Giant Magnetoimpedance of Cube/Feconi Electroplated Wires: Focus on Angular Sensoric

Abstract

Giant magnetoimpedance effect (GMI) is a subject of special interest proved by applied electrodynamic and technological applications. GMI effect in ferromagnetic tubes is connected with the high sensitivity of the magnetic system to a circular magnetic field near the spin-reorientation magnetic phase transitions offering high sensitivity with respect to an external magnetic field. In this work the non-magnetic CuBe wires were covered by Fe20Co6Ni74 layers by electrodeposition. The thickness of 1 μm for magnetic layer was high enough in order to ensure the high GMI value. Longitudinal magnetic anisotropy was induced by post preparation annealing in a magnetic field of 160 A/m at 320℃ during 1 hour in order to obtain appropriate magnetisation process. Angular dependencies of GMI were measured in a frequency range of 1 to 10 MHz for driving currents of 2.5 to 20 mA. High longitudinal GMI of the order of 400% was observed at quite low frequency of 1 MHz. The highest value of the sensitivity of 520%/Oe was found for the active resistance: Linear sensitivities of 0.023 Ω/° and 0.05 Ω/° were observed for reasonably low fields of 240 and275 A/m respectively for small angles, where planar GMI elements are less effective.

 

Share and Cite:

G. Kurlyandskaya, P. Jantaratana, M. Cerdeira and V. Va´kovskiy, "Giant Magnetoimpedance of Cube/Feconi Electroplated Wires: Focus on Angular Sensoric," World Journal of Condensed Matter Physics, Vol. 3 No. 1, 2013, pp. 21-27. doi: 10.4236/wjcmp.2013.31004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. S. Beach and A. E. Berkowitz, “Giant Magnetic Field Dependent Impedance of Amorphous FeCoSiB Wire,” Applied Physics Letters, Vol. 64, No. 26, 1994, pp. 3652-3654. doi:10.1063/1.111170
[2] H. Chiriac and T. A. Ovari, “Giant Magnetoimpedance Effect in Soft Magnetic Wire Families,” IEEE Transaction on Magnetics, Vol. 38, No. 5, 2002, pp. 3057-3062. doi:10.1109/TMAG.2002.802437
[3] G. V. Kurlyandskaya, D. De Cos, and S. O. Volchkov, “Magnetosensitive Transducers for Nondestructive Testing Operating on the Basis of the Giant Magnetoimpedance Effect: A Review,” Russian Jornal of Nondestructive Testing, Vol. 6, No. 6, 2009, pp. 377-398. doi:10.1134/S1061830909060023
[4] H. Garcia-Miquel, Bhagat, S. M. Bhagat, Lofland, S. E. Lofland, G. V. Kurlyandskaya and A. V. Svalov, “Ferromagnetic resonance in FeCoNi Electroplated Wires,” Journal of Applied Physics, Vol. 94, No. 3, 2003, pp. 1868-1872. doi:10.1063/1.1590407
[5] G. V. Kurlyandskaya, N. G. Bebenin and V. O. Vas’kovskiy, “Giant Magnetic Impedance of Wires with a Thin Magnetic Coating,” The Physics of Metals and Metallogrpaphy, Vol. 111, No. 2, 2011, pp. 133-154. doi:10.1134/S0031918X11010200
[6] G. V. Kurlyandskaya, H. Yakabchuk, E. Kisker, N. G. Bebenin, H. García-Miquel, M. Vazquez and V. O. Vas’ kovskiy, “Very Large Magnetoimpedance Effect in Fe-CoNi Ferromagnetic Tubes with High Order Magnetic Anisotropy,” Journal of Applied Physics, Vol. 90, No. 12, 2001, pp. 6280-6286. doi:10.1063/1.1418423
[7] A. S. Antonov, N. A. Buznikov, A. F. Prokoshin, A. L. Rakhmanov, I. T. Iakubov and A. M. Yakunin, “Nonlinear Magnetization Reversal in Copper-Permalloy Composite Wires Induced by a High-Frequency Current,” Technical Physics Letters, Vol. 27, No. 4, 2001, pp. 313315. doi:10.1134/1.1370211
[8] D. Garcia, G. V. Kurlyandskaya, M. Vazquez, F. I. Toth, and L. K. Varga, “Infuence of Field Annealing on the Hysteretic Behaviour of the Giant Magneto-Impedance Effect of Cu Wires Covered with Ni80Fe20 Outer Shells,” Journal of Magnetism and Magnetic Materials, Vol. 203, No. 1-3, 1999, pp. 208-210. doi:10.1016/S0304-8853(99)00236-X
[9] J. M. Garcia, A. Asenjo, M. Vázquez, A. M. Yakunin, A. S. Antonov and J. P. Sinnecker, “Determination of Closure Domain Penetration in Electrodeposited Microtubes by Combined Magnetic Force Microscopy and Giant Magneto-Impedance Techniques,” Journal of Applied Physics, Vol. 89, No. 7, 2001 pp. 3888-3891. doi:10.1063/1.1346998
[10] J. Velleuer, A.G. Munoz, H. Yakabchuk, C. Schiefer, A. Hackl and E. Kisker, “Giant Magneto Impedance in Electroplated NiFeMo/Cu Microwires,” Journal of Magnetism and Magnetic Materials, Vol. 311, No. 2, 2007, pp. 651657. doi:10.1016/j.jmmm.2006.08.030
[11] A. C. Mishra, “Microstructure, Magnetic and Magnetoimpedance Properties in Electrodeposited NiFe/Cu and CoNiFe/Cu Wire with Thiourea Additive in Plating Bath,” Physica B: Condensed Matter, Vol. 407, No. 6, 2012, pp. 923-934. doi:10.1016/j.physb.2011.11.033
[12] F. E. Atalay and S. Atalay, “Giant Magnetoimpedance Effect in NiFe/Cu Plated Wire with Various Plating Thicknesses,” Journal Alloys and Compounds, Vol. 392, No. 1-2, 2005, pp. 322-328. doi:10.1016/j.jallcom.2004.09.024
[13] K. Favieres, C. Aroca, M. C. Sanchez, K. V. Rao and V. Madurga, “Giant Magnetoimpedance in Twisted Amorphous CoP Multilayers Electrodeposited onto Cu Wires,” Journal of Magnetism and Magnetic Materials, Vol. 196, 1999, pp. 224-226. doi:10.1016/S0304-8853(98)00775-6
[14] P. Jantaratana and C. Sirisathitkul, “Effects of Thickness and Heat Treatments on Giant Magnetoimpedance of Electrodeposited Cobalt on Silver Wires,” IEEE Transactions on Magnetics, Vol. 42, No. 3, 2006, pp. 358-362. doi:10.1109/TMAG.2005.863270
[15] F. E. Atalay, H. Kaya and S. Atalay, “Magnetoimpedance Effect in Electroplated NiFeRu/Cu Wire,” Journal of Physics D: Applied Physics, Vol. 39, No. 3, 2006, pp. 431436. doi:10.1088/0022-3727/39/3/001
[16] G. V. Kurlyandskaya, A. García-Arribas and J. M. Barandiaran, “Advantages of Nonlinear Giant Magnetoimpedance for Sensor Applications,” Sensors and Actuators A, Vol. 106, No. 1-3, 2003, pp. 234-239. doi:10.1016/S0924-4247(03)00174-2
[17] M. T. Tung, D. V. A. Dung, N. D. Long and A.-T. Le, “Effects of Electrolytic Current Density on Structural, Magnetic Properties and GMI Behavior in Electrodeposited Bilayer FeNi/Cu Composite Wires,” Journal of Superconductivity and Novel Magnetism, Vol. 25, No. 7, 2012, pp. 2499-2505. doi:10.1007/s10948-012-1677-z
[18] K. Mohri, T. Uchiyama and L. V. Panina, “Recent Advances of Micro Magnetic Sensors and Sensing Application,” Sensors and Actuators A, Vol. 59, No. 1-3, 1997, pp. 1-8. doi:10.1016/S0924-4247(97)80141-0
[19] P. Jantarantana, N. G. Bebenin and G. V. Kurlyandskaya, “Magnetoimpedance and Magnetization Processes of FeCoNi Electroplated tubes,” Journal of Applied Physics, Vol. 105, No. 1, 2009, pp. 013908-013914. doi:10.1063/1.3054365
[20] G. V. Kurlyandskaya, J. M. Barandiaran, M. Vazquez, D. Garcia and N. V. Dmitrieva, “Infuence of Geometrical Parameters on the Giant Magnetoimpedance Response in Amorphous Ribbons,” Journal of Magnetism and Magnetic Materials, Vol. 215-216, 2000, pp. 740-742. doi:10.1016/S0304-8853(00)00274-2
[21] M. Yamaguchi, M. Takezawa, H. Ohdaira, K. I. Arai and A. Haga, “Directivity and Sensitivity of High-Frequency Carrier Type Thin-Film Magnetic Field Sensor,” Sensors and Actuators A, Vol. 81, No. 1-3, 2004, pp. 102-105. doi:10.1016/S0924-4247(99)00096-5
[22] H. Hauser, L. Kraus and P. Ripka, “Giant Magnetoimpedance Sensors,” IEEE Instrumentation & Measurement Magazine, Vol. 4, No. 2, 2001, pp. 28-32. doi:10.1109/5289.930983

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.