Trade-Off between Bandwidth and Number of Array Elements in the Performance Enhancement of Passive Fathometer

Abstract

Improved signal to noise ratio (SNR) and resolution of the ambient noise cross-correlation function (NCF) between two points help in the estimation of bottom profile of the ocean. One of the main requirements of the improvement of the SNR and resolution is collection of a large amount of data. These large amounts of data can be achieved by recording a large bandwidth ambient noise or using an array of hydrophones. This paper evaluates the performance of the array processing and compares it to the large bandwidth technique in terms of SNR and resolution of NCF. It is shown that the large bandwidth technique gives better SNR and resolution compared to the array processing technique under certain conditions. The outcome of this article finds application in the enhanced estimation of the passive fathometer.

Share and Cite:

J. Alam, E. Huntington and M. Frater, "Trade-Off between Bandwidth and Number of Array Elements in the Performance Enhancement of Passive Fathometer," Open Journal of Acoustics, Vol. 3 No. 2A, 2013, pp. 16-24. doi: 10.4236/oja.2013.32A003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Siderius, C. H. Harrison and M. B. Porter, “A Passive Fathometer Technique for Imaging Seabed Layering Using Ambient Noise,” Journal of the Acoustical Society of America, Vol. 120, No. 3, 2006, pp. 1315-1323. doi:10.1121/1.2227371
[2] Md. Jahangir Alam, E. H. Huntington and M. R. Frater, “Improving Resolution and Snr of Correlation Function with the Increase in Bandwidth of Recorded Noise Fields during Estimation of Bottom Profile of Ocean,” Sydney, Australia, 2010.
[3] C. H. Harrison and D. G. Simons, “Geoacoustic Inversion of Ambient Noise: A Simple Method,” Journal of the Acoustical Society of America, Vol. 112, No. 4, 2002, pp. 1377-1389. doi:10.1121/1.1506365
[4] S. E. Fried, W. A. Kuperman, K. G. Sabra and P. Roux, “Extracting the Local Greens Function on a Horizontal Array from Ambient Ocean Noise,” Journal of the Acoustical Society of America, Vol. 124, No. 4, 2008, pp. 183-188. doi:10.1121/1.2960937
[5] K. G. Sabra, P. Roux and W. A. Kuperman, “Emergence Rate of the Time-Domain Greens Function from the Ambient Noise Cross-Correlation Function,” Journal of the Acoustical Society of America, Vol. 118, No. 6, 2005, pp. pp. 3524-3531. doi:10.1121/1.2109059
[6] K. G. Sabra, P. Roux and W. A. Kuperman, “Arrival-Time Structure of the Time-Averaged Ambient Noise Cross-Correlation Function in an Oceanic Waveguide,” Journal of the Acoustical Society of America, Vol. 117, No. 1, 2005, pp. 164-174. doi:10.1121/1.1835507
[7] P. Roux, K. Sabra, W. Kuperman and A. Roux, “Ambient Noise Cross-Correlation in Free Space: Theoretical Approach,” Journal of the Acoustical Society of America, Vol. 117, No. 1, pp. 79-84. doi:10.1121/1.1830673
[8] M. Hawkes and A. Nehorai, “Acoustic Vector-Sensor Correlations in Ambient Noise,” IEEE Journal of Oceanic Engineering, Vol. 26, No. 3, 2001, pp. 337-347. doi:10.1109/48.946508
[9] K. G. Sabra, P. Roux, A. M. Thode, G. L. DSpain, W. S. Hodgkiss and W. A. Kuperman, “Using Ocean Ambient Noise for Array Self Localization and Self-Synchronization,” IEEE Journal of Oceanic Engineering, Vol. 30, No. 2, 2005, pp. 338-347. doi:10.1109/JOE.2005.850908
[10] F. B. Jensen, W. A. Kuperman, M. B. Porter and H. Schmidt, “Computational Ocean Acoustics,” American Institute of Physics, New Work, 1994.
[11] R. Pallas-Areny and J. G. Webster, “Analog Signal Processing,” Wiley-IEEE, New Delhi, 1999.
[12] S. A. Albahrani, M. R. Frater and E. H. Huntington, “Linearly Filtered Estimation of the Time-Domain Greens Function from Measurements of Ambient Noise,” Journal of the Acoustical Society of America, Vol. 124, No. 5, 2008, pp. 2699-2701. doi:10.1121/1.2981049
[13] J. Heidemann, W. Ye, J. Wills, A. Syed and Y. Li, “Research Challenges and Applications for Underwater Sensor Networking,” WCNC, 2006.
[14] H. Ochi, Y. Watanabe and T. Shimura, “Measurement of Absorption Loss at 80 khz Band for Wideband Underwater Acoustic Communication,” Japanese Journal of Applied Physics, Vol. 47, No. 5, 2008, pp. 4366-4368. doi:10.1143/JJAP.47.4366
[15] G. M. Wenz, “Acoustic Ambient Noise in the Ocean: Spectra and Sources,” Journal of the Acoustical Society of America, Vol. 34, No. 12, 1962, pp. 1936-1956. doi:10.1121/1.1909155
[16] D. H. Cato and M. J. Bell, “Ultrasonic Ambient Noise in Australian Shallow Water at Frequencies up to 200 khz,” Technical Report, DSTO Materials Research Laboratory, Urbana, 1992.
[17] L. Jianheng and G. Tianfu, “Model of Wind-Generated Ambient Noise in Stratified Shallow Water,” Chinese Journal of Oceanology and Limnology, Vol. 23, No. 2, 2005, pp. 144-151. doi:10.1007/BF02894230

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.