peele, C.V. Jordan, N. Muangsan, M. Turnage, E. Egelkrout, P. Eagle, L. Hanley-Bowdoin and D. Robertson, “Silencing of a Meristematic Gene Using Geminivirus-Derived Vectors,” Plant Journal, Vol. 27, 2001, pp. 357-366.
[118] X. Tao and X. Zhou, “A Modified Viral Satellite DNA that Suppresses Gene Expression in Plants,” The Plant Journal, Vol. 38, 2004, pp. 850-860.
[119] M. R. Godge, A. Purkayastha, I. Dasgupta and P. P. Kumar, “Virus-Induced Gene Silencing for Functional Analysis of Selected Genes,” Plant Cell Reporter, Vol. 27, 2008, pp. 209-219.
[120] P. E. Urwin, C. J. Lilley and H. J. Atkinson, “Ingestion of Double-Stranded RNA by Pre-Parasitic Juvenile Cyst Nematodes Leads to RNA Interference,” Molecular Plant-Microbe Interactions, Vol. 15, 2002, pp. 747-752.
[121] M. Bakhetia, W. Charlton, H. J. Atkinson and M. J. McPherson, “RNA Interference of Dual Oxidase in the Plant Nematode Meloidogyne incognita,” Molecular Plant-Microbe Interaction, Vol. 18, 2005, pp. 1099-1106.
[122] M. N. Rosso, M. P. Dubrana, N. Cimbolini, S. Jaubert and P. Abad, “Application of RNA Interference to Root-Knot Nematode Genes Encoding Esophageal Gland Proteins,” Molecular Plant-Microbe Interactions, Vol. 18, 2005, pp. 615-620.
[123] J. Shingles, C. J. Lilley, H. J. Atkinson and P. E. Urwin, “Meloidogyne incognita: Molecular and Biochemical Characterization of a Cathepsin L Cysteine Proteinase and the Effect on Parasitism Following RNAi,” Experimental Parasitology, Vol. 115, 2007, pp. 114-120.
[124] C. J. Lilley, S. A. Goodchild, H. J. Atkinson and P. E. Urwin, “Cloning and Characterization of a Heterodera glycines Minopeptidase cDNA,” International Journal of Parasitology, Vol. 35, 2005, pp. 1577-1585.
[125] R. M. Steeves, T. C. Todd, J. S. Essig and H. N. Trick, “Transgenic Soybeans Expressing siRNAs Specific to a Major Sperm Protein Gene Suppress Heterodera glycines Reproduction,” Functional Plant Biology, Vol. 33, 2006, pp. 991-999.
[126] Q. Chen, S. Rehman, G. Smant and J. T. Jones, “Functional Analysis of Pathogenicity Proteins of the Potato Cyst Nematode Globodera rostochiensis Using RNAi,” Molecular Plant-Microbe Interactions, Vol. 18, 2005, pp. 621-625.
[127] G. Huang, R. Allen, E. L. Davis, T. J. Baum and R. S. Hussey, “Engineering Broad Root-Knot Resistance in Transgenic Plants by RNAi Silencing of a Conserved and Essential Root-Knot Nematode Parasitism Gene,” Proceedings of the National Academy of Sciences of the USA, Vol. 103, 2006, pp. 4302-14306.
[128] E. Fanelli, M. Di Vito, J. T. Jones and C. De Giorgi, “Analysis of Chitin Synthase Function in a Plant Parasitic Nematode, Meloidogyne artiellia, Using RNAi,” Gene, Vol. 349, 2005, pp. 87-95.
[129] Y. Hoffman, C. Aflalo, A. Zarka, J. Gutman, T.Y. James, and S. Boussiba, “Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota), parasitic on the green alga Haematococcus,” Mycological Research, Vol. 112, 2008, pp. 70-81.
[130] D. J. Fairbairn, A.S. Cavalloro, M. Bernard, J. Mahalinga-Iyer, M. W. Graham and J. R. Botella, “Host-Delivered RNAi: An Effective Strategy to Silence Genes in Plant Parasite Nematodes,” Planta, Vol. 226, 2007, pp. 1525-1533.
[131] S. Sindhu, T R. Maier, M. G. Mitchum, R. S. Hussey, E. L. Davis and T. J. Baum “Effective and Specific in Planta RNAi in Cyst Nematodes: Expression Interference of Four Parasitism Genes Reduces Parasitic Success,” Journal of Experimental Botany, Vol. 60, 2009, pp. 315-324.
[132] M. Karakas, “RNA Interference in Plant Parasitic Nematodes,” African Journal of Biotechnology, Vol. 7, 2008, pp. 2530-2534.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.