In Silico Analysis of a MRP Transporter Gene Reveals Its Possible Role in Anthocyanins or Flavonoids Transport in Oryze sativa

Abstract

There are many studies on enzymatic pathways of anthocyanin biosynthesis, but little is known about the anthocyanins transport in Oryze sativa. In silico analysis, the OsMRP15 (LOC_Os06g06440), an orthologous gene of mazie anthocyanin transporter ZmMRP3, has been identified in rice. The OsMRP15 contained a 4425bp open reading frame (ORF) encoding a 1475 amino acid protein, belonging to a MRP subfamily of ABC transporters, and has a high sequence identity, very similar protein structure, and the same arrangement of domains to ZmMRP3, but the genomic structure of OsMRP15 was significant difference with ZmMRP3. The prediction promoter of OsMRP15 has many presumed anthocyanin regulatory sites. The phylogenetic analysis of MRPs in rice, mazie and Arabidopsis showed that OsMRP15 and ZmMRP3 belonged to the same subbranch. The expression pattern indicated that OsMRP15 was co-expression with two anthocyanin transcription factors. These analysis results implied that as an ortholog of ZmMRP3, the function of OsMRP15 was possibly as a membrane-bound transporter required for vacuolar uptake of anthocyanins in rice.

Share and Cite:

Q. Zhu, X. Xie, J. Zhang, G. Xiang, Y. Li and H. Wu, "In Silico Analysis of a MRP Transporter Gene Reveals Its Possible Role in Anthocyanins or Flavonoids Transport in Oryze sativa," American Journal of Plant Sciences, Vol. 4 No. 3, 2013, pp. 555-560. doi: 10.4236/ajps.2013.43072.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Jasinski, E. Ducos, E. Martinoia and M. Boutry, “The ATP-Binding Cassette Transporters: Structure, Function, and Gene Family Comparison between Rice and Arabidopsis,” Plant Physiology, Vol. 131, No. 3, 2003, pp. 1169- 1177. doi:10.1104/pp.102.014720
[2] S. Kitamura, “Transport of Flavonoids: From Cytosolic Synthesis to Vacuolar Accumulation,” In: E Grotewold, Ed., The Science of Flavonoids, Springer, New York, 2006, pp. 123-146. doi:10.1007/978-0-387-28822-2_5
[3] M. Klein, B. Burla and E. Martinoia, “The Multidrug Resistance-Associated Protein (MRP/ABCC) Subfamily of ATP-Binding Cassette Transporters in Plants,” FEBS Letters, Vol. 580, No. 4, 2006, pp. 1112-1122. doi:10.1016/j.febslet.2005.11.056
[4] Y. P. Lu, Z. S. Li and P. A. Rea, “AtMRP1 Gene of Arabidopsis Encodes a Glutathione S-Conjugate Pump: Isolation and Functional Definition of a Plant ATP-Binding Cassette Transporter Gene,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 94, No. 15, 1997, pp. 8243-8248. doi:10.1073/pnas.94.15.8243
[5] Y. P. Lu, Z. S. Li, Y. M. Drozdowicz, S. H?rtensteiner, E. Martinoia and P. A. Rea, “AtMRP2, an Arabidopsis ATP Binding Cassette Transporter Able to Transport Glutathione S-Conjugates and Chlorophyll Catabolites: Functional Comparisons with AtMRP1,” Plant Cell, Vol. 10, No. 2, 1998, pp. 267-282.
[6] A. Frelet-Barrand, H. U. Kolukisaoglu, S. Plaza, M. Rüffer, L. Azevedo, S. H?rtensteiner, K. Marinova, B. Weder, B. Schulz and M. Klein, “Comparative Mutant Analysis of Arabidopsis ABCC-Type ABC Transporters: AtMRP2 Contributes to Detoxification, Vacuolar Organic Anion Transport and Chlorophyll Degradation,” Plant and Cell Physiology, Vol. 49, No. 4, 2008, pp. 557-569. doi:10.1093/pcp/pcn034
[7] B. Schulz and H. U. Kolukisaoglu, “Genomics of Plant ABC Transporters: The Alphabet of Photosynthetic Life Forms or just Holes in Membranes?” FEBS Letters, Vol. 580, No. 4, 2006, pp. 1010-1016. doi:10.1016/j.febslet.2006.01.002
[8] C. D. Goodman, P. Casati and V. Walbot, “A Multidrug Resistance-Associated Protein Involved in Anthocyanin Transport in Zea mays,” Plant Cell, Vol. 6, No. 7, 2004, pp. 1812-1826. doi:10.1105/tpc.022574
[9] F. C. Badone, E. Cassani, M. Landoni, E. Doria, D. Panzeri, C. Lago, F. Mesiti, E. Nielsen and R. Pilu, “The Low Phytic Acid 1-241 (Lpa1-241) Maize Mutation Alters the Accumulation of Anthocyanin Pigment in the Kernel,” Planta, Vol. 231, No. 5, 2010, pp. 1189-1199. doi:10.1007/s00425-010-1123-z
[10] X. H. Xu, H. J. Zhao, Q. L. Liu, T. Frank, K. H. Engel, G. An and Q. Y. Shu, “Mutations of the Multi-Drug Resistance-Associated Protein ABC Transporter Gene 5 Result in Reduction of Phytic Acid in Rice Seeds,” Theoretical and Applied Genetics, Vol. 119, No. 1, 2009, pp. 75-83. doi:10.1007/s00122-009-1018-1
[11] H. Ichikawa, T. Ichiyanagi, B. Xu, Y. Yoshii, M. Nakajima and T. Konishi, “Antioxidant Activity of Anthocyanin Extract from Purple Black Rice,” Journal of Medicinal Food, Vol. 4, No. 4, 2001, pp. 211-218. doi:10.1089/10966200152744481
[12] C. Morey, S. Mookherjee, G. Rajasekaran and M. Bansal, “DNA Free Energy-Based Promoter Prediction and Comparative Analysis of Arabidopsis and Rice Genomes,” Plant Physiology, Vol. 156, No. 3, 2011, pp. 1300-1315. doi:10.1104/pp.110.167809
[13] K. Higo, Y. Ugawa, M. Iwamoto and T. Korenaga, “Plant Cis- Acting Regulatory DNA Elements (PLACE) Database: 1999,” Nucleic Acids Research, Vol. 27, No. 1, 1999, pp. 297-300. doi:10.1093/nar/27.1.297
[14] K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar, “MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods,” Molecular Biology and Evolution, Vol. 28, No. 10, 2011, pp. 2731- 2739. doi:10.1093/molbev/msr121
[15] C. H. Shih, H. Chu, L. K. Tang, W. Sakamoto, M. Maekawa, I. K. Chu, M. Wang and C. Lo, “Functional Characterization of Key Structural Genes in Rice Flavonoid Biosynthesis,” Planta, Vol. 228, No. 6, 2008, pp. 1043- 1054. doi:10.1007/s00425-008-0806-1

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.