Synthesis of Hollow Nanoparticles γ-Al2O3

Abstract

The formation of hollow nanoparticles of alumina was detected when nanostructured carbon–aluminum material, synthesized by composite electrode sputtering in an electric arc, was annealed in oxygen. The synthesized material was characterized by the methods of transmission electron microscopy, thermogravimetry, and roentgen-phase analysis. It is shown that the alumina is the γ-phase; the typical size of particles is 6 - 12 nm and they have a wall thickness of 2 - 3 nm. The mechanism of formation of the hollow nanoparticles of alumina is suggested.

Share and Cite:

Smovzh, D. , Kalyuzhnyi, N. , Zaikovsky, A. and Novopashin, S. (2013) Synthesis of Hollow Nanoparticles γ-Al2O3. Advances in Nanoparticles, 2, 120-124. doi: 10.4236/anp.2013.22020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] H. Gleiter, “Nanocrystalline Materials,” Progress in Materials Science, Vol. 33, No. 4, 1989, pp. 223-315. doi:10.1016/0079-6425(89)90001-7
[2] H. W. Kroto, et al., “C60: Buckminsterfullerene,” Nature, Vol. 318, No. 14, 1985, pp. 162-163. doi:10.1038/318162a0
[3] W. Kratschmer, L. D. Lamb, K. Fostiopoulos and D. R. Hoffman, “Solid C-60-a New Form of Carbon,” Nature, Vol. 347, No. 27, 1990, pp. 354-358. doi:10.1038/347354a0
[4] S. Iijima, “Helical Microtubes of Graphitic Carbon,” Nature, Vol. 354, No. 6348, 1991, pp. 56-58. doi:10.1038/354056a0
[5] R. Tenne, L. Margulis, M. Genut and G. Hodes, “Polyhedral and Cylindrical Structures of Tungsten Disulphide,” Nature, Vol. 360, No. 6403, 1992, pp. 444-446. doi:10.1038/360444a0
[6] H. J. Fan, U. Gcsele and M. Zacharias, “Formation of Nanotubes and Hollow Nanoparticles Based on Kirkendall and diffusion Processes: A Review,” Small, Vol. 3 No. 10, 2007, pp. 1660-1671. doi:10.1002/smll.200700382
[7] C. Andreu, K. S. Rachel, Y. Yadong, H. M. Zheng, B. M Reinhard, H. T. Liu and A. P. Alivisatos, “Sulfidation of Cadmium at the Nanoscale,” ACSnano, Vol. 2, No. 7, 2008, pp. 1452-1458. doi:10.1021/nn800270m
[8] J. S. Zhou, L. L. Ma, H. H. Song, B. Wu and X. H. Chen, “Durable High-Rate Performance of CuO Hollow Nano particles/Graphene-Nanosheet Composite Anode Material for Lithium-Ion Batteries,” Electrochemistry Communications, Vol. 13, No. 12, 2011, pp. 1357-1360. doi:10.1016/j.elecom.2011.08.011
[9] J. G. Railsback, A. C. Johnston-Peck, J. W. Wang and J. B Tracy, “Size-Dependent NanoscaleKirkendall Effect During the Oxidation of Nickel Nanoparticles,” ACSnano, Vol. 4, No. 4, 2010, pp. 1913-1920. doi:10.1021/nn901736y
[10] J. X. Wang, C. Ma, Y. M. Choi, D. Su, Y. M. Zhu, P. Liu, R. Si, M. B. Vukmirovic, Y. Zhang and R. R. Adzic, “Kirkendall Effect and Lattice Contraction in Nanocatalysts: A New Strategy to Enhance Sustainable Activity,” Journal of the American Chemical Society, Vol. 133, No. 34, 2011, pp. 13551-13557. doi:10.1021/ja204518x
[11] R. Nakamura, D. Tokozakura, H. Nakajima, J.-G. Lee and H. Mori, “Hollow Oxide Formation by Oxidation of Al and Cu Nanoparticles,” Journal of Applied Physics, Vol. 101, 2007, Article ID: 074303.
[12] B. Koo, H. Xiong, M. D. Slater, V. B. Prakapenka, M. Balasubramanian, P. Podsiadlo, C. S. Johnson, T. Rajh and E. V. Shevchenko, “Hollow Iron Oxide Nanoparticles for Application in Lithium Ion Batteries,” Nano Letters, Vol. 12, No. 5, 2012, pp. 2429-2435. doi:10.1021/nl3004286
[13] С. Roth and R. Koebrich, “Production of Hollow Spheres,” Journal of Aerosol Science, Vol. 19, No. 7, 1988, p. 939.
[14] J. H. Nadler, T. H. Sanders and J. K. Cochran, “Aluminum Hollow Sphere Processing Materials,” Science ForumTrans Tech Publications (Switzerland), Vol. 331, No. 1, 2000, pp. 495-500.
[15] A. Kato and Y. Hirata, “Sintering Behaviour of Beta-Type Alumina Powders Prepared by Spray-Pyrolysis Technique and Electrical Conductivity of Sintered Body,” Kyushu University, Vol. 45, No. 4, 1985, p. 251.
[16] S. J. Bae, J. S. Yoo, Y. Lim, S. Kim, Y. C. Lim, K. S. Nahm, S. J. Hwang, T.-H. Lim, S.-K. Kim and P. Kim, “Facile Preparation of Carbon-Supported PtNi Hollow Nanoparticles with High Electrochemical Performance,” Journal of Materials Chemistry, Vol. 22, No. 18, 2012, pp. 8820-8825. doi:10.1039/c2jm16827h
[17] J. H. J. Scott and S. A. Majetich, “Morphology, Structure, and Growth of Nanoparticles Produced in a Carbon Arc,” Physical Review B, Vol. 52, No. 17, 1995, pp. 12564-12571. doi:10.1103/PhysRevB.52.12564
[18] V. A. Maltsev, S. A. Novopashin, О. А. Nerushev, S. Z. Sakhapov and D. V. Smovzh, “Synthesis of Metal Nano particles on the Carbon Substrate,” Nanotechnologies in Russian, Vol. 2, No. 5-6, 2007, pp. 85-89.
[19] J. Borysiuka, A. Grabiasa, J. Szczytkob, M. Bystrzejewskic, A. Twardowskib and H. Lange, “Structure and Magnetic Properties of Carbon Encapsulated Fe Nanoparticles Obtained by Arc Plasma and Combustion Synthesis,” Carbon, Vol. 46, No. 13, 2008, pp. 1693-1701. doi:10.1016/j.carbon.2008.07.011
[20] J.-C. Lo, J.-C. Lu and M.-H. Teng, “A New Crucible Design of the Arc-Discharge Method for the Synthesis of Graphite Encapsulated Metal (GEM) Nanoparticles,” Diamond & Related Materials, Vol. 20, No. 3, 2008, pp. 330-333. doi:10.1016/j.diamond.2011.01.029

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.