Share This Article:

Optimum Efficiency of Photogalvanic Cell for Solar Energy Conversion: Lissamine Green B-Ascorbic Acid-NaLS System

Abstract Full-Text HTML Download Download as PDF (Size:402KB) PP. 306-311
DOI: 10.4236/sgre.2013.43037    3,496 Downloads   5,467 Views   Citations

ABSTRACT

Photogalvanic cells are photoelectrochemical cells chargeable in light for solar energy conversion and storage. They may be energy source for the future, if their electrical performance is increased. In this study, a photosensitizer Lissamine green B, a reductant Ascorbic acid and a surfactant NaLS have been used in the photogalvanic cell. The generated photopotential and photocurrent are 850.0 mV and 375.0 μA respectively. The conversion efficiency of the cell, fill factor and the cell performance were observed 1.0257%, 0.2598% and 170.0 minutes in dark respectively. The effects of different parameters on the electrical output of the photogalvanic cell were observed. A mechanism was proposed for the photogeneration of electrical energy.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Genwa and K. Singh, "Optimum Efficiency of Photogalvanic Cell for Solar Energy Conversion: Lissamine Green B-Ascorbic Acid-NaLS System," Smart Grid and Renewable Energy, Vol. 4 No. 3, 2013, pp. 306-311. doi: 10.4236/sgre.2013.43037.

References

[1] W. Hafele, “Energy in a Finite World: A Global Systems Analysis,” Ballinger Publishing Company, Pensacola, 1981.
[2] E. Becquerel, “On Electron Effects under the Influence of Solar Radiation,” Comptes Rendus de 'l' Academie Sciences Paris, Vol. 9, 1839, p. 561.
[3] E. K. Rideal and E. G. Williams, “The Action of Light on the Ferrous Iodine Iodide Equilibrium,” Journal of the Chemical Society, Vol. 127, 1925, pp. 258-269. doi:10.1039/ct9252700258
[4] E. Rabinowitch, “The Photogalvanic Effect I: The Photochemical Properties of the Thionine-Iron System,” Journal of Chemical Physics, Vol. 8, No. 7, 1940, pp. 551559. doi:10.1063/1.1750711
[5] E. Rabinowitch, “The Photogalvanic Effect II: The Photogalvanic Properties of Thionine-Iron System,” Journal of Chemical Physics, Vol. 8, No. 7, 1940, pp. 560-566. doi:10.1063/1.1750712
[6] M. A. Fox and Kabir-ud-din, “A New Carbanionic Photogalvanic Cell,” Journal of Physical Chemistry, Vol. 83, No. 13, 1979, pp. 1800-1801. doi:10.1021/j100476a022
[7] A. S. N. Murthy, A. C. Dak and K. S. Reddy, “Photogalvanic Effect in Riboflavin Ethylenediaminetetraacetic Acid System,” International Journal of Energy Research, Vol. 4 No. 4, 1980, pp. 339-343. doi:10.1002/er.4440040405
[8] K. K. Rohatgi-Mukherjee, M. Roy and B. B. Bhowmik, “Photovoltage Generation of the Phenosafranine DyeEDTA Sandwich Cell,” Solar Energy, Vol. 31, 1983, pp. 417-418. doi:10.1016/0038-092X(83)90142-1
[9] S. C. Ameta, S. Khamesra, M. Bala and K. M. Gangotri, “Use of Micelles in Photogalvanic Cell for Solar Energy Conversion and Storage,” Philippine Journal of Science, Vol. 119, No. 4, 1990, pp. 371-373.
[10] K. M. Gangotri, P. Kalla, K. R Genwa, O. P. Regar, C. Lal and R. Meena, “Use of Tween-80 in Photogalvanic Cell for Solar Energy Conversion and Storage: Toludine Blue-Glucose System,” Indian Council of Chemists, Vol. X, No. 2, 1994, p. 20.
[11] K. M. Gangotri, P. Kalla, K. R. Genwa, O. P. Regar, C. Lal and R. Meena, “Photogalvanic Cells as a Device for Solar Energy Conversion and Storage,” Asian Journal of Chemistry, Vol. 5, No. 1, 1994, p. 69.
[12] K. M Gangotri and C. Lal, “Studies in Photogalvanic Effect and Mixed Dyes System: EDTA-Methylene BlueToludine Blue System,” International Journal of Energy Research, Vol. 24, No. 4, 2000, pp. 365-371. doi:10.1002/(SICI)1099-114X(20000325)24:4<365::AID-ER593>3.0.CO;2-I
[13] K. M. Gangotri and C. Lal, “Use of Mixed Dyes in Photogalvanic Cell for Solar Energy Conversion and Storage: EDTA Methylene Blue and Azur-B System,” Energy Sources Part A, Vol. 23, No. 3, 2001, pp. 267-273. doi:10.1080/00908310151133988
[14] K. R. Genwa and K. M. Gangotri, “Use Of Tween-80 in Photogalvanic Cells for Solar Energy Conversion and Storage: Nitrilotriacetic Acid-Azur B System,” Afinidad, Vol. 492, 2001, p. 147.
[15] K. M. Gangotri and R. C. Meena, “Use of Reductant and Photosensitizer in Photogalvanic Cell for Solar Energy Conversion and Storage: Oxalic Acid-Methyline Blue System,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 141, No. 2, 2001, pp. 175-177. doi:10.1016/S1010-6030(01)00416-6
[16] K. R. Genwa and K. M. Gangotri, “Studies on Photogalvanic Cell Containing Azur B-NTA-CPC System,” Indian Council of Chemists, Vol. 21, No. 1, 2004, pp. 21-25.
[17] K. R. Genwa and A. Kumar, “Role of Rhodamine B in Photovoltage Generation Using Anionic Surfactant in Liquid Phase Photoelectrochemical Cell for Solar Energy Conversion and Storage,” Journal of the Indian Chemical Society, Vol. 87, No. 8, 2010, pp. 933-939.
[18] K. R. Genwa and A. Chouhan, “Optimum Efficiency of Photogalvanic Cell for Solar Energy Conversion and Storage Containing Brilliant Black PN-Ammonium Lauryl Sulphate-EDTA System,” Research Journal of Recent Sciences, Vol. 1, 2012, pp. 117-121.
[19] A. K. Jana, “Solar Cells Based on Dyes,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 132, No. 1, 2000, pp. 1-17. doi:10.1016/S1010-6030(99)00251-8
[20] K. R. Genwa and C. P. Sagar, “Role of Carmine in Tween 80-Ascorbic Acid System for Energy Conversion,” Research Journal of Recent Sciences, Vol. 1, 2012, pp. 6266.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.