The Impact of the Bisubstituted Aromatics Functional Groups on the Inhibition of Methane Biosynthesis (Biogas)

Abstract

Inhibitory compounds are often found to be the leading cause of anaerobic reactor upset and failure since they are present in substantial concentration in wastewaters and organic solid wastes. Among these inhibitory compounds, organic compounds are mentioned and more especially aromatic compounds. The purpose of this work was to evaluate the effect of bisubstituted aromatics functional groups on the methanogenic inhibition. The toxicity to acetoclastic methanogenic bacteria has performed in serum flasks, utilizing digested pig manure as inoculums, by measuring cumulative methane production. The results obtained indicate that some general relationships exist between the bisubstituted aromatic structures and their inhibitory effects on methanogenic bacteria. This demonstrates sufficiently that the grafting of hydrophobic or hydrophilic substituent on the benzene or monofunctional aromatic compound, make the obtained compound more or less toxic as the case and that in the same order of toxicity. A significant correlation was obtained indicating that the partitioning of bisubstituted aromatics into lipophilic membranes in bacteria may have a role in the inhibition of methane biosynthesis.

Share and Cite:

K. Kayembe, L. Basosila, P. T. Mpiana, P. C. Sikulisimwa, J. K. Kabongo, D. S. T. Tshibangu, D. D. Tshilanda and R. K. Tati, "The Impact of the Bisubstituted Aromatics Functional Groups on the Inhibition of Methane Biosynthesis (Biogas)," Advances in Microbiology, Vol. 2 No. 4, 2012, pp. 617-622. doi: 10.4236/aim.2012.24080.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Chen, J. J. Cheng and K. S. Creamer, “Inhibition of Anaerobic Digestion Process: A Review,” Bioresource Technology, Vol. 99, No. 10, 2008, pp. 4044-4064. doi:10.1016/j.biortech.2007.01.057
[2] M. A. Martin, J. A. Siles, A. F. Chica and A. Martin, “Biomethanization of Orange Peel Waste,” Bioresource Technology, Vol. 101, No. 23, 2010, pp. 8993-8999. doi:10.1016/j.biortech.2010.06.133
[3] J. L. Eze and O. Ojike, “Anaerobic Production of Biogas from Maize Wastes,” International Journal of the Physical Sciences, Vol. 7 No. 6, 2012, pp. 982-987. doi:10.5897/IJPS11.1519
[4] L. A. Fdez-Gülfo, C. Alvarez-Gallego, D. Sales and L. I. Romero Garcia, “Determination of Critical and Optimum Conditions for Biomethanization of OFMSW in a Semi-Continuous Stirred Tank Reactor,” Chemical Engineering Journal, Vol. 171, No. 2, 2011, pp. 418-424. doi:10.1016/j.cej.2011.03.096
[5] C. Rico, J. Juis Rico, I. Tejero, N. Munoz and B. Gomez, “Anaerobic Digestion of the Liquid Fraction of Dairy Manure in Pilot Plant for Biogas Production: Residual Methane Yield of Digestate,” Waste Management, Vol. 31, No. 9-10, 2011, pp. 2167-2173. doi:10.1016/j.wasman.2011.04.018
[6] J. Field and R. Sierra, “Waste Characteristics and Factors Affecting Reactor Performance,” IHE-Delft & WAU, Wageningen, 1990.
[7] Y. Wang, Y. Zhang, J. Wang and L. Meng, “Effects of Volatile Fatty Acid Concentrations on Methane Yield and Methanogenic Bacteria,” Biomass and Bioenergy, Vol. 33, No. 5, 2009, pp. 848-853.
[8] C. Hechtand C. Greihl, “Investigation of the Accumulation of Aromatic Compounds during Biogas Production from Kitchen Waste,” Bioresource Technology, Vol. 100, No. 2, 2009, pp. 654-658. doi:10.1016/j.biortech.2008.07.034
[9] W. Chang, Y. Um, B. Hoffman and T. R. Pulliam Holoman, “Molecular Characterization of Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Methanogenic Communities,” Biotechnology Progress, Vol. 21, No. 3, 2005, pp. 682-688. doi:10.1021/bp049579l
[10] B. A. Donlon, E. Razo-Flores, J. A. Field and G. Lettinga, “Toxicity of N-Substituted Aromatics to Acetoclastic Methanogenic Activity in Granular Sludge,” Applied and Environmental Microbiology, Vol. 61, No.11, 1995, pp. 3889-3893.
[11] S. Kalyuzhnyi, V. Sklyar, T. Mosolova, I. Kucherenko, J. A. Russkova and N. Degtyaryova, “Methanogenic Biodegradation of Aromatic Amines,” Water Science and Technology, Vol. 42, No. 5-6, 2000, pp. 383-370.
[12] R. Sierra and G. Lettinga., “The Role of Aromatic Structure on Methanogenic Toxicity,” Mededelingen Faculteit Landbouwwetenschappen Rijksuniversiteit Gent, Vol. 4, No. 4b, 1989, pp. 1437-1474.
[13] K. Mbuyu and K. Kayembe, “Production du Méthane (Biogaz) Par la Digestion Anaerobie des Dreches de Brasseries et des Lisiers de Vaches,” Reviews of Congress on Scientific Nuclear, Vol. 16, No. 2, 2000, pp. 47-62.
[14] K. Mbuyu and K. Kayembe, “Etude de la Toxicite Methanogenique des Cations K+ et Na+,” Reviews of Congress on Scientific Nuclear, Vol. 16, No. 2, 2000, pp. 65-76.
[15] N. Mambanzulua, K. Kayembe and V. Noki, “Determination des Activites Méthanogenes Specifiques des Lisiers Dans le Traitement Anaerobique des Dechets,” Mededelingen Faculteit Landbouwwetenschappen Universiteit Gent, Vol. 64, No. 1, 1999, pp. 183-188.
[16] A. Leo, C. Hansch and D. Elkins, “Partition Coefficients and Their Uses,” Chemical Reviews, Vol. 71, No. 6, 1971, pp. 525-616. doi:10.1021/cr60274a001
[17] P. T. Mpiana, “Biophysique Médicale,” Resud Edition, Kinshasa, 2010.
[18] W. B. Whitman, T. Mothy, L. Bowen and D. R. Boone, “The Methanogenic Bacteria,” Prokaryotes, Vol. 3, 2006, pp. 165-208.
[19] H. H. P. Fang, “Inhibition of Bioactivity of UASB Biogranules by Electroplating Metals,” Pure and Applied Chemistry, Vol. 69, No. 11, 1997, pp. 2426-2429. doi:10.1351/pac199769112425

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.