Share This Article:

Humane Non-Human Primate Model of Traumatic Spinal Cord Injury Utilizing Electromyography as a Measure of Impairment and Recovery

Abstract Full-Text HTML XML Download Download as PDF (Size:108KB) PP. 86-89
DOI: 10.4236/ojvm.2013.31014    4,232 Downloads   7,125 Views   Citations

ABSTRACT

The overall goal of this project is to develop a humane non-human primate model of traumatic spinal cord injury that will facilitate the development and evaluation of therapeutic interventions. The model utilizes neurophysiological techniques to identify the location of the upper motor neuron axons that innervate the lower motor neurons that control tail musculature. This facilitates the placement of a selective lesion that partially disconnects the upper and lower motor neuron supply to the musculature of the tail. An implanted transmitter quantitatively measures electromyography data from the tail. The preliminary data indicates that this model is feasible. The subject was able to tolerate the implantation of the transmitter, without adverse effects. As well, there was no limb impairment, bowel dysfunction or bladder dysfunction. The histopathologic and electromyographic features of the selective experimental lesion were similar to human spinal cord injury.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

W. Graham, D. Rosene, S. Westmoreland, A. Miller, E. Sejdic and S. Nesathurai, "Humane Non-Human Primate Model of Traumatic Spinal Cord Injury Utilizing Electromyography as a Measure of Impairment and Recovery," Open Journal of Veterinary Medicine, Vol. 3 No. 1, 2013, pp. 86-89. doi: 10.4236/ojvm.2013.31014.

References

[1] S. Nesathurai, “The Rehabilitation of People with Spinal Cord Injury,” 2nd Edition, AAP Publishing, Whitinsville, 2000.
[2] M. G. Fehlings and D. C. Baptiste, “Current Status of Clinical Trials for Acute Spinal Cord Injury,” Injury, International Journal of Care Injured, Vol. 36, No. 2, 2005, pp. 113-122.
[3] P. Black, R. S. Markowitz, V. Cooper, A. Mechanic, H. Kushner, I. Damjanov, S. D. Finkelstein and K. C. Wachs, “Models of Spinal Cord Injury: Part 1. Static Load Technique,” Neurosurgery, Vol. 19, No. 5, 1986, pp. 752-762. doi:10.1227/00006123-198611000-00006
[4] T. E, Anderson, “Spinal Cord Contusion Injury: Experimental Dissociation of Hemorrhagic Necrosis and Subacute Loss of Axonal Conduction,” Journal of Neurosurgery, Vol. 62, No. 1, 1985, pp. 115-119. doi:10.3171/jns.1985.62.1.0115
[5] M. Hashimoto, M. Koda, H. Ino, M. Murakami, M. Yamazaki and H. Moriya, “Upregulation of Osteopontin Expression in Rat Spinal Cord Microglia after Traumatic Injury,” Journal of Neurotrauma, Vol. 20, No. 3, 2003, pp. 287-296. doi:10.1089/089771503321532879
[6] R. Nossin-Manor, R. Duvdevani and Y. Cohen, “q-Space High b Value Diffusion MRI of Hemi-Crush in Rat Spinal Cord: Evidence for Spontaneous Regeneration,” Magnetic Resonance Imaging, Vol. 20, No. 3, 2002, pp. 231- 241. doi:10.1016/S0730-725X(02)00470-8
[7] G. Bravo, R. Rojas-Martinez, F. Larios, E. Hong, G. Castaneda-Hernandez, G. Rojas and G. Guizar-Sahagun, “Mechanisms Involved in the Cardiovascular Alterations Immediately after Spinal Cord Injury,” Life Sciences, Vol. 68, No. 13, 2001, pp. 1527-1534. doi:10.1016/S0024-3205(01)00952-3
[8] A. Buss and M. E. Schwab, “Sequential Loss of Myelin Proteins during Wallerian Degeneration in the Rat Spinal Cord,” Glia, Vol. 42, No. 4, 2003, pp. 424-432. doi:10.1002/glia.10220
[9] T. G. Brown, “The Intrinsic Factors in the Act of Progression in the Mammal,” Proceedings of the Royal Society London, Vol. 84, No. 572, 1911, pp. 308-319. doi:10.1098/rspb.1911.0077
[10] E. Eidelberg, J. L. Story, B. L. Meyer and J. Nystel, “Stepping by Chronic Spinal Cats,” Experimental Brain Research, Vol. 40, No. 3, 1980, pp. 241-246. doi:10.1007/BF00237787
[11] J. C. Norreel, J. F. Pflieger, E. Pearlstein, J. Simeoni-Alias, F. Clarac and L. Vinay, “Reversible Disorganization of the Locomotor Pattern after Neonatal Spinal Cord Transection in the Rat,” Journal of Neuroscience, Vol. 23, No. 5, 2003, pp. 1924-1932.
[12] E. Eidelberg, J. G. Walden and N. H. Nguyen, “Locomotor Control in Macaque Monkeys,” Brain, Vol. 104, No. 4, 1981, pp. 647-663. doi:10.1093/brain/104.4.647-a
[13] J. F. Fulton and C. S. Sherrington, “State of the Flexor Reflex in Paraplegic Dog and Monkey Respectively,” The Journal of Physiology, Vol. 75, No. 1, 1932, pp. 17-22.
[14] A. D. Levi, H. Dancausse, X. Li, S. Duncan, L. Horkey and M. J. Oliviera, “Peripheral Nerve Grafts Promoting Central Nervous System Regeneration after Spinal Cord Injury in the Primate,” Journal of Neurosurgery, Vol. 96, No. 2, 2002, pp. 197-205.
[15] M. H. Tuszynski, R. Grill, L. L. Jones, H. M. McKay and A. Blesch, “Spontaneous and Augmented Growth of Axons in the Primate Spinal Cord: Effects of Local Injury and Nerve Growth Factor-Secreting Cell Grafts,” Journal of Comparative Neurology, Vol. 449, No. 1, 2002, pp. 88-101.
[16] L. Deecke and C. H. Tator, “Neurophysiological Assessment of Afferent and Efferent Conduction in the Injured Spinal Cord of Monkeys,” Journal of Neurosurgery, Vol. 39, No. 1, 1973, pp. 65-74. doi:10.3171/jns.1973.39.1.0065
[17] G. Courtine, M. B Bunge, J. W. Fawcett, R. G. Grossman, J. H. Kaas, R. Lemon, I. Maier, J. Martin, R. J. Nudo, A. Ramon-Cueto, E. M. Rouiller, L. Schnell, T. Wannier, M. E. Schwab and V. R. Edgerton, “Can Experiments in Nonhuman Primates Expedite the Translation of Treatments for Spinal Cord Injury in Humans?” Nature Medicine, Vol. 13, No. 5, 2007, pp. 561-566. doi:10.1038/nm1595
[18] P. R. Ojha, “Tail Carriage and Dominance in the Rhesus Monkey Macaca mulatta,” Mammalia, Vol. 38, No. 1, 1974, pp. 163-170. doi:10.1515/mamm.1974.38.2.163
[19] W. A. Graham, E. Ludlage, K. Mansfield, D. Magill and S. Nesathurai, “Normative Nerve Conductions in the Tail of Rhesus macaques (Macaca mulatta),” Journal of Medical Primatology, Vol. 35, No. 1, 2006, pp. 25-30. doi:10.1111/j.1600-0684.2005.00136.x
[20] S. Nesathurai, W. A. Graham, K. Mansfield, P. Sehgal, S. V. Westmoreland, S. Prusty, D. L. Rosene and J. B. Sledge, “Model of Traumatic Spinal Cord Injury in Macaca fascicularis: Similarity of Experimental Lesions Created by Epidural Catheter to Human Spinal Cord Injury,” Journal of Medical Primatology, Vol. 35, No. 6, 2006, pp. 397-400. doi:10.1111/j.1600-0684.2006.00161.x
[21] A. D. Miller, S .V. Westmoreland, N. R. Evangelous, A. Graham, J. Sledge and S. Nesathurai, “Acute Traumatic Spinal Cord Injury Induces Glial Activation in the Cynomolgus macaque (Macaca fascicularis),” Journal of Medical Primatology, Vol. 41, No. 3, 2012, pp. 202-209. doi:10.1111/j.1600-0684.2012.00542.x

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.