Share This Article:

Photoluminescence Response of HfO2:Eu3+ Obtained by Hydrothermal Route

Abstract Full-Text HTML XML Download Download as PDF (Size:480KB) PP. 73-77
DOI: 10.4236/ojsta.2013.22009    3,820 Downloads   6,585 Views   Citations

ABSTRACT

In this work, the synthesis and photoluminescence response of HfO2 doped with Eu3+ (HfO2:Eu3+) are reported. The synthesis was carried out by the hydrothermal route of HfCl4 and EuCl.6H2O with NH4OH dissolved in deionized water. To perform the hydrolysis, the precursors were subjected to hydrothermal treatment at 120°C, under autogenously pressure at reaction times of 24, 40, 52 and 72 hours. The synthesized nanoparticles were characterized by mean of X- ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), and energy dispersive spectroscopy (EDS). Samples excited with 395 nm radiation show photoluminescence emission lines corresponding to the electronic transitions 5D07FJ (J = 0 → 4), characteristics of the Eu3+ ion. The photoluminescence emission intensity increases with the increasing of the reaction time, reaching a maximum at 72 hours. The excitation band peaked at 395 nm, makes this material an excellent candidate for applications in solid state white lamps.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

E. Cerón, G. Gattorno, J. Guzmán-Mendoza, M. García-Hipólito and C. Falcony, "Photoluminescence Response of HfO2:Eu3+ Obtained by Hydrothermal Route," Open Journal of Synthesis Theory and Applications, Vol. 2 No. 2, 2013, pp. 73-77. doi: 10.4236/ojsta.2013.22009.

References

[1] J. G. Mendoza, M. A. A. Frutis, G. A. Flores, M. G. Hipólito, A. M. Cerda, J. A. Nieto, T. R. Montalvo and C. Falcony, “Synthesis and Characterization of Hafnium Oxide Films for Thermo and Photoluminiscence Applications,” Applied Radiation and Isotopes, Vol. 68, No. 4-5, 2010, pp. 696-699. doi:10.1016/j.apradiso.2009.09.031
[2] S. Lange, V. Kiisk, V. Reedo, M. Kirm, J. Aarik and I. Sildos, “Luminescence of RE-Ions in HfO2 Thin Films and Some Possible Applications,” Optical Materials, Vol. 28, No. 11, 2006, pp. 1238-1242. doi:10.1016/j.optmat.2006.02.011
[3] S. N. Tkachev, M. H. Manghnani, A. Niilisk, J. Aarik, and H. Mandar, “Raman and Brillouin Scattering Spectroscopy Studies of Atomic Layer-Deposited ZrO2 and HfO2 Thin Films,” Spectrochimica Acta Part A, Vol. 61, No. 10, 2005, pp. 2434-2438. doi:10.1016/j.saa.2005.02.025
[4] N. D. Afify, G. Dalba and F. Rocca, “XRD and EXAFS Studies on the Structure of Er3+-Doped SiO2-HfO2 GlassCeramic Waveguides: Er3+-Actived HfO2 Nanocrystals,” Journal of Physics D: Applied Physics, Vol. 42, 2009, Article ID: 115416. doi:10.1088/0022-3727/42/11/115416
[5] Y. M. Ji, D. Y. Jiang and J. L. Shi, “Structure and Luminescence of HfO2-Codoped Gd2O3:Eu Phosphors,” Journal of Luminescence, Vol. 122-123, 2007, pp. 984-986. doi:10.1016/j.jlumin.2006.01.345
[6] M. Yoshimura and S. Somiya, “Hydrothermal Synthesis of Cristallized Nano-Particles of Earth Rare,” Materials Chemistry and Physics, Vol. 61, No. 1, 1999, pp. 1-8. doi:10.1016/S0254-0584(99)00104-2
[7] L. X. Liu, Z. W. Ma, Y. Z. Xie, Y. R. Su, H. T. Zhao, M. Zhou, J. Y. Zhou, J. Li and E. Q. Xieb, “Photolumenescence of Rare Earth3+ doped Uniaxial Aligned HfO2 Nanotubes Prepared by Sputtering with Alectrospun Polyvinylpyrolidone Nanofibers as Templates,” Journal of Applied Physics, Vol. 107, No. 2, 2010, p. 24309. doi:10.1063/1.3290974
[8] R. Chora-Corella, M. García-Hipólito, O. Alvarez-Fragoso, M. A. Alvarez-Pérez and C. Falcony, “Caracterización de Películas Luminiscentes de óxido de Hafnio Activadas Con Eu3+ Depositadas Por La Técnica de Rocío Pirolítico Ultrasónico,” Revista Mexicana de Física, Vol. 55, No. 3, 2009, pp. 226-231.
[9] J. Wang, Y. Xia, Y. Shi, Z. Shi, L. Pu, R. Zhang and Y. Zheng, “1.54 um Photoluminescence Emission and Oxigen Vacancy as Sensitizer in Er-Doped HfO2 Films,” Applied Physics Letters, Vol. 91, No. 19, 2007, p. 191115. doi:10.1063/1.2806188
[10] M. Villanueva-Ibanez, C. Le Luyer, O. Marty and J. Mugnier, “Anneling and Doping Effects on the Structure of Europium-Doped HfO2 Sol-Gel Material,” Optical Materials, Vol. 24, No. 1-2, 2003, pp. 51-57. doi:10.1016/S0925-3467(03)00104-6
[11] Z. J. Wang, T. Kumagai, H. Kokawa, M. Ichiki and R. Maeda, “Preparation of Hafnium Oxide Thin Films by Sol-Gel Method,” Journal of Electroceramics, Vol. 21, No. 1-4, 2008, pp. 499-502. doi:10.1007/s10832-007-9228-x
[12] C. LeLuyer, M. Villanueva Ibanez, A. Pillonnet and C. Dujardin, “HfO2:X (X= Eu3+, Ce3+, Y3+) Sol Gel Powders for Ultradense Scintillating Materials,” The Journal of Physical Chemistry A, Vol. 112, No. 41, 2008, pp. 1015210155. doi:10.1021/jp803339n
[13] E. Pavel, A. Meskin, Y. Felix, B. Sharikov, K. Vladimir, C. Ivanov, R. Bulat, A. Churagulov, D. Yury and V. Tretyako, “Rapid Formation of Nanocrystalline HfO2 Powders from Amorphous Hafnium Hydroxide under Ultrasonical Assisted Hydrothermal Treatment,” Materials Chemistry and Physics, Vol. 104, No. 2-3, 2007, pp. 439443. doi:10.1016/j.matchemphys.2007.03.042
[14] L. Xiang, Y. P. Yin and Y. Jin, “Hydrothermal Formation of Ni-Zn Ferrite from Heavy Metal Co-Precipitates,” Journal of Materials Science, Vol. 37, No. 2, 2002, pp. 349-352. doi:10.1023/A:1013608530417
[15] M. Yoshimura and K. Byrappa, “Hydrothermal Processing of Materials Past, Present and Future,” Journal of Materials Science, Vol. 43, No. 7, 2008, pp. 2085-2103. doi:10.1007/s10853-007-1853-x
[16] K. Byrappa, T. Adschiri, “Hydrothermal Technology for Nanotechnology,” Progress in Crystal Growth and Characterization of Materials, Vol. 53, No. 2, 2007, pp. 117-166. doi:10.1016/j.pcrysgrow.2007.04.001
[17] L. Wojciech, W. L. Suchanek and R. E. Riman, “Hydrothermal Synthesis of Advanced Ceramic Powder,” Advances in Science and Technology, Vol. 45, 2006, pp. 184-193. doi:10.4028/www.scientific.net/AST.45.184
[18] H. Hayashi and Y. Hakuta, “Hydrothermal Synthesis os Metal Oxide Nanoparticles in Supercritical Water,” Materials, Vol. 3, No. 7, 2010, pp. 3794-3817. doi:10.3390/ma3073794

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.