The Cytocompatibility of Genipin-Crosslinked Silk Fibroin Films

Abstract

There is an increasing demand for crosslinking methods of silk fibroin (SF) scaffolds in biomedical applications that could maintain the biocompatibility, bioactivity as well as improve the water resistance and mechanical properties of SF materials. In this study, SF was crosslinked effectively with genipin which is a naturally occurring iridoid glucoside and the crosslinking mechanism was investigated through FTIR and amino acid analysis. The results showed that genipin could react with the -NH2 groups on the side chains of SF macromolecules and to form inter- and intra-molecular covalent bonds, and improved the stability of SF materials significantly. In vitro, the performances of genipin-crosslinked SF films were assessed by seeding L929 cells and compared with ethanol-processed SF films, glutaraldehyde and polyethylene glycol diglycidyl ether crosslinked ones. The genipin-crosslinked SF films showed a similar affinity to cells as ethanol-processed ones, and a higher bioactivity in promoting cell growth and proliferation, inhibition of cell apoptosis, and maintenance of normal cell cycle compared with glutaraldehyde and polyethylene glycol diglycidyl ether crosslinked SF films. These features, combined with the decrease of brittleness of SF films crosslinked with chemical methods, substantiated genipin as an effective and biocompatible agent for the manufacturing of bioactive SF materials which used as tissue engineering scaffolds and drug delivery carriers.

Share and Cite:

L. Wang, Y. Wang, J. Qu, Y. Hu, R. You and M. Li, "The Cytocompatibility of Genipin-Crosslinked Silk Fibroin Films," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 3, 2013, pp. 213-221. doi: 10.4236/jbnb.2013.43026.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. Guziewicz, A. Best, B. P. Ramirez and D. L. Kaplan, “Lyophilized Silk Fibroin Hydrogels for the Sustained Local Delivery of Therapeutic Monoclonal Antibodies,” Biomaterials, Vol. 32, No. 17, 2011, pp. 2642-2650. doi:10.1016/j.biomaterials.2010.12.023
[2] D. G. Harkin, K. A. George, P. W. Madden, I. R. Schwab, D. W. Hutmacher and T. V. Chirila, “Silk Fibroin in Ocular Tissue Reconstruction,” Biomaterials, Vol. 32, No. 10, 2011, pp. 2445-2458. doi:10.1016/j.biomaterials.2010.12.041
[3] H. Zhu, J. Y. Shen, X. X. Feng, H. P. Zhang, Y. H. Guo and J. Y. Chen, “Fabrication and Characterization of Bioactive Silk Fibroin/Wollastonite Composite Scaffolds,” Materials Science and Engineering C, Vol. 30, No. 1, 2010, pp. 132-140. doi:10.1016/j.msec.2009.09.009
[4] Q. Zhang, Y. H. Zhao, S. Q. Yan, Y. M. Yang, H. J. Zhao, M. Z. Li, S. Z. Lu and D. L. Kaplan, “Preparation of Uniaxial Multichannel Silk Fibroin Scaffolds for Guiding Primary Neurons,” Acta Biomaterialia, Vol. 8, No. 7, 2012, pp. 2628-2638. doi:10.1016/j.actbio.2012.03.033
[5] B. D. Lawrence, J. K. Marchant, M. A. Pindrus, F. G. Omenetto and D. L. Kaplan, “Silk Film Biomaterials for Cornea Tissue Engineering,” Biomaterials, Vol. 30, No. 7, 2009, pp. 1299-1308. doi:10.1016/j.biomaterials.2008.11.018
[6] E. Servoli, D. Maniglio, A. Motta, R. Predazzer and C. Migliaresi, “Surface Properties of Silk Fibroin Films and Their Interaction with Fibroblasts,” Macromolecular Bioscience, Vol. 5, No. 12, 2005, pp. 1175-1183. doi:10.1002/mabi.200500137
[7] G. M. Nogueira, A. C. D. Rodas, C. A. P. Leite, C. Giles, O. Z. Higa, B. Polakiewicz and M. M. Beppu, “Preparation and Characterization of Ethanol-Treated Silk Fibroin Dense Membranes for Biomaterials Application Using Waste Silk Fibers as Raw Material,” Bioresource Technology, Vol. 101, No. 21, 2010, pp. 8446-8451. doi:10.1016/j.biortech.2010.06.064
[8] M. Z. Li, W. Tao, S. Z. Lu and S. Kuga, “Compliant Film of Regenerated Antheraea pernyi Silk Fibroin by Chemical Crosslinking,” International Journal of Biological Macromolecules, Vol. 32, No. 3-5, 2003, pp. 159-163. doi:10.1016/S0141-8130(03)00049-7
[9] L. Jeong, K. Y. Lee, J. W. Liu and W. H. Park, “Time-Resolved Structural Investigation of Regenerated Silk Fibroin Nanofibers Treated with Solvent Vapor,” International Journal of Biological Macromolecules, Vol. 38, No. 2, 2006, pp. 140-144. doi:10.1016/j.ijbiomac.2006.02.009
[10] S. S. Deveci and G. Basal, “Preparation of PCM Microcapsules by Complex Coacer-vation of Silk Fibroin and Chitosan,” Colloid and Polymer Science, Vol. 287, No. 12, 2009, pp. 1455-1467. doi:10.1007/s00396-009-2115-z
[11] H. S. Mansur, E. S. Costa, A. A. P. Mansur, E. F. Barbosastancioli, “Cytocompatibility Evaluation in Cell-Culture Systems of Chemically Crosslinked Chitosan/PVA Hydrogels,” Materials Science and Engineering C, Vol. 29, No. 5, 2009, pp. 1574-1583. doi:10.1016/j.msec.2008.12.012
[12] J. Y. Lai and Y. T. Li, “Evaluation of Cross-Linked Gelatin Membranes as Delivery Carriers for Retinal Sheets,” Materials Science and Engineering C, Vol. 30, No. 5, 2010, pp. 677-685. doi:10.1016/j.msec.2010.02.024
[13] P. Moonsri, R. Watanesk, S. Watanesk, H. Niamsup and R. L. Deming, “Fibroin Membrane Preparation and Stabilization by Polyethylene Glycol Diglycidyl Ether,” Journal of Applied Polymer Science, Vol. 108, No. 3, 2008, pp. 1402-1406. doi:10.1002/app.27528
[14] J. Y. Lai, “Biocompatibility of Chemically Cross-Linked Gelatin Hydrogels for Ophthalmic Use,” Journal of Materials Science in Medicine, Vol. 21, No. 6, 2010, pp. 1899-1911.
[15] R. A. A. Muzzarelli, “Genipin-Crosslinked Chitosan Hydrogels as Biomedical and Pharmaceutical Aids,” Carbohydrate Polymers, Vol. 77, No. 1, 2009, pp. 1-9. doi:10.1016/j.carbpol.2009.01.016
[16] K. Rinki and P. K. Dutta, “Physicochemical and Biological Activity Study of Genipin-Crosslinked Chitosan Scaffolds Prepared by Using Supercritical Carbon Dioxide for Tissue Engineering Applications,” International Journal of Biological Macromolecules, Vol. 46, No. 2, 2010, pp. 261-266. doi:10.1016/j.ijbiomac.2009.12.009
[17] R. Meena, K. Prasad and A. K. Siddhanta, “Development of a Stable Hydrogel Network Based on Agar-Kappa-Carrageenan Blend Cross-Linked with Genipin,” Food Hydrocolloids, Vol. 23, No. 2, 2009, pp. 497-509. doi:10.1016/j.foodhyd.2008.03.008
[18] C. T. Turo, P. Gentile, S. Saracino, V. Chiono, V. K. Nandagiri, G. Muzio, R.A. Canuto and G. Ciardelli, “Comparative Analysis of Gelatin Scaffolds Crosslinked by Genipin and Silane Coupling Agent,” International Journal of Biological Macromolecules, Vol. 49, No. 4, 2011, pp. 700-706. doi:10.1016/j.ijbiomac.2011.07.002
[19] S. M. Lien, W. T. Li and T. J. Huang, “Genipin-Crosslinked Gelatin Scaffolds for Articular Cartilage Tissue Engineering with a Novel Crosslinking Method,” Materials Science and Engineering C, Vol. 28, No. 1, 2008, pp. 36-43.
[20] L. P. Yan, Y. J. Wang, L. Ren, G. Wu, S. G. Caridade, J. B. Fan, L. Y. Wang, P. H. Ji, J. M. Oliveira, J. T. Oliveira, J. F. Mano and R. L. Reia, “Genipin-Cross-Linked Collagen/Chitosan Biomimetic Scaffolds for Articular Cartilage Tissue Engineering Applications,” Journal of Biomedical Materials Research Part A, Vol. 95A, No. 2, 2010, pp. 465-475. doi:10.1002/jbm.a.32869
[21] J. X. Zhu, Y. Xiong, C. G. Zeng, N. Qiang, D. P. Quan and J. Wan, “Elastic Chitosan Conduits with Multiple Channels and Well Defined Microstructure,” International Journal of Biological Macromolecules, Vol. 51, No. 1-2, 2012, pp. 105-112. doi:10.1016/j.ijbiomac.2012.04.022
[22] K. Madhavan, D. Belchenko, A. Motta and W. Tan, “Evaluation of Composition and Crosslinking Effects on Collagen-Based Composite Constructs,” Acta Biomaterialia, Vol. 6, No. 4, 2010, pp. 1413-1422. doi:10.1016/j.actbio.2009.09.028
[23] Y. C. Yang, C. C. Shen, T. B. Huang, S. H. Chang, H. C. Cheng and B. S. Liu, “Characteristics and Biocompatibility of a Biodegradable Genipin-Cross-Linked Gelatin/βTricalcium Phosphate Reinforced Nerve Guide Conduit,” Journal of Biomedical Materials Research Part B, Vol. 95B, No. 1, 2010, pp. 207-217. doi:10.1002/jbm.b.31705
[24] C. Wang, T. T. Lau, W. L. Loh, K. Su and D. A. Wang, “Cytocompatibility Study of a Natural Biomaterial Crosslinker—Genipin with Therapeutic Model Cells,” Journal of Biomedical Materials Research Part B, Vol. 97, No. 1, 2011, pp. 58-65. doi:10.1002/jbm.b.31786
[25] M. Z. Li, C. S. Zhang, S. Z. Lu, Z. Y. Wu and H. J. Wu, “Study on Porous Silk Fibroin Materials: 3. Influence of Repeated Freeze-Thawing on the Structure and Properties of Porous Silk Fibroin Materials,” Polymers for Advanced Technologies, Vol. 13, No. 8, 2002, pp. 605-610. doi:10.1002/pat.159
[26] Q. Lu, X. Hu, X. Q. Wang, J. A. Kluge, S. Z. Lu, P. Cebe and D. L. Kaplan, “Water-Insoluble Silk Films with Silk I Structure,” Acta Biomaterialia, Vol. 6, No. 4, 2010, pp. 1380-1387. doi:10.1016/j.actbio.2009.10.041
[27] R. E. Marsh, R. B. Corey and L. Pauling, “An Investigation of the Structure of Silk Fibroin,” Biochimica et Biophysica Acta, Vol. 16, 1955, pp. 1-34.
[28] Z. Gou, J. Chang, W. Y. Zhai and J. Y. Wang, “Study on the Self-Setting Property and the in Vitro Bioactivity of β-Ca2SiO4,” Journal of Biomedical Materials Research Part B, Vol. 73, No. 2, 2005, pp. 244-251.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.