Share This Article:

Low Temperature Chlorination of Nd2O3 by Mechanochemical Method with CCl4

Abstract Full-Text HTML Download Download as PDF (Size:2103KB) PP. 419-431
DOI: 10.4236/msa.2013.47051    3,432 Downloads   4,852 Views   Citations

ABSTRACT

For a chlorinating method at low temperature, the possibility of chlorination of Nd2O3 by a mechanochemical reaction with CCl4 was studied using a planetary ball mill. The mechanochemical experiments were conducted by changing the pot materials, milling time, molar ratio of CCl4/Nd2O3, and revolution speed. As the results of obtained products by X-ray diffractometry and Raman spectroscopy, it was confirmed that the chlorination to NdOCl from Nd2O3 with CCl4 was advanced at room temperature in a zirconia or tungsten pot with balls. We found that an extension of the milling time and an increase of the number of ball were effective to the chlorination to NdOCl and that tensile stress remained in the milled powder by using a planetary ball mill.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

T. Nagai, S. Kitawaki and N. Sato, "Low Temperature Chlorination of Nd2O3 by Mechanochemical Method with CCl4," Materials Sciences and Applications, Vol. 4 No. 7, 2013, pp. 419-431. doi: 10.4236/msa.2013.47051.

References

[1] T. Nishimura, T. Koyama, M. Iizuka and H. Tanaka, “Development of an Environmentally Benign Reprocessing Technology—Pyrometallurgical Reprocessing Technology,” Progress in Nuclear Energy, Vol. 32, No. 3-4, 1998, pp. 381-387. doi:10.1016/S0149-1970(97)00032-2
[2] Y. Sakamura, T. Inoue, T. Iwai and H. Moriyama, “Chlorination of UO2, PuO2 and Rare Earth Oxides Using ZrCl4 in LiCl-KCl Eutectic Melt,” Journal of Nuclear Materials, Vol. 340, No. 1, 2005, pp. 39-51. doi:10.1016/j.jnucmat.2004.11.002
[3] N. Sato, H. Mohamad, J. Kano, A. Kirishima and F. Saito, “Low Temperature Sulfurization of Nd2O3 by Mechanochemical Method with CS2,” Journal of MMIJ, Vol. 126, 2010, pp. 445-449 (in Japanese). doi:10.2473/journalofmmij.126.445
[4] A. K. Bhattacharya and E. Arzt, “Temperature Rise during Mechanical Alloying,” Scripta Metallurgica et Materialia, Vo. 27, No. 6, 1992, pp. 749-754. doi:10.1016/0956-716X(92)90500-E
[5] M. Abdellaoui and E. Gaffet, “A Mathematical and Experimental Dynamical Phase Diagram for Ball-Milled Ni10Zr7,” Journal of Alloys and Compounds, Vol. 209, No. 1-2, 1994, pp. 351-361. doi.:10.1016/0925-8388(94)91124-X
[6] M. Abdellaoui and E. Gaffet, “The Physics of Mechanical Alloying in a Planetary Ball Mill: Mathematical Treatment,” Scripta Metallurgica et Materialia, Vol. 43, No. 3, 1995, pp. 1087-1098. doi:10.1016/0956-7151(95)92625-7
[7] Y.-S. Kwon, K. B. Gerasimov and S.-K. Yoon, “Ball Temperature during Mechanical Alloying in Planetary Mill,” Journal of Alloys and Compounds, Vol. 346, No. 1, 2002, pp. 276-281. doi:10.1016/S0925-8388(02)00512-1
[8] J. Kano, H. Mio and F. Saito, “Correlation of Size Reduction Rate of Inorganic Materials with Impact Energy of Balls in Planetary Ball Milling,” Journal of Chemical Engineering of Japan, Vo. 32, No. 4, 1999, pp. 445-448. doi:10.1252/jcej.32.445
[9] H. Mio, J. Kano, F. Saito and K. Kaneko, “Effects of Rotational Direction and Rotation-to-Revolution Speed Ratio in Planetary Ball Milling,” Materials Science and Engineering: A, Vol. 332, No. 1-2, 2002, pp. 75-80. doi:10.1016/S0921-5093(01)01718-X
[10] L. Takacs and J. S. McHenry, “Temperature of the Milling Balls in Shaker and Planetary Mills,” Journal of Materials Science, Vol. 41, No. 16, 2006, pp. 5246-5249. doi:10.1007/s10853-006-0312-4
[11] J. Lee, Q. Zhang and F. Sato, “Mechanochemical Synthesis of LaOX (X=Cl, Br) and Their Solid Solutions,” Journal of Solid State Chemistry, Vol. 160, No. 2, 2001, pp. 469-473. doi:10.1006/jssc.2001.9276
[12] P. Kovacheva, D. Todorovsky and D. Redev, “Mechanochemistry of the 5f-Elements Compounds. 5. Influence of the Reaction Medium on the Mechanochemically Induced Reduction of U3O8,” Journal of Radioanalytical and Nuclear Chemistry, Vol. 287, No. 1, 2011, pp. 193-197. doi:10.1007/s10967-010-0666-6
[13] J. Lee, Q. Zhang and F. Sato, “Mechanochemical Synthesis of LaOX (X=Cl, Br) and Their Solid Solutions,” Journal of Solid State Chemistry, Vol. 160, No. 2, 2001, pp. 469-473. doi:10.1006/jssc.2001.9276
[14] N. Setoudeh, N. J. Welham and S. M. Azami, “Dry Mechanochemical Conversion of SrSO4 to SrCO3,” Journal of Alloys and Compounds, Vol. 492, No. 1-2, 2010, pp. 389-391. doi:10.1016/j.jallcom.2009.11.114
[15] J. Lee, Q. Zhang and F. Saito, “Synthesis of Nano-Sized Lanthanum Oxyfluoride Powders by Mechanochemical Processing,” Journal of Alloys and Compounds, Vol. 348, No. 1-2, 2008, pp. 214-219. doi:10.1016/S0925-8388(02)00837-X
[16] S. Bernal, F. J. Botana, R. Garcia and J. M. RodriguezIzquerdo, “Study of the Interaction of Two Hexagonal Neodymium Oxides with Atmospheric CO2 and H2O,” Journal of Materials Science, Vol. 23, No. 4, 1988, pp. 1474-1480. doi:10.1007/BF01154619
[17] J. Gouteron, D. Michel, A. M. Lejus and J. Zarembowitch, “Raman Spectra of Lanthanide Sesquioxide Single Crystals: Correlation between A and B-Type Structures,” Journal of Solid State Chemistry, Vol. 38, 1981, pp. 288-296. doi:10.1016/0022-4596(81)90058-X
[18] J. Aride, J.-P. Chaminade and M. Pouchard, “Flux Growth of NdOCl Single Crystals,” Journal of Crystal Growth, Vol. 57, No. 1, 1982, pp. 194-196. doi:10.1016/0022-0248(82)90267-6
[19] G. D. Del Cul, S. E. Nave, G. M. Begun and J. R. Peterson, “Raman Spectra of Tetragonal Lanthanide Oxychlorides Obtained from Polycrystalline and Single-Crystal Samples,” Journal of Raman Spectroscopy, Vol. 23, No. 5, 1992, pp. 267-272. doi:10.1002/jrs.1250230505
[20] L.-J. Meng and M. P. dos Santos, “A Study of Residual Stress on rf Reactively Sputtered RuO2 Thin Films,” Thin Solid Film, Vol. 375, No. 1-2, 2000, pp. 29-32. doi:10.1016/S0040-6090(00)01174-3
[21] L.-J. Meng, V. Teixeira and M. P. dos Santos, “Raman Spectroscopy Analysis of Magnetron Sputtered RuO2 Thin Films,” Thin Solid Films, Vol. 442, No. 1-2, 2003, pp. 93-97. doi:org/10.1016/S0040-6090(03)00953-2
[22] Y. C. Su, C. A. Chen, Y. M. Chen, Y. S. Huang, K. Y. Lee and K. K. Tiong, “Characterization of RuO2 Nanocrystals Deposited on Carbon Nanotubes by Reactive Sputtering,” Journal of Alloys and Compounds, Vol. 509, No. 5, 2011, pp. 2011-2015. doi:10.1016/j.jallcom.2010.10.121
[23] The Japan Society of Calorimetry and Thermal Analysis, “Thermodynamic Database MALT for Windows,” ver. 1, Kagaku Gijutsu-Sha, Tokyo, 2004. http://www.kagaku.com/malt/
[24] H. Samata, D. Kimura, S. Mizusaki, Y. Nagata, T. C. Ozawa and A. Sato, “Synthesis and Characterization of Neodymium Oxyhydroxide Crystals,” Journal of Alloys and Compounds, Vol. 468, No. 1-2, 2009, pp. 566-570. doi:10.1016/j.jallcom.2008.01.056
[25] M. W. Shafer and R. Roy, “Rare-Earth Polymorphism and Phase Equilibria in Rare-Earth Oxide-Water Systems,” Journal of the American Ceramic Society, Vol. 42, No. 11, 1959, pp. 563-570. doi:10.1111/j.1151-2916.1959.tb13574.x
[26] J. Cuya, N. Sato, K. Yamamoto, A. Muramatsu, K. Aoki and Y. Toga, “Thermogravimetric Study of the Sulfurization of TiO2 Nanoparticles Using CS2 and the Decomposition of Their Sulfurized Product,” Thermochimica Acta, Vol. 410, No. 1-2, 2004, pp. 27-34. doi:10.1016/S0040-6031(03)00366-6
[27] A. M. Heyns and K.-J. Range, “Raman and Infrared Study of Neodymium Oxide Peroxide, Nd2O2(O2),” Journal of Raman Spectroscopy, Vol. 25, No. 11, 1994, pp. 855-859. doi:10.1002/jrs.1250251103
[28] M. Kemdehoundja, J. L. Grosseau, Poussard and J. F. Dinhut, “Raman Microprobe Spectroscopy Measurements of Residual Stress Distribution along Blisters in Cr2O3 Thin Films,” Applied Surface Science, Vol. 256, No. 9, 2010, pp. 2719-2725. doi:10.1016/j.apsusc.2009.11.016
[29] M. Tanaka, M. Hasegawa, A. F. Dericioglu and Y. Kagawa, “Measurement of Residual Stress in Air PlasmaSprayed Y2O3-ZrO2 Thermal Barrier Coating System Using Micro-Raman Spectroscopy,” Materials Science and Engineering: A, Vol. 419, No. 1-2, 2006, pp. 262-268. doi:10.1016/j.msea.2005.12.034
[30] I. Ahmad, M. Holtz, N. N. Faleev and H. Temkin, “Dependence of the Stress-Temperature Coefficient on Dislocation Density in Epitaxial GaN Grown on α-Al2O3 and 6H-SiC Substrates,” Journal of Applied Physics, Vol. 95, No. 4, 2004, pp. 1692-1697.doi:10.1063/1.1637707
[31] H. Kimachi, S. Yamamoto, W. Ota, K. Shirakihara and Y. Fujita, “Measurement of Local Stress Components in Single Crystal Alumina by Using Raman Microspectroscopy with Sub-Micro Spatial Resolution,” Journal of the Society of Materials Science (Japan), Vo. 56, No. 7, 2009, pp. 603-609 (in Japanese). doi:10.2472/jsms.58.603

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.