Bioguided Fractionation and Purification of Natural Bioactives Obtained fromAlpinia conchigera Water Extract with Melanin Inhibition Activity

Abstract

Crude extracts of Alpinia conchigera a species from the Malaysian Ginger (Zingiberaceae) family and its fractions obtained from various extraction methods were assayed for melanogenesis inhibition activity and cell viability. The crude extract obtained from the ethanolic extraction and the super critical fluid extraction did not exhibit significant melanin inhibition activity and was shown to be toxic to the melanocyte cells in comparison to the water extract. The crude aqueous extracts displayed melanin inhibition of 96.38 ± 1.60% and cell viability 109.90 ± 8.32% at a concentration of 500 μg/mL. Bioassay guided fractionation was performed on the water extracts to isolate the active compounds. The actives were identified as trans-cinnamaldehyde and chavicol glucopyranoside with both compound showing potent anti-melanogenesis activity. At 4.9 μg/ml, both trans-cinnamaldehyde and chavicol glucopyranoside gave 85% inhibition of melanin formation in vitro with 77% and 97% cell viability respectively. In comparison, kojic acid, a known skin lightening agent showed 90.0% inhibition at 100 μg/mL. The bioactive composition comprising the extract, active fraction, purified compounds or mixture thereof of Alpinia conchigera may be used for cosmetic and pharmaceutical applications, particularly for the purposes of reducing skin pigmentation.

Share and Cite:

Z. Ujang, T. Subramaniam, M. Diah, H. Wahid, B. Abdullah, A. Rashid and D. Appleton, "Bioguided Fractionation and Purification of Natural Bioactives Obtained fromAlpinia conchigera Water Extract with Melanin Inhibition Activity," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 3, 2013, pp. 265-272. doi: 10.4236/jbnb.2013.43033.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. M. Janssen and J. J. C. Scheffer, “Acetoxychavicol Acetate, an Antifungal Component of Alpinia Galanga,” Planta Medicine, Vol. 51, No. 6, 1985, pp. 507-511. doi:10.1055/s-2007-969577
[2] I. H. Burkill, “A Dictionary of the Economic Products in the Malay Peninsular, Ministry of Agriculture and Cooperatives,” 2nd Edition, Kuala Lumpur, 1966.
[3] H. Matsuda, S. Ando, T. Morikawa, S. Kataoka and M. Yoshikawa, “Structure-Activity Relationships of 1’S-1’-Acetoxychavicol Acetate for Inhibitory Effect on No Production in Lipopolisaccharide-Activated Mouse Peritoneal Macrophages,” Bioorganic & Medicinal Chemistry Letters, Vol. 15, No. 7, 2005, pp. 1949-1953. doi:10.1016/j.bmcl.2005.01.070
[4] C. T. Campbell, M. Prince, G. M. Landry, V. Kha and H. E. Kleiner, “Pro-Apoptotic Effects of 1’-Acetoxychavicol Acetate on in Human Breast Carcinoma Cells,” Toxicology Letters, Vol. 173, No. 3, 2007, pp. 151-160. doi:10.1016/j.toxlet.2007.07.008
[5] H. Ichikawa, Y. Takada, A. Murakami and B. B. Aggarwal, “Identification of a Novel Blocker of IkB[alpha] Kinase That Enhances Cellular Apoptosis and Inhibits Cellular Invasion through Suppression of NF-[kappa]B Regulated Gene Products,” Journal of Immunology, Vol. 174, No. 11, 2005, pp. 7383-7392.
[6] A. Kondo, H. Ohigashi and A. Murakami, “A Potent Inhibitor of Tumor-Promoter-Induced Epstein Barr Virus Activation. 1’-Acetoxychavicol Acetate from Languas Galanga, a Traditional Thai Condiment,” Bioscience, Biotechnology, and Biochemistry, Vol. 57, No. 8, 1993, pp. 1344-1345. doi:10.1271/bbb.57.1344
[7] V. J. Hearing, “Biogenesis of Pigment Granules: A Sensitive Way to Regulate Melanocyte Function,” Journal of Dermatological Science, Vol. 37, No. 1, 2005, pp. 3-14. doi:10.1016/j.jdermsci.2004.08.014
[8] S. Briganti, E. Camera and M. Picardo, “Chemical and Instrumental Approaches to Treat Hyperpigmentation,” Pigment Cell Research, Vol. 16, No. 2, 2003, pp. 101-110. doi:10.1034/j.1600-0749.2003.00029.x
[9] E. I. Solomon, U. M. Sundaram and T. E. Machonkin, “Multicopper Oxidases and Oxygenases,” Chemical Reviews, Vol. 96, No. 7, 1996, pp. 2563-2606. doi:10.1021/cr950046o
[10] M. Sieberg, J. Marthinuss and K. Stenn, “Changes in Expression of Apoptosis-Associated Genes in Skin Mark Early Catagen,” Journal of Investigative Dermatology, Vol. 104, 1995, pp. 78-82. doi:10.1111/1523-1747.ep12613555
[11] E. C. Davis and V. D. Callender, “A Review of the Epidemiology, Clinical Features, and Treatment Options in Skin of Color,” The Journal of Clinical and Aesthetic Dermatology, Vol. 3, No. 7, 2010, pp. 20-31.
[12] P. G. Engasser and H. I. Maiback, “Cosmetics and Dermatology: Bleaching Creams,” Journal of the American Academy of Dermatology, Vol. 5, No. 2, 1981, pp. 143147. doi:10.1016/S0190-9622(81)70082-3
[13] G. H. Findlay, J. G. L. Morrison and I. W. Simson, “Exogenous Ochronosis and Pigmented Colloid Milium from Hydroquinone Bleaching Creams,” British Journal of Dermatology, Vol. 93, No. 6, 1975, pp. 613-622. doi:10.1111/j.1365-2133.1975.tb05110.x
[14] V. C. Vo, “Dictionary of Vietnamese Medicinal Plants,” Publishing House Medicine, Ho Chi Minh City, 1997.
[15] Y. Pongpiriyadacha, P. Nuansrithong, O. Chumbuajan, N. Sirintharawech and D. Chantip, “Gastroprotective Effects of the Extract from Alpinia conchigera Griff., in Rats and the Possible Mechanism,” 2008.
[16] H. M. Sirat and A. B. Nordin, “Chemical Composition of the Rhizome Oil of Alpinia Conchigera Griff from Malaysia,” Journal of Essential oil Research, Vol. 7, 1995, pp. 195-197.
[17] S. Athamaprasangsa, U. Buntrarungroj, P. Dampawan, N. Ongkavoranan, V. Rukachaisirikul, S. Sethijinda, M. Sornnarintra, P. Sriwub and W. C. Taylor, “A 1,7-Diarylheptanoid from Alpinia Conchigera,” Phytochemistry, Vol. 37, No. 3, 1994, pp. 871-873. doi:10.1016/S0031-9422(00)90374-1
[18] K. C. Wong, B. C. Lee, N. F. Lam and P. Ibrahim, “Essential Oils of the Rhizomes of Alpinia conchigera Griff. and Alpinia latilabris Ridl,” Flavour and Fragrance Journal, Vol. 20, No. 4, 2005, pp. 431-433. doi:10.1002/ffj.1458
[19] H. Anita, A. M. Mustafa and H. Ibrahim, “Studies on Essential Oils of Alpinia Conchigera Griff. from Malaysia,” Malaysian Journal of Science, Vol. 19, No. 1, 2000, pp. 1-5.
[20] J. H. Lee, H. S. Jung, P. M. Giang, X. Jin, S. Lee, P. T. Son, D. Lee, Y. S. Hong, K. Lee and J. J. Lee, “Blockade of Nuclear Factor-KappaB Signaling Pathway and Anti-Inflammatory Activity of Cardamomin, a Chalcone Analog from Alpinia Conchigera,” Journal of Pharmacology And Experimental Therapeutics, Vol. 316, No. 1, 2006, pp. 271-278. doi:10.1124/jpet.105.092486
[21] T. S. Chang, “An Updated Review on Tyrosinase Inhibitors,” International Journal of Molecular Science, Vol. 10, No. 6, 2009, pp. 2440-2475. doi:10.3390/ijms10062440
[22] T. S. Chang, “Two Potent Suicide Substrates of Mushroom Tyrosinase: 7,8,4’-Trihydroxyisoflavone and 5,7,8,4’-Tetrahydroxyisoflavone,” Journal of Agricultural and Food Chemistry, Vol. 55, No. 5, 2007, pp. 3010-3015. doi:10.1021/jf063095i
[23] M. A. B. Hj, M. Sukari, M. B. Rahmani, T. S. Wah, A. M. Ali and M. N. B. H. Lajis, “Fundamental Science Congress Accelerating Research Excellence,” 2009, pp. 321-322.
[24] S.-Y. Seo, V. K. Sharma and N. Sharma, “Mushroom Tyrosinase: Recent Prospects,” Journal of Agricultural and Food Chemistry, Vol. 51, No. 10, 2003, pp. 2837-2853. doi:10.1021/jf020826f
[25] S. N. A. Malek, G. S. Lee, S. L. Hong, H. Yaacob, N. A. Wahan, J.-F. F. Wweber and S. A. A. Shah, “Phytochemical and Cytotoxic Investigations of Curcumamangga Rhizomes,” Molecules, Vol. 16, 2011, pp. 4539-4548.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.