Long-Term Changes in Night Time Airglow Emission at 557.7 nm over Mid Latitude Japanese Station i.e., Kiso (35.79oN, 137.63oE)

Abstract

The present study describes the long-term changes in Pre-midnight and Midnight airglow intensities of 557.7 nm during the period 1979-1994 over mid latitude Japanese station i.e., Kiso, Tokyo Astronomical Observatory, University of Tokyo (35.79oN, 137.63oE; 1130 m), Japan. It has observed that there is a positive increasing decadal change in Midnight and Pre-midnight mesospheric airglow intensity of the range 25 - 88 R. This range is the order of 10 to 30% of the observed MARV and average night airglow intensity of 250 R. Besides this long-term trend, inter-annual monthly variation is also seen from fluctuation of yearly variation of deviation values from MARV to particular average monthly values. The present observations about the positive decadal change in night time mesospheric airglow intensity has been further linked to the reduction of mesospheric electron densities and temperature or shrinking and cooling of the lower ionosphere as established from the long-term behavior of mesospheric parameters such as a negative decadal change in thermal structure, electron density, neutral density parameters as per studies reported by other researchers.

Share and Cite:

B. Vyas and V. Saraswat, "Long-Term Changes in Night Time Airglow Emission at 557.7 nm over Mid Latitude Japanese Station i.e., Kiso (35.79oN, 137.63oE)," American Journal of Climate Change, Vol. 1 No. 4, 2012, pp. 210-216. doi: 10.4236/ajcc.2012.14018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. H. Rees, “Physics and Chemistry of the upper Atmosphere,” Cambridge University Press, Cambridge, 1989. doi:10.1017/CBO9780511573118
[2] R. Chattopadhyay and S. K. Midya, “Airglow Emissions: Fundamentals of Theory and Experiments,” Indian Journal of Physics, Vol. 80, No. 2, 2006, pp. 115-166.
[3] P. K. Jana, I. Saha and S. Mukhopadhyay, “Long-Term Ozone Decline and Its Effect on Night Airglow Intensity of Li 6708 ? at Varanasi (25?N, 83?E) and Halley Bay (76?S, 27?W),” Journal of Earth System Science, Vol. 120, No. 2, 2011, pp. 291-300. doi:10.1007/s12040-011-0047-8
[4] S. K. Midya and D. Midya, “The Effect of Antarctic O3 Decline on Night Airglow Intensity of Na 5893?, O5577?, OH Emission and Its Correlation with Solar Flare Numbers,” Earth, Moon & Planets (The Netherlands), Vol. 61, No. 2, 1993, pp. 175-182. doi:10.1007/BF00572412
[5] S. K. Midya and R. Chattopadhyay, “Evening TwilightGlow of Sodium 5893 ? Line Emission at Calcutta and Its Typical Relation with Astronomical Parameters,” Indian Journal of Radio & Space Physics, Vol. 35, No. 2, 2006, pp. 77-83.
[6] J. W. Chamberlain, “Physics of the Aurora and Airglow,” Academic Press, New York, 1961.
[7] D. M. Hunten, “Airglow Introduction and Review,” In: B. M. McCormac, Ed., The Radiating Atmosphere, D. Reidel Publishing Company, Dordrecht, 1970, pp. 1-16.
[8] T. N. Davis, “The Night Airglow,” Article #293, 1979. http://www.gi.alaska.edu/ScienceForum/ASF2/293.html
[9] A. Taori, A. Jayaraman, K. Raghunath and V. Kamalakar, “A New Method to Derive Middle Atmospheric Temperature Profiles Using a Combination of Rayleigh Lidar and O2 Airglow Temperatures Measurements,” Annals of Geophysics, Vol. 30, No. 1, 2012, pp. 27-32. doi:10.5194/angeo-30-27-2012
[10] H. Gao, J.-B. Nee and J. Xu, “The Emission of Oxygen Green Line and Density of O Atom Determined by Using ISUAL and SABER Measurements,” Annals of Geophysics, Vol. 30, No. 4, 2012, pp. 695-701. doi:10.5194/angeo-30-695-2012
[11] T. Bangia, S. Bhattacharjee, A. Guharay, A. Taori and W. Uddin, “Study of Upper Atmospheric Emissions Using Mesosphere Lower Thermosphere Photometer (MLTP) Designed at ARIES,” Indian Journal of Radio & Space Physics, Vol. 39, No. 5, 2010, pp. 325-329.
[12] D. R. Bates, “Excitation of 557.7 nm OI Line in NightGlow,” Planetary and Space Science, Vol. 36, No. 9, 1988, pp. 883-889. doi:10.1016/0032-0633(88)90094-3
[13] C. A. Barth and A. F. Hildebrandt, “The 5577 ? Airglow Emission Mechanism,” Journal of Geophysical Research, Vol. 66, No. 3, 1961, pp. 985-986.
[14] T. Ogawa, N. Balan, Y. Otsuka, K. Shiokawa, C. Ihara, T. Shimomai and A. Saito, “Observations and Modeling of 630 nm Airglow and Total Electron Content Associated with Traveling Ionospheric Disturbances over Shigaraki, Japan,” Earth, Planet Space (Japan), Vol. 54, No. 1, 2002, pp. 45-56.
[15] J. Sobral, M. Abdu, H. Takahashi, M. Taylor, E. de Paula, C. Zamlutti, M. de Aquino and G. Borba, “Ionospheric Plasma Bubble Climatology over Brazil Based on 22 Years (1977-1998) of 630 nm Airglow Observations,” Journal of Atmospheric and Solar-Terrestrial Physics (UK), Vol. 64, No. 1214, 2002, pp. 1517-1524. doi:10.1016/S1364-6826(02)00089-5
[16] P. K. Jana and S. C. Nandi, “Effect of Solar Parameters on Antarctic, Arctic and Tropical Ozone during the Last Solar Cycle,” Indian Journal of Radio & Space Physics, Vol. 34, No. 2, 2005a, pp. 114-118.
[17] P. K. Jana and S. C. Nandi, “Depletion of Ozone and Its Effect on Night Airglow Intensity of Na 5893 ? at New Delhi (29oN, 77oE) and Halley Bay (76oS, 27oW),” Indian Journal of Physics, Vol. 79, No. 11, 2005b, pp. 11131317.
[18] P. K. Jana and S. C. Nandi, “Depletion of Ozone and Its Effect on Night Airglow Intensity of Na 5893 ? at Trivandrum (8.25oN, 76.9oE) and Halley Bay (76oS, 27oW),” Mausam, Vol. 57, No. 2, 2005c, pp. 350-354.
[19] P. K. Jana and S. C. Nandi, “Ozone Decline and Its Effect on Night Airglow Intensity of Na 5893 ? at Dumdum (22.5oN, 88.5oE) and Halley Bay (76oS, 27oW),” Journal of Earth System Science, Vol. 115, No. 5, 2006, pp. 607613. doi:10.1007/BF02702913
[20] P. K. Jana, I. Saha, P. Das, D. Sarkar and S. K. Midya, “Long-Term Ozone Trend and Its Effect on Night Airglow Intensity of Li 6708 ? at Ahmedabad (23?N, 72.5?E), India and Halley Bay (76?S, 27?W), British Antarctic Service Station,” Indian Journal of Physics, Vol. 84, No. 1, 2010, pp. 41-53. doi:10.1007/s12648-010-0003-5
[21] B. M. Vyas and Vimal Saraswat, “Long Term Trend in Nocturnal Airglow Emission of 589.3 Nm over Mid Latitude Japanese Station i.e., Kiso (35.79?N, 137.63?E),” 2012. http://www.nipne.ro/rjp/accpaps/Saraswat_V_8FB31B.pdf).
[22] G. Beig, P. Keckhut, R. P. Lowe, R. G. Roble, M. G. Mlyczak, J. Scheer, V. I. Fomichev, D. Offerman, W. J. R. French, M. G. Shepherd, A. I. Semenov, E. E. Remsberg, C. Y. She, F. J. Lubken, J. Bremer, B. R. Clemesha, J. Stegman, F. Sigernes and S. Fadnavis, “Review of Mesospheric Temperature Trends,” Reviews of Geophysics, Vol. 41, No. 4, 2003, pp. 1-41. doi:10.1029/2002RG000121
[23] P. K. Rajesh, J. Y. Liu, H. S. S. Sinha, S. B. Banerjee, R. N. Misra, N. Dutt, and M. B. Dadhania, “Observations of Plasma Depletions in 557.7 nm Images over Kavalur,” Journal of Geophysical Research, Vol. 112, 2007. doi:10.1029/2006JA012055
[24] U. Das and H. S. S. Sinha, “Long Term Variations in Oxygen Green Line Emission over Kiso, Japan from Ground Photometric Observations Using Continuous Wavelet Transform,” Journal of Geophysical Research, Vol. 113, 2008. doi:10.1029/2007JD009516
[25] U. Das, C. J. Pan and H. S. S. Sinha, “Effects of Solar Cycle Variations on Oxygen Green Line Emission Rate over Kiso, Japan,” Earth Planets Space, Vol. 63, No. 8, 2011, pp. 941-948.
[26] R. L. Carovillano and J. M. Forbes, “Solar Terrestrial Physics, Principles and Theoretical Foundations,” D. Reidel Publishing Company, Dordrecht, 1983.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.